1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/devres.c - device resource management 4 * 5 * Copyright (c) 2006 SUSE Linux Products GmbH 6 * Copyright (c) 2006 Tejun Heo <[email protected]> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 #include <linux/percpu.h> 13 14 #include <asm/sections.h> 15 16 #include "base.h" 17 #include "trace.h" 18 19 struct devres_node { 20 struct list_head entry; 21 dr_release_t release; 22 const char *name; 23 size_t size; 24 }; 25 26 struct devres { 27 struct devres_node node; 28 /* 29 * Some archs want to perform DMA into kmalloc caches 30 * and need a guaranteed alignment larger than 31 * the alignment of a 64-bit integer. 32 * Thus we use ARCH_DMA_MINALIGN for data[] which will force the same 33 * alignment for struct devres when allocated by kmalloc(). 34 */ 35 u8 __aligned(ARCH_DMA_MINALIGN) data[]; 36 }; 37 38 struct devres_group { 39 struct devres_node node[2]; 40 void *id; 41 int color; 42 /* -- 8 pointers */ 43 }; 44 45 static void set_node_dbginfo(struct devres_node *node, const char *name, 46 size_t size) 47 { 48 node->name = name; 49 node->size = size; 50 } 51 52 #ifdef CONFIG_DEBUG_DEVRES 53 static int log_devres = 0; 54 module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR); 55 56 static void devres_dbg(struct device *dev, struct devres_node *node, 57 const char *op) 58 { 59 if (unlikely(log_devres)) 60 dev_err(dev, "DEVRES %3s %p %s (%zu bytes)\n", 61 op, node, node->name, node->size); 62 } 63 #else /* CONFIG_DEBUG_DEVRES */ 64 #define devres_dbg(dev, node, op) do {} while (0) 65 #endif /* CONFIG_DEBUG_DEVRES */ 66 67 static void devres_log(struct device *dev, struct devres_node *node, 68 const char *op) 69 { 70 trace_devres_log(dev, op, node, node->name, node->size); 71 devres_dbg(dev, node, op); 72 } 73 74 /* 75 * Release functions for devres group. These callbacks are used only 76 * for identification. 77 */ 78 static void group_open_release(struct device *dev, void *res) 79 { 80 /* noop */ 81 } 82 83 static void group_close_release(struct device *dev, void *res) 84 { 85 /* noop */ 86 } 87 88 static struct devres_group *node_to_group(struct devres_node *node) 89 { 90 if (node->release == &group_open_release) 91 return container_of(node, struct devres_group, node[0]); 92 if (node->release == &group_close_release) 93 return container_of(node, struct devres_group, node[1]); 94 return NULL; 95 } 96 97 static bool check_dr_size(size_t size, size_t *tot_size) 98 { 99 /* We must catch any near-SIZE_MAX cases that could overflow. */ 100 if (unlikely(check_add_overflow(sizeof(struct devres), 101 size, tot_size))) 102 return false; 103 104 /* Actually allocate the full kmalloc bucket size. */ 105 *tot_size = kmalloc_size_roundup(*tot_size); 106 107 return true; 108 } 109 110 static __always_inline struct devres *alloc_dr(dr_release_t release, 111 size_t size, gfp_t gfp, int nid) 112 { 113 size_t tot_size; 114 struct devres *dr; 115 116 if (!check_dr_size(size, &tot_size)) 117 return NULL; 118 119 dr = kmalloc_node_track_caller(tot_size, gfp, nid); 120 if (unlikely(!dr)) 121 return NULL; 122 123 /* No need to clear memory twice */ 124 if (!(gfp & __GFP_ZERO)) 125 memset(dr, 0, offsetof(struct devres, data)); 126 127 INIT_LIST_HEAD(&dr->node.entry); 128 dr->node.release = release; 129 return dr; 130 } 131 132 static void add_dr(struct device *dev, struct devres_node *node) 133 { 134 devres_log(dev, node, "ADD"); 135 BUG_ON(!list_empty(&node->entry)); 136 list_add_tail(&node->entry, &dev->devres_head); 137 } 138 139 static void replace_dr(struct device *dev, 140 struct devres_node *old, struct devres_node *new) 141 { 142 devres_log(dev, old, "REPLACE"); 143 BUG_ON(!list_empty(&new->entry)); 144 list_replace(&old->entry, &new->entry); 145 } 146 147 /** 148 * __devres_alloc_node - Allocate device resource data 149 * @release: Release function devres will be associated with 150 * @size: Allocation size 151 * @gfp: Allocation flags 152 * @nid: NUMA node 153 * @name: Name of the resource 154 * 155 * Allocate devres of @size bytes. The allocated area is zeroed, then 156 * associated with @release. The returned pointer can be passed to 157 * other devres_*() functions. 158 * 159 * RETURNS: 160 * Pointer to allocated devres on success, NULL on failure. 161 */ 162 void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid, 163 const char *name) 164 { 165 struct devres *dr; 166 167 dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid); 168 if (unlikely(!dr)) 169 return NULL; 170 set_node_dbginfo(&dr->node, name, size); 171 return dr->data; 172 } 173 EXPORT_SYMBOL_GPL(__devres_alloc_node); 174 175 /** 176 * devres_for_each_res - Resource iterator 177 * @dev: Device to iterate resource from 178 * @release: Look for resources associated with this release function 179 * @match: Match function (optional) 180 * @match_data: Data for the match function 181 * @fn: Function to be called for each matched resource. 182 * @data: Data for @fn, the 3rd parameter of @fn 183 * 184 * Call @fn for each devres of @dev which is associated with @release 185 * and for which @match returns 1. 186 * 187 * RETURNS: 188 * void 189 */ 190 void devres_for_each_res(struct device *dev, dr_release_t release, 191 dr_match_t match, void *match_data, 192 void (*fn)(struct device *, void *, void *), 193 void *data) 194 { 195 struct devres_node *node; 196 struct devres_node *tmp; 197 unsigned long flags; 198 199 if (!fn) 200 return; 201 202 spin_lock_irqsave(&dev->devres_lock, flags); 203 list_for_each_entry_safe_reverse(node, tmp, 204 &dev->devres_head, entry) { 205 struct devres *dr = container_of(node, struct devres, node); 206 207 if (node->release != release) 208 continue; 209 if (match && !match(dev, dr->data, match_data)) 210 continue; 211 fn(dev, dr->data, data); 212 } 213 spin_unlock_irqrestore(&dev->devres_lock, flags); 214 } 215 EXPORT_SYMBOL_GPL(devres_for_each_res); 216 217 /** 218 * devres_free - Free device resource data 219 * @res: Pointer to devres data to free 220 * 221 * Free devres created with devres_alloc(). 222 */ 223 void devres_free(void *res) 224 { 225 if (res) { 226 struct devres *dr = container_of(res, struct devres, data); 227 228 BUG_ON(!list_empty(&dr->node.entry)); 229 kfree(dr); 230 } 231 } 232 EXPORT_SYMBOL_GPL(devres_free); 233 234 /** 235 * devres_add - Register device resource 236 * @dev: Device to add resource to 237 * @res: Resource to register 238 * 239 * Register devres @res to @dev. @res should have been allocated 240 * using devres_alloc(). On driver detach, the associated release 241 * function will be invoked and devres will be freed automatically. 242 */ 243 void devres_add(struct device *dev, void *res) 244 { 245 struct devres *dr = container_of(res, struct devres, data); 246 unsigned long flags; 247 248 spin_lock_irqsave(&dev->devres_lock, flags); 249 add_dr(dev, &dr->node); 250 spin_unlock_irqrestore(&dev->devres_lock, flags); 251 } 252 EXPORT_SYMBOL_GPL(devres_add); 253 254 static struct devres *find_dr(struct device *dev, dr_release_t release, 255 dr_match_t match, void *match_data) 256 { 257 struct devres_node *node; 258 259 list_for_each_entry_reverse(node, &dev->devres_head, entry) { 260 struct devres *dr = container_of(node, struct devres, node); 261 262 if (node->release != release) 263 continue; 264 if (match && !match(dev, dr->data, match_data)) 265 continue; 266 return dr; 267 } 268 269 return NULL; 270 } 271 272 /** 273 * devres_find - Find device resource 274 * @dev: Device to lookup resource from 275 * @release: Look for resources associated with this release function 276 * @match: Match function (optional) 277 * @match_data: Data for the match function 278 * 279 * Find the latest devres of @dev which is associated with @release 280 * and for which @match returns 1. If @match is NULL, it's considered 281 * to match all. 282 * 283 * RETURNS: 284 * Pointer to found devres, NULL if not found. 285 */ 286 void *devres_find(struct device *dev, dr_release_t release, 287 dr_match_t match, void *match_data) 288 { 289 struct devres *dr; 290 unsigned long flags; 291 292 spin_lock_irqsave(&dev->devres_lock, flags); 293 dr = find_dr(dev, release, match, match_data); 294 spin_unlock_irqrestore(&dev->devres_lock, flags); 295 296 if (dr) 297 return dr->data; 298 return NULL; 299 } 300 EXPORT_SYMBOL_GPL(devres_find); 301 302 /** 303 * devres_get - Find devres, if non-existent, add one atomically 304 * @dev: Device to lookup or add devres for 305 * @new_res: Pointer to new initialized devres to add if not found 306 * @match: Match function (optional) 307 * @match_data: Data for the match function 308 * 309 * Find the latest devres of @dev which has the same release function 310 * as @new_res and for which @match return 1. If found, @new_res is 311 * freed; otherwise, @new_res is added atomically. 312 * 313 * RETURNS: 314 * Pointer to found or added devres. 315 */ 316 void *devres_get(struct device *dev, void *new_res, 317 dr_match_t match, void *match_data) 318 { 319 struct devres *new_dr = container_of(new_res, struct devres, data); 320 struct devres *dr; 321 unsigned long flags; 322 323 spin_lock_irqsave(&dev->devres_lock, flags); 324 dr = find_dr(dev, new_dr->node.release, match, match_data); 325 if (!dr) { 326 add_dr(dev, &new_dr->node); 327 dr = new_dr; 328 new_res = NULL; 329 } 330 spin_unlock_irqrestore(&dev->devres_lock, flags); 331 devres_free(new_res); 332 333 return dr->data; 334 } 335 EXPORT_SYMBOL_GPL(devres_get); 336 337 /** 338 * devres_remove - Find a device resource and remove it 339 * @dev: Device to find resource from 340 * @release: Look for resources associated with this release function 341 * @match: Match function (optional) 342 * @match_data: Data for the match function 343 * 344 * Find the latest devres of @dev associated with @release and for 345 * which @match returns 1. If @match is NULL, it's considered to 346 * match all. If found, the resource is removed atomically and 347 * returned. 348 * 349 * RETURNS: 350 * Pointer to removed devres on success, NULL if not found. 351 */ 352 void *devres_remove(struct device *dev, dr_release_t release, 353 dr_match_t match, void *match_data) 354 { 355 struct devres *dr; 356 unsigned long flags; 357 358 spin_lock_irqsave(&dev->devres_lock, flags); 359 dr = find_dr(dev, release, match, match_data); 360 if (dr) { 361 list_del_init(&dr->node.entry); 362 devres_log(dev, &dr->node, "REM"); 363 } 364 spin_unlock_irqrestore(&dev->devres_lock, flags); 365 366 if (dr) 367 return dr->data; 368 return NULL; 369 } 370 EXPORT_SYMBOL_GPL(devres_remove); 371 372 /** 373 * devres_destroy - Find a device resource and destroy it 374 * @dev: Device to find resource from 375 * @release: Look for resources associated with this release function 376 * @match: Match function (optional) 377 * @match_data: Data for the match function 378 * 379 * Find the latest devres of @dev associated with @release and for 380 * which @match returns 1. If @match is NULL, it's considered to 381 * match all. If found, the resource is removed atomically and freed. 382 * 383 * Note that the release function for the resource will not be called, 384 * only the devres-allocated data will be freed. The caller becomes 385 * responsible for freeing any other data. 386 * 387 * RETURNS: 388 * 0 if devres is found and freed, -ENOENT if not found. 389 */ 390 int devres_destroy(struct device *dev, dr_release_t release, 391 dr_match_t match, void *match_data) 392 { 393 void *res; 394 395 res = devres_remove(dev, release, match, match_data); 396 if (unlikely(!res)) 397 return -ENOENT; 398 399 devres_free(res); 400 return 0; 401 } 402 EXPORT_SYMBOL_GPL(devres_destroy); 403 404 405 /** 406 * devres_release - Find a device resource and destroy it, calling release 407 * @dev: Device to find resource from 408 * @release: Look for resources associated with this release function 409 * @match: Match function (optional) 410 * @match_data: Data for the match function 411 * 412 * Find the latest devres of @dev associated with @release and for 413 * which @match returns 1. If @match is NULL, it's considered to 414 * match all. If found, the resource is removed atomically, the 415 * release function called and the resource freed. 416 * 417 * RETURNS: 418 * 0 if devres is found and freed, -ENOENT if not found. 419 */ 420 int devres_release(struct device *dev, dr_release_t release, 421 dr_match_t match, void *match_data) 422 { 423 void *res; 424 425 res = devres_remove(dev, release, match, match_data); 426 if (unlikely(!res)) 427 return -ENOENT; 428 429 (*release)(dev, res); 430 devres_free(res); 431 return 0; 432 } 433 EXPORT_SYMBOL_GPL(devres_release); 434 435 static int remove_nodes(struct device *dev, 436 struct list_head *first, struct list_head *end, 437 struct list_head *todo) 438 { 439 struct devres_node *node, *n; 440 int cnt = 0, nr_groups = 0; 441 442 /* First pass - move normal devres entries to @todo and clear 443 * devres_group colors. 444 */ 445 node = list_entry(first, struct devres_node, entry); 446 list_for_each_entry_safe_from(node, n, end, entry) { 447 struct devres_group *grp; 448 449 grp = node_to_group(node); 450 if (grp) { 451 /* clear color of group markers in the first pass */ 452 grp->color = 0; 453 nr_groups++; 454 } else { 455 /* regular devres entry */ 456 if (&node->entry == first) 457 first = first->next; 458 list_move_tail(&node->entry, todo); 459 cnt++; 460 } 461 } 462 463 if (!nr_groups) 464 return cnt; 465 466 /* Second pass - Scan groups and color them. A group gets 467 * color value of two iff the group is wholly contained in 468 * [current node, end). That is, for a closed group, both opening 469 * and closing markers should be in the range, while just the 470 * opening marker is enough for an open group. 471 */ 472 node = list_entry(first, struct devres_node, entry); 473 list_for_each_entry_safe_from(node, n, end, entry) { 474 struct devres_group *grp; 475 476 grp = node_to_group(node); 477 BUG_ON(!grp || list_empty(&grp->node[0].entry)); 478 479 grp->color++; 480 if (list_empty(&grp->node[1].entry)) 481 grp->color++; 482 483 BUG_ON(grp->color <= 0 || grp->color > 2); 484 if (grp->color == 2) { 485 /* No need to update current node or end. The removed 486 * nodes are always before both. 487 */ 488 list_move_tail(&grp->node[0].entry, todo); 489 list_del_init(&grp->node[1].entry); 490 } 491 } 492 493 return cnt; 494 } 495 496 static void release_nodes(struct device *dev, struct list_head *todo) 497 { 498 struct devres *dr, *tmp; 499 500 /* Release. Note that both devres and devres_group are 501 * handled as devres in the following loop. This is safe. 502 */ 503 list_for_each_entry_safe_reverse(dr, tmp, todo, node.entry) { 504 devres_log(dev, &dr->node, "REL"); 505 dr->node.release(dev, dr->data); 506 kfree(dr); 507 } 508 } 509 510 /** 511 * devres_release_all - Release all managed resources 512 * @dev: Device to release resources for 513 * 514 * Release all resources associated with @dev. This function is 515 * called on driver detach. 516 */ 517 int devres_release_all(struct device *dev) 518 { 519 unsigned long flags; 520 LIST_HEAD(todo); 521 int cnt; 522 523 /* Looks like an uninitialized device structure */ 524 if (WARN_ON(dev->devres_head.next == NULL)) 525 return -ENODEV; 526 527 /* Nothing to release if list is empty */ 528 if (list_empty(&dev->devres_head)) 529 return 0; 530 531 spin_lock_irqsave(&dev->devres_lock, flags); 532 cnt = remove_nodes(dev, dev->devres_head.next, &dev->devres_head, &todo); 533 spin_unlock_irqrestore(&dev->devres_lock, flags); 534 535 release_nodes(dev, &todo); 536 return cnt; 537 } 538 539 /** 540 * devres_open_group - Open a new devres group 541 * @dev: Device to open devres group for 542 * @id: Separator ID 543 * @gfp: Allocation flags 544 * 545 * Open a new devres group for @dev with @id. For @id, using a 546 * pointer to an object which won't be used for another group is 547 * recommended. If @id is NULL, address-wise unique ID is created. 548 * 549 * RETURNS: 550 * ID of the new group, NULL on failure. 551 */ 552 void *devres_open_group(struct device *dev, void *id, gfp_t gfp) 553 { 554 struct devres_group *grp; 555 unsigned long flags; 556 557 grp = kmalloc(sizeof(*grp), gfp); 558 if (unlikely(!grp)) 559 return NULL; 560 561 grp->node[0].release = &group_open_release; 562 grp->node[1].release = &group_close_release; 563 INIT_LIST_HEAD(&grp->node[0].entry); 564 INIT_LIST_HEAD(&grp->node[1].entry); 565 set_node_dbginfo(&grp->node[0], "grp<", 0); 566 set_node_dbginfo(&grp->node[1], "grp>", 0); 567 grp->id = grp; 568 if (id) 569 grp->id = id; 570 grp->color = 0; 571 572 spin_lock_irqsave(&dev->devres_lock, flags); 573 add_dr(dev, &grp->node[0]); 574 spin_unlock_irqrestore(&dev->devres_lock, flags); 575 return grp->id; 576 } 577 EXPORT_SYMBOL_GPL(devres_open_group); 578 579 /* Find devres group with ID @id. If @id is NULL, look for the latest. */ 580 static struct devres_group *find_group(struct device *dev, void *id) 581 { 582 struct devres_node *node; 583 584 list_for_each_entry_reverse(node, &dev->devres_head, entry) { 585 struct devres_group *grp; 586 587 if (node->release != &group_open_release) 588 continue; 589 590 grp = container_of(node, struct devres_group, node[0]); 591 592 if (id) { 593 if (grp->id == id) 594 return grp; 595 } else if (list_empty(&grp->node[1].entry)) 596 return grp; 597 } 598 599 return NULL; 600 } 601 602 /** 603 * devres_close_group - Close a devres group 604 * @dev: Device to close devres group for 605 * @id: ID of target group, can be NULL 606 * 607 * Close the group identified by @id. If @id is NULL, the latest open 608 * group is selected. 609 */ 610 void devres_close_group(struct device *dev, void *id) 611 { 612 struct devres_group *grp; 613 unsigned long flags; 614 615 spin_lock_irqsave(&dev->devres_lock, flags); 616 617 grp = find_group(dev, id); 618 if (grp) 619 add_dr(dev, &grp->node[1]); 620 else 621 WARN_ON(1); 622 623 spin_unlock_irqrestore(&dev->devres_lock, flags); 624 } 625 EXPORT_SYMBOL_GPL(devres_close_group); 626 627 /** 628 * devres_remove_group - Remove a devres group 629 * @dev: Device to remove group for 630 * @id: ID of target group, can be NULL 631 * 632 * Remove the group identified by @id. If @id is NULL, the latest 633 * open group is selected. Note that removing a group doesn't affect 634 * any other resources. 635 */ 636 void devres_remove_group(struct device *dev, void *id) 637 { 638 struct devres_group *grp; 639 unsigned long flags; 640 641 spin_lock_irqsave(&dev->devres_lock, flags); 642 643 grp = find_group(dev, id); 644 if (grp) { 645 list_del_init(&grp->node[0].entry); 646 list_del_init(&grp->node[1].entry); 647 devres_log(dev, &grp->node[0], "REM"); 648 } else 649 WARN_ON(1); 650 651 spin_unlock_irqrestore(&dev->devres_lock, flags); 652 653 kfree(grp); 654 } 655 EXPORT_SYMBOL_GPL(devres_remove_group); 656 657 /** 658 * devres_release_group - Release resources in a devres group 659 * @dev: Device to release group for 660 * @id: ID of target group, can be NULL 661 * 662 * Release all resources in the group identified by @id. If @id is 663 * NULL, the latest open group is selected. The selected group and 664 * groups properly nested inside the selected group are removed. 665 * 666 * RETURNS: 667 * The number of released non-group resources. 668 */ 669 int devres_release_group(struct device *dev, void *id) 670 { 671 struct devres_group *grp; 672 unsigned long flags; 673 LIST_HEAD(todo); 674 int cnt = 0; 675 676 spin_lock_irqsave(&dev->devres_lock, flags); 677 678 grp = find_group(dev, id); 679 if (grp) { 680 struct list_head *first = &grp->node[0].entry; 681 struct list_head *end = &dev->devres_head; 682 683 if (!list_empty(&grp->node[1].entry)) 684 end = grp->node[1].entry.next; 685 686 cnt = remove_nodes(dev, first, end, &todo); 687 spin_unlock_irqrestore(&dev->devres_lock, flags); 688 689 release_nodes(dev, &todo); 690 } else if (list_empty(&dev->devres_head)) { 691 /* 692 * dev is probably dying via devres_release_all(): groups 693 * have already been removed and are on the process of 694 * being released - don't touch and don't warn. 695 */ 696 spin_unlock_irqrestore(&dev->devres_lock, flags); 697 } else { 698 WARN_ON(1); 699 spin_unlock_irqrestore(&dev->devres_lock, flags); 700 } 701 702 return cnt; 703 } 704 EXPORT_SYMBOL_GPL(devres_release_group); 705 706 /* 707 * Custom devres actions allow inserting a simple function call 708 * into the teardown sequence. 709 */ 710 711 struct action_devres { 712 void *data; 713 void (*action)(void *); 714 }; 715 716 static int devm_action_match(struct device *dev, void *res, void *p) 717 { 718 struct action_devres *devres = res; 719 struct action_devres *target = p; 720 721 return devres->action == target->action && 722 devres->data == target->data; 723 } 724 725 static void devm_action_release(struct device *dev, void *res) 726 { 727 struct action_devres *devres = res; 728 729 devres->action(devres->data); 730 } 731 732 /** 733 * __devm_add_action() - add a custom action to list of managed resources 734 * @dev: Device that owns the action 735 * @action: Function that should be called 736 * @data: Pointer to data passed to @action implementation 737 * @name: Name of the resource (for debugging purposes) 738 * 739 * This adds a custom action to the list of managed resources so that 740 * it gets executed as part of standard resource unwinding. 741 */ 742 int __devm_add_action(struct device *dev, void (*action)(void *), void *data, const char *name) 743 { 744 struct action_devres *devres; 745 746 devres = __devres_alloc_node(devm_action_release, sizeof(struct action_devres), 747 GFP_KERNEL, NUMA_NO_NODE, name); 748 if (!devres) 749 return -ENOMEM; 750 751 devres->data = data; 752 devres->action = action; 753 754 devres_add(dev, devres); 755 return 0; 756 } 757 EXPORT_SYMBOL_GPL(__devm_add_action); 758 759 /** 760 * devm_remove_action() - removes previously added custom action 761 * @dev: Device that owns the action 762 * @action: Function implementing the action 763 * @data: Pointer to data passed to @action implementation 764 * 765 * Removes instance of @action previously added by devm_add_action(). 766 * Both action and data should match one of the existing entries. 767 */ 768 void devm_remove_action(struct device *dev, void (*action)(void *), void *data) 769 { 770 struct action_devres devres = { 771 .data = data, 772 .action = action, 773 }; 774 775 WARN_ON(devres_destroy(dev, devm_action_release, devm_action_match, 776 &devres)); 777 } 778 EXPORT_SYMBOL_GPL(devm_remove_action); 779 780 /** 781 * devm_release_action() - release previously added custom action 782 * @dev: Device that owns the action 783 * @action: Function implementing the action 784 * @data: Pointer to data passed to @action implementation 785 * 786 * Releases and removes instance of @action previously added by 787 * devm_add_action(). Both action and data should match one of the 788 * existing entries. 789 */ 790 void devm_release_action(struct device *dev, void (*action)(void *), void *data) 791 { 792 struct action_devres devres = { 793 .data = data, 794 .action = action, 795 }; 796 797 WARN_ON(devres_release(dev, devm_action_release, devm_action_match, 798 &devres)); 799 800 } 801 EXPORT_SYMBOL_GPL(devm_release_action); 802 803 /* 804 * Managed kmalloc/kfree 805 */ 806 static void devm_kmalloc_release(struct device *dev, void *res) 807 { 808 /* noop */ 809 } 810 811 static int devm_kmalloc_match(struct device *dev, void *res, void *data) 812 { 813 return res == data; 814 } 815 816 /** 817 * devm_kmalloc - Resource-managed kmalloc 818 * @dev: Device to allocate memory for 819 * @size: Allocation size 820 * @gfp: Allocation gfp flags 821 * 822 * Managed kmalloc. Memory allocated with this function is 823 * automatically freed on driver detach. Like all other devres 824 * resources, guaranteed alignment is unsigned long long. 825 * 826 * RETURNS: 827 * Pointer to allocated memory on success, NULL on failure. 828 */ 829 void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp) 830 { 831 struct devres *dr; 832 833 if (unlikely(!size)) 834 return ZERO_SIZE_PTR; 835 836 /* use raw alloc_dr for kmalloc caller tracing */ 837 dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev)); 838 if (unlikely(!dr)) 839 return NULL; 840 841 /* 842 * This is named devm_kzalloc_release for historical reasons 843 * The initial implementation did not support kmalloc, only kzalloc 844 */ 845 set_node_dbginfo(&dr->node, "devm_kzalloc_release", size); 846 devres_add(dev, dr->data); 847 return dr->data; 848 } 849 EXPORT_SYMBOL_GPL(devm_kmalloc); 850 851 /** 852 * devm_krealloc - Resource-managed krealloc() 853 * @dev: Device to re-allocate memory for 854 * @ptr: Pointer to the memory chunk to re-allocate 855 * @new_size: New allocation size 856 * @gfp: Allocation gfp flags 857 * 858 * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc(). 859 * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR, 860 * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the 861 * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't 862 * change the order in which the release callback for the re-alloc'ed devres 863 * will be called (except when falling back to devm_kmalloc() or when freeing 864 * resources when new_size is zero). The contents of the memory are preserved 865 * up to the lesser of new and old sizes. 866 */ 867 void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp) 868 { 869 size_t total_new_size, total_old_size; 870 struct devres *old_dr, *new_dr; 871 unsigned long flags; 872 873 if (unlikely(!new_size)) { 874 devm_kfree(dev, ptr); 875 return ZERO_SIZE_PTR; 876 } 877 878 if (unlikely(ZERO_OR_NULL_PTR(ptr))) 879 return devm_kmalloc(dev, new_size, gfp); 880 881 if (WARN_ON(is_kernel_rodata((unsigned long)ptr))) 882 /* 883 * We cannot reliably realloc a const string returned by 884 * devm_kstrdup_const(). 885 */ 886 return NULL; 887 888 if (!check_dr_size(new_size, &total_new_size)) 889 return NULL; 890 891 total_old_size = ksize(container_of(ptr, struct devres, data)); 892 if (total_old_size == 0) { 893 WARN(1, "Pointer doesn't point to dynamically allocated memory."); 894 return NULL; 895 } 896 897 /* 898 * If new size is smaller or equal to the actual number of bytes 899 * allocated previously - just return the same pointer. 900 */ 901 if (total_new_size <= total_old_size) 902 return ptr; 903 904 /* 905 * Otherwise: allocate new, larger chunk. We need to allocate before 906 * taking the lock as most probably the caller uses GFP_KERNEL. 907 * alloc_dr() will call check_dr_size() to reserve extra memory 908 * for struct devres automatically, so size @new_size user request 909 * is delivered to it directly as devm_kmalloc() does. 910 */ 911 new_dr = alloc_dr(devm_kmalloc_release, 912 new_size, gfp, dev_to_node(dev)); 913 if (!new_dr) 914 return NULL; 915 916 /* 917 * The spinlock protects the linked list against concurrent 918 * modifications but not the resource itself. 919 */ 920 spin_lock_irqsave(&dev->devres_lock, flags); 921 922 old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr); 923 if (!old_dr) { 924 spin_unlock_irqrestore(&dev->devres_lock, flags); 925 kfree(new_dr); 926 WARN(1, "Memory chunk not managed or managed by a different device."); 927 return NULL; 928 } 929 930 replace_dr(dev, &old_dr->node, &new_dr->node); 931 932 spin_unlock_irqrestore(&dev->devres_lock, flags); 933 934 /* 935 * We can copy the memory contents after releasing the lock as we're 936 * no longer modifying the list links. 937 */ 938 memcpy(new_dr->data, old_dr->data, 939 total_old_size - offsetof(struct devres, data)); 940 /* 941 * Same for releasing the old devres - it's now been removed from the 942 * list. This is also the reason why we must not use devm_kfree() - the 943 * links are no longer valid. 944 */ 945 kfree(old_dr); 946 947 return new_dr->data; 948 } 949 EXPORT_SYMBOL_GPL(devm_krealloc); 950 951 /** 952 * devm_kstrdup - Allocate resource managed space and 953 * copy an existing string into that. 954 * @dev: Device to allocate memory for 955 * @s: the string to duplicate 956 * @gfp: the GFP mask used in the devm_kmalloc() call when 957 * allocating memory 958 * RETURNS: 959 * Pointer to allocated string on success, NULL on failure. 960 */ 961 char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp) 962 { 963 size_t size; 964 char *buf; 965 966 if (!s) 967 return NULL; 968 969 size = strlen(s) + 1; 970 buf = devm_kmalloc(dev, size, gfp); 971 if (buf) 972 memcpy(buf, s, size); 973 return buf; 974 } 975 EXPORT_SYMBOL_GPL(devm_kstrdup); 976 977 /** 978 * devm_kstrdup_const - resource managed conditional string duplication 979 * @dev: device for which to duplicate the string 980 * @s: the string to duplicate 981 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 982 * 983 * Strings allocated by devm_kstrdup_const will be automatically freed when 984 * the associated device is detached. 985 * 986 * RETURNS: 987 * Source string if it is in .rodata section otherwise it falls back to 988 * devm_kstrdup. 989 */ 990 const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp) 991 { 992 if (is_kernel_rodata((unsigned long)s)) 993 return s; 994 995 return devm_kstrdup(dev, s, gfp); 996 } 997 EXPORT_SYMBOL_GPL(devm_kstrdup_const); 998 999 /** 1000 * devm_kvasprintf - Allocate resource managed space and format a string 1001 * into that. 1002 * @dev: Device to allocate memory for 1003 * @gfp: the GFP mask used in the devm_kmalloc() call when 1004 * allocating memory 1005 * @fmt: The printf()-style format string 1006 * @ap: Arguments for the format string 1007 * RETURNS: 1008 * Pointer to allocated string on success, NULL on failure. 1009 */ 1010 char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, 1011 va_list ap) 1012 { 1013 unsigned int len; 1014 char *p; 1015 va_list aq; 1016 1017 va_copy(aq, ap); 1018 len = vsnprintf(NULL, 0, fmt, aq); 1019 va_end(aq); 1020 1021 p = devm_kmalloc(dev, len+1, gfp); 1022 if (!p) 1023 return NULL; 1024 1025 vsnprintf(p, len+1, fmt, ap); 1026 1027 return p; 1028 } 1029 EXPORT_SYMBOL(devm_kvasprintf); 1030 1031 /** 1032 * devm_kasprintf - Allocate resource managed space and format a string 1033 * into that. 1034 * @dev: Device to allocate memory for 1035 * @gfp: the GFP mask used in the devm_kmalloc() call when 1036 * allocating memory 1037 * @fmt: The printf()-style format string 1038 * @...: Arguments for the format string 1039 * RETURNS: 1040 * Pointer to allocated string on success, NULL on failure. 1041 */ 1042 char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...) 1043 { 1044 va_list ap; 1045 char *p; 1046 1047 va_start(ap, fmt); 1048 p = devm_kvasprintf(dev, gfp, fmt, ap); 1049 va_end(ap); 1050 1051 return p; 1052 } 1053 EXPORT_SYMBOL_GPL(devm_kasprintf); 1054 1055 /** 1056 * devm_kfree - Resource-managed kfree 1057 * @dev: Device this memory belongs to 1058 * @p: Memory to free 1059 * 1060 * Free memory allocated with devm_kmalloc(). 1061 */ 1062 void devm_kfree(struct device *dev, const void *p) 1063 { 1064 int rc; 1065 1066 /* 1067 * Special cases: pointer to a string in .rodata returned by 1068 * devm_kstrdup_const() or NULL/ZERO ptr. 1069 */ 1070 if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p))) 1071 return; 1072 1073 rc = devres_destroy(dev, devm_kmalloc_release, 1074 devm_kmalloc_match, (void *)p); 1075 WARN_ON(rc); 1076 } 1077 EXPORT_SYMBOL_GPL(devm_kfree); 1078 1079 /** 1080 * devm_kmemdup - Resource-managed kmemdup 1081 * @dev: Device this memory belongs to 1082 * @src: Memory region to duplicate 1083 * @len: Memory region length 1084 * @gfp: GFP mask to use 1085 * 1086 * Duplicate region of a memory using resource managed kmalloc 1087 */ 1088 void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp) 1089 { 1090 void *p; 1091 1092 p = devm_kmalloc(dev, len, gfp); 1093 if (p) 1094 memcpy(p, src, len); 1095 1096 return p; 1097 } 1098 EXPORT_SYMBOL_GPL(devm_kmemdup); 1099 1100 struct pages_devres { 1101 unsigned long addr; 1102 unsigned int order; 1103 }; 1104 1105 static int devm_pages_match(struct device *dev, void *res, void *p) 1106 { 1107 struct pages_devres *devres = res; 1108 struct pages_devres *target = p; 1109 1110 return devres->addr == target->addr; 1111 } 1112 1113 static void devm_pages_release(struct device *dev, void *res) 1114 { 1115 struct pages_devres *devres = res; 1116 1117 free_pages(devres->addr, devres->order); 1118 } 1119 1120 /** 1121 * devm_get_free_pages - Resource-managed __get_free_pages 1122 * @dev: Device to allocate memory for 1123 * @gfp_mask: Allocation gfp flags 1124 * @order: Allocation size is (1 << order) pages 1125 * 1126 * Managed get_free_pages. Memory allocated with this function is 1127 * automatically freed on driver detach. 1128 * 1129 * RETURNS: 1130 * Address of allocated memory on success, 0 on failure. 1131 */ 1132 1133 unsigned long devm_get_free_pages(struct device *dev, 1134 gfp_t gfp_mask, unsigned int order) 1135 { 1136 struct pages_devres *devres; 1137 unsigned long addr; 1138 1139 addr = __get_free_pages(gfp_mask, order); 1140 1141 if (unlikely(!addr)) 1142 return 0; 1143 1144 devres = devres_alloc(devm_pages_release, 1145 sizeof(struct pages_devres), GFP_KERNEL); 1146 if (unlikely(!devres)) { 1147 free_pages(addr, order); 1148 return 0; 1149 } 1150 1151 devres->addr = addr; 1152 devres->order = order; 1153 1154 devres_add(dev, devres); 1155 return addr; 1156 } 1157 EXPORT_SYMBOL_GPL(devm_get_free_pages); 1158 1159 /** 1160 * devm_free_pages - Resource-managed free_pages 1161 * @dev: Device this memory belongs to 1162 * @addr: Memory to free 1163 * 1164 * Free memory allocated with devm_get_free_pages(). Unlike free_pages, 1165 * there is no need to supply the @order. 1166 */ 1167 void devm_free_pages(struct device *dev, unsigned long addr) 1168 { 1169 struct pages_devres devres = { .addr = addr }; 1170 1171 WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match, 1172 &devres)); 1173 } 1174 EXPORT_SYMBOL_GPL(devm_free_pages); 1175 1176 static void devm_percpu_release(struct device *dev, void *pdata) 1177 { 1178 void __percpu *p; 1179 1180 p = *(void __percpu **)pdata; 1181 free_percpu(p); 1182 } 1183 1184 static int devm_percpu_match(struct device *dev, void *data, void *p) 1185 { 1186 struct devres *devr = container_of(data, struct devres, data); 1187 1188 return *(void **)devr->data == p; 1189 } 1190 1191 /** 1192 * __devm_alloc_percpu - Resource-managed alloc_percpu 1193 * @dev: Device to allocate per-cpu memory for 1194 * @size: Size of per-cpu memory to allocate 1195 * @align: Alignment of per-cpu memory to allocate 1196 * 1197 * Managed alloc_percpu. Per-cpu memory allocated with this function is 1198 * automatically freed on driver detach. 1199 * 1200 * RETURNS: 1201 * Pointer to allocated memory on success, NULL on failure. 1202 */ 1203 void __percpu *__devm_alloc_percpu(struct device *dev, size_t size, 1204 size_t align) 1205 { 1206 void *p; 1207 void __percpu *pcpu; 1208 1209 pcpu = __alloc_percpu(size, align); 1210 if (!pcpu) 1211 return NULL; 1212 1213 p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL); 1214 if (!p) { 1215 free_percpu(pcpu); 1216 return NULL; 1217 } 1218 1219 *(void __percpu **)p = pcpu; 1220 1221 devres_add(dev, p); 1222 1223 return pcpu; 1224 } 1225 EXPORT_SYMBOL_GPL(__devm_alloc_percpu); 1226 1227 /** 1228 * devm_free_percpu - Resource-managed free_percpu 1229 * @dev: Device this memory belongs to 1230 * @pdata: Per-cpu memory to free 1231 * 1232 * Free memory allocated with devm_alloc_percpu(). 1233 */ 1234 void devm_free_percpu(struct device *dev, void __percpu *pdata) 1235 { 1236 /* 1237 * Use devres_release() to prevent memory leakage as 1238 * devm_free_pages() does. 1239 */ 1240 WARN_ON(devres_release(dev, devm_percpu_release, devm_percpu_match, 1241 (void *)(__force unsigned long)pdata)); 1242 } 1243 EXPORT_SYMBOL_GPL(devm_free_percpu); 1244