xref: /linux-6.15/drivers/android/binder_alloc.c (revision f07b83a4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* binder_alloc.c
3  *
4  * Android IPC Subsystem
5  *
6  * Copyright (C) 2007-2017 Google, Inc.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/list.h>
12 #include <linux/sched/mm.h>
13 #include <linux/module.h>
14 #include <linux/rtmutex.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/list_lru.h>
21 #include <linux/ratelimit.h>
22 #include <asm/cacheflush.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/sizes.h>
26 #include "binder_alloc.h"
27 #include "binder_trace.h"
28 
29 struct list_lru binder_freelist;
30 
31 static DEFINE_MUTEX(binder_alloc_mmap_lock);
32 
33 enum {
34 	BINDER_DEBUG_USER_ERROR             = 1U << 0,
35 	BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
36 	BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
37 	BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
38 };
39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40 
41 module_param_named(debug_mask, binder_alloc_debug_mask,
42 		   uint, 0644);
43 
44 #define binder_alloc_debug(mask, x...) \
45 	do { \
46 		if (binder_alloc_debug_mask & mask) \
47 			pr_info_ratelimited(x); \
48 	} while (0)
49 
50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51 {
52 	return list_entry(buffer->entry.next, struct binder_buffer, entry);
53 }
54 
55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56 {
57 	return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58 }
59 
60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61 				       struct binder_buffer *buffer)
62 {
63 	if (list_is_last(&buffer->entry, &alloc->buffers))
64 		return alloc->buffer + alloc->buffer_size - buffer->user_data;
65 	return binder_buffer_next(buffer)->user_data - buffer->user_data;
66 }
67 
68 static void binder_insert_free_buffer(struct binder_alloc *alloc,
69 				      struct binder_buffer *new_buffer)
70 {
71 	struct rb_node **p = &alloc->free_buffers.rb_node;
72 	struct rb_node *parent = NULL;
73 	struct binder_buffer *buffer;
74 	size_t buffer_size;
75 	size_t new_buffer_size;
76 
77 	BUG_ON(!new_buffer->free);
78 
79 	new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80 
81 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82 		     "%d: add free buffer, size %zd, at %pK\n",
83 		      alloc->pid, new_buffer_size, new_buffer);
84 
85 	while (*p) {
86 		parent = *p;
87 		buffer = rb_entry(parent, struct binder_buffer, rb_node);
88 		BUG_ON(!buffer->free);
89 
90 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
91 
92 		if (new_buffer_size < buffer_size)
93 			p = &parent->rb_left;
94 		else
95 			p = &parent->rb_right;
96 	}
97 	rb_link_node(&new_buffer->rb_node, parent, p);
98 	rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99 }
100 
101 static void binder_insert_allocated_buffer_locked(
102 		struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103 {
104 	struct rb_node **p = &alloc->allocated_buffers.rb_node;
105 	struct rb_node *parent = NULL;
106 	struct binder_buffer *buffer;
107 
108 	BUG_ON(new_buffer->free);
109 
110 	while (*p) {
111 		parent = *p;
112 		buffer = rb_entry(parent, struct binder_buffer, rb_node);
113 		BUG_ON(buffer->free);
114 
115 		if (new_buffer->user_data < buffer->user_data)
116 			p = &parent->rb_left;
117 		else if (new_buffer->user_data > buffer->user_data)
118 			p = &parent->rb_right;
119 		else
120 			BUG();
121 	}
122 	rb_link_node(&new_buffer->rb_node, parent, p);
123 	rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124 }
125 
126 static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127 		struct binder_alloc *alloc,
128 		unsigned long user_ptr)
129 {
130 	struct rb_node *n = alloc->allocated_buffers.rb_node;
131 	struct binder_buffer *buffer;
132 
133 	while (n) {
134 		buffer = rb_entry(n, struct binder_buffer, rb_node);
135 		BUG_ON(buffer->free);
136 
137 		if (user_ptr < buffer->user_data) {
138 			n = n->rb_left;
139 		} else if (user_ptr > buffer->user_data) {
140 			n = n->rb_right;
141 		} else {
142 			/*
143 			 * Guard against user threads attempting to
144 			 * free the buffer when in use by kernel or
145 			 * after it's already been freed.
146 			 */
147 			if (!buffer->allow_user_free)
148 				return ERR_PTR(-EPERM);
149 			buffer->allow_user_free = 0;
150 			return buffer;
151 		}
152 	}
153 	return NULL;
154 }
155 
156 /**
157  * binder_alloc_prepare_to_free() - get buffer given user ptr
158  * @alloc:	binder_alloc for this proc
159  * @user_ptr:	User pointer to buffer data
160  *
161  * Validate userspace pointer to buffer data and return buffer corresponding to
162  * that user pointer. Search the rb tree for buffer that matches user data
163  * pointer.
164  *
165  * Return:	Pointer to buffer or NULL
166  */
167 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
168 						   unsigned long user_ptr)
169 {
170 	struct binder_buffer *buffer;
171 
172 	mutex_lock(&alloc->mutex);
173 	buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
174 	mutex_unlock(&alloc->mutex);
175 	return buffer;
176 }
177 
178 static inline void
179 binder_set_installed_page(struct binder_lru_page *lru_page,
180 			  struct page *page)
181 {
182 	/* Pairs with acquire in binder_get_installed_page() */
183 	smp_store_release(&lru_page->page_ptr, page);
184 }
185 
186 static inline struct page *
187 binder_get_installed_page(struct binder_lru_page *lru_page)
188 {
189 	/* Pairs with release in binder_set_installed_page() */
190 	return smp_load_acquire(&lru_page->page_ptr);
191 }
192 
193 static void binder_lru_freelist_add(struct binder_alloc *alloc,
194 				    unsigned long start, unsigned long end)
195 {
196 	struct binder_lru_page *page;
197 	unsigned long page_addr;
198 
199 	trace_binder_update_page_range(alloc, false, start, end);
200 
201 	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
202 		size_t index;
203 		int ret;
204 
205 		index = (page_addr - alloc->buffer) / PAGE_SIZE;
206 		page = &alloc->pages[index];
207 
208 		if (!binder_get_installed_page(page))
209 			continue;
210 
211 		trace_binder_free_lru_start(alloc, index);
212 
213 		ret = list_lru_add(&binder_freelist, &page->lru);
214 		WARN_ON(!ret);
215 
216 		trace_binder_free_lru_end(alloc, index);
217 	}
218 }
219 
220 static int binder_install_single_page(struct binder_alloc *alloc,
221 				      struct binder_lru_page *lru_page,
222 				      unsigned long addr)
223 {
224 	struct page *page;
225 	int ret = 0;
226 
227 	if (!mmget_not_zero(alloc->mm))
228 		return -ESRCH;
229 
230 	/*
231 	 * Protected with mmap_sem in write mode as multiple tasks
232 	 * might race to install the same page.
233 	 */
234 	mmap_write_lock(alloc->mm);
235 	if (binder_get_installed_page(lru_page))
236 		goto out;
237 
238 	if (!alloc->vma) {
239 		pr_err("%d: %s failed, no vma\n", alloc->pid, __func__);
240 		ret = -ESRCH;
241 		goto out;
242 	}
243 
244 	page = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
245 	if (!page) {
246 		pr_err("%d: failed to allocate page\n", alloc->pid);
247 		ret = -ENOMEM;
248 		goto out;
249 	}
250 
251 	ret = vm_insert_page(alloc->vma, addr, page);
252 	if (ret) {
253 		pr_err("%d: %s failed to insert page at %lx with %d\n",
254 		       alloc->pid, __func__, addr, ret);
255 		__free_page(page);
256 		ret = -ENOMEM;
257 		goto out;
258 	}
259 
260 	/* Mark page installation complete and safe to use */
261 	binder_set_installed_page(lru_page, page);
262 out:
263 	mmap_write_unlock(alloc->mm);
264 	mmput_async(alloc->mm);
265 	return ret;
266 }
267 
268 static int binder_install_buffer_pages(struct binder_alloc *alloc,
269 				       struct binder_buffer *buffer,
270 				       size_t size)
271 {
272 	struct binder_lru_page *page;
273 	unsigned long start, final;
274 	unsigned long page_addr;
275 
276 	start = buffer->user_data & PAGE_MASK;
277 	final = PAGE_ALIGN(buffer->user_data + size);
278 
279 	for (page_addr = start; page_addr < final; page_addr += PAGE_SIZE) {
280 		unsigned long index;
281 		int ret;
282 
283 		index = (page_addr - alloc->buffer) / PAGE_SIZE;
284 		page = &alloc->pages[index];
285 
286 		if (binder_get_installed_page(page))
287 			continue;
288 
289 		trace_binder_alloc_page_start(alloc, index);
290 
291 		ret = binder_install_single_page(alloc, page, page_addr);
292 		if (ret)
293 			return ret;
294 
295 		trace_binder_alloc_page_end(alloc, index);
296 	}
297 
298 	return 0;
299 }
300 
301 /* The range of pages should exclude those shared with other buffers */
302 static void binder_lru_freelist_del(struct binder_alloc *alloc,
303 				    unsigned long start, unsigned long end)
304 {
305 	struct binder_lru_page *page;
306 	unsigned long page_addr;
307 
308 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
309 			   "%d: pages %lx-%lx\n",
310 			   alloc->pid, start, end);
311 
312 	trace_binder_update_page_range(alloc, true, start, end);
313 
314 	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
315 		unsigned long index;
316 		bool on_lru;
317 
318 		index = (page_addr - alloc->buffer) / PAGE_SIZE;
319 		page = &alloc->pages[index];
320 
321 		if (page->page_ptr) {
322 			trace_binder_alloc_lru_start(alloc, index);
323 
324 			on_lru = list_lru_del(&binder_freelist, &page->lru);
325 			WARN_ON(!on_lru);
326 
327 			trace_binder_alloc_lru_end(alloc, index);
328 			continue;
329 		}
330 
331 		if (index + 1 > alloc->pages_high)
332 			alloc->pages_high = index + 1;
333 	}
334 }
335 
336 static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
337 		struct vm_area_struct *vma)
338 {
339 	/* pairs with smp_load_acquire in binder_alloc_get_vma() */
340 	smp_store_release(&alloc->vma, vma);
341 }
342 
343 static inline struct vm_area_struct *binder_alloc_get_vma(
344 		struct binder_alloc *alloc)
345 {
346 	/* pairs with smp_store_release in binder_alloc_set_vma() */
347 	return smp_load_acquire(&alloc->vma);
348 }
349 
350 static void debug_no_space_locked(struct binder_alloc *alloc)
351 {
352 	size_t largest_alloc_size = 0;
353 	struct binder_buffer *buffer;
354 	size_t allocated_buffers = 0;
355 	size_t largest_free_size = 0;
356 	size_t total_alloc_size = 0;
357 	size_t total_free_size = 0;
358 	size_t free_buffers = 0;
359 	size_t buffer_size;
360 	struct rb_node *n;
361 
362 	for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) {
363 		buffer = rb_entry(n, struct binder_buffer, rb_node);
364 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
365 		allocated_buffers++;
366 		total_alloc_size += buffer_size;
367 		if (buffer_size > largest_alloc_size)
368 			largest_alloc_size = buffer_size;
369 	}
370 
371 	for (n = rb_first(&alloc->free_buffers); n; n = rb_next(n)) {
372 		buffer = rb_entry(n, struct binder_buffer, rb_node);
373 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
374 		free_buffers++;
375 		total_free_size += buffer_size;
376 		if (buffer_size > largest_free_size)
377 			largest_free_size = buffer_size;
378 	}
379 
380 	binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
381 			   "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
382 			   total_alloc_size, allocated_buffers,
383 			   largest_alloc_size, total_free_size,
384 			   free_buffers, largest_free_size);
385 }
386 
387 static bool debug_low_async_space_locked(struct binder_alloc *alloc)
388 {
389 	/*
390 	 * Find the amount and size of buffers allocated by the current caller;
391 	 * The idea is that once we cross the threshold, whoever is responsible
392 	 * for the low async space is likely to try to send another async txn,
393 	 * and at some point we'll catch them in the act. This is more efficient
394 	 * than keeping a map per pid.
395 	 */
396 	struct binder_buffer *buffer;
397 	size_t total_alloc_size = 0;
398 	int pid = current->tgid;
399 	size_t num_buffers = 0;
400 	struct rb_node *n;
401 
402 	/*
403 	 * Only start detecting spammers once we have less than 20% of async
404 	 * space left (which is less than 10% of total buffer size).
405 	 */
406 	if (alloc->free_async_space >= alloc->buffer_size / 10) {
407 		alloc->oneway_spam_detected = false;
408 		return false;
409 	}
410 
411 	for (n = rb_first(&alloc->allocated_buffers); n != NULL;
412 		 n = rb_next(n)) {
413 		buffer = rb_entry(n, struct binder_buffer, rb_node);
414 		if (buffer->pid != pid)
415 			continue;
416 		if (!buffer->async_transaction)
417 			continue;
418 		total_alloc_size += binder_alloc_buffer_size(alloc, buffer);
419 		num_buffers++;
420 	}
421 
422 	/*
423 	 * Warn if this pid has more than 50 transactions, or more than 50% of
424 	 * async space (which is 25% of total buffer size). Oneway spam is only
425 	 * detected when the threshold is exceeded.
426 	 */
427 	if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
428 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
429 			     "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
430 			      alloc->pid, pid, num_buffers, total_alloc_size);
431 		if (!alloc->oneway_spam_detected) {
432 			alloc->oneway_spam_detected = true;
433 			return true;
434 		}
435 	}
436 	return false;
437 }
438 
439 /* Callers preallocate @new_buffer, it is freed by this function if unused */
440 static struct binder_buffer *binder_alloc_new_buf_locked(
441 				struct binder_alloc *alloc,
442 				struct binder_buffer *new_buffer,
443 				size_t size,
444 				int is_async)
445 {
446 	struct rb_node *n = alloc->free_buffers.rb_node;
447 	struct rb_node *best_fit = NULL;
448 	struct binder_buffer *buffer;
449 	unsigned long next_used_page;
450 	unsigned long curr_last_page;
451 	size_t buffer_size;
452 
453 	if (is_async && alloc->free_async_space < size) {
454 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
455 			     "%d: binder_alloc_buf size %zd failed, no async space left\n",
456 			      alloc->pid, size);
457 		buffer = ERR_PTR(-ENOSPC);
458 		goto out;
459 	}
460 
461 	while (n) {
462 		buffer = rb_entry(n, struct binder_buffer, rb_node);
463 		BUG_ON(!buffer->free);
464 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
465 
466 		if (size < buffer_size) {
467 			best_fit = n;
468 			n = n->rb_left;
469 		} else if (size > buffer_size) {
470 			n = n->rb_right;
471 		} else {
472 			best_fit = n;
473 			break;
474 		}
475 	}
476 
477 	if (unlikely(!best_fit)) {
478 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
479 				   "%d: binder_alloc_buf size %zd failed, no address space\n",
480 				   alloc->pid, size);
481 		debug_no_space_locked(alloc);
482 		buffer = ERR_PTR(-ENOSPC);
483 		goto out;
484 	}
485 
486 	if (buffer_size != size) {
487 		/* Found an oversized buffer and needs to be split */
488 		buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
489 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
490 
491 		WARN_ON(n || buffer_size == size);
492 		new_buffer->user_data = buffer->user_data + size;
493 		list_add(&new_buffer->entry, &buffer->entry);
494 		new_buffer->free = 1;
495 		binder_insert_free_buffer(alloc, new_buffer);
496 		new_buffer = NULL;
497 	}
498 
499 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
500 		     "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
501 		      alloc->pid, size, buffer, buffer_size);
502 
503 	/*
504 	 * Now we remove the pages from the freelist. A clever calculation
505 	 * with buffer_size determines if the last page is shared with an
506 	 * adjacent in-use buffer. In such case, the page has been already
507 	 * removed from the freelist so we trim our range short.
508 	 */
509 	next_used_page = (buffer->user_data + buffer_size) & PAGE_MASK;
510 	curr_last_page = PAGE_ALIGN(buffer->user_data + size);
511 	binder_lru_freelist_del(alloc, PAGE_ALIGN(buffer->user_data),
512 				min(next_used_page, curr_last_page));
513 
514 	rb_erase(&buffer->rb_node, &alloc->free_buffers);
515 	buffer->free = 0;
516 	buffer->allow_user_free = 0;
517 	binder_insert_allocated_buffer_locked(alloc, buffer);
518 	buffer->async_transaction = is_async;
519 	buffer->oneway_spam_suspect = false;
520 	if (is_async) {
521 		alloc->free_async_space -= size;
522 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
523 			     "%d: binder_alloc_buf size %zd async free %zd\n",
524 			      alloc->pid, size, alloc->free_async_space);
525 		if (debug_low_async_space_locked(alloc))
526 			buffer->oneway_spam_suspect = true;
527 	}
528 
529 out:
530 	/* Discard possibly unused new_buffer */
531 	kfree(new_buffer);
532 	return buffer;
533 }
534 
535 /* Calculate the sanitized total size, returns 0 for invalid request */
536 static inline size_t sanitized_size(size_t data_size,
537 				    size_t offsets_size,
538 				    size_t extra_buffers_size)
539 {
540 	size_t total, tmp;
541 
542 	/* Align to pointer size and check for overflows */
543 	tmp = ALIGN(data_size, sizeof(void *)) +
544 		ALIGN(offsets_size, sizeof(void *));
545 	if (tmp < data_size || tmp < offsets_size)
546 		return 0;
547 	total = tmp + ALIGN(extra_buffers_size, sizeof(void *));
548 	if (total < tmp || total < extra_buffers_size)
549 		return 0;
550 
551 	/* Pad 0-sized buffers so they get a unique address */
552 	total = max(total, sizeof(void *));
553 
554 	return total;
555 }
556 
557 /**
558  * binder_alloc_new_buf() - Allocate a new binder buffer
559  * @alloc:              binder_alloc for this proc
560  * @data_size:          size of user data buffer
561  * @offsets_size:       user specified buffer offset
562  * @extra_buffers_size: size of extra space for meta-data (eg, security context)
563  * @is_async:           buffer for async transaction
564  *
565  * Allocate a new buffer given the requested sizes. Returns
566  * the kernel version of the buffer pointer. The size allocated
567  * is the sum of the three given sizes (each rounded up to
568  * pointer-sized boundary)
569  *
570  * Return:	The allocated buffer or %ERR_PTR(-errno) if error
571  */
572 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
573 					   size_t data_size,
574 					   size_t offsets_size,
575 					   size_t extra_buffers_size,
576 					   int is_async)
577 {
578 	struct binder_buffer *buffer, *next;
579 	size_t size;
580 	int ret;
581 
582 	/* Check binder_alloc is fully initialized */
583 	if (!binder_alloc_get_vma(alloc)) {
584 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
585 				   "%d: binder_alloc_buf, no vma\n",
586 				   alloc->pid);
587 		return ERR_PTR(-ESRCH);
588 	}
589 
590 	size = sanitized_size(data_size, offsets_size, extra_buffers_size);
591 	if (unlikely(!size)) {
592 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
593 				   "%d: got transaction with invalid size %zd-%zd-%zd\n",
594 				   alloc->pid, data_size, offsets_size,
595 				   extra_buffers_size);
596 		return ERR_PTR(-EINVAL);
597 	}
598 
599 	/* Preallocate the next buffer */
600 	next = kzalloc(sizeof(*next), GFP_KERNEL);
601 	if (!next)
602 		return ERR_PTR(-ENOMEM);
603 
604 	mutex_lock(&alloc->mutex);
605 	buffer = binder_alloc_new_buf_locked(alloc, next, size, is_async);
606 	if (IS_ERR(buffer)) {
607 		mutex_unlock(&alloc->mutex);
608 		goto out;
609 	}
610 
611 	buffer->data_size = data_size;
612 	buffer->offsets_size = offsets_size;
613 	buffer->extra_buffers_size = extra_buffers_size;
614 	buffer->pid = current->tgid;
615 	mutex_unlock(&alloc->mutex);
616 
617 	ret = binder_install_buffer_pages(alloc, buffer, size);
618 	if (ret) {
619 		binder_alloc_free_buf(alloc, buffer);
620 		buffer = ERR_PTR(ret);
621 	}
622 out:
623 	return buffer;
624 }
625 
626 static unsigned long buffer_start_page(struct binder_buffer *buffer)
627 {
628 	return buffer->user_data & PAGE_MASK;
629 }
630 
631 static unsigned long prev_buffer_end_page(struct binder_buffer *buffer)
632 {
633 	return (buffer->user_data - 1) & PAGE_MASK;
634 }
635 
636 static void binder_delete_free_buffer(struct binder_alloc *alloc,
637 				      struct binder_buffer *buffer)
638 {
639 	struct binder_buffer *prev, *next;
640 
641 	if (PAGE_ALIGNED(buffer->user_data))
642 		goto skip_freelist;
643 
644 	BUG_ON(alloc->buffers.next == &buffer->entry);
645 	prev = binder_buffer_prev(buffer);
646 	BUG_ON(!prev->free);
647 	if (prev_buffer_end_page(prev) == buffer_start_page(buffer))
648 		goto skip_freelist;
649 
650 	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
651 		next = binder_buffer_next(buffer);
652 		if (buffer_start_page(next) == buffer_start_page(buffer))
653 			goto skip_freelist;
654 	}
655 
656 	binder_lru_freelist_add(alloc, buffer_start_page(buffer),
657 				buffer_start_page(buffer) + PAGE_SIZE);
658 skip_freelist:
659 	list_del(&buffer->entry);
660 	kfree(buffer);
661 }
662 
663 static void binder_free_buf_locked(struct binder_alloc *alloc,
664 				   struct binder_buffer *buffer)
665 {
666 	size_t size, buffer_size;
667 
668 	buffer_size = binder_alloc_buffer_size(alloc, buffer);
669 
670 	size = ALIGN(buffer->data_size, sizeof(void *)) +
671 		ALIGN(buffer->offsets_size, sizeof(void *)) +
672 		ALIGN(buffer->extra_buffers_size, sizeof(void *));
673 
674 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
675 		     "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
676 		      alloc->pid, buffer, size, buffer_size);
677 
678 	BUG_ON(buffer->free);
679 	BUG_ON(size > buffer_size);
680 	BUG_ON(buffer->transaction != NULL);
681 	BUG_ON(buffer->user_data < alloc->buffer);
682 	BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
683 
684 	if (buffer->async_transaction) {
685 		alloc->free_async_space += buffer_size;
686 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
687 			     "%d: binder_free_buf size %zd async free %zd\n",
688 			      alloc->pid, size, alloc->free_async_space);
689 	}
690 
691 	binder_lru_freelist_add(alloc, PAGE_ALIGN(buffer->user_data),
692 				(buffer->user_data + buffer_size) & PAGE_MASK);
693 
694 	rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
695 	buffer->free = 1;
696 	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
697 		struct binder_buffer *next = binder_buffer_next(buffer);
698 
699 		if (next->free) {
700 			rb_erase(&next->rb_node, &alloc->free_buffers);
701 			binder_delete_free_buffer(alloc, next);
702 		}
703 	}
704 	if (alloc->buffers.next != &buffer->entry) {
705 		struct binder_buffer *prev = binder_buffer_prev(buffer);
706 
707 		if (prev->free) {
708 			binder_delete_free_buffer(alloc, buffer);
709 			rb_erase(&prev->rb_node, &alloc->free_buffers);
710 			buffer = prev;
711 		}
712 	}
713 	binder_insert_free_buffer(alloc, buffer);
714 }
715 
716 /**
717  * binder_alloc_get_page() - get kernel pointer for given buffer offset
718  * @alloc: binder_alloc for this proc
719  * @buffer: binder buffer to be accessed
720  * @buffer_offset: offset into @buffer data
721  * @pgoffp: address to copy final page offset to
722  *
723  * Lookup the struct page corresponding to the address
724  * at @buffer_offset into @buffer->user_data. If @pgoffp is not
725  * NULL, the byte-offset into the page is written there.
726  *
727  * The caller is responsible to ensure that the offset points
728  * to a valid address within the @buffer and that @buffer is
729  * not freeable by the user. Since it can't be freed, we are
730  * guaranteed that the corresponding elements of @alloc->pages[]
731  * cannot change.
732  *
733  * Return: struct page
734  */
735 static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
736 					  struct binder_buffer *buffer,
737 					  binder_size_t buffer_offset,
738 					  pgoff_t *pgoffp)
739 {
740 	binder_size_t buffer_space_offset = buffer_offset +
741 		(buffer->user_data - alloc->buffer);
742 	pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
743 	size_t index = buffer_space_offset >> PAGE_SHIFT;
744 	struct binder_lru_page *lru_page;
745 
746 	lru_page = &alloc->pages[index];
747 	*pgoffp = pgoff;
748 	return lru_page->page_ptr;
749 }
750 
751 /**
752  * binder_alloc_clear_buf() - zero out buffer
753  * @alloc: binder_alloc for this proc
754  * @buffer: binder buffer to be cleared
755  *
756  * memset the given buffer to 0
757  */
758 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
759 				   struct binder_buffer *buffer)
760 {
761 	size_t bytes = binder_alloc_buffer_size(alloc, buffer);
762 	binder_size_t buffer_offset = 0;
763 
764 	while (bytes) {
765 		unsigned long size;
766 		struct page *page;
767 		pgoff_t pgoff;
768 
769 		page = binder_alloc_get_page(alloc, buffer,
770 					     buffer_offset, &pgoff);
771 		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
772 		memset_page(page, pgoff, 0, size);
773 		bytes -= size;
774 		buffer_offset += size;
775 	}
776 }
777 
778 /**
779  * binder_alloc_free_buf() - free a binder buffer
780  * @alloc:	binder_alloc for this proc
781  * @buffer:	kernel pointer to buffer
782  *
783  * Free the buffer allocated via binder_alloc_new_buf()
784  */
785 void binder_alloc_free_buf(struct binder_alloc *alloc,
786 			    struct binder_buffer *buffer)
787 {
788 	/*
789 	 * We could eliminate the call to binder_alloc_clear_buf()
790 	 * from binder_alloc_deferred_release() by moving this to
791 	 * binder_free_buf_locked(). However, that could
792 	 * increase contention for the alloc mutex if clear_on_free
793 	 * is used frequently for large buffers. The mutex is not
794 	 * needed for correctness here.
795 	 */
796 	if (buffer->clear_on_free) {
797 		binder_alloc_clear_buf(alloc, buffer);
798 		buffer->clear_on_free = false;
799 	}
800 	mutex_lock(&alloc->mutex);
801 	binder_free_buf_locked(alloc, buffer);
802 	mutex_unlock(&alloc->mutex);
803 }
804 
805 /**
806  * binder_alloc_mmap_handler() - map virtual address space for proc
807  * @alloc:	alloc structure for this proc
808  * @vma:	vma passed to mmap()
809  *
810  * Called by binder_mmap() to initialize the space specified in
811  * vma for allocating binder buffers
812  *
813  * Return:
814  *      0 = success
815  *      -EBUSY = address space already mapped
816  *      -ENOMEM = failed to map memory to given address space
817  */
818 int binder_alloc_mmap_handler(struct binder_alloc *alloc,
819 			      struct vm_area_struct *vma)
820 {
821 	struct binder_buffer *buffer;
822 	const char *failure_string;
823 	int ret, i;
824 
825 	if (unlikely(vma->vm_mm != alloc->mm)) {
826 		ret = -EINVAL;
827 		failure_string = "invalid vma->vm_mm";
828 		goto err_invalid_mm;
829 	}
830 
831 	mutex_lock(&binder_alloc_mmap_lock);
832 	if (alloc->buffer_size) {
833 		ret = -EBUSY;
834 		failure_string = "already mapped";
835 		goto err_already_mapped;
836 	}
837 	alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
838 				   SZ_4M);
839 	mutex_unlock(&binder_alloc_mmap_lock);
840 
841 	alloc->buffer = vma->vm_start;
842 
843 	alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
844 			       sizeof(alloc->pages[0]),
845 			       GFP_KERNEL);
846 	if (alloc->pages == NULL) {
847 		ret = -ENOMEM;
848 		failure_string = "alloc page array";
849 		goto err_alloc_pages_failed;
850 	}
851 
852 	for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
853 		alloc->pages[i].alloc = alloc;
854 		INIT_LIST_HEAD(&alloc->pages[i].lru);
855 	}
856 
857 	buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
858 	if (!buffer) {
859 		ret = -ENOMEM;
860 		failure_string = "alloc buffer struct";
861 		goto err_alloc_buf_struct_failed;
862 	}
863 
864 	buffer->user_data = alloc->buffer;
865 	list_add(&buffer->entry, &alloc->buffers);
866 	buffer->free = 1;
867 	binder_insert_free_buffer(alloc, buffer);
868 	alloc->free_async_space = alloc->buffer_size / 2;
869 
870 	/* Signal binder_alloc is fully initialized */
871 	binder_alloc_set_vma(alloc, vma);
872 
873 	return 0;
874 
875 err_alloc_buf_struct_failed:
876 	kfree(alloc->pages);
877 	alloc->pages = NULL;
878 err_alloc_pages_failed:
879 	alloc->buffer = 0;
880 	mutex_lock(&binder_alloc_mmap_lock);
881 	alloc->buffer_size = 0;
882 err_already_mapped:
883 	mutex_unlock(&binder_alloc_mmap_lock);
884 err_invalid_mm:
885 	binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
886 			   "%s: %d %lx-%lx %s failed %d\n", __func__,
887 			   alloc->pid, vma->vm_start, vma->vm_end,
888 			   failure_string, ret);
889 	return ret;
890 }
891 
892 
893 void binder_alloc_deferred_release(struct binder_alloc *alloc)
894 {
895 	struct rb_node *n;
896 	int buffers, page_count;
897 	struct binder_buffer *buffer;
898 
899 	buffers = 0;
900 	mutex_lock(&alloc->mutex);
901 	BUG_ON(alloc->vma);
902 
903 	while ((n = rb_first(&alloc->allocated_buffers))) {
904 		buffer = rb_entry(n, struct binder_buffer, rb_node);
905 
906 		/* Transaction should already have been freed */
907 		BUG_ON(buffer->transaction);
908 
909 		if (buffer->clear_on_free) {
910 			binder_alloc_clear_buf(alloc, buffer);
911 			buffer->clear_on_free = false;
912 		}
913 		binder_free_buf_locked(alloc, buffer);
914 		buffers++;
915 	}
916 
917 	while (!list_empty(&alloc->buffers)) {
918 		buffer = list_first_entry(&alloc->buffers,
919 					  struct binder_buffer, entry);
920 		WARN_ON(!buffer->free);
921 
922 		list_del(&buffer->entry);
923 		WARN_ON_ONCE(!list_empty(&alloc->buffers));
924 		kfree(buffer);
925 	}
926 
927 	page_count = 0;
928 	if (alloc->pages) {
929 		int i;
930 
931 		for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
932 			unsigned long page_addr;
933 			bool on_lru;
934 
935 			if (!alloc->pages[i].page_ptr)
936 				continue;
937 
938 			on_lru = list_lru_del(&binder_freelist,
939 					      &alloc->pages[i].lru);
940 			page_addr = alloc->buffer + i * PAGE_SIZE;
941 			binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
942 				     "%s: %d: page %d at %lx %s\n",
943 				     __func__, alloc->pid, i, page_addr,
944 				     on_lru ? "on lru" : "active");
945 			__free_page(alloc->pages[i].page_ptr);
946 			page_count++;
947 		}
948 		kfree(alloc->pages);
949 	}
950 	mutex_unlock(&alloc->mutex);
951 	if (alloc->mm)
952 		mmdrop(alloc->mm);
953 
954 	binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
955 		     "%s: %d buffers %d, pages %d\n",
956 		     __func__, alloc->pid, buffers, page_count);
957 }
958 
959 /**
960  * binder_alloc_print_allocated() - print buffer info
961  * @m:     seq_file for output via seq_printf()
962  * @alloc: binder_alloc for this proc
963  *
964  * Prints information about every buffer associated with
965  * the binder_alloc state to the given seq_file
966  */
967 void binder_alloc_print_allocated(struct seq_file *m,
968 				  struct binder_alloc *alloc)
969 {
970 	struct binder_buffer *buffer;
971 	struct rb_node *n;
972 
973 	mutex_lock(&alloc->mutex);
974 	for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) {
975 		buffer = rb_entry(n, struct binder_buffer, rb_node);
976 		seq_printf(m, "  buffer %d: %lx size %zd:%zd:%zd %s\n",
977 			   buffer->debug_id, buffer->user_data,
978 			   buffer->data_size, buffer->offsets_size,
979 			   buffer->extra_buffers_size,
980 			   buffer->transaction ? "active" : "delivered");
981 	}
982 	mutex_unlock(&alloc->mutex);
983 }
984 
985 /**
986  * binder_alloc_print_pages() - print page usage
987  * @m:     seq_file for output via seq_printf()
988  * @alloc: binder_alloc for this proc
989  */
990 void binder_alloc_print_pages(struct seq_file *m,
991 			      struct binder_alloc *alloc)
992 {
993 	struct binder_lru_page *page;
994 	int i;
995 	int active = 0;
996 	int lru = 0;
997 	int free = 0;
998 
999 	mutex_lock(&alloc->mutex);
1000 	/*
1001 	 * Make sure the binder_alloc is fully initialized, otherwise we might
1002 	 * read inconsistent state.
1003 	 */
1004 	if (binder_alloc_get_vma(alloc) != NULL) {
1005 		for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
1006 			page = &alloc->pages[i];
1007 			if (!page->page_ptr)
1008 				free++;
1009 			else if (list_empty(&page->lru))
1010 				active++;
1011 			else
1012 				lru++;
1013 		}
1014 	}
1015 	mutex_unlock(&alloc->mutex);
1016 	seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
1017 	seq_printf(m, "  pages high watermark: %zu\n", alloc->pages_high);
1018 }
1019 
1020 /**
1021  * binder_alloc_get_allocated_count() - return count of buffers
1022  * @alloc: binder_alloc for this proc
1023  *
1024  * Return: count of allocated buffers
1025  */
1026 int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
1027 {
1028 	struct rb_node *n;
1029 	int count = 0;
1030 
1031 	mutex_lock(&alloc->mutex);
1032 	for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
1033 		count++;
1034 	mutex_unlock(&alloc->mutex);
1035 	return count;
1036 }
1037 
1038 
1039 /**
1040  * binder_alloc_vma_close() - invalidate address space
1041  * @alloc: binder_alloc for this proc
1042  *
1043  * Called from binder_vma_close() when releasing address space.
1044  * Clears alloc->vma to prevent new incoming transactions from
1045  * allocating more buffers.
1046  */
1047 void binder_alloc_vma_close(struct binder_alloc *alloc)
1048 {
1049 	binder_alloc_set_vma(alloc, NULL);
1050 }
1051 
1052 /**
1053  * binder_alloc_free_page() - shrinker callback to free pages
1054  * @item:   item to free
1055  * @lock:   lock protecting the item
1056  * @cb_arg: callback argument
1057  *
1058  * Called from list_lru_walk() in binder_shrink_scan() to free
1059  * up pages when the system is under memory pressure.
1060  */
1061 enum lru_status binder_alloc_free_page(struct list_head *item,
1062 				       struct list_lru_one *lru,
1063 				       spinlock_t *lock,
1064 				       void *cb_arg)
1065 	__must_hold(lock)
1066 {
1067 	struct mm_struct *mm = NULL;
1068 	struct binder_lru_page *page = container_of(item,
1069 						    struct binder_lru_page,
1070 						    lru);
1071 	struct binder_alloc *alloc;
1072 	unsigned long page_addr;
1073 	size_t index;
1074 	struct vm_area_struct *vma;
1075 
1076 	alloc = page->alloc;
1077 	if (!mutex_trylock(&alloc->mutex))
1078 		goto err_get_alloc_mutex_failed;
1079 
1080 	if (!page->page_ptr)
1081 		goto err_page_already_freed;
1082 
1083 	index = page - alloc->pages;
1084 	page_addr = alloc->buffer + index * PAGE_SIZE;
1085 
1086 	mm = alloc->mm;
1087 	if (!mmget_not_zero(mm))
1088 		goto err_mmget;
1089 	if (!mmap_read_trylock(mm))
1090 		goto err_mmap_read_lock_failed;
1091 	vma = vma_lookup(mm, page_addr);
1092 	if (vma && vma != binder_alloc_get_vma(alloc))
1093 		goto err_invalid_vma;
1094 
1095 	list_lru_isolate(lru, item);
1096 	spin_unlock(lock);
1097 
1098 	if (vma) {
1099 		trace_binder_unmap_user_start(alloc, index);
1100 
1101 		zap_page_range_single(vma, page_addr, PAGE_SIZE, NULL);
1102 
1103 		trace_binder_unmap_user_end(alloc, index);
1104 	}
1105 	mmap_read_unlock(mm);
1106 	mmput_async(mm);
1107 
1108 	trace_binder_unmap_kernel_start(alloc, index);
1109 
1110 	__free_page(page->page_ptr);
1111 	page->page_ptr = NULL;
1112 
1113 	trace_binder_unmap_kernel_end(alloc, index);
1114 
1115 	spin_lock(lock);
1116 	mutex_unlock(&alloc->mutex);
1117 	return LRU_REMOVED_RETRY;
1118 
1119 err_invalid_vma:
1120 	mmap_read_unlock(mm);
1121 err_mmap_read_lock_failed:
1122 	mmput_async(mm);
1123 err_mmget:
1124 err_page_already_freed:
1125 	mutex_unlock(&alloc->mutex);
1126 err_get_alloc_mutex_failed:
1127 	return LRU_SKIP;
1128 }
1129 
1130 static unsigned long
1131 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1132 {
1133 	return list_lru_count(&binder_freelist);
1134 }
1135 
1136 static unsigned long
1137 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1138 {
1139 	return list_lru_walk(&binder_freelist, binder_alloc_free_page,
1140 			    NULL, sc->nr_to_scan);
1141 }
1142 
1143 static struct shrinker *binder_shrinker;
1144 
1145 /**
1146  * binder_alloc_init() - called by binder_open() for per-proc initialization
1147  * @alloc: binder_alloc for this proc
1148  *
1149  * Called from binder_open() to initialize binder_alloc fields for
1150  * new binder proc
1151  */
1152 void binder_alloc_init(struct binder_alloc *alloc)
1153 {
1154 	alloc->pid = current->group_leader->pid;
1155 	alloc->mm = current->mm;
1156 	mmgrab(alloc->mm);
1157 	mutex_init(&alloc->mutex);
1158 	INIT_LIST_HEAD(&alloc->buffers);
1159 }
1160 
1161 int binder_alloc_shrinker_init(void)
1162 {
1163 	int ret;
1164 
1165 	ret = list_lru_init(&binder_freelist);
1166 	if (ret)
1167 		return ret;
1168 
1169 	binder_shrinker = shrinker_alloc(0, "android-binder");
1170 	if (!binder_shrinker) {
1171 		list_lru_destroy(&binder_freelist);
1172 		return -ENOMEM;
1173 	}
1174 
1175 	binder_shrinker->count_objects = binder_shrink_count;
1176 	binder_shrinker->scan_objects = binder_shrink_scan;
1177 
1178 	shrinker_register(binder_shrinker);
1179 
1180 	return 0;
1181 }
1182 
1183 void binder_alloc_shrinker_exit(void)
1184 {
1185 	shrinker_free(binder_shrinker);
1186 	list_lru_destroy(&binder_freelist);
1187 }
1188 
1189 /**
1190  * check_buffer() - verify that buffer/offset is safe to access
1191  * @alloc: binder_alloc for this proc
1192  * @buffer: binder buffer to be accessed
1193  * @offset: offset into @buffer data
1194  * @bytes: bytes to access from offset
1195  *
1196  * Check that the @offset/@bytes are within the size of the given
1197  * @buffer and that the buffer is currently active and not freeable.
1198  * Offsets must also be multiples of sizeof(u32). The kernel is
1199  * allowed to touch the buffer in two cases:
1200  *
1201  * 1) when the buffer is being created:
1202  *     (buffer->free == 0 && buffer->allow_user_free == 0)
1203  * 2) when the buffer is being torn down:
1204  *     (buffer->free == 0 && buffer->transaction == NULL).
1205  *
1206  * Return: true if the buffer is safe to access
1207  */
1208 static inline bool check_buffer(struct binder_alloc *alloc,
1209 				struct binder_buffer *buffer,
1210 				binder_size_t offset, size_t bytes)
1211 {
1212 	size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1213 
1214 	return buffer_size >= bytes &&
1215 		offset <= buffer_size - bytes &&
1216 		IS_ALIGNED(offset, sizeof(u32)) &&
1217 		!buffer->free &&
1218 		(!buffer->allow_user_free || !buffer->transaction);
1219 }
1220 
1221 /**
1222  * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1223  * @alloc: binder_alloc for this proc
1224  * @buffer: binder buffer to be accessed
1225  * @buffer_offset: offset into @buffer data
1226  * @from: userspace pointer to source buffer
1227  * @bytes: bytes to copy
1228  *
1229  * Copy bytes from source userspace to target buffer.
1230  *
1231  * Return: bytes remaining to be copied
1232  */
1233 unsigned long
1234 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1235 				 struct binder_buffer *buffer,
1236 				 binder_size_t buffer_offset,
1237 				 const void __user *from,
1238 				 size_t bytes)
1239 {
1240 	if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1241 		return bytes;
1242 
1243 	while (bytes) {
1244 		unsigned long size;
1245 		unsigned long ret;
1246 		struct page *page;
1247 		pgoff_t pgoff;
1248 		void *kptr;
1249 
1250 		page = binder_alloc_get_page(alloc, buffer,
1251 					     buffer_offset, &pgoff);
1252 		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1253 		kptr = kmap_local_page(page) + pgoff;
1254 		ret = copy_from_user(kptr, from, size);
1255 		kunmap_local(kptr);
1256 		if (ret)
1257 			return bytes - size + ret;
1258 		bytes -= size;
1259 		from += size;
1260 		buffer_offset += size;
1261 	}
1262 	return 0;
1263 }
1264 
1265 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1266 				       bool to_buffer,
1267 				       struct binder_buffer *buffer,
1268 				       binder_size_t buffer_offset,
1269 				       void *ptr,
1270 				       size_t bytes)
1271 {
1272 	/* All copies must be 32-bit aligned and 32-bit size */
1273 	if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1274 		return -EINVAL;
1275 
1276 	while (bytes) {
1277 		unsigned long size;
1278 		struct page *page;
1279 		pgoff_t pgoff;
1280 
1281 		page = binder_alloc_get_page(alloc, buffer,
1282 					     buffer_offset, &pgoff);
1283 		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1284 		if (to_buffer)
1285 			memcpy_to_page(page, pgoff, ptr, size);
1286 		else
1287 			memcpy_from_page(ptr, page, pgoff, size);
1288 		bytes -= size;
1289 		pgoff = 0;
1290 		ptr = ptr + size;
1291 		buffer_offset += size;
1292 	}
1293 	return 0;
1294 }
1295 
1296 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1297 				struct binder_buffer *buffer,
1298 				binder_size_t buffer_offset,
1299 				void *src,
1300 				size_t bytes)
1301 {
1302 	return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1303 					   src, bytes);
1304 }
1305 
1306 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1307 				  void *dest,
1308 				  struct binder_buffer *buffer,
1309 				  binder_size_t buffer_offset,
1310 				  size_t bytes)
1311 {
1312 	return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1313 					   dest, bytes);
1314 }
1315 
1316