xref: /linux-6.15/drivers/base/devres.c (revision c3cd0ff7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/devres.c - device resource management
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <[email protected]>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/percpu.h>
13 
14 #include <asm/sections.h>
15 
16 #include "base.h"
17 
18 struct devres_node {
19 	struct list_head		entry;
20 	dr_release_t			release;
21 #ifdef CONFIG_DEBUG_DEVRES
22 	const char			*name;
23 	size_t				size;
24 #endif
25 };
26 
27 struct devres {
28 	struct devres_node		node;
29 	/*
30 	 * Some archs want to perform DMA into kmalloc caches
31 	 * and need a guaranteed alignment larger than
32 	 * the alignment of a 64-bit integer.
33 	 * Thus we use ARCH_KMALLOC_MINALIGN here and get exactly the same
34 	 * buffer alignment as if it was allocated by plain kmalloc().
35 	 */
36 	u8 __aligned(ARCH_KMALLOC_MINALIGN) data[];
37 };
38 
39 struct devres_group {
40 	struct devres_node		node[2];
41 	void				*id;
42 	int				color;
43 	/* -- 8 pointers */
44 };
45 
46 #ifdef CONFIG_DEBUG_DEVRES
47 static int log_devres = 0;
48 module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR);
49 
50 static void set_node_dbginfo(struct devres_node *node, const char *name,
51 			     size_t size)
52 {
53 	node->name = name;
54 	node->size = size;
55 }
56 
57 static void devres_log(struct device *dev, struct devres_node *node,
58 		       const char *op)
59 {
60 	if (unlikely(log_devres))
61 		dev_err(dev, "DEVRES %3s %p %s (%zu bytes)\n",
62 			op, node, node->name, node->size);
63 }
64 #else /* CONFIG_DEBUG_DEVRES */
65 #define set_node_dbginfo(node, n, s)	do {} while (0)
66 #define devres_log(dev, node, op)	do {} while (0)
67 #endif /* CONFIG_DEBUG_DEVRES */
68 
69 /*
70  * Release functions for devres group.  These callbacks are used only
71  * for identification.
72  */
73 static void group_open_release(struct device *dev, void *res)
74 {
75 	/* noop */
76 }
77 
78 static void group_close_release(struct device *dev, void *res)
79 {
80 	/* noop */
81 }
82 
83 static struct devres_group * node_to_group(struct devres_node *node)
84 {
85 	if (node->release == &group_open_release)
86 		return container_of(node, struct devres_group, node[0]);
87 	if (node->release == &group_close_release)
88 		return container_of(node, struct devres_group, node[1]);
89 	return NULL;
90 }
91 
92 static bool check_dr_size(size_t size, size_t *tot_size)
93 {
94 	/* We must catch any near-SIZE_MAX cases that could overflow. */
95 	if (unlikely(check_add_overflow(sizeof(struct devres),
96 					size, tot_size)))
97 		return false;
98 
99 	return true;
100 }
101 
102 static __always_inline struct devres * alloc_dr(dr_release_t release,
103 						size_t size, gfp_t gfp, int nid)
104 {
105 	size_t tot_size;
106 	struct devres *dr;
107 
108 	if (!check_dr_size(size, &tot_size))
109 		return NULL;
110 
111 	dr = kmalloc_node_track_caller(tot_size, gfp, nid);
112 	if (unlikely(!dr))
113 		return NULL;
114 
115 	memset(dr, 0, offsetof(struct devres, data));
116 
117 	INIT_LIST_HEAD(&dr->node.entry);
118 	dr->node.release = release;
119 	return dr;
120 }
121 
122 static void add_dr(struct device *dev, struct devres_node *node)
123 {
124 	devres_log(dev, node, "ADD");
125 	BUG_ON(!list_empty(&node->entry));
126 	list_add_tail(&node->entry, &dev->devres_head);
127 }
128 
129 static void replace_dr(struct device *dev,
130 		       struct devres_node *old, struct devres_node *new)
131 {
132 	devres_log(dev, old, "REPLACE");
133 	BUG_ON(!list_empty(&new->entry));
134 	list_replace(&old->entry, &new->entry);
135 }
136 
137 #ifdef CONFIG_DEBUG_DEVRES
138 void * __devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid,
139 		      const char *name)
140 {
141 	struct devres *dr;
142 
143 	dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
144 	if (unlikely(!dr))
145 		return NULL;
146 	set_node_dbginfo(&dr->node, name, size);
147 	return dr->data;
148 }
149 EXPORT_SYMBOL_GPL(__devres_alloc_node);
150 #else
151 /**
152  * devres_alloc_node - Allocate device resource data
153  * @release: Release function devres will be associated with
154  * @size: Allocation size
155  * @gfp: Allocation flags
156  * @nid: NUMA node
157  *
158  * Allocate devres of @size bytes.  The allocated area is zeroed, then
159  * associated with @release.  The returned pointer can be passed to
160  * other devres_*() functions.
161  *
162  * RETURNS:
163  * Pointer to allocated devres on success, NULL on failure.
164  */
165 void * devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid)
166 {
167 	struct devres *dr;
168 
169 	dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
170 	if (unlikely(!dr))
171 		return NULL;
172 	return dr->data;
173 }
174 EXPORT_SYMBOL_GPL(devres_alloc_node);
175 #endif
176 
177 /**
178  * devres_for_each_res - Resource iterator
179  * @dev: Device to iterate resource from
180  * @release: Look for resources associated with this release function
181  * @match: Match function (optional)
182  * @match_data: Data for the match function
183  * @fn: Function to be called for each matched resource.
184  * @data: Data for @fn, the 3rd parameter of @fn
185  *
186  * Call @fn for each devres of @dev which is associated with @release
187  * and for which @match returns 1.
188  *
189  * RETURNS:
190  * 	void
191  */
192 void devres_for_each_res(struct device *dev, dr_release_t release,
193 			dr_match_t match, void *match_data,
194 			void (*fn)(struct device *, void *, void *),
195 			void *data)
196 {
197 	struct devres_node *node;
198 	struct devres_node *tmp;
199 	unsigned long flags;
200 
201 	if (!fn)
202 		return;
203 
204 	spin_lock_irqsave(&dev->devres_lock, flags);
205 	list_for_each_entry_safe_reverse(node, tmp,
206 			&dev->devres_head, entry) {
207 		struct devres *dr = container_of(node, struct devres, node);
208 
209 		if (node->release != release)
210 			continue;
211 		if (match && !match(dev, dr->data, match_data))
212 			continue;
213 		fn(dev, dr->data, data);
214 	}
215 	spin_unlock_irqrestore(&dev->devres_lock, flags);
216 }
217 EXPORT_SYMBOL_GPL(devres_for_each_res);
218 
219 /**
220  * devres_free - Free device resource data
221  * @res: Pointer to devres data to free
222  *
223  * Free devres created with devres_alloc().
224  */
225 void devres_free(void *res)
226 {
227 	if (res) {
228 		struct devres *dr = container_of(res, struct devres, data);
229 
230 		BUG_ON(!list_empty(&dr->node.entry));
231 		kfree(dr);
232 	}
233 }
234 EXPORT_SYMBOL_GPL(devres_free);
235 
236 /**
237  * devres_add - Register device resource
238  * @dev: Device to add resource to
239  * @res: Resource to register
240  *
241  * Register devres @res to @dev.  @res should have been allocated
242  * using devres_alloc().  On driver detach, the associated release
243  * function will be invoked and devres will be freed automatically.
244  */
245 void devres_add(struct device *dev, void *res)
246 {
247 	struct devres *dr = container_of(res, struct devres, data);
248 	unsigned long flags;
249 
250 	spin_lock_irqsave(&dev->devres_lock, flags);
251 	add_dr(dev, &dr->node);
252 	spin_unlock_irqrestore(&dev->devres_lock, flags);
253 }
254 EXPORT_SYMBOL_GPL(devres_add);
255 
256 static struct devres *find_dr(struct device *dev, dr_release_t release,
257 			      dr_match_t match, void *match_data)
258 {
259 	struct devres_node *node;
260 
261 	list_for_each_entry_reverse(node, &dev->devres_head, entry) {
262 		struct devres *dr = container_of(node, struct devres, node);
263 
264 		if (node->release != release)
265 			continue;
266 		if (match && !match(dev, dr->data, match_data))
267 			continue;
268 		return dr;
269 	}
270 
271 	return NULL;
272 }
273 
274 /**
275  * devres_find - Find device resource
276  * @dev: Device to lookup resource from
277  * @release: Look for resources associated with this release function
278  * @match: Match function (optional)
279  * @match_data: Data for the match function
280  *
281  * Find the latest devres of @dev which is associated with @release
282  * and for which @match returns 1.  If @match is NULL, it's considered
283  * to match all.
284  *
285  * RETURNS:
286  * Pointer to found devres, NULL if not found.
287  */
288 void * devres_find(struct device *dev, dr_release_t release,
289 		   dr_match_t match, void *match_data)
290 {
291 	struct devres *dr;
292 	unsigned long flags;
293 
294 	spin_lock_irqsave(&dev->devres_lock, flags);
295 	dr = find_dr(dev, release, match, match_data);
296 	spin_unlock_irqrestore(&dev->devres_lock, flags);
297 
298 	if (dr)
299 		return dr->data;
300 	return NULL;
301 }
302 EXPORT_SYMBOL_GPL(devres_find);
303 
304 /**
305  * devres_get - Find devres, if non-existent, add one atomically
306  * @dev: Device to lookup or add devres for
307  * @new_res: Pointer to new initialized devres to add if not found
308  * @match: Match function (optional)
309  * @match_data: Data for the match function
310  *
311  * Find the latest devres of @dev which has the same release function
312  * as @new_res and for which @match return 1.  If found, @new_res is
313  * freed; otherwise, @new_res is added atomically.
314  *
315  * RETURNS:
316  * Pointer to found or added devres.
317  */
318 void * devres_get(struct device *dev, void *new_res,
319 		  dr_match_t match, void *match_data)
320 {
321 	struct devres *new_dr = container_of(new_res, struct devres, data);
322 	struct devres *dr;
323 	unsigned long flags;
324 
325 	spin_lock_irqsave(&dev->devres_lock, flags);
326 	dr = find_dr(dev, new_dr->node.release, match, match_data);
327 	if (!dr) {
328 		add_dr(dev, &new_dr->node);
329 		dr = new_dr;
330 		new_res = NULL;
331 	}
332 	spin_unlock_irqrestore(&dev->devres_lock, flags);
333 	devres_free(new_res);
334 
335 	return dr->data;
336 }
337 EXPORT_SYMBOL_GPL(devres_get);
338 
339 /**
340  * devres_remove - Find a device resource and remove it
341  * @dev: Device to find resource from
342  * @release: Look for resources associated with this release function
343  * @match: Match function (optional)
344  * @match_data: Data for the match function
345  *
346  * Find the latest devres of @dev associated with @release and for
347  * which @match returns 1.  If @match is NULL, it's considered to
348  * match all.  If found, the resource is removed atomically and
349  * returned.
350  *
351  * RETURNS:
352  * Pointer to removed devres on success, NULL if not found.
353  */
354 void * devres_remove(struct device *dev, dr_release_t release,
355 		     dr_match_t match, void *match_data)
356 {
357 	struct devres *dr;
358 	unsigned long flags;
359 
360 	spin_lock_irqsave(&dev->devres_lock, flags);
361 	dr = find_dr(dev, release, match, match_data);
362 	if (dr) {
363 		list_del_init(&dr->node.entry);
364 		devres_log(dev, &dr->node, "REM");
365 	}
366 	spin_unlock_irqrestore(&dev->devres_lock, flags);
367 
368 	if (dr)
369 		return dr->data;
370 	return NULL;
371 }
372 EXPORT_SYMBOL_GPL(devres_remove);
373 
374 /**
375  * devres_destroy - Find a device resource and destroy it
376  * @dev: Device to find resource from
377  * @release: Look for resources associated with this release function
378  * @match: Match function (optional)
379  * @match_data: Data for the match function
380  *
381  * Find the latest devres of @dev associated with @release and for
382  * which @match returns 1.  If @match is NULL, it's considered to
383  * match all.  If found, the resource is removed atomically and freed.
384  *
385  * Note that the release function for the resource will not be called,
386  * only the devres-allocated data will be freed.  The caller becomes
387  * responsible for freeing any other data.
388  *
389  * RETURNS:
390  * 0 if devres is found and freed, -ENOENT if not found.
391  */
392 int devres_destroy(struct device *dev, dr_release_t release,
393 		   dr_match_t match, void *match_data)
394 {
395 	void *res;
396 
397 	res = devres_remove(dev, release, match, match_data);
398 	if (unlikely(!res))
399 		return -ENOENT;
400 
401 	devres_free(res);
402 	return 0;
403 }
404 EXPORT_SYMBOL_GPL(devres_destroy);
405 
406 
407 /**
408  * devres_release - Find a device resource and destroy it, calling release
409  * @dev: Device to find resource from
410  * @release: Look for resources associated with this release function
411  * @match: Match function (optional)
412  * @match_data: Data for the match function
413  *
414  * Find the latest devres of @dev associated with @release and for
415  * which @match returns 1.  If @match is NULL, it's considered to
416  * match all.  If found, the resource is removed atomically, the
417  * release function called and the resource freed.
418  *
419  * RETURNS:
420  * 0 if devres is found and freed, -ENOENT if not found.
421  */
422 int devres_release(struct device *dev, dr_release_t release,
423 		   dr_match_t match, void *match_data)
424 {
425 	void *res;
426 
427 	res = devres_remove(dev, release, match, match_data);
428 	if (unlikely(!res))
429 		return -ENOENT;
430 
431 	(*release)(dev, res);
432 	devres_free(res);
433 	return 0;
434 }
435 EXPORT_SYMBOL_GPL(devres_release);
436 
437 static int remove_nodes(struct device *dev,
438 			struct list_head *first, struct list_head *end,
439 			struct list_head *todo)
440 {
441 	struct devres_node *node, *n;
442 	int cnt = 0, nr_groups = 0;
443 
444 	/* First pass - move normal devres entries to @todo and clear
445 	 * devres_group colors.
446 	 */
447 	node = list_entry(first, struct devres_node, entry);
448 	list_for_each_entry_safe_from(node, n, end, entry) {
449 		struct devres_group *grp;
450 
451 		grp = node_to_group(node);
452 		if (grp) {
453 			/* clear color of group markers in the first pass */
454 			grp->color = 0;
455 			nr_groups++;
456 		} else {
457 			/* regular devres entry */
458 			if (&node->entry == first)
459 				first = first->next;
460 			list_move_tail(&node->entry, todo);
461 			cnt++;
462 		}
463 	}
464 
465 	if (!nr_groups)
466 		return cnt;
467 
468 	/* Second pass - Scan groups and color them.  A group gets
469 	 * color value of two iff the group is wholly contained in
470 	 * [current node, end). That is, for a closed group, both opening
471 	 * and closing markers should be in the range, while just the
472 	 * opening marker is enough for an open group.
473 	 */
474 	node = list_entry(first, struct devres_node, entry);
475 	list_for_each_entry_safe_from(node, n, end, entry) {
476 		struct devres_group *grp;
477 
478 		grp = node_to_group(node);
479 		BUG_ON(!grp || list_empty(&grp->node[0].entry));
480 
481 		grp->color++;
482 		if (list_empty(&grp->node[1].entry))
483 			grp->color++;
484 
485 		BUG_ON(grp->color <= 0 || grp->color > 2);
486 		if (grp->color == 2) {
487 			/* No need to update current node or end. The removed
488 			 * nodes are always before both.
489 			 */
490 			list_move_tail(&grp->node[0].entry, todo);
491 			list_del_init(&grp->node[1].entry);
492 		}
493 	}
494 
495 	return cnt;
496 }
497 
498 static void release_nodes(struct device *dev, struct list_head *todo)
499 {
500 	struct devres *dr, *tmp;
501 
502 	/* Release.  Note that both devres and devres_group are
503 	 * handled as devres in the following loop.  This is safe.
504 	 */
505 	list_for_each_entry_safe_reverse(dr, tmp, todo, node.entry) {
506 		devres_log(dev, &dr->node, "REL");
507 		dr->node.release(dev, dr->data);
508 		kfree(dr);
509 	}
510 }
511 
512 /**
513  * devres_release_all - Release all managed resources
514  * @dev: Device to release resources for
515  *
516  * Release all resources associated with @dev.  This function is
517  * called on driver detach.
518  */
519 int devres_release_all(struct device *dev)
520 {
521 	unsigned long flags;
522 	LIST_HEAD(todo);
523 	int cnt;
524 
525 	/* Looks like an uninitialized device structure */
526 	if (WARN_ON(dev->devres_head.next == NULL))
527 		return -ENODEV;
528 
529 	spin_lock_irqsave(&dev->devres_lock, flags);
530 	cnt = remove_nodes(dev, dev->devres_head.next, &dev->devres_head, &todo);
531 	spin_unlock_irqrestore(&dev->devres_lock, flags);
532 
533 	release_nodes(dev, &todo);
534 	return cnt;
535 }
536 
537 /**
538  * devres_open_group - Open a new devres group
539  * @dev: Device to open devres group for
540  * @id: Separator ID
541  * @gfp: Allocation flags
542  *
543  * Open a new devres group for @dev with @id.  For @id, using a
544  * pointer to an object which won't be used for another group is
545  * recommended.  If @id is NULL, address-wise unique ID is created.
546  *
547  * RETURNS:
548  * ID of the new group, NULL on failure.
549  */
550 void * devres_open_group(struct device *dev, void *id, gfp_t gfp)
551 {
552 	struct devres_group *grp;
553 	unsigned long flags;
554 
555 	grp = kmalloc(sizeof(*grp), gfp);
556 	if (unlikely(!grp))
557 		return NULL;
558 
559 	grp->node[0].release = &group_open_release;
560 	grp->node[1].release = &group_close_release;
561 	INIT_LIST_HEAD(&grp->node[0].entry);
562 	INIT_LIST_HEAD(&grp->node[1].entry);
563 	set_node_dbginfo(&grp->node[0], "grp<", 0);
564 	set_node_dbginfo(&grp->node[1], "grp>", 0);
565 	grp->id = grp;
566 	if (id)
567 		grp->id = id;
568 
569 	spin_lock_irqsave(&dev->devres_lock, flags);
570 	add_dr(dev, &grp->node[0]);
571 	spin_unlock_irqrestore(&dev->devres_lock, flags);
572 	return grp->id;
573 }
574 EXPORT_SYMBOL_GPL(devres_open_group);
575 
576 /* Find devres group with ID @id.  If @id is NULL, look for the latest. */
577 static struct devres_group * find_group(struct device *dev, void *id)
578 {
579 	struct devres_node *node;
580 
581 	list_for_each_entry_reverse(node, &dev->devres_head, entry) {
582 		struct devres_group *grp;
583 
584 		if (node->release != &group_open_release)
585 			continue;
586 
587 		grp = container_of(node, struct devres_group, node[0]);
588 
589 		if (id) {
590 			if (grp->id == id)
591 				return grp;
592 		} else if (list_empty(&grp->node[1].entry))
593 			return grp;
594 	}
595 
596 	return NULL;
597 }
598 
599 /**
600  * devres_close_group - Close a devres group
601  * @dev: Device to close devres group for
602  * @id: ID of target group, can be NULL
603  *
604  * Close the group identified by @id.  If @id is NULL, the latest open
605  * group is selected.
606  */
607 void devres_close_group(struct device *dev, void *id)
608 {
609 	struct devres_group *grp;
610 	unsigned long flags;
611 
612 	spin_lock_irqsave(&dev->devres_lock, flags);
613 
614 	grp = find_group(dev, id);
615 	if (grp)
616 		add_dr(dev, &grp->node[1]);
617 	else
618 		WARN_ON(1);
619 
620 	spin_unlock_irqrestore(&dev->devres_lock, flags);
621 }
622 EXPORT_SYMBOL_GPL(devres_close_group);
623 
624 /**
625  * devres_remove_group - Remove a devres group
626  * @dev: Device to remove group for
627  * @id: ID of target group, can be NULL
628  *
629  * Remove the group identified by @id.  If @id is NULL, the latest
630  * open group is selected.  Note that removing a group doesn't affect
631  * any other resources.
632  */
633 void devres_remove_group(struct device *dev, void *id)
634 {
635 	struct devres_group *grp;
636 	unsigned long flags;
637 
638 	spin_lock_irqsave(&dev->devres_lock, flags);
639 
640 	grp = find_group(dev, id);
641 	if (grp) {
642 		list_del_init(&grp->node[0].entry);
643 		list_del_init(&grp->node[1].entry);
644 		devres_log(dev, &grp->node[0], "REM");
645 	} else
646 		WARN_ON(1);
647 
648 	spin_unlock_irqrestore(&dev->devres_lock, flags);
649 
650 	kfree(grp);
651 }
652 EXPORT_SYMBOL_GPL(devres_remove_group);
653 
654 /**
655  * devres_release_group - Release resources in a devres group
656  * @dev: Device to release group for
657  * @id: ID of target group, can be NULL
658  *
659  * Release all resources in the group identified by @id.  If @id is
660  * NULL, the latest open group is selected.  The selected group and
661  * groups properly nested inside the selected group are removed.
662  *
663  * RETURNS:
664  * The number of released non-group resources.
665  */
666 int devres_release_group(struct device *dev, void *id)
667 {
668 	struct devres_group *grp;
669 	unsigned long flags;
670 	LIST_HEAD(todo);
671 	int cnt = 0;
672 
673 	spin_lock_irqsave(&dev->devres_lock, flags);
674 
675 	grp = find_group(dev, id);
676 	if (grp) {
677 		struct list_head *first = &grp->node[0].entry;
678 		struct list_head *end = &dev->devres_head;
679 
680 		if (!list_empty(&grp->node[1].entry))
681 			end = grp->node[1].entry.next;
682 
683 		cnt = remove_nodes(dev, first, end, &todo);
684 		spin_unlock_irqrestore(&dev->devres_lock, flags);
685 
686 		release_nodes(dev, &todo);
687 	} else {
688 		WARN_ON(1);
689 		spin_unlock_irqrestore(&dev->devres_lock, flags);
690 	}
691 
692 	return cnt;
693 }
694 EXPORT_SYMBOL_GPL(devres_release_group);
695 
696 /*
697  * Custom devres actions allow inserting a simple function call
698  * into the teadown sequence.
699  */
700 
701 struct action_devres {
702 	void *data;
703 	void (*action)(void *);
704 };
705 
706 static int devm_action_match(struct device *dev, void *res, void *p)
707 {
708 	struct action_devres *devres = res;
709 	struct action_devres *target = p;
710 
711 	return devres->action == target->action &&
712 	       devres->data == target->data;
713 }
714 
715 static void devm_action_release(struct device *dev, void *res)
716 {
717 	struct action_devres *devres = res;
718 
719 	devres->action(devres->data);
720 }
721 
722 /**
723  * devm_add_action() - add a custom action to list of managed resources
724  * @dev: Device that owns the action
725  * @action: Function that should be called
726  * @data: Pointer to data passed to @action implementation
727  *
728  * This adds a custom action to the list of managed resources so that
729  * it gets executed as part of standard resource unwinding.
730  */
731 int devm_add_action(struct device *dev, void (*action)(void *), void *data)
732 {
733 	struct action_devres *devres;
734 
735 	devres = devres_alloc(devm_action_release,
736 			      sizeof(struct action_devres), GFP_KERNEL);
737 	if (!devres)
738 		return -ENOMEM;
739 
740 	devres->data = data;
741 	devres->action = action;
742 
743 	devres_add(dev, devres);
744 	return 0;
745 }
746 EXPORT_SYMBOL_GPL(devm_add_action);
747 
748 /**
749  * devm_remove_action() - removes previously added custom action
750  * @dev: Device that owns the action
751  * @action: Function implementing the action
752  * @data: Pointer to data passed to @action implementation
753  *
754  * Removes instance of @action previously added by devm_add_action().
755  * Both action and data should match one of the existing entries.
756  */
757 void devm_remove_action(struct device *dev, void (*action)(void *), void *data)
758 {
759 	struct action_devres devres = {
760 		.data = data,
761 		.action = action,
762 	};
763 
764 	WARN_ON(devres_destroy(dev, devm_action_release, devm_action_match,
765 			       &devres));
766 }
767 EXPORT_SYMBOL_GPL(devm_remove_action);
768 
769 /**
770  * devm_release_action() - release previously added custom action
771  * @dev: Device that owns the action
772  * @action: Function implementing the action
773  * @data: Pointer to data passed to @action implementation
774  *
775  * Releases and removes instance of @action previously added by
776  * devm_add_action().  Both action and data should match one of the
777  * existing entries.
778  */
779 void devm_release_action(struct device *dev, void (*action)(void *), void *data)
780 {
781 	struct action_devres devres = {
782 		.data = data,
783 		.action = action,
784 	};
785 
786 	WARN_ON(devres_release(dev, devm_action_release, devm_action_match,
787 			       &devres));
788 
789 }
790 EXPORT_SYMBOL_GPL(devm_release_action);
791 
792 /*
793  * Managed kmalloc/kfree
794  */
795 static void devm_kmalloc_release(struct device *dev, void *res)
796 {
797 	/* noop */
798 }
799 
800 static int devm_kmalloc_match(struct device *dev, void *res, void *data)
801 {
802 	return res == data;
803 }
804 
805 /**
806  * devm_kmalloc - Resource-managed kmalloc
807  * @dev: Device to allocate memory for
808  * @size: Allocation size
809  * @gfp: Allocation gfp flags
810  *
811  * Managed kmalloc.  Memory allocated with this function is
812  * automatically freed on driver detach.  Like all other devres
813  * resources, guaranteed alignment is unsigned long long.
814  *
815  * RETURNS:
816  * Pointer to allocated memory on success, NULL on failure.
817  */
818 void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)
819 {
820 	struct devres *dr;
821 
822 	if (unlikely(!size))
823 		return ZERO_SIZE_PTR;
824 
825 	/* use raw alloc_dr for kmalloc caller tracing */
826 	dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev));
827 	if (unlikely(!dr))
828 		return NULL;
829 
830 	/*
831 	 * This is named devm_kzalloc_release for historical reasons
832 	 * The initial implementation did not support kmalloc, only kzalloc
833 	 */
834 	set_node_dbginfo(&dr->node, "devm_kzalloc_release", size);
835 	devres_add(dev, dr->data);
836 	return dr->data;
837 }
838 EXPORT_SYMBOL_GPL(devm_kmalloc);
839 
840 /**
841  * devm_krealloc - Resource-managed krealloc()
842  * @dev: Device to re-allocate memory for
843  * @ptr: Pointer to the memory chunk to re-allocate
844  * @new_size: New allocation size
845  * @gfp: Allocation gfp flags
846  *
847  * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc().
848  * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR,
849  * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the
850  * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't
851  * change the order in which the release callback for the re-alloc'ed devres
852  * will be called (except when falling back to devm_kmalloc() or when freeing
853  * resources when new_size is zero). The contents of the memory are preserved
854  * up to the lesser of new and old sizes.
855  */
856 void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp)
857 {
858 	size_t total_new_size, total_old_size;
859 	struct devres *old_dr, *new_dr;
860 	unsigned long flags;
861 
862 	if (unlikely(!new_size)) {
863 		devm_kfree(dev, ptr);
864 		return ZERO_SIZE_PTR;
865 	}
866 
867 	if (unlikely(ZERO_OR_NULL_PTR(ptr)))
868 		return devm_kmalloc(dev, new_size, gfp);
869 
870 	if (WARN_ON(is_kernel_rodata((unsigned long)ptr)))
871 		/*
872 		 * We cannot reliably realloc a const string returned by
873 		 * devm_kstrdup_const().
874 		 */
875 		return NULL;
876 
877 	if (!check_dr_size(new_size, &total_new_size))
878 		return NULL;
879 
880 	total_old_size = ksize(container_of(ptr, struct devres, data));
881 	if (total_old_size == 0) {
882 		WARN(1, "Pointer doesn't point to dynamically allocated memory.");
883 		return NULL;
884 	}
885 
886 	/*
887 	 * If new size is smaller or equal to the actual number of bytes
888 	 * allocated previously - just return the same pointer.
889 	 */
890 	if (total_new_size <= total_old_size)
891 		return ptr;
892 
893 	/*
894 	 * Otherwise: allocate new, larger chunk. We need to allocate before
895 	 * taking the lock as most probably the caller uses GFP_KERNEL.
896 	 */
897 	new_dr = alloc_dr(devm_kmalloc_release,
898 			  total_new_size, gfp, dev_to_node(dev));
899 	if (!new_dr)
900 		return NULL;
901 
902 	/*
903 	 * The spinlock protects the linked list against concurrent
904 	 * modifications but not the resource itself.
905 	 */
906 	spin_lock_irqsave(&dev->devres_lock, flags);
907 
908 	old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr);
909 	if (!old_dr) {
910 		spin_unlock_irqrestore(&dev->devres_lock, flags);
911 		kfree(new_dr);
912 		WARN(1, "Memory chunk not managed or managed by a different device.");
913 		return NULL;
914 	}
915 
916 	replace_dr(dev, &old_dr->node, &new_dr->node);
917 
918 	spin_unlock_irqrestore(&dev->devres_lock, flags);
919 
920 	/*
921 	 * We can copy the memory contents after releasing the lock as we're
922 	 * no longer modyfing the list links.
923 	 */
924 	memcpy(new_dr->data, old_dr->data,
925 	       total_old_size - offsetof(struct devres, data));
926 	/*
927 	 * Same for releasing the old devres - it's now been removed from the
928 	 * list. This is also the reason why we must not use devm_kfree() - the
929 	 * links are no longer valid.
930 	 */
931 	kfree(old_dr);
932 
933 	return new_dr->data;
934 }
935 EXPORT_SYMBOL_GPL(devm_krealloc);
936 
937 /**
938  * devm_kstrdup - Allocate resource managed space and
939  *                copy an existing string into that.
940  * @dev: Device to allocate memory for
941  * @s: the string to duplicate
942  * @gfp: the GFP mask used in the devm_kmalloc() call when
943  *       allocating memory
944  * RETURNS:
945  * Pointer to allocated string on success, NULL on failure.
946  */
947 char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp)
948 {
949 	size_t size;
950 	char *buf;
951 
952 	if (!s)
953 		return NULL;
954 
955 	size = strlen(s) + 1;
956 	buf = devm_kmalloc(dev, size, gfp);
957 	if (buf)
958 		memcpy(buf, s, size);
959 	return buf;
960 }
961 EXPORT_SYMBOL_GPL(devm_kstrdup);
962 
963 /**
964  * devm_kstrdup_const - resource managed conditional string duplication
965  * @dev: device for which to duplicate the string
966  * @s: the string to duplicate
967  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
968  *
969  * Strings allocated by devm_kstrdup_const will be automatically freed when
970  * the associated device is detached.
971  *
972  * RETURNS:
973  * Source string if it is in .rodata section otherwise it falls back to
974  * devm_kstrdup.
975  */
976 const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp)
977 {
978 	if (is_kernel_rodata((unsigned long)s))
979 		return s;
980 
981 	return devm_kstrdup(dev, s, gfp);
982 }
983 EXPORT_SYMBOL_GPL(devm_kstrdup_const);
984 
985 /**
986  * devm_kvasprintf - Allocate resource managed space and format a string
987  *		     into that.
988  * @dev: Device to allocate memory for
989  * @gfp: the GFP mask used in the devm_kmalloc() call when
990  *       allocating memory
991  * @fmt: The printf()-style format string
992  * @ap: Arguments for the format string
993  * RETURNS:
994  * Pointer to allocated string on success, NULL on failure.
995  */
996 char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
997 		      va_list ap)
998 {
999 	unsigned int len;
1000 	char *p;
1001 	va_list aq;
1002 
1003 	va_copy(aq, ap);
1004 	len = vsnprintf(NULL, 0, fmt, aq);
1005 	va_end(aq);
1006 
1007 	p = devm_kmalloc(dev, len+1, gfp);
1008 	if (!p)
1009 		return NULL;
1010 
1011 	vsnprintf(p, len+1, fmt, ap);
1012 
1013 	return p;
1014 }
1015 EXPORT_SYMBOL(devm_kvasprintf);
1016 
1017 /**
1018  * devm_kasprintf - Allocate resource managed space and format a string
1019  *		    into that.
1020  * @dev: Device to allocate memory for
1021  * @gfp: the GFP mask used in the devm_kmalloc() call when
1022  *       allocating memory
1023  * @fmt: The printf()-style format string
1024  * @...: Arguments for the format string
1025  * RETURNS:
1026  * Pointer to allocated string on success, NULL on failure.
1027  */
1028 char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1029 {
1030 	va_list ap;
1031 	char *p;
1032 
1033 	va_start(ap, fmt);
1034 	p = devm_kvasprintf(dev, gfp, fmt, ap);
1035 	va_end(ap);
1036 
1037 	return p;
1038 }
1039 EXPORT_SYMBOL_GPL(devm_kasprintf);
1040 
1041 /**
1042  * devm_kfree - Resource-managed kfree
1043  * @dev: Device this memory belongs to
1044  * @p: Memory to free
1045  *
1046  * Free memory allocated with devm_kmalloc().
1047  */
1048 void devm_kfree(struct device *dev, const void *p)
1049 {
1050 	int rc;
1051 
1052 	/*
1053 	 * Special cases: pointer to a string in .rodata returned by
1054 	 * devm_kstrdup_const() or NULL/ZERO ptr.
1055 	 */
1056 	if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p)))
1057 		return;
1058 
1059 	rc = devres_destroy(dev, devm_kmalloc_release,
1060 			    devm_kmalloc_match, (void *)p);
1061 	WARN_ON(rc);
1062 }
1063 EXPORT_SYMBOL_GPL(devm_kfree);
1064 
1065 /**
1066  * devm_kmemdup - Resource-managed kmemdup
1067  * @dev: Device this memory belongs to
1068  * @src: Memory region to duplicate
1069  * @len: Memory region length
1070  * @gfp: GFP mask to use
1071  *
1072  * Duplicate region of a memory using resource managed kmalloc
1073  */
1074 void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp)
1075 {
1076 	void *p;
1077 
1078 	p = devm_kmalloc(dev, len, gfp);
1079 	if (p)
1080 		memcpy(p, src, len);
1081 
1082 	return p;
1083 }
1084 EXPORT_SYMBOL_GPL(devm_kmemdup);
1085 
1086 struct pages_devres {
1087 	unsigned long addr;
1088 	unsigned int order;
1089 };
1090 
1091 static int devm_pages_match(struct device *dev, void *res, void *p)
1092 {
1093 	struct pages_devres *devres = res;
1094 	struct pages_devres *target = p;
1095 
1096 	return devres->addr == target->addr;
1097 }
1098 
1099 static void devm_pages_release(struct device *dev, void *res)
1100 {
1101 	struct pages_devres *devres = res;
1102 
1103 	free_pages(devres->addr, devres->order);
1104 }
1105 
1106 /**
1107  * devm_get_free_pages - Resource-managed __get_free_pages
1108  * @dev: Device to allocate memory for
1109  * @gfp_mask: Allocation gfp flags
1110  * @order: Allocation size is (1 << order) pages
1111  *
1112  * Managed get_free_pages.  Memory allocated with this function is
1113  * automatically freed on driver detach.
1114  *
1115  * RETURNS:
1116  * Address of allocated memory on success, 0 on failure.
1117  */
1118 
1119 unsigned long devm_get_free_pages(struct device *dev,
1120 				  gfp_t gfp_mask, unsigned int order)
1121 {
1122 	struct pages_devres *devres;
1123 	unsigned long addr;
1124 
1125 	addr = __get_free_pages(gfp_mask, order);
1126 
1127 	if (unlikely(!addr))
1128 		return 0;
1129 
1130 	devres = devres_alloc(devm_pages_release,
1131 			      sizeof(struct pages_devres), GFP_KERNEL);
1132 	if (unlikely(!devres)) {
1133 		free_pages(addr, order);
1134 		return 0;
1135 	}
1136 
1137 	devres->addr = addr;
1138 	devres->order = order;
1139 
1140 	devres_add(dev, devres);
1141 	return addr;
1142 }
1143 EXPORT_SYMBOL_GPL(devm_get_free_pages);
1144 
1145 /**
1146  * devm_free_pages - Resource-managed free_pages
1147  * @dev: Device this memory belongs to
1148  * @addr: Memory to free
1149  *
1150  * Free memory allocated with devm_get_free_pages(). Unlike free_pages,
1151  * there is no need to supply the @order.
1152  */
1153 void devm_free_pages(struct device *dev, unsigned long addr)
1154 {
1155 	struct pages_devres devres = { .addr = addr };
1156 
1157 	WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match,
1158 			       &devres));
1159 }
1160 EXPORT_SYMBOL_GPL(devm_free_pages);
1161 
1162 static void devm_percpu_release(struct device *dev, void *pdata)
1163 {
1164 	void __percpu *p;
1165 
1166 	p = *(void __percpu **)pdata;
1167 	free_percpu(p);
1168 }
1169 
1170 static int devm_percpu_match(struct device *dev, void *data, void *p)
1171 {
1172 	struct devres *devr = container_of(data, struct devres, data);
1173 
1174 	return *(void **)devr->data == p;
1175 }
1176 
1177 /**
1178  * __devm_alloc_percpu - Resource-managed alloc_percpu
1179  * @dev: Device to allocate per-cpu memory for
1180  * @size: Size of per-cpu memory to allocate
1181  * @align: Alignment of per-cpu memory to allocate
1182  *
1183  * Managed alloc_percpu. Per-cpu memory allocated with this function is
1184  * automatically freed on driver detach.
1185  *
1186  * RETURNS:
1187  * Pointer to allocated memory on success, NULL on failure.
1188  */
1189 void __percpu *__devm_alloc_percpu(struct device *dev, size_t size,
1190 		size_t align)
1191 {
1192 	void *p;
1193 	void __percpu *pcpu;
1194 
1195 	pcpu = __alloc_percpu(size, align);
1196 	if (!pcpu)
1197 		return NULL;
1198 
1199 	p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL);
1200 	if (!p) {
1201 		free_percpu(pcpu);
1202 		return NULL;
1203 	}
1204 
1205 	*(void __percpu **)p = pcpu;
1206 
1207 	devres_add(dev, p);
1208 
1209 	return pcpu;
1210 }
1211 EXPORT_SYMBOL_GPL(__devm_alloc_percpu);
1212 
1213 /**
1214  * devm_free_percpu - Resource-managed free_percpu
1215  * @dev: Device this memory belongs to
1216  * @pdata: Per-cpu memory to free
1217  *
1218  * Free memory allocated with devm_alloc_percpu().
1219  */
1220 void devm_free_percpu(struct device *dev, void __percpu *pdata)
1221 {
1222 	WARN_ON(devres_destroy(dev, devm_percpu_release, devm_percpu_match,
1223 			       (__force void *)pdata));
1224 }
1225 EXPORT_SYMBOL_GPL(devm_free_percpu);
1226