xref: /linux-6.15/drivers/base/memory.c (revision 3e4cd073)
1 /*
2  * drivers/base/memory.c - basic Memory class support
3  *
4  * Written by Matt Tolentino <[email protected]>
5  *            Dave Hansen <[email protected]>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/sysdev.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/topology.h>
17 #include <linux/capability.h>
18 #include <linux/device.h>
19 #include <linux/memory.h>
20 #include <linux/kobject.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/mm.h>
23 #include <linux/mutex.h>
24 #include <linux/stat.h>
25 #include <linux/slab.h>
26 
27 #include <asm/atomic.h>
28 #include <asm/uaccess.h>
29 
30 static DEFINE_MUTEX(mem_sysfs_mutex);
31 
32 #define MEMORY_CLASS_NAME	"memory"
33 #define MIN_MEMORY_BLOCK_SIZE	(1 << SECTION_SIZE_BITS)
34 
35 static int sections_per_block;
36 
37 static inline int base_memory_block_id(int section_nr)
38 {
39 	return section_nr / sections_per_block;
40 }
41 
42 static struct sysdev_class memory_sysdev_class = {
43 	.name = MEMORY_CLASS_NAME,
44 };
45 
46 static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj)
47 {
48 	return MEMORY_CLASS_NAME;
49 }
50 
51 static int memory_uevent(struct kset *kset, struct kobject *obj,
52 			struct kobj_uevent_env *env)
53 {
54 	int retval = 0;
55 
56 	return retval;
57 }
58 
59 static const struct kset_uevent_ops memory_uevent_ops = {
60 	.name		= memory_uevent_name,
61 	.uevent		= memory_uevent,
62 };
63 
64 static BLOCKING_NOTIFIER_HEAD(memory_chain);
65 
66 int register_memory_notifier(struct notifier_block *nb)
67 {
68         return blocking_notifier_chain_register(&memory_chain, nb);
69 }
70 EXPORT_SYMBOL(register_memory_notifier);
71 
72 void unregister_memory_notifier(struct notifier_block *nb)
73 {
74         blocking_notifier_chain_unregister(&memory_chain, nb);
75 }
76 EXPORT_SYMBOL(unregister_memory_notifier);
77 
78 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
79 
80 int register_memory_isolate_notifier(struct notifier_block *nb)
81 {
82 	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
83 }
84 EXPORT_SYMBOL(register_memory_isolate_notifier);
85 
86 void unregister_memory_isolate_notifier(struct notifier_block *nb)
87 {
88 	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
89 }
90 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
91 
92 /*
93  * register_memory - Setup a sysfs device for a memory block
94  */
95 static
96 int register_memory(struct memory_block *memory)
97 {
98 	int error;
99 
100 	memory->sysdev.cls = &memory_sysdev_class;
101 	memory->sysdev.id = memory->start_section_nr / sections_per_block;
102 
103 	error = sysdev_register(&memory->sysdev);
104 	return error;
105 }
106 
107 static void
108 unregister_memory(struct memory_block *memory)
109 {
110 	BUG_ON(memory->sysdev.cls != &memory_sysdev_class);
111 
112 	/* drop the ref. we got in remove_memory_block() */
113 	kobject_put(&memory->sysdev.kobj);
114 	sysdev_unregister(&memory->sysdev);
115 }
116 
117 unsigned long __weak memory_block_size_bytes(void)
118 {
119 	return MIN_MEMORY_BLOCK_SIZE;
120 }
121 
122 static unsigned long get_memory_block_size(void)
123 {
124 	unsigned long block_sz;
125 
126 	block_sz = memory_block_size_bytes();
127 
128 	/* Validate blk_sz is a power of 2 and not less than section size */
129 	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
130 		WARN_ON(1);
131 		block_sz = MIN_MEMORY_BLOCK_SIZE;
132 	}
133 
134 	return block_sz;
135 }
136 
137 /*
138  * use this as the physical section index that this memsection
139  * uses.
140  */
141 
142 static ssize_t show_mem_start_phys_index(struct sys_device *dev,
143 			struct sysdev_attribute *attr, char *buf)
144 {
145 	struct memory_block *mem =
146 		container_of(dev, struct memory_block, sysdev);
147 	unsigned long phys_index;
148 
149 	phys_index = mem->start_section_nr / sections_per_block;
150 	return sprintf(buf, "%08lx\n", phys_index);
151 }
152 
153 static ssize_t show_mem_end_phys_index(struct sys_device *dev,
154 			struct sysdev_attribute *attr, char *buf)
155 {
156 	struct memory_block *mem =
157 		container_of(dev, struct memory_block, sysdev);
158 	unsigned long phys_index;
159 
160 	phys_index = mem->end_section_nr / sections_per_block;
161 	return sprintf(buf, "%08lx\n", phys_index);
162 }
163 
164 /*
165  * Show whether the section of memory is likely to be hot-removable
166  */
167 static ssize_t show_mem_removable(struct sys_device *dev,
168 			struct sysdev_attribute *attr, char *buf)
169 {
170 	unsigned long i, pfn;
171 	int ret = 1;
172 	struct memory_block *mem =
173 		container_of(dev, struct memory_block, sysdev);
174 
175 	for (i = 0; i < sections_per_block; i++) {
176 		pfn = section_nr_to_pfn(mem->start_section_nr + i);
177 		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
178 	}
179 
180 	return sprintf(buf, "%d\n", ret);
181 }
182 
183 /*
184  * online, offline, going offline, etc.
185  */
186 static ssize_t show_mem_state(struct sys_device *dev,
187 			struct sysdev_attribute *attr, char *buf)
188 {
189 	struct memory_block *mem =
190 		container_of(dev, struct memory_block, sysdev);
191 	ssize_t len = 0;
192 
193 	/*
194 	 * We can probably put these states in a nice little array
195 	 * so that they're not open-coded
196 	 */
197 	switch (mem->state) {
198 		case MEM_ONLINE:
199 			len = sprintf(buf, "online\n");
200 			break;
201 		case MEM_OFFLINE:
202 			len = sprintf(buf, "offline\n");
203 			break;
204 		case MEM_GOING_OFFLINE:
205 			len = sprintf(buf, "going-offline\n");
206 			break;
207 		default:
208 			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
209 					mem->state);
210 			WARN_ON(1);
211 			break;
212 	}
213 
214 	return len;
215 }
216 
217 int memory_notify(unsigned long val, void *v)
218 {
219 	return blocking_notifier_call_chain(&memory_chain, val, v);
220 }
221 
222 int memory_isolate_notify(unsigned long val, void *v)
223 {
224 	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
225 }
226 
227 /*
228  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
229  * OK to have direct references to sparsemem variables in here.
230  */
231 static int
232 memory_block_action(unsigned long phys_index, unsigned long action)
233 {
234 	int i;
235 	unsigned long start_pfn, start_paddr;
236 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
237 	struct page *first_page;
238 	int ret;
239 
240 	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
241 
242 	/*
243 	 * The probe routines leave the pages reserved, just
244 	 * as the bootmem code does.  Make sure they're still
245 	 * that way.
246 	 */
247 	if (action == MEM_ONLINE) {
248 		for (i = 0; i < nr_pages; i++) {
249 			if (PageReserved(first_page+i))
250 				continue;
251 
252 			printk(KERN_WARNING "section number %ld page number %d "
253 				"not reserved, was it already online?\n",
254 				phys_index, i);
255 			return -EBUSY;
256 		}
257 	}
258 
259 	switch (action) {
260 		case MEM_ONLINE:
261 			start_pfn = page_to_pfn(first_page);
262 			ret = online_pages(start_pfn, nr_pages);
263 			break;
264 		case MEM_OFFLINE:
265 			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
266 			ret = remove_memory(start_paddr,
267 					    nr_pages << PAGE_SHIFT);
268 			break;
269 		default:
270 			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
271 			     "%ld\n", __func__, phys_index, action, action);
272 			ret = -EINVAL;
273 	}
274 
275 	return ret;
276 }
277 
278 static int memory_block_change_state(struct memory_block *mem,
279 		unsigned long to_state, unsigned long from_state_req)
280 {
281 	int ret = 0;
282 
283 	mutex_lock(&mem->state_mutex);
284 
285 	if (mem->state != from_state_req) {
286 		ret = -EINVAL;
287 		goto out;
288 	}
289 
290 	if (to_state == MEM_OFFLINE)
291 		mem->state = MEM_GOING_OFFLINE;
292 
293 	ret = memory_block_action(mem->start_section_nr, to_state);
294 
295 	if (ret)
296 		mem->state = from_state_req;
297 	else
298 		mem->state = to_state;
299 
300 out:
301 	mutex_unlock(&mem->state_mutex);
302 	return ret;
303 }
304 
305 static ssize_t
306 store_mem_state(struct sys_device *dev,
307 		struct sysdev_attribute *attr, const char *buf, size_t count)
308 {
309 	struct memory_block *mem;
310 	int ret = -EINVAL;
311 
312 	mem = container_of(dev, struct memory_block, sysdev);
313 
314 	if (!strncmp(buf, "online", min((int)count, 6)))
315 		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
316 	else if(!strncmp(buf, "offline", min((int)count, 7)))
317 		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
318 
319 	if (ret)
320 		return ret;
321 	return count;
322 }
323 
324 /*
325  * phys_device is a bad name for this.  What I really want
326  * is a way to differentiate between memory ranges that
327  * are part of physical devices that constitute
328  * a complete removable unit or fru.
329  * i.e. do these ranges belong to the same physical device,
330  * s.t. if I offline all of these sections I can then
331  * remove the physical device?
332  */
333 static ssize_t show_phys_device(struct sys_device *dev,
334 				struct sysdev_attribute *attr, char *buf)
335 {
336 	struct memory_block *mem =
337 		container_of(dev, struct memory_block, sysdev);
338 	return sprintf(buf, "%d\n", mem->phys_device);
339 }
340 
341 static SYSDEV_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
342 static SYSDEV_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
343 static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state);
344 static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL);
345 static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL);
346 
347 #define mem_create_simple_file(mem, attr_name)	\
348 	sysdev_create_file(&mem->sysdev, &attr_##attr_name)
349 #define mem_remove_simple_file(mem, attr_name)	\
350 	sysdev_remove_file(&mem->sysdev, &attr_##attr_name)
351 
352 /*
353  * Block size attribute stuff
354  */
355 static ssize_t
356 print_block_size(struct sysdev_class *class, struct sysdev_class_attribute *attr,
357 		 char *buf)
358 {
359 	return sprintf(buf, "%lx\n", get_memory_block_size());
360 }
361 
362 static SYSDEV_CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL);
363 
364 static int block_size_init(void)
365 {
366 	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
367 				&attr_block_size_bytes.attr);
368 }
369 
370 /*
371  * Some architectures will have custom drivers to do this, and
372  * will not need to do it from userspace.  The fake hot-add code
373  * as well as ppc64 will do all of their discovery in userspace
374  * and will require this interface.
375  */
376 #ifdef CONFIG_ARCH_MEMORY_PROBE
377 static ssize_t
378 memory_probe_store(struct class *class, struct class_attribute *attr,
379 		   const char *buf, size_t count)
380 {
381 	u64 phys_addr;
382 	int nid;
383 	int i, ret;
384 
385 	phys_addr = simple_strtoull(buf, NULL, 0);
386 
387 	for (i = 0; i < sections_per_block; i++) {
388 		nid = memory_add_physaddr_to_nid(phys_addr);
389 		ret = add_memory(nid, phys_addr,
390 				 PAGES_PER_SECTION << PAGE_SHIFT);
391 		if (ret)
392 			break;
393 
394 		phys_addr += MIN_MEMORY_BLOCK_SIZE;
395 	}
396 
397 	if (ret)
398 		count = ret;
399 
400 	return count;
401 }
402 static CLASS_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
403 
404 static int memory_probe_init(void)
405 {
406 	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
407 				&class_attr_probe.attr);
408 }
409 #else
410 static inline int memory_probe_init(void)
411 {
412 	return 0;
413 }
414 #endif
415 
416 #ifdef CONFIG_MEMORY_FAILURE
417 /*
418  * Support for offlining pages of memory
419  */
420 
421 /* Soft offline a page */
422 static ssize_t
423 store_soft_offline_page(struct class *class,
424 			struct class_attribute *attr,
425 			const char *buf, size_t count)
426 {
427 	int ret;
428 	u64 pfn;
429 	if (!capable(CAP_SYS_ADMIN))
430 		return -EPERM;
431 	if (strict_strtoull(buf, 0, &pfn) < 0)
432 		return -EINVAL;
433 	pfn >>= PAGE_SHIFT;
434 	if (!pfn_valid(pfn))
435 		return -ENXIO;
436 	ret = soft_offline_page(pfn_to_page(pfn), 0);
437 	return ret == 0 ? count : ret;
438 }
439 
440 /* Forcibly offline a page, including killing processes. */
441 static ssize_t
442 store_hard_offline_page(struct class *class,
443 			struct class_attribute *attr,
444 			const char *buf, size_t count)
445 {
446 	int ret;
447 	u64 pfn;
448 	if (!capable(CAP_SYS_ADMIN))
449 		return -EPERM;
450 	if (strict_strtoull(buf, 0, &pfn) < 0)
451 		return -EINVAL;
452 	pfn >>= PAGE_SHIFT;
453 	ret = __memory_failure(pfn, 0, 0);
454 	return ret ? ret : count;
455 }
456 
457 static CLASS_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
458 static CLASS_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
459 
460 static __init int memory_fail_init(void)
461 {
462 	int err;
463 
464 	err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
465 				&class_attr_soft_offline_page.attr);
466 	if (!err)
467 		err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
468 				&class_attr_hard_offline_page.attr);
469 	return err;
470 }
471 #else
472 static inline int memory_fail_init(void)
473 {
474 	return 0;
475 }
476 #endif
477 
478 /*
479  * Note that phys_device is optional.  It is here to allow for
480  * differentiation between which *physical* devices each
481  * section belongs to...
482  */
483 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
484 {
485 	return 0;
486 }
487 
488 struct memory_block *find_memory_block_hinted(struct mem_section *section,
489 					      struct memory_block *hint)
490 {
491 	struct kobject *kobj;
492 	struct sys_device *sysdev;
493 	struct memory_block *mem;
494 	char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1];
495 	int block_id = base_memory_block_id(__section_nr(section));
496 
497 	kobj = hint ? &hint->sysdev.kobj : NULL;
498 
499 	/*
500 	 * This only works because we know that section == sysdev->id
501 	 * slightly redundant with sysdev_register()
502 	 */
503 	sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, block_id);
504 
505 	kobj = kset_find_obj_hinted(&memory_sysdev_class.kset, name, kobj);
506 	if (!kobj)
507 		return NULL;
508 
509 	sysdev = container_of(kobj, struct sys_device, kobj);
510 	mem = container_of(sysdev, struct memory_block, sysdev);
511 
512 	return mem;
513 }
514 
515 /*
516  * For now, we have a linear search to go find the appropriate
517  * memory_block corresponding to a particular phys_index. If
518  * this gets to be a real problem, we can always use a radix
519  * tree or something here.
520  *
521  * This could be made generic for all sysdev classes.
522  */
523 struct memory_block *find_memory_block(struct mem_section *section)
524 {
525 	return find_memory_block_hinted(section, NULL);
526 }
527 
528 static int init_memory_block(struct memory_block **memory,
529 			     struct mem_section *section, unsigned long state)
530 {
531 	struct memory_block *mem;
532 	unsigned long start_pfn;
533 	int scn_nr;
534 	int ret = 0;
535 
536 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
537 	if (!mem)
538 		return -ENOMEM;
539 
540 	scn_nr = __section_nr(section);
541 	mem->start_section_nr =
542 			base_memory_block_id(scn_nr) * sections_per_block;
543 	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
544 	mem->state = state;
545 	mem->section_count++;
546 	mutex_init(&mem->state_mutex);
547 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
548 	mem->phys_device = arch_get_memory_phys_device(start_pfn);
549 
550 	ret = register_memory(mem);
551 	if (!ret)
552 		ret = mem_create_simple_file(mem, phys_index);
553 	if (!ret)
554 		ret = mem_create_simple_file(mem, end_phys_index);
555 	if (!ret)
556 		ret = mem_create_simple_file(mem, state);
557 	if (!ret)
558 		ret = mem_create_simple_file(mem, phys_device);
559 	if (!ret)
560 		ret = mem_create_simple_file(mem, removable);
561 
562 	*memory = mem;
563 	return ret;
564 }
565 
566 static int add_memory_section(int nid, struct mem_section *section,
567 			unsigned long state, enum mem_add_context context)
568 {
569 	struct memory_block *mem;
570 	int ret = 0;
571 
572 	mutex_lock(&mem_sysfs_mutex);
573 
574 	mem = find_memory_block(section);
575 	if (mem) {
576 		mem->section_count++;
577 		kobject_put(&mem->sysdev.kobj);
578 	} else
579 		ret = init_memory_block(&mem, section, state);
580 
581 	if (!ret) {
582 		if (context == HOTPLUG &&
583 		    mem->section_count == sections_per_block)
584 			ret = register_mem_sect_under_node(mem, nid);
585 	}
586 
587 	mutex_unlock(&mem_sysfs_mutex);
588 	return ret;
589 }
590 
591 int remove_memory_block(unsigned long node_id, struct mem_section *section,
592 		int phys_device)
593 {
594 	struct memory_block *mem;
595 
596 	mutex_lock(&mem_sysfs_mutex);
597 	mem = find_memory_block(section);
598 	unregister_mem_sect_under_nodes(mem, __section_nr(section));
599 
600 	mem->section_count--;
601 	if (mem->section_count == 0) {
602 		mem_remove_simple_file(mem, phys_index);
603 		mem_remove_simple_file(mem, end_phys_index);
604 		mem_remove_simple_file(mem, state);
605 		mem_remove_simple_file(mem, phys_device);
606 		mem_remove_simple_file(mem, removable);
607 		unregister_memory(mem);
608 		kfree(mem);
609 	} else
610 		kobject_put(&mem->sysdev.kobj);
611 
612 	mutex_unlock(&mem_sysfs_mutex);
613 	return 0;
614 }
615 
616 /*
617  * need an interface for the VM to add new memory regions,
618  * but without onlining it.
619  */
620 int register_new_memory(int nid, struct mem_section *section)
621 {
622 	return add_memory_section(nid, section, MEM_OFFLINE, HOTPLUG);
623 }
624 
625 int unregister_memory_section(struct mem_section *section)
626 {
627 	if (!present_section(section))
628 		return -EINVAL;
629 
630 	return remove_memory_block(0, section, 0);
631 }
632 
633 /*
634  * Initialize the sysfs support for memory devices...
635  */
636 int __init memory_dev_init(void)
637 {
638 	unsigned int i;
639 	int ret;
640 	int err;
641 	unsigned long block_sz;
642 
643 	memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops;
644 	ret = sysdev_class_register(&memory_sysdev_class);
645 	if (ret)
646 		goto out;
647 
648 	block_sz = get_memory_block_size();
649 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
650 
651 	/*
652 	 * Create entries for memory sections that were found
653 	 * during boot and have been initialized
654 	 */
655 	for (i = 0; i < NR_MEM_SECTIONS; i++) {
656 		if (!present_section_nr(i))
657 			continue;
658 		err = add_memory_section(0, __nr_to_section(i), MEM_ONLINE,
659 					 BOOT);
660 		if (!ret)
661 			ret = err;
662 	}
663 
664 	err = memory_probe_init();
665 	if (!ret)
666 		ret = err;
667 	err = memory_fail_init();
668 	if (!ret)
669 		ret = err;
670 	err = block_size_init();
671 	if (!ret)
672 		ret = err;
673 out:
674 	if (ret)
675 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
676 	return ret;
677 }
678