1 // SPDX-License-Identifier: GPL-2.0-only 2 /* binder_alloc.c 3 * 4 * Android IPC Subsystem 5 * 6 * Copyright (C) 2007-2017 Google, Inc. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/list.h> 12 #include <linux/sched/mm.h> 13 #include <linux/module.h> 14 #include <linux/rtmutex.h> 15 #include <linux/rbtree.h> 16 #include <linux/seq_file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/list_lru.h> 21 #include <linux/ratelimit.h> 22 #include <asm/cacheflush.h> 23 #include <linux/uaccess.h> 24 #include <linux/highmem.h> 25 #include <linux/sizes.h> 26 #include "binder_alloc.h" 27 #include "binder_trace.h" 28 29 struct list_lru binder_freelist; 30 31 static DEFINE_MUTEX(binder_alloc_mmap_lock); 32 33 enum { 34 BINDER_DEBUG_USER_ERROR = 1U << 0, 35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1, 36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2, 37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3, 38 }; 39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR; 40 41 module_param_named(debug_mask, binder_alloc_debug_mask, 42 uint, 0644); 43 44 #define binder_alloc_debug(mask, x...) \ 45 do { \ 46 if (binder_alloc_debug_mask & mask) \ 47 pr_info_ratelimited(x); \ 48 } while (0) 49 50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer) 51 { 52 return list_entry(buffer->entry.next, struct binder_buffer, entry); 53 } 54 55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer) 56 { 57 return list_entry(buffer->entry.prev, struct binder_buffer, entry); 58 } 59 60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc, 61 struct binder_buffer *buffer) 62 { 63 if (list_is_last(&buffer->entry, &alloc->buffers)) 64 return alloc->buffer + alloc->buffer_size - buffer->user_data; 65 return binder_buffer_next(buffer)->user_data - buffer->user_data; 66 } 67 68 static void binder_insert_free_buffer(struct binder_alloc *alloc, 69 struct binder_buffer *new_buffer) 70 { 71 struct rb_node **p = &alloc->free_buffers.rb_node; 72 struct rb_node *parent = NULL; 73 struct binder_buffer *buffer; 74 size_t buffer_size; 75 size_t new_buffer_size; 76 77 BUG_ON(!new_buffer->free); 78 79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer); 80 81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 82 "%d: add free buffer, size %zd, at %pK\n", 83 alloc->pid, new_buffer_size, new_buffer); 84 85 while (*p) { 86 parent = *p; 87 buffer = rb_entry(parent, struct binder_buffer, rb_node); 88 BUG_ON(!buffer->free); 89 90 buffer_size = binder_alloc_buffer_size(alloc, buffer); 91 92 if (new_buffer_size < buffer_size) 93 p = &parent->rb_left; 94 else 95 p = &parent->rb_right; 96 } 97 rb_link_node(&new_buffer->rb_node, parent, p); 98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers); 99 } 100 101 static void binder_insert_allocated_buffer_locked( 102 struct binder_alloc *alloc, struct binder_buffer *new_buffer) 103 { 104 struct rb_node **p = &alloc->allocated_buffers.rb_node; 105 struct rb_node *parent = NULL; 106 struct binder_buffer *buffer; 107 108 BUG_ON(new_buffer->free); 109 110 while (*p) { 111 parent = *p; 112 buffer = rb_entry(parent, struct binder_buffer, rb_node); 113 BUG_ON(buffer->free); 114 115 if (new_buffer->user_data < buffer->user_data) 116 p = &parent->rb_left; 117 else if (new_buffer->user_data > buffer->user_data) 118 p = &parent->rb_right; 119 else 120 BUG(); 121 } 122 rb_link_node(&new_buffer->rb_node, parent, p); 123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers); 124 } 125 126 static struct binder_buffer *binder_alloc_prepare_to_free_locked( 127 struct binder_alloc *alloc, 128 unsigned long user_ptr) 129 { 130 struct rb_node *n = alloc->allocated_buffers.rb_node; 131 struct binder_buffer *buffer; 132 133 while (n) { 134 buffer = rb_entry(n, struct binder_buffer, rb_node); 135 BUG_ON(buffer->free); 136 137 if (user_ptr < buffer->user_data) { 138 n = n->rb_left; 139 } else if (user_ptr > buffer->user_data) { 140 n = n->rb_right; 141 } else { 142 /* 143 * Guard against user threads attempting to 144 * free the buffer when in use by kernel or 145 * after it's already been freed. 146 */ 147 if (!buffer->allow_user_free) 148 return ERR_PTR(-EPERM); 149 buffer->allow_user_free = 0; 150 return buffer; 151 } 152 } 153 return NULL; 154 } 155 156 /** 157 * binder_alloc_prepare_to_free() - get buffer given user ptr 158 * @alloc: binder_alloc for this proc 159 * @user_ptr: User pointer to buffer data 160 * 161 * Validate userspace pointer to buffer data and return buffer corresponding to 162 * that user pointer. Search the rb tree for buffer that matches user data 163 * pointer. 164 * 165 * Return: Pointer to buffer or NULL 166 */ 167 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc, 168 unsigned long user_ptr) 169 { 170 struct binder_buffer *buffer; 171 172 mutex_lock(&alloc->mutex); 173 buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr); 174 mutex_unlock(&alloc->mutex); 175 return buffer; 176 } 177 178 static inline void 179 binder_set_installed_page(struct binder_lru_page *lru_page, 180 struct page *page) 181 { 182 /* Pairs with acquire in binder_get_installed_page() */ 183 smp_store_release(&lru_page->page_ptr, page); 184 } 185 186 static inline struct page * 187 binder_get_installed_page(struct binder_lru_page *lru_page) 188 { 189 /* Pairs with release in binder_set_installed_page() */ 190 return smp_load_acquire(&lru_page->page_ptr); 191 } 192 193 static void binder_lru_freelist_add(struct binder_alloc *alloc, 194 unsigned long start, unsigned long end) 195 { 196 struct binder_lru_page *page; 197 unsigned long page_addr; 198 199 trace_binder_update_page_range(alloc, false, start, end); 200 201 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 202 size_t index; 203 int ret; 204 205 index = (page_addr - alloc->buffer) / PAGE_SIZE; 206 page = &alloc->pages[index]; 207 208 if (!binder_get_installed_page(page)) 209 continue; 210 211 trace_binder_free_lru_start(alloc, index); 212 213 ret = list_lru_add(&binder_freelist, &page->lru); 214 WARN_ON(!ret); 215 216 trace_binder_free_lru_end(alloc, index); 217 } 218 } 219 220 static int binder_install_single_page(struct binder_alloc *alloc, 221 struct binder_lru_page *lru_page, 222 unsigned long addr) 223 { 224 struct page *page; 225 int ret = 0; 226 227 if (!mmget_not_zero(alloc->mm)) 228 return -ESRCH; 229 230 /* 231 * Protected with mmap_sem in write mode as multiple tasks 232 * might race to install the same page. 233 */ 234 mmap_write_lock(alloc->mm); 235 if (binder_get_installed_page(lru_page)) 236 goto out; 237 238 if (!alloc->vma) { 239 pr_err("%d: %s failed, no vma\n", alloc->pid, __func__); 240 ret = -ESRCH; 241 goto out; 242 } 243 244 page = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 245 if (!page) { 246 pr_err("%d: failed to allocate page\n", alloc->pid); 247 ret = -ENOMEM; 248 goto out; 249 } 250 251 ret = vm_insert_page(alloc->vma, addr, page); 252 if (ret) { 253 pr_err("%d: %s failed to insert page at %lx with %d\n", 254 alloc->pid, __func__, addr, ret); 255 __free_page(page); 256 ret = -ENOMEM; 257 goto out; 258 } 259 260 /* Mark page installation complete and safe to use */ 261 binder_set_installed_page(lru_page, page); 262 out: 263 mmap_write_unlock(alloc->mm); 264 mmput_async(alloc->mm); 265 return ret; 266 } 267 268 static int binder_install_buffer_pages(struct binder_alloc *alloc, 269 struct binder_buffer *buffer, 270 size_t size) 271 { 272 struct binder_lru_page *page; 273 unsigned long start, final; 274 unsigned long page_addr; 275 276 start = buffer->user_data & PAGE_MASK; 277 final = PAGE_ALIGN(buffer->user_data + size); 278 279 for (page_addr = start; page_addr < final; page_addr += PAGE_SIZE) { 280 unsigned long index; 281 int ret; 282 283 index = (page_addr - alloc->buffer) / PAGE_SIZE; 284 page = &alloc->pages[index]; 285 286 if (binder_get_installed_page(page)) 287 continue; 288 289 trace_binder_alloc_page_start(alloc, index); 290 291 ret = binder_install_single_page(alloc, page, page_addr); 292 if (ret) 293 return ret; 294 295 trace_binder_alloc_page_end(alloc, index); 296 } 297 298 return 0; 299 } 300 301 /* The range of pages should exclude those shared with other buffers */ 302 static void binder_lru_freelist_del(struct binder_alloc *alloc, 303 unsigned long start, unsigned long end) 304 { 305 struct binder_lru_page *page; 306 unsigned long page_addr; 307 308 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 309 "%d: pages %lx-%lx\n", 310 alloc->pid, start, end); 311 312 trace_binder_update_page_range(alloc, true, start, end); 313 314 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 315 unsigned long index; 316 bool on_lru; 317 318 index = (page_addr - alloc->buffer) / PAGE_SIZE; 319 page = &alloc->pages[index]; 320 321 if (page->page_ptr) { 322 trace_binder_alloc_lru_start(alloc, index); 323 324 on_lru = list_lru_del(&binder_freelist, &page->lru); 325 WARN_ON(!on_lru); 326 327 trace_binder_alloc_lru_end(alloc, index); 328 continue; 329 } 330 331 if (index + 1 > alloc->pages_high) 332 alloc->pages_high = index + 1; 333 } 334 } 335 336 static inline void binder_alloc_set_vma(struct binder_alloc *alloc, 337 struct vm_area_struct *vma) 338 { 339 /* pairs with smp_load_acquire in binder_alloc_get_vma() */ 340 smp_store_release(&alloc->vma, vma); 341 } 342 343 static inline struct vm_area_struct *binder_alloc_get_vma( 344 struct binder_alloc *alloc) 345 { 346 /* pairs with smp_store_release in binder_alloc_set_vma() */ 347 return smp_load_acquire(&alloc->vma); 348 } 349 350 static void debug_no_space_locked(struct binder_alloc *alloc) 351 { 352 size_t largest_alloc_size = 0; 353 struct binder_buffer *buffer; 354 size_t allocated_buffers = 0; 355 size_t largest_free_size = 0; 356 size_t total_alloc_size = 0; 357 size_t total_free_size = 0; 358 size_t free_buffers = 0; 359 size_t buffer_size; 360 struct rb_node *n; 361 362 for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) { 363 buffer = rb_entry(n, struct binder_buffer, rb_node); 364 buffer_size = binder_alloc_buffer_size(alloc, buffer); 365 allocated_buffers++; 366 total_alloc_size += buffer_size; 367 if (buffer_size > largest_alloc_size) 368 largest_alloc_size = buffer_size; 369 } 370 371 for (n = rb_first(&alloc->free_buffers); n; n = rb_next(n)) { 372 buffer = rb_entry(n, struct binder_buffer, rb_node); 373 buffer_size = binder_alloc_buffer_size(alloc, buffer); 374 free_buffers++; 375 total_free_size += buffer_size; 376 if (buffer_size > largest_free_size) 377 largest_free_size = buffer_size; 378 } 379 380 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 381 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n", 382 total_alloc_size, allocated_buffers, 383 largest_alloc_size, total_free_size, 384 free_buffers, largest_free_size); 385 } 386 387 static bool debug_low_async_space_locked(struct binder_alloc *alloc) 388 { 389 /* 390 * Find the amount and size of buffers allocated by the current caller; 391 * The idea is that once we cross the threshold, whoever is responsible 392 * for the low async space is likely to try to send another async txn, 393 * and at some point we'll catch them in the act. This is more efficient 394 * than keeping a map per pid. 395 */ 396 struct binder_buffer *buffer; 397 size_t total_alloc_size = 0; 398 int pid = current->tgid; 399 size_t num_buffers = 0; 400 struct rb_node *n; 401 402 /* 403 * Only start detecting spammers once we have less than 20% of async 404 * space left (which is less than 10% of total buffer size). 405 */ 406 if (alloc->free_async_space >= alloc->buffer_size / 10) { 407 alloc->oneway_spam_detected = false; 408 return false; 409 } 410 411 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 412 n = rb_next(n)) { 413 buffer = rb_entry(n, struct binder_buffer, rb_node); 414 if (buffer->pid != pid) 415 continue; 416 if (!buffer->async_transaction) 417 continue; 418 total_alloc_size += binder_alloc_buffer_size(alloc, buffer); 419 num_buffers++; 420 } 421 422 /* 423 * Warn if this pid has more than 50 transactions, or more than 50% of 424 * async space (which is 25% of total buffer size). Oneway spam is only 425 * detected when the threshold is exceeded. 426 */ 427 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) { 428 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 429 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n", 430 alloc->pid, pid, num_buffers, total_alloc_size); 431 if (!alloc->oneway_spam_detected) { 432 alloc->oneway_spam_detected = true; 433 return true; 434 } 435 } 436 return false; 437 } 438 439 /* Callers preallocate @new_buffer, it is freed by this function if unused */ 440 static struct binder_buffer *binder_alloc_new_buf_locked( 441 struct binder_alloc *alloc, 442 struct binder_buffer *new_buffer, 443 size_t size, 444 int is_async) 445 { 446 struct rb_node *n = alloc->free_buffers.rb_node; 447 struct rb_node *best_fit = NULL; 448 struct binder_buffer *buffer; 449 unsigned long next_used_page; 450 unsigned long curr_last_page; 451 size_t buffer_size; 452 453 if (is_async && alloc->free_async_space < size) { 454 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 455 "%d: binder_alloc_buf size %zd failed, no async space left\n", 456 alloc->pid, size); 457 buffer = ERR_PTR(-ENOSPC); 458 goto out; 459 } 460 461 while (n) { 462 buffer = rb_entry(n, struct binder_buffer, rb_node); 463 BUG_ON(!buffer->free); 464 buffer_size = binder_alloc_buffer_size(alloc, buffer); 465 466 if (size < buffer_size) { 467 best_fit = n; 468 n = n->rb_left; 469 } else if (size > buffer_size) { 470 n = n->rb_right; 471 } else { 472 best_fit = n; 473 break; 474 } 475 } 476 477 if (unlikely(!best_fit)) { 478 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 479 "%d: binder_alloc_buf size %zd failed, no address space\n", 480 alloc->pid, size); 481 debug_no_space_locked(alloc); 482 buffer = ERR_PTR(-ENOSPC); 483 goto out; 484 } 485 486 if (buffer_size != size) { 487 /* Found an oversized buffer and needs to be split */ 488 buffer = rb_entry(best_fit, struct binder_buffer, rb_node); 489 buffer_size = binder_alloc_buffer_size(alloc, buffer); 490 491 WARN_ON(n || buffer_size == size); 492 new_buffer->user_data = buffer->user_data + size; 493 list_add(&new_buffer->entry, &buffer->entry); 494 new_buffer->free = 1; 495 binder_insert_free_buffer(alloc, new_buffer); 496 new_buffer = NULL; 497 } 498 499 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 500 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n", 501 alloc->pid, size, buffer, buffer_size); 502 503 /* 504 * Now we remove the pages from the freelist. A clever calculation 505 * with buffer_size determines if the last page is shared with an 506 * adjacent in-use buffer. In such case, the page has been already 507 * removed from the freelist so we trim our range short. 508 */ 509 next_used_page = (buffer->user_data + buffer_size) & PAGE_MASK; 510 curr_last_page = PAGE_ALIGN(buffer->user_data + size); 511 binder_lru_freelist_del(alloc, PAGE_ALIGN(buffer->user_data), 512 min(next_used_page, curr_last_page)); 513 514 rb_erase(&buffer->rb_node, &alloc->free_buffers); 515 buffer->free = 0; 516 buffer->allow_user_free = 0; 517 binder_insert_allocated_buffer_locked(alloc, buffer); 518 buffer->async_transaction = is_async; 519 buffer->oneway_spam_suspect = false; 520 if (is_async) { 521 alloc->free_async_space -= size; 522 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 523 "%d: binder_alloc_buf size %zd async free %zd\n", 524 alloc->pid, size, alloc->free_async_space); 525 if (debug_low_async_space_locked(alloc)) 526 buffer->oneway_spam_suspect = true; 527 } 528 529 out: 530 /* Discard possibly unused new_buffer */ 531 kfree(new_buffer); 532 return buffer; 533 } 534 535 /* Calculate the sanitized total size, returns 0 for invalid request */ 536 static inline size_t sanitized_size(size_t data_size, 537 size_t offsets_size, 538 size_t extra_buffers_size) 539 { 540 size_t total, tmp; 541 542 /* Align to pointer size and check for overflows */ 543 tmp = ALIGN(data_size, sizeof(void *)) + 544 ALIGN(offsets_size, sizeof(void *)); 545 if (tmp < data_size || tmp < offsets_size) 546 return 0; 547 total = tmp + ALIGN(extra_buffers_size, sizeof(void *)); 548 if (total < tmp || total < extra_buffers_size) 549 return 0; 550 551 /* Pad 0-sized buffers so they get a unique address */ 552 total = max(total, sizeof(void *)); 553 554 return total; 555 } 556 557 /** 558 * binder_alloc_new_buf() - Allocate a new binder buffer 559 * @alloc: binder_alloc for this proc 560 * @data_size: size of user data buffer 561 * @offsets_size: user specified buffer offset 562 * @extra_buffers_size: size of extra space for meta-data (eg, security context) 563 * @is_async: buffer for async transaction 564 * 565 * Allocate a new buffer given the requested sizes. Returns 566 * the kernel version of the buffer pointer. The size allocated 567 * is the sum of the three given sizes (each rounded up to 568 * pointer-sized boundary) 569 * 570 * Return: The allocated buffer or %ERR_PTR(-errno) if error 571 */ 572 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc, 573 size_t data_size, 574 size_t offsets_size, 575 size_t extra_buffers_size, 576 int is_async) 577 { 578 struct binder_buffer *buffer, *next; 579 size_t size; 580 int ret; 581 582 /* Check binder_alloc is fully initialized */ 583 if (!binder_alloc_get_vma(alloc)) { 584 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 585 "%d: binder_alloc_buf, no vma\n", 586 alloc->pid); 587 return ERR_PTR(-ESRCH); 588 } 589 590 size = sanitized_size(data_size, offsets_size, extra_buffers_size); 591 if (unlikely(!size)) { 592 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 593 "%d: got transaction with invalid size %zd-%zd-%zd\n", 594 alloc->pid, data_size, offsets_size, 595 extra_buffers_size); 596 return ERR_PTR(-EINVAL); 597 } 598 599 /* Preallocate the next buffer */ 600 next = kzalloc(sizeof(*next), GFP_KERNEL); 601 if (!next) 602 return ERR_PTR(-ENOMEM); 603 604 mutex_lock(&alloc->mutex); 605 buffer = binder_alloc_new_buf_locked(alloc, next, size, is_async); 606 if (IS_ERR(buffer)) { 607 mutex_unlock(&alloc->mutex); 608 goto out; 609 } 610 611 buffer->data_size = data_size; 612 buffer->offsets_size = offsets_size; 613 buffer->extra_buffers_size = extra_buffers_size; 614 buffer->pid = current->tgid; 615 mutex_unlock(&alloc->mutex); 616 617 ret = binder_install_buffer_pages(alloc, buffer, size); 618 if (ret) { 619 binder_alloc_free_buf(alloc, buffer); 620 buffer = ERR_PTR(ret); 621 } 622 out: 623 return buffer; 624 } 625 626 static unsigned long buffer_start_page(struct binder_buffer *buffer) 627 { 628 return buffer->user_data & PAGE_MASK; 629 } 630 631 static unsigned long prev_buffer_end_page(struct binder_buffer *buffer) 632 { 633 return (buffer->user_data - 1) & PAGE_MASK; 634 } 635 636 static void binder_delete_free_buffer(struct binder_alloc *alloc, 637 struct binder_buffer *buffer) 638 { 639 struct binder_buffer *prev, *next; 640 641 if (PAGE_ALIGNED(buffer->user_data)) 642 goto skip_freelist; 643 644 BUG_ON(alloc->buffers.next == &buffer->entry); 645 prev = binder_buffer_prev(buffer); 646 BUG_ON(!prev->free); 647 if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) 648 goto skip_freelist; 649 650 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 651 next = binder_buffer_next(buffer); 652 if (buffer_start_page(next) == buffer_start_page(buffer)) 653 goto skip_freelist; 654 } 655 656 binder_lru_freelist_add(alloc, buffer_start_page(buffer), 657 buffer_start_page(buffer) + PAGE_SIZE); 658 skip_freelist: 659 list_del(&buffer->entry); 660 kfree(buffer); 661 } 662 663 static void binder_free_buf_locked(struct binder_alloc *alloc, 664 struct binder_buffer *buffer) 665 { 666 size_t size, buffer_size; 667 668 buffer_size = binder_alloc_buffer_size(alloc, buffer); 669 670 size = ALIGN(buffer->data_size, sizeof(void *)) + 671 ALIGN(buffer->offsets_size, sizeof(void *)) + 672 ALIGN(buffer->extra_buffers_size, sizeof(void *)); 673 674 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 675 "%d: binder_free_buf %pK size %zd buffer_size %zd\n", 676 alloc->pid, buffer, size, buffer_size); 677 678 BUG_ON(buffer->free); 679 BUG_ON(size > buffer_size); 680 BUG_ON(buffer->transaction != NULL); 681 BUG_ON(buffer->user_data < alloc->buffer); 682 BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size); 683 684 if (buffer->async_transaction) { 685 alloc->free_async_space += buffer_size; 686 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 687 "%d: binder_free_buf size %zd async free %zd\n", 688 alloc->pid, size, alloc->free_async_space); 689 } 690 691 binder_lru_freelist_add(alloc, PAGE_ALIGN(buffer->user_data), 692 (buffer->user_data + buffer_size) & PAGE_MASK); 693 694 rb_erase(&buffer->rb_node, &alloc->allocated_buffers); 695 buffer->free = 1; 696 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 697 struct binder_buffer *next = binder_buffer_next(buffer); 698 699 if (next->free) { 700 rb_erase(&next->rb_node, &alloc->free_buffers); 701 binder_delete_free_buffer(alloc, next); 702 } 703 } 704 if (alloc->buffers.next != &buffer->entry) { 705 struct binder_buffer *prev = binder_buffer_prev(buffer); 706 707 if (prev->free) { 708 binder_delete_free_buffer(alloc, buffer); 709 rb_erase(&prev->rb_node, &alloc->free_buffers); 710 buffer = prev; 711 } 712 } 713 binder_insert_free_buffer(alloc, buffer); 714 } 715 716 /** 717 * binder_alloc_get_page() - get kernel pointer for given buffer offset 718 * @alloc: binder_alloc for this proc 719 * @buffer: binder buffer to be accessed 720 * @buffer_offset: offset into @buffer data 721 * @pgoffp: address to copy final page offset to 722 * 723 * Lookup the struct page corresponding to the address 724 * at @buffer_offset into @buffer->user_data. If @pgoffp is not 725 * NULL, the byte-offset into the page is written there. 726 * 727 * The caller is responsible to ensure that the offset points 728 * to a valid address within the @buffer and that @buffer is 729 * not freeable by the user. Since it can't be freed, we are 730 * guaranteed that the corresponding elements of @alloc->pages[] 731 * cannot change. 732 * 733 * Return: struct page 734 */ 735 static struct page *binder_alloc_get_page(struct binder_alloc *alloc, 736 struct binder_buffer *buffer, 737 binder_size_t buffer_offset, 738 pgoff_t *pgoffp) 739 { 740 binder_size_t buffer_space_offset = buffer_offset + 741 (buffer->user_data - alloc->buffer); 742 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK; 743 size_t index = buffer_space_offset >> PAGE_SHIFT; 744 struct binder_lru_page *lru_page; 745 746 lru_page = &alloc->pages[index]; 747 *pgoffp = pgoff; 748 return lru_page->page_ptr; 749 } 750 751 /** 752 * binder_alloc_clear_buf() - zero out buffer 753 * @alloc: binder_alloc for this proc 754 * @buffer: binder buffer to be cleared 755 * 756 * memset the given buffer to 0 757 */ 758 static void binder_alloc_clear_buf(struct binder_alloc *alloc, 759 struct binder_buffer *buffer) 760 { 761 size_t bytes = binder_alloc_buffer_size(alloc, buffer); 762 binder_size_t buffer_offset = 0; 763 764 while (bytes) { 765 unsigned long size; 766 struct page *page; 767 pgoff_t pgoff; 768 769 page = binder_alloc_get_page(alloc, buffer, 770 buffer_offset, &pgoff); 771 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 772 memset_page(page, pgoff, 0, size); 773 bytes -= size; 774 buffer_offset += size; 775 } 776 } 777 778 /** 779 * binder_alloc_free_buf() - free a binder buffer 780 * @alloc: binder_alloc for this proc 781 * @buffer: kernel pointer to buffer 782 * 783 * Free the buffer allocated via binder_alloc_new_buf() 784 */ 785 void binder_alloc_free_buf(struct binder_alloc *alloc, 786 struct binder_buffer *buffer) 787 { 788 /* 789 * We could eliminate the call to binder_alloc_clear_buf() 790 * from binder_alloc_deferred_release() by moving this to 791 * binder_free_buf_locked(). However, that could 792 * increase contention for the alloc mutex if clear_on_free 793 * is used frequently for large buffers. The mutex is not 794 * needed for correctness here. 795 */ 796 if (buffer->clear_on_free) { 797 binder_alloc_clear_buf(alloc, buffer); 798 buffer->clear_on_free = false; 799 } 800 mutex_lock(&alloc->mutex); 801 binder_free_buf_locked(alloc, buffer); 802 mutex_unlock(&alloc->mutex); 803 } 804 805 /** 806 * binder_alloc_mmap_handler() - map virtual address space for proc 807 * @alloc: alloc structure for this proc 808 * @vma: vma passed to mmap() 809 * 810 * Called by binder_mmap() to initialize the space specified in 811 * vma for allocating binder buffers 812 * 813 * Return: 814 * 0 = success 815 * -EBUSY = address space already mapped 816 * -ENOMEM = failed to map memory to given address space 817 */ 818 int binder_alloc_mmap_handler(struct binder_alloc *alloc, 819 struct vm_area_struct *vma) 820 { 821 struct binder_buffer *buffer; 822 const char *failure_string; 823 int ret, i; 824 825 if (unlikely(vma->vm_mm != alloc->mm)) { 826 ret = -EINVAL; 827 failure_string = "invalid vma->vm_mm"; 828 goto err_invalid_mm; 829 } 830 831 mutex_lock(&binder_alloc_mmap_lock); 832 if (alloc->buffer_size) { 833 ret = -EBUSY; 834 failure_string = "already mapped"; 835 goto err_already_mapped; 836 } 837 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start, 838 SZ_4M); 839 mutex_unlock(&binder_alloc_mmap_lock); 840 841 alloc->buffer = vma->vm_start; 842 843 alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE, 844 sizeof(alloc->pages[0]), 845 GFP_KERNEL); 846 if (alloc->pages == NULL) { 847 ret = -ENOMEM; 848 failure_string = "alloc page array"; 849 goto err_alloc_pages_failed; 850 } 851 852 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 853 alloc->pages[i].alloc = alloc; 854 INIT_LIST_HEAD(&alloc->pages[i].lru); 855 } 856 857 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 858 if (!buffer) { 859 ret = -ENOMEM; 860 failure_string = "alloc buffer struct"; 861 goto err_alloc_buf_struct_failed; 862 } 863 864 buffer->user_data = alloc->buffer; 865 list_add(&buffer->entry, &alloc->buffers); 866 buffer->free = 1; 867 binder_insert_free_buffer(alloc, buffer); 868 alloc->free_async_space = alloc->buffer_size / 2; 869 870 /* Signal binder_alloc is fully initialized */ 871 binder_alloc_set_vma(alloc, vma); 872 873 return 0; 874 875 err_alloc_buf_struct_failed: 876 kfree(alloc->pages); 877 alloc->pages = NULL; 878 err_alloc_pages_failed: 879 alloc->buffer = 0; 880 mutex_lock(&binder_alloc_mmap_lock); 881 alloc->buffer_size = 0; 882 err_already_mapped: 883 mutex_unlock(&binder_alloc_mmap_lock); 884 err_invalid_mm: 885 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 886 "%s: %d %lx-%lx %s failed %d\n", __func__, 887 alloc->pid, vma->vm_start, vma->vm_end, 888 failure_string, ret); 889 return ret; 890 } 891 892 893 void binder_alloc_deferred_release(struct binder_alloc *alloc) 894 { 895 struct rb_node *n; 896 int buffers, page_count; 897 struct binder_buffer *buffer; 898 899 buffers = 0; 900 mutex_lock(&alloc->mutex); 901 BUG_ON(alloc->vma); 902 903 while ((n = rb_first(&alloc->allocated_buffers))) { 904 buffer = rb_entry(n, struct binder_buffer, rb_node); 905 906 /* Transaction should already have been freed */ 907 BUG_ON(buffer->transaction); 908 909 if (buffer->clear_on_free) { 910 binder_alloc_clear_buf(alloc, buffer); 911 buffer->clear_on_free = false; 912 } 913 binder_free_buf_locked(alloc, buffer); 914 buffers++; 915 } 916 917 while (!list_empty(&alloc->buffers)) { 918 buffer = list_first_entry(&alloc->buffers, 919 struct binder_buffer, entry); 920 WARN_ON(!buffer->free); 921 922 list_del(&buffer->entry); 923 WARN_ON_ONCE(!list_empty(&alloc->buffers)); 924 kfree(buffer); 925 } 926 927 page_count = 0; 928 if (alloc->pages) { 929 int i; 930 931 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 932 unsigned long page_addr; 933 bool on_lru; 934 935 if (!alloc->pages[i].page_ptr) 936 continue; 937 938 on_lru = list_lru_del(&binder_freelist, 939 &alloc->pages[i].lru); 940 page_addr = alloc->buffer + i * PAGE_SIZE; 941 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 942 "%s: %d: page %d at %lx %s\n", 943 __func__, alloc->pid, i, page_addr, 944 on_lru ? "on lru" : "active"); 945 __free_page(alloc->pages[i].page_ptr); 946 page_count++; 947 } 948 kfree(alloc->pages); 949 } 950 mutex_unlock(&alloc->mutex); 951 if (alloc->mm) 952 mmdrop(alloc->mm); 953 954 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE, 955 "%s: %d buffers %d, pages %d\n", 956 __func__, alloc->pid, buffers, page_count); 957 } 958 959 /** 960 * binder_alloc_print_allocated() - print buffer info 961 * @m: seq_file for output via seq_printf() 962 * @alloc: binder_alloc for this proc 963 * 964 * Prints information about every buffer associated with 965 * the binder_alloc state to the given seq_file 966 */ 967 void binder_alloc_print_allocated(struct seq_file *m, 968 struct binder_alloc *alloc) 969 { 970 struct binder_buffer *buffer; 971 struct rb_node *n; 972 973 mutex_lock(&alloc->mutex); 974 for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) { 975 buffer = rb_entry(n, struct binder_buffer, rb_node); 976 seq_printf(m, " buffer %d: %lx size %zd:%zd:%zd %s\n", 977 buffer->debug_id, buffer->user_data, 978 buffer->data_size, buffer->offsets_size, 979 buffer->extra_buffers_size, 980 buffer->transaction ? "active" : "delivered"); 981 } 982 mutex_unlock(&alloc->mutex); 983 } 984 985 /** 986 * binder_alloc_print_pages() - print page usage 987 * @m: seq_file for output via seq_printf() 988 * @alloc: binder_alloc for this proc 989 */ 990 void binder_alloc_print_pages(struct seq_file *m, 991 struct binder_alloc *alloc) 992 { 993 struct binder_lru_page *page; 994 int i; 995 int active = 0; 996 int lru = 0; 997 int free = 0; 998 999 mutex_lock(&alloc->mutex); 1000 /* 1001 * Make sure the binder_alloc is fully initialized, otherwise we might 1002 * read inconsistent state. 1003 */ 1004 if (binder_alloc_get_vma(alloc) != NULL) { 1005 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 1006 page = &alloc->pages[i]; 1007 if (!page->page_ptr) 1008 free++; 1009 else if (list_empty(&page->lru)) 1010 active++; 1011 else 1012 lru++; 1013 } 1014 } 1015 mutex_unlock(&alloc->mutex); 1016 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free); 1017 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high); 1018 } 1019 1020 /** 1021 * binder_alloc_get_allocated_count() - return count of buffers 1022 * @alloc: binder_alloc for this proc 1023 * 1024 * Return: count of allocated buffers 1025 */ 1026 int binder_alloc_get_allocated_count(struct binder_alloc *alloc) 1027 { 1028 struct rb_node *n; 1029 int count = 0; 1030 1031 mutex_lock(&alloc->mutex); 1032 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 1033 count++; 1034 mutex_unlock(&alloc->mutex); 1035 return count; 1036 } 1037 1038 1039 /** 1040 * binder_alloc_vma_close() - invalidate address space 1041 * @alloc: binder_alloc for this proc 1042 * 1043 * Called from binder_vma_close() when releasing address space. 1044 * Clears alloc->vma to prevent new incoming transactions from 1045 * allocating more buffers. 1046 */ 1047 void binder_alloc_vma_close(struct binder_alloc *alloc) 1048 { 1049 binder_alloc_set_vma(alloc, NULL); 1050 } 1051 1052 /** 1053 * binder_alloc_free_page() - shrinker callback to free pages 1054 * @item: item to free 1055 * @lock: lock protecting the item 1056 * @cb_arg: callback argument 1057 * 1058 * Called from list_lru_walk() in binder_shrink_scan() to free 1059 * up pages when the system is under memory pressure. 1060 */ 1061 enum lru_status binder_alloc_free_page(struct list_head *item, 1062 struct list_lru_one *lru, 1063 spinlock_t *lock, 1064 void *cb_arg) 1065 __must_hold(lock) 1066 { 1067 struct mm_struct *mm = NULL; 1068 struct binder_lru_page *page = container_of(item, 1069 struct binder_lru_page, 1070 lru); 1071 struct binder_alloc *alloc; 1072 unsigned long page_addr; 1073 size_t index; 1074 struct vm_area_struct *vma; 1075 1076 alloc = page->alloc; 1077 if (!mutex_trylock(&alloc->mutex)) 1078 goto err_get_alloc_mutex_failed; 1079 1080 if (!page->page_ptr) 1081 goto err_page_already_freed; 1082 1083 index = page - alloc->pages; 1084 page_addr = alloc->buffer + index * PAGE_SIZE; 1085 1086 mm = alloc->mm; 1087 if (!mmget_not_zero(mm)) 1088 goto err_mmget; 1089 if (!mmap_read_trylock(mm)) 1090 goto err_mmap_read_lock_failed; 1091 vma = vma_lookup(mm, page_addr); 1092 if (vma && vma != binder_alloc_get_vma(alloc)) 1093 goto err_invalid_vma; 1094 1095 list_lru_isolate(lru, item); 1096 spin_unlock(lock); 1097 1098 if (vma) { 1099 trace_binder_unmap_user_start(alloc, index); 1100 1101 zap_page_range_single(vma, page_addr, PAGE_SIZE, NULL); 1102 1103 trace_binder_unmap_user_end(alloc, index); 1104 } 1105 mmap_read_unlock(mm); 1106 mmput_async(mm); 1107 1108 trace_binder_unmap_kernel_start(alloc, index); 1109 1110 __free_page(page->page_ptr); 1111 page->page_ptr = NULL; 1112 1113 trace_binder_unmap_kernel_end(alloc, index); 1114 1115 spin_lock(lock); 1116 mutex_unlock(&alloc->mutex); 1117 return LRU_REMOVED_RETRY; 1118 1119 err_invalid_vma: 1120 mmap_read_unlock(mm); 1121 err_mmap_read_lock_failed: 1122 mmput_async(mm); 1123 err_mmget: 1124 err_page_already_freed: 1125 mutex_unlock(&alloc->mutex); 1126 err_get_alloc_mutex_failed: 1127 return LRU_SKIP; 1128 } 1129 1130 static unsigned long 1131 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1132 { 1133 return list_lru_count(&binder_freelist); 1134 } 1135 1136 static unsigned long 1137 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1138 { 1139 return list_lru_walk(&binder_freelist, binder_alloc_free_page, 1140 NULL, sc->nr_to_scan); 1141 } 1142 1143 static struct shrinker *binder_shrinker; 1144 1145 /** 1146 * binder_alloc_init() - called by binder_open() for per-proc initialization 1147 * @alloc: binder_alloc for this proc 1148 * 1149 * Called from binder_open() to initialize binder_alloc fields for 1150 * new binder proc 1151 */ 1152 void binder_alloc_init(struct binder_alloc *alloc) 1153 { 1154 alloc->pid = current->group_leader->pid; 1155 alloc->mm = current->mm; 1156 mmgrab(alloc->mm); 1157 mutex_init(&alloc->mutex); 1158 INIT_LIST_HEAD(&alloc->buffers); 1159 } 1160 1161 int binder_alloc_shrinker_init(void) 1162 { 1163 int ret; 1164 1165 ret = list_lru_init(&binder_freelist); 1166 if (ret) 1167 return ret; 1168 1169 binder_shrinker = shrinker_alloc(0, "android-binder"); 1170 if (!binder_shrinker) { 1171 list_lru_destroy(&binder_freelist); 1172 return -ENOMEM; 1173 } 1174 1175 binder_shrinker->count_objects = binder_shrink_count; 1176 binder_shrinker->scan_objects = binder_shrink_scan; 1177 1178 shrinker_register(binder_shrinker); 1179 1180 return 0; 1181 } 1182 1183 void binder_alloc_shrinker_exit(void) 1184 { 1185 shrinker_free(binder_shrinker); 1186 list_lru_destroy(&binder_freelist); 1187 } 1188 1189 /** 1190 * check_buffer() - verify that buffer/offset is safe to access 1191 * @alloc: binder_alloc for this proc 1192 * @buffer: binder buffer to be accessed 1193 * @offset: offset into @buffer data 1194 * @bytes: bytes to access from offset 1195 * 1196 * Check that the @offset/@bytes are within the size of the given 1197 * @buffer and that the buffer is currently active and not freeable. 1198 * Offsets must also be multiples of sizeof(u32). The kernel is 1199 * allowed to touch the buffer in two cases: 1200 * 1201 * 1) when the buffer is being created: 1202 * (buffer->free == 0 && buffer->allow_user_free == 0) 1203 * 2) when the buffer is being torn down: 1204 * (buffer->free == 0 && buffer->transaction == NULL). 1205 * 1206 * Return: true if the buffer is safe to access 1207 */ 1208 static inline bool check_buffer(struct binder_alloc *alloc, 1209 struct binder_buffer *buffer, 1210 binder_size_t offset, size_t bytes) 1211 { 1212 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer); 1213 1214 return buffer_size >= bytes && 1215 offset <= buffer_size - bytes && 1216 IS_ALIGNED(offset, sizeof(u32)) && 1217 !buffer->free && 1218 (!buffer->allow_user_free || !buffer->transaction); 1219 } 1220 1221 /** 1222 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user 1223 * @alloc: binder_alloc for this proc 1224 * @buffer: binder buffer to be accessed 1225 * @buffer_offset: offset into @buffer data 1226 * @from: userspace pointer to source buffer 1227 * @bytes: bytes to copy 1228 * 1229 * Copy bytes from source userspace to target buffer. 1230 * 1231 * Return: bytes remaining to be copied 1232 */ 1233 unsigned long 1234 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc, 1235 struct binder_buffer *buffer, 1236 binder_size_t buffer_offset, 1237 const void __user *from, 1238 size_t bytes) 1239 { 1240 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1241 return bytes; 1242 1243 while (bytes) { 1244 unsigned long size; 1245 unsigned long ret; 1246 struct page *page; 1247 pgoff_t pgoff; 1248 void *kptr; 1249 1250 page = binder_alloc_get_page(alloc, buffer, 1251 buffer_offset, &pgoff); 1252 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1253 kptr = kmap_local_page(page) + pgoff; 1254 ret = copy_from_user(kptr, from, size); 1255 kunmap_local(kptr); 1256 if (ret) 1257 return bytes - size + ret; 1258 bytes -= size; 1259 from += size; 1260 buffer_offset += size; 1261 } 1262 return 0; 1263 } 1264 1265 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc, 1266 bool to_buffer, 1267 struct binder_buffer *buffer, 1268 binder_size_t buffer_offset, 1269 void *ptr, 1270 size_t bytes) 1271 { 1272 /* All copies must be 32-bit aligned and 32-bit size */ 1273 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1274 return -EINVAL; 1275 1276 while (bytes) { 1277 unsigned long size; 1278 struct page *page; 1279 pgoff_t pgoff; 1280 1281 page = binder_alloc_get_page(alloc, buffer, 1282 buffer_offset, &pgoff); 1283 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1284 if (to_buffer) 1285 memcpy_to_page(page, pgoff, ptr, size); 1286 else 1287 memcpy_from_page(ptr, page, pgoff, size); 1288 bytes -= size; 1289 pgoff = 0; 1290 ptr = ptr + size; 1291 buffer_offset += size; 1292 } 1293 return 0; 1294 } 1295 1296 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc, 1297 struct binder_buffer *buffer, 1298 binder_size_t buffer_offset, 1299 void *src, 1300 size_t bytes) 1301 { 1302 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset, 1303 src, bytes); 1304 } 1305 1306 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc, 1307 void *dest, 1308 struct binder_buffer *buffer, 1309 binder_size_t buffer_offset, 1310 size_t bytes) 1311 { 1312 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset, 1313 dest, bytes); 1314 } 1315 1316