1 /* 2 * Memory subsystem support 3 * 4 * Written by Matt Tolentino <[email protected]> 5 * Dave Hansen <[email protected]> 6 * 7 * This file provides the necessary infrastructure to represent 8 * a SPARSEMEM-memory-model system's physical memory in /sysfs. 9 * All arch-independent code that assumes MEMORY_HOTPLUG requires 10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c. 11 */ 12 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/topology.h> 16 #include <linux/capability.h> 17 #include <linux/device.h> 18 #include <linux/memory.h> 19 #include <linux/kobject.h> 20 #include <linux/memory_hotplug.h> 21 #include <linux/mm.h> 22 #include <linux/mutex.h> 23 #include <linux/stat.h> 24 #include <linux/slab.h> 25 26 #include <linux/atomic.h> 27 #include <asm/uaccess.h> 28 29 static DEFINE_MUTEX(mem_sysfs_mutex); 30 31 #define MEMORY_CLASS_NAME "memory" 32 33 static int sections_per_block; 34 35 static inline int base_memory_block_id(int section_nr) 36 { 37 return section_nr / sections_per_block; 38 } 39 40 static int memory_subsys_online(struct device *dev); 41 static int memory_subsys_offline(struct device *dev); 42 43 static struct bus_type memory_subsys = { 44 .name = MEMORY_CLASS_NAME, 45 .dev_name = MEMORY_CLASS_NAME, 46 .online = memory_subsys_online, 47 .offline = memory_subsys_offline, 48 }; 49 50 static BLOCKING_NOTIFIER_HEAD(memory_chain); 51 52 int register_memory_notifier(struct notifier_block *nb) 53 { 54 return blocking_notifier_chain_register(&memory_chain, nb); 55 } 56 EXPORT_SYMBOL(register_memory_notifier); 57 58 void unregister_memory_notifier(struct notifier_block *nb) 59 { 60 blocking_notifier_chain_unregister(&memory_chain, nb); 61 } 62 EXPORT_SYMBOL(unregister_memory_notifier); 63 64 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain); 65 66 int register_memory_isolate_notifier(struct notifier_block *nb) 67 { 68 return atomic_notifier_chain_register(&memory_isolate_chain, nb); 69 } 70 EXPORT_SYMBOL(register_memory_isolate_notifier); 71 72 void unregister_memory_isolate_notifier(struct notifier_block *nb) 73 { 74 atomic_notifier_chain_unregister(&memory_isolate_chain, nb); 75 } 76 EXPORT_SYMBOL(unregister_memory_isolate_notifier); 77 78 static void memory_block_release(struct device *dev) 79 { 80 struct memory_block *mem = container_of(dev, struct memory_block, dev); 81 82 kfree(mem); 83 } 84 85 unsigned long __weak memory_block_size_bytes(void) 86 { 87 return MIN_MEMORY_BLOCK_SIZE; 88 } 89 90 static unsigned long get_memory_block_size(void) 91 { 92 unsigned long block_sz; 93 94 block_sz = memory_block_size_bytes(); 95 96 /* Validate blk_sz is a power of 2 and not less than section size */ 97 if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) { 98 WARN_ON(1); 99 block_sz = MIN_MEMORY_BLOCK_SIZE; 100 } 101 102 return block_sz; 103 } 104 105 /* 106 * use this as the physical section index that this memsection 107 * uses. 108 */ 109 110 static ssize_t show_mem_start_phys_index(struct device *dev, 111 struct device_attribute *attr, char *buf) 112 { 113 struct memory_block *mem = 114 container_of(dev, struct memory_block, dev); 115 unsigned long phys_index; 116 117 phys_index = mem->start_section_nr / sections_per_block; 118 return sprintf(buf, "%08lx\n", phys_index); 119 } 120 121 static ssize_t show_mem_end_phys_index(struct device *dev, 122 struct device_attribute *attr, char *buf) 123 { 124 struct memory_block *mem = 125 container_of(dev, struct memory_block, dev); 126 unsigned long phys_index; 127 128 phys_index = mem->end_section_nr / sections_per_block; 129 return sprintf(buf, "%08lx\n", phys_index); 130 } 131 132 /* 133 * Show whether the section of memory is likely to be hot-removable 134 */ 135 static ssize_t show_mem_removable(struct device *dev, 136 struct device_attribute *attr, char *buf) 137 { 138 unsigned long i, pfn; 139 int ret = 1; 140 struct memory_block *mem = 141 container_of(dev, struct memory_block, dev); 142 143 for (i = 0; i < sections_per_block; i++) { 144 if (!present_section_nr(mem->start_section_nr + i)) 145 continue; 146 pfn = section_nr_to_pfn(mem->start_section_nr + i); 147 ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION); 148 } 149 150 return sprintf(buf, "%d\n", ret); 151 } 152 153 /* 154 * online, offline, going offline, etc. 155 */ 156 static ssize_t show_mem_state(struct device *dev, 157 struct device_attribute *attr, char *buf) 158 { 159 struct memory_block *mem = 160 container_of(dev, struct memory_block, dev); 161 ssize_t len = 0; 162 163 /* 164 * We can probably put these states in a nice little array 165 * so that they're not open-coded 166 */ 167 switch (mem->state) { 168 case MEM_ONLINE: 169 len = sprintf(buf, "online\n"); 170 break; 171 case MEM_OFFLINE: 172 len = sprintf(buf, "offline\n"); 173 break; 174 case MEM_GOING_OFFLINE: 175 len = sprintf(buf, "going-offline\n"); 176 break; 177 default: 178 len = sprintf(buf, "ERROR-UNKNOWN-%ld\n", 179 mem->state); 180 WARN_ON(1); 181 break; 182 } 183 184 return len; 185 } 186 187 int memory_notify(unsigned long val, void *v) 188 { 189 return blocking_notifier_call_chain(&memory_chain, val, v); 190 } 191 192 int memory_isolate_notify(unsigned long val, void *v) 193 { 194 return atomic_notifier_call_chain(&memory_isolate_chain, val, v); 195 } 196 197 /* 198 * The probe routines leave the pages reserved, just as the bootmem code does. 199 * Make sure they're still that way. 200 */ 201 static bool pages_correctly_reserved(unsigned long start_pfn) 202 { 203 int i, j; 204 struct page *page; 205 unsigned long pfn = start_pfn; 206 207 /* 208 * memmap between sections is not contiguous except with 209 * SPARSEMEM_VMEMMAP. We lookup the page once per section 210 * and assume memmap is contiguous within each section 211 */ 212 for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) { 213 if (WARN_ON_ONCE(!pfn_valid(pfn))) 214 return false; 215 page = pfn_to_page(pfn); 216 217 for (j = 0; j < PAGES_PER_SECTION; j++) { 218 if (PageReserved(page + j)) 219 continue; 220 221 printk(KERN_WARNING "section number %ld page number %d " 222 "not reserved, was it already online?\n", 223 pfn_to_section_nr(pfn), j); 224 225 return false; 226 } 227 } 228 229 return true; 230 } 231 232 /* 233 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is 234 * OK to have direct references to sparsemem variables in here. 235 */ 236 static int 237 memory_block_action(unsigned long phys_index, unsigned long action, int online_type) 238 { 239 unsigned long start_pfn; 240 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 241 struct page *first_page; 242 int ret; 243 244 first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT); 245 start_pfn = page_to_pfn(first_page); 246 247 switch (action) { 248 case MEM_ONLINE: 249 if (!pages_correctly_reserved(start_pfn)) 250 return -EBUSY; 251 252 ret = online_pages(start_pfn, nr_pages, online_type); 253 break; 254 case MEM_OFFLINE: 255 ret = offline_pages(start_pfn, nr_pages); 256 break; 257 default: 258 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: " 259 "%ld\n", __func__, phys_index, action, action); 260 ret = -EINVAL; 261 } 262 263 return ret; 264 } 265 266 static int __memory_block_change_state(struct memory_block *mem, 267 unsigned long to_state, unsigned long from_state_req, 268 int online_type) 269 { 270 int ret = 0; 271 272 if (mem->state != from_state_req) 273 return -EINVAL; 274 275 if (to_state == MEM_OFFLINE) 276 mem->state = MEM_GOING_OFFLINE; 277 278 ret = memory_block_action(mem->start_section_nr, to_state, online_type); 279 mem->state = ret ? from_state_req : to_state; 280 return ret; 281 } 282 283 static int memory_subsys_online(struct device *dev) 284 { 285 struct memory_block *mem = container_of(dev, struct memory_block, dev); 286 int ret; 287 288 mutex_lock(&mem->state_mutex); 289 290 ret = mem->state == MEM_ONLINE ? 0 : 291 __memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE, 292 ONLINE_KEEP); 293 294 mutex_unlock(&mem->state_mutex); 295 return ret; 296 } 297 298 static int memory_subsys_offline(struct device *dev) 299 { 300 struct memory_block *mem = container_of(dev, struct memory_block, dev); 301 int ret; 302 303 mutex_lock(&mem->state_mutex); 304 305 ret = mem->state == MEM_OFFLINE ? 0 : 306 __memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE, -1); 307 308 mutex_unlock(&mem->state_mutex); 309 return ret; 310 } 311 312 static int __memory_block_change_state_uevent(struct memory_block *mem, 313 unsigned long to_state, unsigned long from_state_req, 314 int online_type) 315 { 316 int ret = __memory_block_change_state(mem, to_state, from_state_req, 317 online_type); 318 if (!ret) { 319 switch (mem->state) { 320 case MEM_OFFLINE: 321 kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE); 322 break; 323 case MEM_ONLINE: 324 kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE); 325 break; 326 default: 327 break; 328 } 329 } 330 return ret; 331 } 332 333 static int memory_block_change_state(struct memory_block *mem, 334 unsigned long to_state, unsigned long from_state_req, 335 int online_type) 336 { 337 int ret; 338 339 mutex_lock(&mem->state_mutex); 340 ret = __memory_block_change_state_uevent(mem, to_state, from_state_req, 341 online_type); 342 mutex_unlock(&mem->state_mutex); 343 344 return ret; 345 } 346 static ssize_t 347 store_mem_state(struct device *dev, 348 struct device_attribute *attr, const char *buf, size_t count) 349 { 350 struct memory_block *mem; 351 bool offline; 352 int ret = -EINVAL; 353 354 mem = container_of(dev, struct memory_block, dev); 355 356 lock_device_hotplug(); 357 358 if (!strncmp(buf, "online_kernel", min_t(int, count, 13))) { 359 offline = false; 360 ret = memory_block_change_state(mem, MEM_ONLINE, 361 MEM_OFFLINE, ONLINE_KERNEL); 362 } else if (!strncmp(buf, "online_movable", min_t(int, count, 14))) { 363 offline = false; 364 ret = memory_block_change_state(mem, MEM_ONLINE, 365 MEM_OFFLINE, ONLINE_MOVABLE); 366 } else if (!strncmp(buf, "online", min_t(int, count, 6))) { 367 offline = false; 368 ret = memory_block_change_state(mem, MEM_ONLINE, 369 MEM_OFFLINE, ONLINE_KEEP); 370 } else if(!strncmp(buf, "offline", min_t(int, count, 7))) { 371 offline = true; 372 ret = memory_block_change_state(mem, MEM_OFFLINE, 373 MEM_ONLINE, -1); 374 } 375 if (!ret) 376 dev->offline = offline; 377 378 unlock_device_hotplug(); 379 380 if (ret) 381 return ret; 382 return count; 383 } 384 385 /* 386 * phys_device is a bad name for this. What I really want 387 * is a way to differentiate between memory ranges that 388 * are part of physical devices that constitute 389 * a complete removable unit or fru. 390 * i.e. do these ranges belong to the same physical device, 391 * s.t. if I offline all of these sections I can then 392 * remove the physical device? 393 */ 394 static ssize_t show_phys_device(struct device *dev, 395 struct device_attribute *attr, char *buf) 396 { 397 struct memory_block *mem = 398 container_of(dev, struct memory_block, dev); 399 return sprintf(buf, "%d\n", mem->phys_device); 400 } 401 402 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL); 403 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL); 404 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state); 405 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL); 406 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL); 407 408 /* 409 * Block size attribute stuff 410 */ 411 static ssize_t 412 print_block_size(struct device *dev, struct device_attribute *attr, 413 char *buf) 414 { 415 return sprintf(buf, "%lx\n", get_memory_block_size()); 416 } 417 418 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL); 419 420 /* 421 * Some architectures will have custom drivers to do this, and 422 * will not need to do it from userspace. The fake hot-add code 423 * as well as ppc64 will do all of their discovery in userspace 424 * and will require this interface. 425 */ 426 #ifdef CONFIG_ARCH_MEMORY_PROBE 427 static ssize_t 428 memory_probe_store(struct device *dev, struct device_attribute *attr, 429 const char *buf, size_t count) 430 { 431 u64 phys_addr; 432 int nid; 433 int i, ret; 434 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block; 435 436 phys_addr = simple_strtoull(buf, NULL, 0); 437 438 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1)) 439 return -EINVAL; 440 441 for (i = 0; i < sections_per_block; i++) { 442 nid = memory_add_physaddr_to_nid(phys_addr); 443 ret = add_memory(nid, phys_addr, 444 PAGES_PER_SECTION << PAGE_SHIFT); 445 if (ret) 446 goto out; 447 448 phys_addr += MIN_MEMORY_BLOCK_SIZE; 449 } 450 451 ret = count; 452 out: 453 return ret; 454 } 455 456 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store); 457 #endif 458 459 #ifdef CONFIG_MEMORY_FAILURE 460 /* 461 * Support for offlining pages of memory 462 */ 463 464 /* Soft offline a page */ 465 static ssize_t 466 store_soft_offline_page(struct device *dev, 467 struct device_attribute *attr, 468 const char *buf, size_t count) 469 { 470 int ret; 471 u64 pfn; 472 if (!capable(CAP_SYS_ADMIN)) 473 return -EPERM; 474 if (strict_strtoull(buf, 0, &pfn) < 0) 475 return -EINVAL; 476 pfn >>= PAGE_SHIFT; 477 if (!pfn_valid(pfn)) 478 return -ENXIO; 479 ret = soft_offline_page(pfn_to_page(pfn), 0); 480 return ret == 0 ? count : ret; 481 } 482 483 /* Forcibly offline a page, including killing processes. */ 484 static ssize_t 485 store_hard_offline_page(struct device *dev, 486 struct device_attribute *attr, 487 const char *buf, size_t count) 488 { 489 int ret; 490 u64 pfn; 491 if (!capable(CAP_SYS_ADMIN)) 492 return -EPERM; 493 if (strict_strtoull(buf, 0, &pfn) < 0) 494 return -EINVAL; 495 pfn >>= PAGE_SHIFT; 496 ret = memory_failure(pfn, 0, 0); 497 return ret ? ret : count; 498 } 499 500 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page); 501 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page); 502 #endif 503 504 /* 505 * Note that phys_device is optional. It is here to allow for 506 * differentiation between which *physical* devices each 507 * section belongs to... 508 */ 509 int __weak arch_get_memory_phys_device(unsigned long start_pfn) 510 { 511 return 0; 512 } 513 514 /* 515 * A reference for the returned object is held and the reference for the 516 * hinted object is released. 517 */ 518 struct memory_block *find_memory_block_hinted(struct mem_section *section, 519 struct memory_block *hint) 520 { 521 int block_id = base_memory_block_id(__section_nr(section)); 522 struct device *hintdev = hint ? &hint->dev : NULL; 523 struct device *dev; 524 525 dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev); 526 if (hint) 527 put_device(&hint->dev); 528 if (!dev) 529 return NULL; 530 return container_of(dev, struct memory_block, dev); 531 } 532 533 /* 534 * For now, we have a linear search to go find the appropriate 535 * memory_block corresponding to a particular phys_index. If 536 * this gets to be a real problem, we can always use a radix 537 * tree or something here. 538 * 539 * This could be made generic for all device subsystems. 540 */ 541 struct memory_block *find_memory_block(struct mem_section *section) 542 { 543 return find_memory_block_hinted(section, NULL); 544 } 545 546 static struct attribute *memory_memblk_attrs[] = { 547 &dev_attr_phys_index.attr, 548 &dev_attr_end_phys_index.attr, 549 &dev_attr_state.attr, 550 &dev_attr_phys_device.attr, 551 &dev_attr_removable.attr, 552 NULL 553 }; 554 555 static struct attribute_group memory_memblk_attr_group = { 556 .attrs = memory_memblk_attrs, 557 }; 558 559 static const struct attribute_group *memory_memblk_attr_groups[] = { 560 &memory_memblk_attr_group, 561 NULL, 562 }; 563 564 /* 565 * register_memory - Setup a sysfs device for a memory block 566 */ 567 static 568 int register_memory(struct memory_block *memory) 569 { 570 int error; 571 572 memory->dev.bus = &memory_subsys; 573 memory->dev.id = memory->start_section_nr / sections_per_block; 574 memory->dev.release = memory_block_release; 575 memory->dev.groups = memory_memblk_attr_groups; 576 memory->dev.offline = memory->state == MEM_OFFLINE; 577 578 error = device_register(&memory->dev); 579 return error; 580 } 581 582 static int init_memory_block(struct memory_block **memory, 583 struct mem_section *section, unsigned long state) 584 { 585 struct memory_block *mem; 586 unsigned long start_pfn; 587 int scn_nr; 588 int ret = 0; 589 590 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 591 if (!mem) 592 return -ENOMEM; 593 594 scn_nr = __section_nr(section); 595 mem->start_section_nr = 596 base_memory_block_id(scn_nr) * sections_per_block; 597 mem->end_section_nr = mem->start_section_nr + sections_per_block - 1; 598 mem->state = state; 599 mem->section_count++; 600 mutex_init(&mem->state_mutex); 601 start_pfn = section_nr_to_pfn(mem->start_section_nr); 602 mem->phys_device = arch_get_memory_phys_device(start_pfn); 603 604 ret = register_memory(mem); 605 606 *memory = mem; 607 return ret; 608 } 609 610 static int add_memory_section(int nid, struct mem_section *section, 611 struct memory_block **mem_p, 612 unsigned long state, enum mem_add_context context) 613 { 614 struct memory_block *mem = NULL; 615 int scn_nr = __section_nr(section); 616 int ret = 0; 617 618 mutex_lock(&mem_sysfs_mutex); 619 620 if (context == BOOT) { 621 /* same memory block ? */ 622 if (mem_p && *mem_p) 623 if (scn_nr >= (*mem_p)->start_section_nr && 624 scn_nr <= (*mem_p)->end_section_nr) { 625 mem = *mem_p; 626 kobject_get(&mem->dev.kobj); 627 } 628 } else 629 mem = find_memory_block(section); 630 631 if (mem) { 632 mem->section_count++; 633 kobject_put(&mem->dev.kobj); 634 } else { 635 ret = init_memory_block(&mem, section, state); 636 /* store memory_block pointer for next loop */ 637 if (!ret && context == BOOT) 638 if (mem_p) 639 *mem_p = mem; 640 } 641 642 if (!ret) { 643 if (context == HOTPLUG && 644 mem->section_count == sections_per_block) 645 ret = register_mem_sect_under_node(mem, nid); 646 } 647 648 mutex_unlock(&mem_sysfs_mutex); 649 return ret; 650 } 651 652 /* 653 * need an interface for the VM to add new memory regions, 654 * but without onlining it. 655 */ 656 int register_new_memory(int nid, struct mem_section *section) 657 { 658 return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG); 659 } 660 661 #ifdef CONFIG_MEMORY_HOTREMOVE 662 static void 663 unregister_memory(struct memory_block *memory) 664 { 665 BUG_ON(memory->dev.bus != &memory_subsys); 666 667 /* drop the ref. we got in remove_memory_block() */ 668 kobject_put(&memory->dev.kobj); 669 device_unregister(&memory->dev); 670 } 671 672 static int remove_memory_block(unsigned long node_id, 673 struct mem_section *section, int phys_device) 674 { 675 struct memory_block *mem; 676 677 mutex_lock(&mem_sysfs_mutex); 678 mem = find_memory_block(section); 679 unregister_mem_sect_under_nodes(mem, __section_nr(section)); 680 681 mem->section_count--; 682 if (mem->section_count == 0) 683 unregister_memory(mem); 684 else 685 kobject_put(&mem->dev.kobj); 686 687 mutex_unlock(&mem_sysfs_mutex); 688 return 0; 689 } 690 691 int unregister_memory_section(struct mem_section *section) 692 { 693 if (!present_section(section)) 694 return -EINVAL; 695 696 return remove_memory_block(0, section, 0); 697 } 698 #endif /* CONFIG_MEMORY_HOTREMOVE */ 699 700 /* return true if the memory block is offlined, otherwise, return false */ 701 bool is_memblock_offlined(struct memory_block *mem) 702 { 703 return mem->state == MEM_OFFLINE; 704 } 705 706 static struct attribute *memory_root_attrs[] = { 707 #ifdef CONFIG_ARCH_MEMORY_PROBE 708 &dev_attr_probe.attr, 709 #endif 710 711 #ifdef CONFIG_MEMORY_FAILURE 712 &dev_attr_soft_offline_page.attr, 713 &dev_attr_hard_offline_page.attr, 714 #endif 715 716 &dev_attr_block_size_bytes.attr, 717 NULL 718 }; 719 720 static struct attribute_group memory_root_attr_group = { 721 .attrs = memory_root_attrs, 722 }; 723 724 static const struct attribute_group *memory_root_attr_groups[] = { 725 &memory_root_attr_group, 726 NULL, 727 }; 728 729 /* 730 * Initialize the sysfs support for memory devices... 731 */ 732 int __init memory_dev_init(void) 733 { 734 unsigned int i; 735 int ret; 736 int err; 737 unsigned long block_sz; 738 struct memory_block *mem = NULL; 739 740 ret = subsys_system_register(&memory_subsys, memory_root_attr_groups); 741 if (ret) 742 goto out; 743 744 block_sz = get_memory_block_size(); 745 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE; 746 747 /* 748 * Create entries for memory sections that were found 749 * during boot and have been initialized 750 */ 751 for (i = 0; i < NR_MEM_SECTIONS; i++) { 752 if (!present_section_nr(i)) 753 continue; 754 /* don't need to reuse memory_block if only one per block */ 755 err = add_memory_section(0, __nr_to_section(i), 756 (sections_per_block == 1) ? NULL : &mem, 757 MEM_ONLINE, 758 BOOT); 759 if (!ret) 760 ret = err; 761 } 762 763 out: 764 if (ret) 765 printk(KERN_ERR "%s() failed: %d\n", __func__, ret); 766 return ret; 767 } 768