xref: /linux-6.15/drivers/base/cacheinfo.c (revision cde0fbff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <[email protected]>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of_device.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22 
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)	(&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)	(ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)	(ci_cacheinfo(cpu)->info_list)
28 #define per_cpu_cacheinfo_idx(cpu, idx)		\
29 				(per_cpu_cacheinfo(cpu) + (idx))
30 
31 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
32 {
33 	return ci_cacheinfo(cpu);
34 }
35 
36 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
37 					   struct cacheinfo *sib_leaf)
38 {
39 	/*
40 	 * For non DT/ACPI systems, assume unique level 1 caches,
41 	 * system-wide shared caches for all other levels.
42 	 */
43 	if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)))
44 		return (this_leaf->level != 1) && (sib_leaf->level != 1);
45 
46 	if ((sib_leaf->attributes & CACHE_ID) &&
47 	    (this_leaf->attributes & CACHE_ID))
48 		return sib_leaf->id == this_leaf->id;
49 
50 	return sib_leaf->fw_token == this_leaf->fw_token;
51 }
52 
53 bool last_level_cache_is_valid(unsigned int cpu)
54 {
55 	struct cacheinfo *llc;
56 
57 	if (!cache_leaves(cpu))
58 		return false;
59 
60 	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
61 
62 	return (llc->attributes & CACHE_ID) || !!llc->fw_token;
63 
64 }
65 
66 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
67 {
68 	struct cacheinfo *llc_x, *llc_y;
69 
70 	if (!last_level_cache_is_valid(cpu_x) ||
71 	    !last_level_cache_is_valid(cpu_y))
72 		return false;
73 
74 	llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
75 	llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
76 
77 	return cache_leaves_are_shared(llc_x, llc_y);
78 }
79 
80 #ifdef CONFIG_OF
81 
82 static bool of_check_cache_nodes(struct device_node *np);
83 
84 /* OF properties to query for a given cache type */
85 struct cache_type_info {
86 	const char *size_prop;
87 	const char *line_size_props[2];
88 	const char *nr_sets_prop;
89 };
90 
91 static const struct cache_type_info cache_type_info[] = {
92 	{
93 		.size_prop       = "cache-size",
94 		.line_size_props = { "cache-line-size",
95 				     "cache-block-size", },
96 		.nr_sets_prop    = "cache-sets",
97 	}, {
98 		.size_prop       = "i-cache-size",
99 		.line_size_props = { "i-cache-line-size",
100 				     "i-cache-block-size", },
101 		.nr_sets_prop    = "i-cache-sets",
102 	}, {
103 		.size_prop       = "d-cache-size",
104 		.line_size_props = { "d-cache-line-size",
105 				     "d-cache-block-size", },
106 		.nr_sets_prop    = "d-cache-sets",
107 	},
108 };
109 
110 static inline int get_cacheinfo_idx(enum cache_type type)
111 {
112 	if (type == CACHE_TYPE_UNIFIED)
113 		return 0;
114 	return type;
115 }
116 
117 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
118 {
119 	const char *propname;
120 	int ct_idx;
121 
122 	ct_idx = get_cacheinfo_idx(this_leaf->type);
123 	propname = cache_type_info[ct_idx].size_prop;
124 
125 	of_property_read_u32(np, propname, &this_leaf->size);
126 }
127 
128 /* not cache_line_size() because that's a macro in include/linux/cache.h */
129 static void cache_get_line_size(struct cacheinfo *this_leaf,
130 				struct device_node *np)
131 {
132 	int i, lim, ct_idx;
133 
134 	ct_idx = get_cacheinfo_idx(this_leaf->type);
135 	lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
136 
137 	for (i = 0; i < lim; i++) {
138 		int ret;
139 		u32 line_size;
140 		const char *propname;
141 
142 		propname = cache_type_info[ct_idx].line_size_props[i];
143 		ret = of_property_read_u32(np, propname, &line_size);
144 		if (!ret) {
145 			this_leaf->coherency_line_size = line_size;
146 			break;
147 		}
148 	}
149 }
150 
151 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
152 {
153 	const char *propname;
154 	int ct_idx;
155 
156 	ct_idx = get_cacheinfo_idx(this_leaf->type);
157 	propname = cache_type_info[ct_idx].nr_sets_prop;
158 
159 	of_property_read_u32(np, propname, &this_leaf->number_of_sets);
160 }
161 
162 static void cache_associativity(struct cacheinfo *this_leaf)
163 {
164 	unsigned int line_size = this_leaf->coherency_line_size;
165 	unsigned int nr_sets = this_leaf->number_of_sets;
166 	unsigned int size = this_leaf->size;
167 
168 	/*
169 	 * If the cache is fully associative, there is no need to
170 	 * check the other properties.
171 	 */
172 	if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
173 		this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
174 }
175 
176 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
177 				  struct device_node *np)
178 {
179 	return of_property_read_bool(np, "cache-unified");
180 }
181 
182 static void cache_of_set_props(struct cacheinfo *this_leaf,
183 			       struct device_node *np)
184 {
185 	/*
186 	 * init_cache_level must setup the cache level correctly
187 	 * overriding the architecturally specified levels, so
188 	 * if type is NONE at this stage, it should be unified
189 	 */
190 	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
191 	    cache_node_is_unified(this_leaf, np))
192 		this_leaf->type = CACHE_TYPE_UNIFIED;
193 	cache_size(this_leaf, np);
194 	cache_get_line_size(this_leaf, np);
195 	cache_nr_sets(this_leaf, np);
196 	cache_associativity(this_leaf);
197 }
198 
199 static int cache_setup_of_node(unsigned int cpu)
200 {
201 	struct device_node *np, *prev;
202 	struct cacheinfo *this_leaf;
203 	unsigned int index = 0;
204 
205 	np = of_cpu_device_node_get(cpu);
206 	if (!np) {
207 		pr_err("Failed to find cpu%d device node\n", cpu);
208 		return -ENOENT;
209 	}
210 
211 	if (!of_check_cache_nodes(np)) {
212 		of_node_put(np);
213 		return -ENOENT;
214 	}
215 
216 	prev = np;
217 
218 	while (index < cache_leaves(cpu)) {
219 		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
220 		if (this_leaf->level != 1) {
221 			np = of_find_next_cache_node(np);
222 			of_node_put(prev);
223 			prev = np;
224 			if (!np)
225 				break;
226 		}
227 		cache_of_set_props(this_leaf, np);
228 		this_leaf->fw_token = np;
229 		index++;
230 	}
231 
232 	of_node_put(np);
233 
234 	if (index != cache_leaves(cpu)) /* not all OF nodes populated */
235 		return -ENOENT;
236 
237 	return 0;
238 }
239 
240 static bool of_check_cache_nodes(struct device_node *np)
241 {
242 	struct device_node *next;
243 
244 	if (of_property_present(np, "cache-size")   ||
245 	    of_property_present(np, "i-cache-size") ||
246 	    of_property_present(np, "d-cache-size") ||
247 	    of_property_present(np, "cache-unified"))
248 		return true;
249 
250 	next = of_find_next_cache_node(np);
251 	if (next) {
252 		of_node_put(next);
253 		return true;
254 	}
255 
256 	return false;
257 }
258 
259 static int of_count_cache_leaves(struct device_node *np)
260 {
261 	unsigned int leaves = 0;
262 
263 	if (of_property_read_bool(np, "cache-size"))
264 		++leaves;
265 	if (of_property_read_bool(np, "i-cache-size"))
266 		++leaves;
267 	if (of_property_read_bool(np, "d-cache-size"))
268 		++leaves;
269 
270 	if (!leaves) {
271 		/* The '[i-|d-|]cache-size' property is required, but
272 		 * if absent, fallback on the 'cache-unified' property.
273 		 */
274 		if (of_property_read_bool(np, "cache-unified"))
275 			return 1;
276 		else
277 			return 2;
278 	}
279 
280 	return leaves;
281 }
282 
283 int init_of_cache_level(unsigned int cpu)
284 {
285 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
286 	struct device_node *np = of_cpu_device_node_get(cpu);
287 	struct device_node *prev = NULL;
288 	unsigned int levels = 0, leaves, level;
289 
290 	if (!of_check_cache_nodes(np)) {
291 		of_node_put(np);
292 		return -ENOENT;
293 	}
294 
295 	leaves = of_count_cache_leaves(np);
296 	if (leaves > 0)
297 		levels = 1;
298 
299 	prev = np;
300 	while ((np = of_find_next_cache_node(np))) {
301 		of_node_put(prev);
302 		prev = np;
303 		if (!of_device_is_compatible(np, "cache"))
304 			goto err_out;
305 		if (of_property_read_u32(np, "cache-level", &level))
306 			goto err_out;
307 		if (level <= levels)
308 			goto err_out;
309 
310 		leaves += of_count_cache_leaves(np);
311 		levels = level;
312 	}
313 
314 	of_node_put(np);
315 	this_cpu_ci->num_levels = levels;
316 	this_cpu_ci->num_leaves = leaves;
317 
318 	return 0;
319 
320 err_out:
321 	of_node_put(np);
322 	return -EINVAL;
323 }
324 
325 #else
326 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
327 int init_of_cache_level(unsigned int cpu) { return 0; }
328 #endif
329 
330 int __weak cache_setup_acpi(unsigned int cpu)
331 {
332 	return -ENOTSUPP;
333 }
334 
335 unsigned int coherency_max_size;
336 
337 static int cache_setup_properties(unsigned int cpu)
338 {
339 	int ret = 0;
340 
341 	if (of_have_populated_dt())
342 		ret = cache_setup_of_node(cpu);
343 	else if (!acpi_disabled)
344 		ret = cache_setup_acpi(cpu);
345 
346 	return ret;
347 }
348 
349 static int cache_shared_cpu_map_setup(unsigned int cpu)
350 {
351 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
352 	struct cacheinfo *this_leaf, *sib_leaf;
353 	unsigned int index, sib_index;
354 	int ret = 0;
355 
356 	if (this_cpu_ci->cpu_map_populated)
357 		return 0;
358 
359 	/*
360 	 * skip setting up cache properties if LLC is valid, just need
361 	 * to update the shared cpu_map if the cache attributes were
362 	 * populated early before all the cpus are brought online
363 	 */
364 	if (!last_level_cache_is_valid(cpu)) {
365 		ret = cache_setup_properties(cpu);
366 		if (ret)
367 			return ret;
368 	}
369 
370 	for (index = 0; index < cache_leaves(cpu); index++) {
371 		unsigned int i;
372 
373 		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
374 
375 		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
376 		for_each_online_cpu(i) {
377 			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
378 
379 			if (i == cpu || !sib_cpu_ci->info_list)
380 				continue;/* skip if itself or no cacheinfo */
381 			for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
382 				sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
383 				if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
384 					cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
385 					cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
386 					break;
387 				}
388 			}
389 		}
390 		/* record the maximum cache line size */
391 		if (this_leaf->coherency_line_size > coherency_max_size)
392 			coherency_max_size = this_leaf->coherency_line_size;
393 	}
394 
395 	return 0;
396 }
397 
398 static void cache_shared_cpu_map_remove(unsigned int cpu)
399 {
400 	struct cacheinfo *this_leaf, *sib_leaf;
401 	unsigned int sibling, index, sib_index;
402 
403 	for (index = 0; index < cache_leaves(cpu); index++) {
404 		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
405 		for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
406 			struct cpu_cacheinfo *sib_cpu_ci =
407 						get_cpu_cacheinfo(sibling);
408 
409 			if (sibling == cpu || !sib_cpu_ci->info_list)
410 				continue;/* skip if itself or no cacheinfo */
411 
412 			for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
413 				sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
414 				if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
415 					cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
416 					cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
417 					break;
418 				}
419 			}
420 		}
421 	}
422 }
423 
424 static void free_cache_attributes(unsigned int cpu)
425 {
426 	if (!per_cpu_cacheinfo(cpu))
427 		return;
428 
429 	cache_shared_cpu_map_remove(cpu);
430 }
431 
432 int __weak early_cache_level(unsigned int cpu)
433 {
434 	return -ENOENT;
435 }
436 
437 int __weak init_cache_level(unsigned int cpu)
438 {
439 	return -ENOENT;
440 }
441 
442 int __weak populate_cache_leaves(unsigned int cpu)
443 {
444 	return -ENOENT;
445 }
446 
447 static inline
448 int allocate_cache_info(int cpu)
449 {
450 	per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
451 					 sizeof(struct cacheinfo), GFP_ATOMIC);
452 	if (!per_cpu_cacheinfo(cpu)) {
453 		cache_leaves(cpu) = 0;
454 		return -ENOMEM;
455 	}
456 
457 	return 0;
458 }
459 
460 int fetch_cache_info(unsigned int cpu)
461 {
462 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
463 	unsigned int levels = 0, split_levels = 0;
464 	int ret;
465 
466 	if (acpi_disabled) {
467 		ret = init_of_cache_level(cpu);
468 	} else {
469 		ret = acpi_get_cache_info(cpu, &levels, &split_levels);
470 		if (!ret) {
471 			this_cpu_ci->num_levels = levels;
472 			/*
473 			 * This assumes that:
474 			 * - there cannot be any split caches (data/instruction)
475 			 *   above a unified cache
476 			 * - data/instruction caches come by pair
477 			 */
478 			this_cpu_ci->num_leaves = levels + split_levels;
479 		}
480 	}
481 
482 	if (ret || !cache_leaves(cpu)) {
483 		ret = early_cache_level(cpu);
484 		if (ret)
485 			return ret;
486 
487 		if (!cache_leaves(cpu))
488 			return -ENOENT;
489 
490 		this_cpu_ci->early_ci_levels = true;
491 	}
492 
493 	return allocate_cache_info(cpu);
494 }
495 
496 static inline int init_level_allocate_ci(unsigned int cpu)
497 {
498 	unsigned int early_leaves = cache_leaves(cpu);
499 
500 	/* Since early initialization/allocation of the cacheinfo is allowed
501 	 * via fetch_cache_info() and this also gets called as CPU hotplug
502 	 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
503 	 * as it will happen only once (the cacheinfo memory is never freed).
504 	 * Just populate the cacheinfo. However, if the cacheinfo has been
505 	 * allocated early through the arch-specific early_cache_level() call,
506 	 * there is a chance the info is wrong (this can happen on arm64). In
507 	 * that case, call init_cache_level() anyway to give the arch-specific
508 	 * code a chance to make things right.
509 	 */
510 	if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels)
511 		return 0;
512 
513 	if (init_cache_level(cpu) || !cache_leaves(cpu))
514 		return -ENOENT;
515 
516 	/*
517 	 * Now that we have properly initialized the cache level info, make
518 	 * sure we don't try to do that again the next time we are called
519 	 * (e.g. as CPU hotplug callbacks).
520 	 */
521 	ci_cacheinfo(cpu)->early_ci_levels = false;
522 
523 	if (cache_leaves(cpu) <= early_leaves)
524 		return 0;
525 
526 	kfree(per_cpu_cacheinfo(cpu));
527 	return allocate_cache_info(cpu);
528 }
529 
530 int detect_cache_attributes(unsigned int cpu)
531 {
532 	int ret;
533 
534 	ret = init_level_allocate_ci(cpu);
535 	if (ret)
536 		return ret;
537 
538 	/*
539 	 * populate_cache_leaves() may completely setup the cache leaves and
540 	 * shared_cpu_map or it may leave it partially setup.
541 	 */
542 	ret = populate_cache_leaves(cpu);
543 	if (ret)
544 		goto free_ci;
545 
546 	/*
547 	 * For systems using DT for cache hierarchy, fw_token
548 	 * and shared_cpu_map will be set up here only if they are
549 	 * not populated already
550 	 */
551 	ret = cache_shared_cpu_map_setup(cpu);
552 	if (ret) {
553 		pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
554 		goto free_ci;
555 	}
556 
557 	return 0;
558 
559 free_ci:
560 	free_cache_attributes(cpu);
561 	return ret;
562 }
563 
564 /* pointer to cpuX/cache device */
565 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
566 #define per_cpu_cache_dev(cpu)	(per_cpu(ci_cache_dev, cpu))
567 
568 static cpumask_t cache_dev_map;
569 
570 /* pointer to array of devices for cpuX/cache/indexY */
571 static DEFINE_PER_CPU(struct device **, ci_index_dev);
572 #define per_cpu_index_dev(cpu)	(per_cpu(ci_index_dev, cpu))
573 #define per_cache_index_dev(cpu, idx)	((per_cpu_index_dev(cpu))[idx])
574 
575 #define show_one(file_name, object)				\
576 static ssize_t file_name##_show(struct device *dev,		\
577 		struct device_attribute *attr, char *buf)	\
578 {								\
579 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);	\
580 	return sysfs_emit(buf, "%u\n", this_leaf->object);	\
581 }
582 
583 show_one(id, id);
584 show_one(level, level);
585 show_one(coherency_line_size, coherency_line_size);
586 show_one(number_of_sets, number_of_sets);
587 show_one(physical_line_partition, physical_line_partition);
588 show_one(ways_of_associativity, ways_of_associativity);
589 
590 static ssize_t size_show(struct device *dev,
591 			 struct device_attribute *attr, char *buf)
592 {
593 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
594 
595 	return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
596 }
597 
598 static ssize_t shared_cpu_map_show(struct device *dev,
599 				   struct device_attribute *attr, char *buf)
600 {
601 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
602 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
603 
604 	return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
605 }
606 
607 static ssize_t shared_cpu_list_show(struct device *dev,
608 				    struct device_attribute *attr, char *buf)
609 {
610 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
611 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
612 
613 	return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
614 }
615 
616 static ssize_t type_show(struct device *dev,
617 			 struct device_attribute *attr, char *buf)
618 {
619 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
620 	const char *output;
621 
622 	switch (this_leaf->type) {
623 	case CACHE_TYPE_DATA:
624 		output = "Data";
625 		break;
626 	case CACHE_TYPE_INST:
627 		output = "Instruction";
628 		break;
629 	case CACHE_TYPE_UNIFIED:
630 		output = "Unified";
631 		break;
632 	default:
633 		return -EINVAL;
634 	}
635 
636 	return sysfs_emit(buf, "%s\n", output);
637 }
638 
639 static ssize_t allocation_policy_show(struct device *dev,
640 				      struct device_attribute *attr, char *buf)
641 {
642 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
643 	unsigned int ci_attr = this_leaf->attributes;
644 	const char *output;
645 
646 	if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
647 		output = "ReadWriteAllocate";
648 	else if (ci_attr & CACHE_READ_ALLOCATE)
649 		output = "ReadAllocate";
650 	else if (ci_attr & CACHE_WRITE_ALLOCATE)
651 		output = "WriteAllocate";
652 	else
653 		return 0;
654 
655 	return sysfs_emit(buf, "%s\n", output);
656 }
657 
658 static ssize_t write_policy_show(struct device *dev,
659 				 struct device_attribute *attr, char *buf)
660 {
661 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
662 	unsigned int ci_attr = this_leaf->attributes;
663 	int n = 0;
664 
665 	if (ci_attr & CACHE_WRITE_THROUGH)
666 		n = sysfs_emit(buf, "WriteThrough\n");
667 	else if (ci_attr & CACHE_WRITE_BACK)
668 		n = sysfs_emit(buf, "WriteBack\n");
669 	return n;
670 }
671 
672 static DEVICE_ATTR_RO(id);
673 static DEVICE_ATTR_RO(level);
674 static DEVICE_ATTR_RO(type);
675 static DEVICE_ATTR_RO(coherency_line_size);
676 static DEVICE_ATTR_RO(ways_of_associativity);
677 static DEVICE_ATTR_RO(number_of_sets);
678 static DEVICE_ATTR_RO(size);
679 static DEVICE_ATTR_RO(allocation_policy);
680 static DEVICE_ATTR_RO(write_policy);
681 static DEVICE_ATTR_RO(shared_cpu_map);
682 static DEVICE_ATTR_RO(shared_cpu_list);
683 static DEVICE_ATTR_RO(physical_line_partition);
684 
685 static struct attribute *cache_default_attrs[] = {
686 	&dev_attr_id.attr,
687 	&dev_attr_type.attr,
688 	&dev_attr_level.attr,
689 	&dev_attr_shared_cpu_map.attr,
690 	&dev_attr_shared_cpu_list.attr,
691 	&dev_attr_coherency_line_size.attr,
692 	&dev_attr_ways_of_associativity.attr,
693 	&dev_attr_number_of_sets.attr,
694 	&dev_attr_size.attr,
695 	&dev_attr_allocation_policy.attr,
696 	&dev_attr_write_policy.attr,
697 	&dev_attr_physical_line_partition.attr,
698 	NULL
699 };
700 
701 static umode_t
702 cache_default_attrs_is_visible(struct kobject *kobj,
703 			       struct attribute *attr, int unused)
704 {
705 	struct device *dev = kobj_to_dev(kobj);
706 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
707 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
708 	umode_t mode = attr->mode;
709 
710 	if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
711 		return mode;
712 	if ((attr == &dev_attr_type.attr) && this_leaf->type)
713 		return mode;
714 	if ((attr == &dev_attr_level.attr) && this_leaf->level)
715 		return mode;
716 	if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
717 		return mode;
718 	if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
719 		return mode;
720 	if ((attr == &dev_attr_coherency_line_size.attr) &&
721 	    this_leaf->coherency_line_size)
722 		return mode;
723 	if ((attr == &dev_attr_ways_of_associativity.attr) &&
724 	    this_leaf->size) /* allow 0 = full associativity */
725 		return mode;
726 	if ((attr == &dev_attr_number_of_sets.attr) &&
727 	    this_leaf->number_of_sets)
728 		return mode;
729 	if ((attr == &dev_attr_size.attr) && this_leaf->size)
730 		return mode;
731 	if ((attr == &dev_attr_write_policy.attr) &&
732 	    (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
733 		return mode;
734 	if ((attr == &dev_attr_allocation_policy.attr) &&
735 	    (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
736 		return mode;
737 	if ((attr == &dev_attr_physical_line_partition.attr) &&
738 	    this_leaf->physical_line_partition)
739 		return mode;
740 
741 	return 0;
742 }
743 
744 static const struct attribute_group cache_default_group = {
745 	.attrs = cache_default_attrs,
746 	.is_visible = cache_default_attrs_is_visible,
747 };
748 
749 static const struct attribute_group *cache_default_groups[] = {
750 	&cache_default_group,
751 	NULL,
752 };
753 
754 static const struct attribute_group *cache_private_groups[] = {
755 	&cache_default_group,
756 	NULL, /* Place holder for private group */
757 	NULL,
758 };
759 
760 const struct attribute_group *
761 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
762 {
763 	return NULL;
764 }
765 
766 static const struct attribute_group **
767 cache_get_attribute_groups(struct cacheinfo *this_leaf)
768 {
769 	const struct attribute_group *priv_group =
770 			cache_get_priv_group(this_leaf);
771 
772 	if (!priv_group)
773 		return cache_default_groups;
774 
775 	if (!cache_private_groups[1])
776 		cache_private_groups[1] = priv_group;
777 
778 	return cache_private_groups;
779 }
780 
781 /* Add/Remove cache interface for CPU device */
782 static void cpu_cache_sysfs_exit(unsigned int cpu)
783 {
784 	int i;
785 	struct device *ci_dev;
786 
787 	if (per_cpu_index_dev(cpu)) {
788 		for (i = 0; i < cache_leaves(cpu); i++) {
789 			ci_dev = per_cache_index_dev(cpu, i);
790 			if (!ci_dev)
791 				continue;
792 			device_unregister(ci_dev);
793 		}
794 		kfree(per_cpu_index_dev(cpu));
795 		per_cpu_index_dev(cpu) = NULL;
796 	}
797 	device_unregister(per_cpu_cache_dev(cpu));
798 	per_cpu_cache_dev(cpu) = NULL;
799 }
800 
801 static int cpu_cache_sysfs_init(unsigned int cpu)
802 {
803 	struct device *dev = get_cpu_device(cpu);
804 
805 	if (per_cpu_cacheinfo(cpu) == NULL)
806 		return -ENOENT;
807 
808 	per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
809 	if (IS_ERR(per_cpu_cache_dev(cpu)))
810 		return PTR_ERR(per_cpu_cache_dev(cpu));
811 
812 	/* Allocate all required memory */
813 	per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
814 					 sizeof(struct device *), GFP_KERNEL);
815 	if (unlikely(per_cpu_index_dev(cpu) == NULL))
816 		goto err_out;
817 
818 	return 0;
819 
820 err_out:
821 	cpu_cache_sysfs_exit(cpu);
822 	return -ENOMEM;
823 }
824 
825 static int cache_add_dev(unsigned int cpu)
826 {
827 	unsigned int i;
828 	int rc;
829 	struct device *ci_dev, *parent;
830 	struct cacheinfo *this_leaf;
831 	const struct attribute_group **cache_groups;
832 
833 	rc = cpu_cache_sysfs_init(cpu);
834 	if (unlikely(rc < 0))
835 		return rc;
836 
837 	parent = per_cpu_cache_dev(cpu);
838 	for (i = 0; i < cache_leaves(cpu); i++) {
839 		this_leaf = per_cpu_cacheinfo_idx(cpu, i);
840 		if (this_leaf->disable_sysfs)
841 			continue;
842 		if (this_leaf->type == CACHE_TYPE_NOCACHE)
843 			break;
844 		cache_groups = cache_get_attribute_groups(this_leaf);
845 		ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
846 					   "index%1u", i);
847 		if (IS_ERR(ci_dev)) {
848 			rc = PTR_ERR(ci_dev);
849 			goto err;
850 		}
851 		per_cache_index_dev(cpu, i) = ci_dev;
852 	}
853 	cpumask_set_cpu(cpu, &cache_dev_map);
854 
855 	return 0;
856 err:
857 	cpu_cache_sysfs_exit(cpu);
858 	return rc;
859 }
860 
861 static int cacheinfo_cpu_online(unsigned int cpu)
862 {
863 	int rc = detect_cache_attributes(cpu);
864 
865 	if (rc)
866 		return rc;
867 	rc = cache_add_dev(cpu);
868 	if (rc)
869 		free_cache_attributes(cpu);
870 	return rc;
871 }
872 
873 static int cacheinfo_cpu_pre_down(unsigned int cpu)
874 {
875 	if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
876 		cpu_cache_sysfs_exit(cpu);
877 
878 	free_cache_attributes(cpu);
879 	return 0;
880 }
881 
882 static int __init cacheinfo_sysfs_init(void)
883 {
884 	return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
885 				 "base/cacheinfo:online",
886 				 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
887 }
888 device_initcall(cacheinfo_sysfs_init);
889