xref: /linux-6.15/drivers/android/binder_alloc.c (revision d1716b4b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* binder_alloc.c
3  *
4  * Android IPC Subsystem
5  *
6  * Copyright (C) 2007-2017 Google, Inc.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/list.h>
12 #include <linux/sched/mm.h>
13 #include <linux/module.h>
14 #include <linux/rtmutex.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/list_lru.h>
21 #include <linux/ratelimit.h>
22 #include <asm/cacheflush.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/sizes.h>
26 #include "binder_alloc.h"
27 #include "binder_trace.h"
28 
29 struct list_lru binder_freelist;
30 
31 static DEFINE_MUTEX(binder_alloc_mmap_lock);
32 
33 enum {
34 	BINDER_DEBUG_USER_ERROR             = 1U << 0,
35 	BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
36 	BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
37 	BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
38 };
39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40 
41 module_param_named(debug_mask, binder_alloc_debug_mask,
42 		   uint, 0644);
43 
44 #define binder_alloc_debug(mask, x...) \
45 	do { \
46 		if (binder_alloc_debug_mask & mask) \
47 			pr_info_ratelimited(x); \
48 	} while (0)
49 
50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51 {
52 	return list_entry(buffer->entry.next, struct binder_buffer, entry);
53 }
54 
55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56 {
57 	return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58 }
59 
60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61 				       struct binder_buffer *buffer)
62 {
63 	if (list_is_last(&buffer->entry, &alloc->buffers))
64 		return alloc->buffer + alloc->buffer_size - buffer->user_data;
65 	return binder_buffer_next(buffer)->user_data - buffer->user_data;
66 }
67 
68 static void binder_insert_free_buffer(struct binder_alloc *alloc,
69 				      struct binder_buffer *new_buffer)
70 {
71 	struct rb_node **p = &alloc->free_buffers.rb_node;
72 	struct rb_node *parent = NULL;
73 	struct binder_buffer *buffer;
74 	size_t buffer_size;
75 	size_t new_buffer_size;
76 
77 	BUG_ON(!new_buffer->free);
78 
79 	new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80 
81 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82 		     "%d: add free buffer, size %zd, at %pK\n",
83 		      alloc->pid, new_buffer_size, new_buffer);
84 
85 	while (*p) {
86 		parent = *p;
87 		buffer = rb_entry(parent, struct binder_buffer, rb_node);
88 		BUG_ON(!buffer->free);
89 
90 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
91 
92 		if (new_buffer_size < buffer_size)
93 			p = &parent->rb_left;
94 		else
95 			p = &parent->rb_right;
96 	}
97 	rb_link_node(&new_buffer->rb_node, parent, p);
98 	rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99 }
100 
101 static void binder_insert_allocated_buffer_locked(
102 		struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103 {
104 	struct rb_node **p = &alloc->allocated_buffers.rb_node;
105 	struct rb_node *parent = NULL;
106 	struct binder_buffer *buffer;
107 
108 	BUG_ON(new_buffer->free);
109 
110 	while (*p) {
111 		parent = *p;
112 		buffer = rb_entry(parent, struct binder_buffer, rb_node);
113 		BUG_ON(buffer->free);
114 
115 		if (new_buffer->user_data < buffer->user_data)
116 			p = &parent->rb_left;
117 		else if (new_buffer->user_data > buffer->user_data)
118 			p = &parent->rb_right;
119 		else
120 			BUG();
121 	}
122 	rb_link_node(&new_buffer->rb_node, parent, p);
123 	rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124 }
125 
126 static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127 		struct binder_alloc *alloc,
128 		unsigned long user_ptr)
129 {
130 	struct rb_node *n = alloc->allocated_buffers.rb_node;
131 	struct binder_buffer *buffer;
132 
133 	while (n) {
134 		buffer = rb_entry(n, struct binder_buffer, rb_node);
135 		BUG_ON(buffer->free);
136 
137 		if (user_ptr < buffer->user_data) {
138 			n = n->rb_left;
139 		} else if (user_ptr > buffer->user_data) {
140 			n = n->rb_right;
141 		} else {
142 			/*
143 			 * Guard against user threads attempting to
144 			 * free the buffer when in use by kernel or
145 			 * after it's already been freed.
146 			 */
147 			if (!buffer->allow_user_free)
148 				return ERR_PTR(-EPERM);
149 			buffer->allow_user_free = 0;
150 			return buffer;
151 		}
152 	}
153 	return NULL;
154 }
155 
156 /**
157  * binder_alloc_prepare_to_free() - get buffer given user ptr
158  * @alloc:	binder_alloc for this proc
159  * @user_ptr:	User pointer to buffer data
160  *
161  * Validate userspace pointer to buffer data and return buffer corresponding to
162  * that user pointer. Search the rb tree for buffer that matches user data
163  * pointer.
164  *
165  * Return:	Pointer to buffer or NULL
166  */
167 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
168 						   unsigned long user_ptr)
169 {
170 	struct binder_buffer *buffer;
171 
172 	mutex_lock(&alloc->mutex);
173 	buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
174 	mutex_unlock(&alloc->mutex);
175 	return buffer;
176 }
177 
178 static inline void
179 binder_set_installed_page(struct binder_lru_page *lru_page,
180 			  struct page *page)
181 {
182 	/* Pairs with acquire in binder_get_installed_page() */
183 	smp_store_release(&lru_page->page_ptr, page);
184 }
185 
186 static inline struct page *
187 binder_get_installed_page(struct binder_lru_page *lru_page)
188 {
189 	/* Pairs with release in binder_set_installed_page() */
190 	return smp_load_acquire(&lru_page->page_ptr);
191 }
192 
193 static void binder_lru_freelist_add(struct binder_alloc *alloc,
194 				    unsigned long start, unsigned long end)
195 {
196 	struct binder_lru_page *page;
197 	unsigned long page_addr;
198 
199 	trace_binder_update_page_range(alloc, false, start, end);
200 
201 	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
202 		size_t index;
203 		int ret;
204 
205 		index = (page_addr - alloc->buffer) / PAGE_SIZE;
206 		page = &alloc->pages[index];
207 
208 		if (!binder_get_installed_page(page))
209 			continue;
210 
211 		trace_binder_free_lru_start(alloc, index);
212 
213 		ret = list_lru_add_obj(&binder_freelist, &page->lru);
214 		WARN_ON(!ret);
215 
216 		trace_binder_free_lru_end(alloc, index);
217 	}
218 }
219 
220 static int binder_install_single_page(struct binder_alloc *alloc,
221 				      struct binder_lru_page *lru_page,
222 				      unsigned long addr)
223 {
224 	struct vm_area_struct *vma;
225 	struct page *page;
226 	long npages;
227 	int ret;
228 
229 	if (!mmget_not_zero(alloc->mm))
230 		return -ESRCH;
231 
232 	page = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
233 	if (!page) {
234 		pr_err("%d: failed to allocate page\n", alloc->pid);
235 		ret = -ENOMEM;
236 		goto out;
237 	}
238 
239 	mmap_read_lock(alloc->mm);
240 	vma = vma_lookup(alloc->mm, addr);
241 	if (!vma || vma != alloc->vma) {
242 		__free_page(page);
243 		pr_err("%d: %s failed, no vma\n", alloc->pid, __func__);
244 		ret = -ESRCH;
245 		goto unlock;
246 	}
247 
248 	ret = vm_insert_page(vma, addr, page);
249 	switch (ret) {
250 	case -EBUSY:
251 		/*
252 		 * EBUSY is ok. Someone installed the pte first but the
253 		 * lru_page->page_ptr has not been updated yet. Discard
254 		 * our page and look up the one already installed.
255 		 */
256 		ret = 0;
257 		__free_page(page);
258 		npages = get_user_pages_remote(alloc->mm, addr, 1,
259 					       FOLL_NOFAULT, &page, NULL);
260 		if (npages <= 0) {
261 			pr_err("%d: failed to find page at offset %lx\n",
262 			       alloc->pid, addr - alloc->buffer);
263 			ret = -ESRCH;
264 			break;
265 		}
266 		fallthrough;
267 	case 0:
268 		/* Mark page installation complete and safe to use */
269 		binder_set_installed_page(lru_page, page);
270 		break;
271 	default:
272 		__free_page(page);
273 		pr_err("%d: %s failed to insert page at offset %lx with %d\n",
274 		       alloc->pid, __func__, addr - alloc->buffer, ret);
275 		ret = -ENOMEM;
276 		break;
277 	}
278 unlock:
279 	mmap_read_unlock(alloc->mm);
280 out:
281 	mmput_async(alloc->mm);
282 	return ret;
283 }
284 
285 static int binder_install_buffer_pages(struct binder_alloc *alloc,
286 				       struct binder_buffer *buffer,
287 				       size_t size)
288 {
289 	struct binder_lru_page *page;
290 	unsigned long start, final;
291 	unsigned long page_addr;
292 
293 	start = buffer->user_data & PAGE_MASK;
294 	final = PAGE_ALIGN(buffer->user_data + size);
295 
296 	for (page_addr = start; page_addr < final; page_addr += PAGE_SIZE) {
297 		unsigned long index;
298 		int ret;
299 
300 		index = (page_addr - alloc->buffer) / PAGE_SIZE;
301 		page = &alloc->pages[index];
302 
303 		if (binder_get_installed_page(page))
304 			continue;
305 
306 		trace_binder_alloc_page_start(alloc, index);
307 
308 		ret = binder_install_single_page(alloc, page, page_addr);
309 		if (ret)
310 			return ret;
311 
312 		trace_binder_alloc_page_end(alloc, index);
313 	}
314 
315 	return 0;
316 }
317 
318 /* The range of pages should exclude those shared with other buffers */
319 static void binder_lru_freelist_del(struct binder_alloc *alloc,
320 				    unsigned long start, unsigned long end)
321 {
322 	struct binder_lru_page *page;
323 	unsigned long page_addr;
324 
325 	trace_binder_update_page_range(alloc, true, start, end);
326 
327 	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
328 		unsigned long index;
329 		bool on_lru;
330 
331 		index = (page_addr - alloc->buffer) / PAGE_SIZE;
332 		page = &alloc->pages[index];
333 
334 		if (page->page_ptr) {
335 			trace_binder_alloc_lru_start(alloc, index);
336 
337 			on_lru = list_lru_del_obj(&binder_freelist, &page->lru);
338 			WARN_ON(!on_lru);
339 
340 			trace_binder_alloc_lru_end(alloc, index);
341 			continue;
342 		}
343 
344 		if (index + 1 > alloc->pages_high)
345 			alloc->pages_high = index + 1;
346 	}
347 }
348 
349 static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
350 		struct vm_area_struct *vma)
351 {
352 	/* pairs with smp_load_acquire in binder_alloc_get_vma() */
353 	smp_store_release(&alloc->vma, vma);
354 }
355 
356 static inline struct vm_area_struct *binder_alloc_get_vma(
357 		struct binder_alloc *alloc)
358 {
359 	/* pairs with smp_store_release in binder_alloc_set_vma() */
360 	return smp_load_acquire(&alloc->vma);
361 }
362 
363 static void debug_no_space_locked(struct binder_alloc *alloc)
364 {
365 	size_t largest_alloc_size = 0;
366 	struct binder_buffer *buffer;
367 	size_t allocated_buffers = 0;
368 	size_t largest_free_size = 0;
369 	size_t total_alloc_size = 0;
370 	size_t total_free_size = 0;
371 	size_t free_buffers = 0;
372 	size_t buffer_size;
373 	struct rb_node *n;
374 
375 	for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) {
376 		buffer = rb_entry(n, struct binder_buffer, rb_node);
377 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
378 		allocated_buffers++;
379 		total_alloc_size += buffer_size;
380 		if (buffer_size > largest_alloc_size)
381 			largest_alloc_size = buffer_size;
382 	}
383 
384 	for (n = rb_first(&alloc->free_buffers); n; n = rb_next(n)) {
385 		buffer = rb_entry(n, struct binder_buffer, rb_node);
386 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
387 		free_buffers++;
388 		total_free_size += buffer_size;
389 		if (buffer_size > largest_free_size)
390 			largest_free_size = buffer_size;
391 	}
392 
393 	binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
394 			   "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
395 			   total_alloc_size, allocated_buffers,
396 			   largest_alloc_size, total_free_size,
397 			   free_buffers, largest_free_size);
398 }
399 
400 static bool debug_low_async_space_locked(struct binder_alloc *alloc)
401 {
402 	/*
403 	 * Find the amount and size of buffers allocated by the current caller;
404 	 * The idea is that once we cross the threshold, whoever is responsible
405 	 * for the low async space is likely to try to send another async txn,
406 	 * and at some point we'll catch them in the act. This is more efficient
407 	 * than keeping a map per pid.
408 	 */
409 	struct binder_buffer *buffer;
410 	size_t total_alloc_size = 0;
411 	int pid = current->tgid;
412 	size_t num_buffers = 0;
413 	struct rb_node *n;
414 
415 	/*
416 	 * Only start detecting spammers once we have less than 20% of async
417 	 * space left (which is less than 10% of total buffer size).
418 	 */
419 	if (alloc->free_async_space >= alloc->buffer_size / 10) {
420 		alloc->oneway_spam_detected = false;
421 		return false;
422 	}
423 
424 	for (n = rb_first(&alloc->allocated_buffers); n != NULL;
425 		 n = rb_next(n)) {
426 		buffer = rb_entry(n, struct binder_buffer, rb_node);
427 		if (buffer->pid != pid)
428 			continue;
429 		if (!buffer->async_transaction)
430 			continue;
431 		total_alloc_size += binder_alloc_buffer_size(alloc, buffer);
432 		num_buffers++;
433 	}
434 
435 	/*
436 	 * Warn if this pid has more than 50 transactions, or more than 50% of
437 	 * async space (which is 25% of total buffer size). Oneway spam is only
438 	 * detected when the threshold is exceeded.
439 	 */
440 	if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
441 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
442 			     "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
443 			      alloc->pid, pid, num_buffers, total_alloc_size);
444 		if (!alloc->oneway_spam_detected) {
445 			alloc->oneway_spam_detected = true;
446 			return true;
447 		}
448 	}
449 	return false;
450 }
451 
452 /* Callers preallocate @new_buffer, it is freed by this function if unused */
453 static struct binder_buffer *binder_alloc_new_buf_locked(
454 				struct binder_alloc *alloc,
455 				struct binder_buffer *new_buffer,
456 				size_t size,
457 				int is_async)
458 {
459 	struct rb_node *n = alloc->free_buffers.rb_node;
460 	struct rb_node *best_fit = NULL;
461 	struct binder_buffer *buffer;
462 	unsigned long next_used_page;
463 	unsigned long curr_last_page;
464 	size_t buffer_size;
465 
466 	if (is_async && alloc->free_async_space < size) {
467 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
468 			     "%d: binder_alloc_buf size %zd failed, no async space left\n",
469 			      alloc->pid, size);
470 		buffer = ERR_PTR(-ENOSPC);
471 		goto out;
472 	}
473 
474 	while (n) {
475 		buffer = rb_entry(n, struct binder_buffer, rb_node);
476 		BUG_ON(!buffer->free);
477 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
478 
479 		if (size < buffer_size) {
480 			best_fit = n;
481 			n = n->rb_left;
482 		} else if (size > buffer_size) {
483 			n = n->rb_right;
484 		} else {
485 			best_fit = n;
486 			break;
487 		}
488 	}
489 
490 	if (unlikely(!best_fit)) {
491 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
492 				   "%d: binder_alloc_buf size %zd failed, no address space\n",
493 				   alloc->pid, size);
494 		debug_no_space_locked(alloc);
495 		buffer = ERR_PTR(-ENOSPC);
496 		goto out;
497 	}
498 
499 	if (buffer_size != size) {
500 		/* Found an oversized buffer and needs to be split */
501 		buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
502 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
503 
504 		WARN_ON(n || buffer_size == size);
505 		new_buffer->user_data = buffer->user_data + size;
506 		list_add(&new_buffer->entry, &buffer->entry);
507 		new_buffer->free = 1;
508 		binder_insert_free_buffer(alloc, new_buffer);
509 		new_buffer = NULL;
510 	}
511 
512 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
513 		     "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
514 		      alloc->pid, size, buffer, buffer_size);
515 
516 	/*
517 	 * Now we remove the pages from the freelist. A clever calculation
518 	 * with buffer_size determines if the last page is shared with an
519 	 * adjacent in-use buffer. In such case, the page has been already
520 	 * removed from the freelist so we trim our range short.
521 	 */
522 	next_used_page = (buffer->user_data + buffer_size) & PAGE_MASK;
523 	curr_last_page = PAGE_ALIGN(buffer->user_data + size);
524 	binder_lru_freelist_del(alloc, PAGE_ALIGN(buffer->user_data),
525 				min(next_used_page, curr_last_page));
526 
527 	rb_erase(&buffer->rb_node, &alloc->free_buffers);
528 	buffer->free = 0;
529 	buffer->allow_user_free = 0;
530 	binder_insert_allocated_buffer_locked(alloc, buffer);
531 	buffer->async_transaction = is_async;
532 	buffer->oneway_spam_suspect = false;
533 	if (is_async) {
534 		alloc->free_async_space -= size;
535 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
536 			     "%d: binder_alloc_buf size %zd async free %zd\n",
537 			      alloc->pid, size, alloc->free_async_space);
538 		if (debug_low_async_space_locked(alloc))
539 			buffer->oneway_spam_suspect = true;
540 	}
541 
542 out:
543 	/* Discard possibly unused new_buffer */
544 	kfree(new_buffer);
545 	return buffer;
546 }
547 
548 /* Calculate the sanitized total size, returns 0 for invalid request */
549 static inline size_t sanitized_size(size_t data_size,
550 				    size_t offsets_size,
551 				    size_t extra_buffers_size)
552 {
553 	size_t total, tmp;
554 
555 	/* Align to pointer size and check for overflows */
556 	tmp = ALIGN(data_size, sizeof(void *)) +
557 		ALIGN(offsets_size, sizeof(void *));
558 	if (tmp < data_size || tmp < offsets_size)
559 		return 0;
560 	total = tmp + ALIGN(extra_buffers_size, sizeof(void *));
561 	if (total < tmp || total < extra_buffers_size)
562 		return 0;
563 
564 	/* Pad 0-sized buffers so they get a unique address */
565 	total = max(total, sizeof(void *));
566 
567 	return total;
568 }
569 
570 /**
571  * binder_alloc_new_buf() - Allocate a new binder buffer
572  * @alloc:              binder_alloc for this proc
573  * @data_size:          size of user data buffer
574  * @offsets_size:       user specified buffer offset
575  * @extra_buffers_size: size of extra space for meta-data (eg, security context)
576  * @is_async:           buffer for async transaction
577  *
578  * Allocate a new buffer given the requested sizes. Returns
579  * the kernel version of the buffer pointer. The size allocated
580  * is the sum of the three given sizes (each rounded up to
581  * pointer-sized boundary)
582  *
583  * Return:	The allocated buffer or %ERR_PTR(-errno) if error
584  */
585 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
586 					   size_t data_size,
587 					   size_t offsets_size,
588 					   size_t extra_buffers_size,
589 					   int is_async)
590 {
591 	struct binder_buffer *buffer, *next;
592 	size_t size;
593 	int ret;
594 
595 	/* Check binder_alloc is fully initialized */
596 	if (!binder_alloc_get_vma(alloc)) {
597 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
598 				   "%d: binder_alloc_buf, no vma\n",
599 				   alloc->pid);
600 		return ERR_PTR(-ESRCH);
601 	}
602 
603 	size = sanitized_size(data_size, offsets_size, extra_buffers_size);
604 	if (unlikely(!size)) {
605 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
606 				   "%d: got transaction with invalid size %zd-%zd-%zd\n",
607 				   alloc->pid, data_size, offsets_size,
608 				   extra_buffers_size);
609 		return ERR_PTR(-EINVAL);
610 	}
611 
612 	/* Preallocate the next buffer */
613 	next = kzalloc(sizeof(*next), GFP_KERNEL);
614 	if (!next)
615 		return ERR_PTR(-ENOMEM);
616 
617 	mutex_lock(&alloc->mutex);
618 	buffer = binder_alloc_new_buf_locked(alloc, next, size, is_async);
619 	if (IS_ERR(buffer)) {
620 		mutex_unlock(&alloc->mutex);
621 		goto out;
622 	}
623 
624 	buffer->data_size = data_size;
625 	buffer->offsets_size = offsets_size;
626 	buffer->extra_buffers_size = extra_buffers_size;
627 	buffer->pid = current->tgid;
628 	mutex_unlock(&alloc->mutex);
629 
630 	ret = binder_install_buffer_pages(alloc, buffer, size);
631 	if (ret) {
632 		binder_alloc_free_buf(alloc, buffer);
633 		buffer = ERR_PTR(ret);
634 	}
635 out:
636 	return buffer;
637 }
638 
639 static unsigned long buffer_start_page(struct binder_buffer *buffer)
640 {
641 	return buffer->user_data & PAGE_MASK;
642 }
643 
644 static unsigned long prev_buffer_end_page(struct binder_buffer *buffer)
645 {
646 	return (buffer->user_data - 1) & PAGE_MASK;
647 }
648 
649 static void binder_delete_free_buffer(struct binder_alloc *alloc,
650 				      struct binder_buffer *buffer)
651 {
652 	struct binder_buffer *prev, *next;
653 
654 	if (PAGE_ALIGNED(buffer->user_data))
655 		goto skip_freelist;
656 
657 	BUG_ON(alloc->buffers.next == &buffer->entry);
658 	prev = binder_buffer_prev(buffer);
659 	BUG_ON(!prev->free);
660 	if (prev_buffer_end_page(prev) == buffer_start_page(buffer))
661 		goto skip_freelist;
662 
663 	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
664 		next = binder_buffer_next(buffer);
665 		if (buffer_start_page(next) == buffer_start_page(buffer))
666 			goto skip_freelist;
667 	}
668 
669 	binder_lru_freelist_add(alloc, buffer_start_page(buffer),
670 				buffer_start_page(buffer) + PAGE_SIZE);
671 skip_freelist:
672 	list_del(&buffer->entry);
673 	kfree(buffer);
674 }
675 
676 static void binder_free_buf_locked(struct binder_alloc *alloc,
677 				   struct binder_buffer *buffer)
678 {
679 	size_t size, buffer_size;
680 
681 	buffer_size = binder_alloc_buffer_size(alloc, buffer);
682 
683 	size = ALIGN(buffer->data_size, sizeof(void *)) +
684 		ALIGN(buffer->offsets_size, sizeof(void *)) +
685 		ALIGN(buffer->extra_buffers_size, sizeof(void *));
686 
687 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
688 		     "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
689 		      alloc->pid, buffer, size, buffer_size);
690 
691 	BUG_ON(buffer->free);
692 	BUG_ON(size > buffer_size);
693 	BUG_ON(buffer->transaction != NULL);
694 	BUG_ON(buffer->user_data < alloc->buffer);
695 	BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
696 
697 	if (buffer->async_transaction) {
698 		alloc->free_async_space += buffer_size;
699 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
700 			     "%d: binder_free_buf size %zd async free %zd\n",
701 			      alloc->pid, size, alloc->free_async_space);
702 	}
703 
704 	binder_lru_freelist_add(alloc, PAGE_ALIGN(buffer->user_data),
705 				(buffer->user_data + buffer_size) & PAGE_MASK);
706 
707 	rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
708 	buffer->free = 1;
709 	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
710 		struct binder_buffer *next = binder_buffer_next(buffer);
711 
712 		if (next->free) {
713 			rb_erase(&next->rb_node, &alloc->free_buffers);
714 			binder_delete_free_buffer(alloc, next);
715 		}
716 	}
717 	if (alloc->buffers.next != &buffer->entry) {
718 		struct binder_buffer *prev = binder_buffer_prev(buffer);
719 
720 		if (prev->free) {
721 			binder_delete_free_buffer(alloc, buffer);
722 			rb_erase(&prev->rb_node, &alloc->free_buffers);
723 			buffer = prev;
724 		}
725 	}
726 	binder_insert_free_buffer(alloc, buffer);
727 }
728 
729 /**
730  * binder_alloc_get_page() - get kernel pointer for given buffer offset
731  * @alloc: binder_alloc for this proc
732  * @buffer: binder buffer to be accessed
733  * @buffer_offset: offset into @buffer data
734  * @pgoffp: address to copy final page offset to
735  *
736  * Lookup the struct page corresponding to the address
737  * at @buffer_offset into @buffer->user_data. If @pgoffp is not
738  * NULL, the byte-offset into the page is written there.
739  *
740  * The caller is responsible to ensure that the offset points
741  * to a valid address within the @buffer and that @buffer is
742  * not freeable by the user. Since it can't be freed, we are
743  * guaranteed that the corresponding elements of @alloc->pages[]
744  * cannot change.
745  *
746  * Return: struct page
747  */
748 static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
749 					  struct binder_buffer *buffer,
750 					  binder_size_t buffer_offset,
751 					  pgoff_t *pgoffp)
752 {
753 	binder_size_t buffer_space_offset = buffer_offset +
754 		(buffer->user_data - alloc->buffer);
755 	pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
756 	size_t index = buffer_space_offset >> PAGE_SHIFT;
757 	struct binder_lru_page *lru_page;
758 
759 	lru_page = &alloc->pages[index];
760 	*pgoffp = pgoff;
761 	return lru_page->page_ptr;
762 }
763 
764 /**
765  * binder_alloc_clear_buf() - zero out buffer
766  * @alloc: binder_alloc for this proc
767  * @buffer: binder buffer to be cleared
768  *
769  * memset the given buffer to 0
770  */
771 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
772 				   struct binder_buffer *buffer)
773 {
774 	size_t bytes = binder_alloc_buffer_size(alloc, buffer);
775 	binder_size_t buffer_offset = 0;
776 
777 	while (bytes) {
778 		unsigned long size;
779 		struct page *page;
780 		pgoff_t pgoff;
781 
782 		page = binder_alloc_get_page(alloc, buffer,
783 					     buffer_offset, &pgoff);
784 		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
785 		memset_page(page, pgoff, 0, size);
786 		bytes -= size;
787 		buffer_offset += size;
788 	}
789 }
790 
791 /**
792  * binder_alloc_free_buf() - free a binder buffer
793  * @alloc:	binder_alloc for this proc
794  * @buffer:	kernel pointer to buffer
795  *
796  * Free the buffer allocated via binder_alloc_new_buf()
797  */
798 void binder_alloc_free_buf(struct binder_alloc *alloc,
799 			    struct binder_buffer *buffer)
800 {
801 	/*
802 	 * We could eliminate the call to binder_alloc_clear_buf()
803 	 * from binder_alloc_deferred_release() by moving this to
804 	 * binder_free_buf_locked(). However, that could
805 	 * increase contention for the alloc mutex if clear_on_free
806 	 * is used frequently for large buffers. The mutex is not
807 	 * needed for correctness here.
808 	 */
809 	if (buffer->clear_on_free) {
810 		binder_alloc_clear_buf(alloc, buffer);
811 		buffer->clear_on_free = false;
812 	}
813 	mutex_lock(&alloc->mutex);
814 	binder_free_buf_locked(alloc, buffer);
815 	mutex_unlock(&alloc->mutex);
816 }
817 
818 /**
819  * binder_alloc_mmap_handler() - map virtual address space for proc
820  * @alloc:	alloc structure for this proc
821  * @vma:	vma passed to mmap()
822  *
823  * Called by binder_mmap() to initialize the space specified in
824  * vma for allocating binder buffers
825  *
826  * Return:
827  *      0 = success
828  *      -EBUSY = address space already mapped
829  *      -ENOMEM = failed to map memory to given address space
830  */
831 int binder_alloc_mmap_handler(struct binder_alloc *alloc,
832 			      struct vm_area_struct *vma)
833 {
834 	struct binder_buffer *buffer;
835 	const char *failure_string;
836 	int ret, i;
837 
838 	if (unlikely(vma->vm_mm != alloc->mm)) {
839 		ret = -EINVAL;
840 		failure_string = "invalid vma->vm_mm";
841 		goto err_invalid_mm;
842 	}
843 
844 	mutex_lock(&binder_alloc_mmap_lock);
845 	if (alloc->buffer_size) {
846 		ret = -EBUSY;
847 		failure_string = "already mapped";
848 		goto err_already_mapped;
849 	}
850 	alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
851 				   SZ_4M);
852 	mutex_unlock(&binder_alloc_mmap_lock);
853 
854 	alloc->buffer = vma->vm_start;
855 
856 	alloc->pages = kvcalloc(alloc->buffer_size / PAGE_SIZE,
857 				sizeof(alloc->pages[0]),
858 				GFP_KERNEL);
859 	if (alloc->pages == NULL) {
860 		ret = -ENOMEM;
861 		failure_string = "alloc page array";
862 		goto err_alloc_pages_failed;
863 	}
864 
865 	for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
866 		alloc->pages[i].alloc = alloc;
867 		INIT_LIST_HEAD(&alloc->pages[i].lru);
868 	}
869 
870 	buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
871 	if (!buffer) {
872 		ret = -ENOMEM;
873 		failure_string = "alloc buffer struct";
874 		goto err_alloc_buf_struct_failed;
875 	}
876 
877 	buffer->user_data = alloc->buffer;
878 	list_add(&buffer->entry, &alloc->buffers);
879 	buffer->free = 1;
880 	binder_insert_free_buffer(alloc, buffer);
881 	alloc->free_async_space = alloc->buffer_size / 2;
882 
883 	/* Signal binder_alloc is fully initialized */
884 	binder_alloc_set_vma(alloc, vma);
885 
886 	return 0;
887 
888 err_alloc_buf_struct_failed:
889 	kvfree(alloc->pages);
890 	alloc->pages = NULL;
891 err_alloc_pages_failed:
892 	alloc->buffer = 0;
893 	mutex_lock(&binder_alloc_mmap_lock);
894 	alloc->buffer_size = 0;
895 err_already_mapped:
896 	mutex_unlock(&binder_alloc_mmap_lock);
897 err_invalid_mm:
898 	binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
899 			   "%s: %d %lx-%lx %s failed %d\n", __func__,
900 			   alloc->pid, vma->vm_start, vma->vm_end,
901 			   failure_string, ret);
902 	return ret;
903 }
904 
905 
906 void binder_alloc_deferred_release(struct binder_alloc *alloc)
907 {
908 	struct rb_node *n;
909 	int buffers, page_count;
910 	struct binder_buffer *buffer;
911 
912 	buffers = 0;
913 	mutex_lock(&alloc->mutex);
914 	BUG_ON(alloc->vma);
915 
916 	while ((n = rb_first(&alloc->allocated_buffers))) {
917 		buffer = rb_entry(n, struct binder_buffer, rb_node);
918 
919 		/* Transaction should already have been freed */
920 		BUG_ON(buffer->transaction);
921 
922 		if (buffer->clear_on_free) {
923 			binder_alloc_clear_buf(alloc, buffer);
924 			buffer->clear_on_free = false;
925 		}
926 		binder_free_buf_locked(alloc, buffer);
927 		buffers++;
928 	}
929 
930 	while (!list_empty(&alloc->buffers)) {
931 		buffer = list_first_entry(&alloc->buffers,
932 					  struct binder_buffer, entry);
933 		WARN_ON(!buffer->free);
934 
935 		list_del(&buffer->entry);
936 		WARN_ON_ONCE(!list_empty(&alloc->buffers));
937 		kfree(buffer);
938 	}
939 
940 	page_count = 0;
941 	if (alloc->pages) {
942 		int i;
943 
944 		for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
945 			bool on_lru;
946 
947 			if (!alloc->pages[i].page_ptr)
948 				continue;
949 
950 			on_lru = list_lru_del_obj(&binder_freelist,
951 						  &alloc->pages[i].lru);
952 			binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
953 				     "%s: %d: page %d %s\n",
954 				     __func__, alloc->pid, i,
955 				     on_lru ? "on lru" : "active");
956 			__free_page(alloc->pages[i].page_ptr);
957 			page_count++;
958 		}
959 	}
960 	mutex_unlock(&alloc->mutex);
961 	kvfree(alloc->pages);
962 	if (alloc->mm)
963 		mmdrop(alloc->mm);
964 
965 	binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
966 		     "%s: %d buffers %d, pages %d\n",
967 		     __func__, alloc->pid, buffers, page_count);
968 }
969 
970 /**
971  * binder_alloc_print_allocated() - print buffer info
972  * @m:     seq_file for output via seq_printf()
973  * @alloc: binder_alloc for this proc
974  *
975  * Prints information about every buffer associated with
976  * the binder_alloc state to the given seq_file
977  */
978 void binder_alloc_print_allocated(struct seq_file *m,
979 				  struct binder_alloc *alloc)
980 {
981 	struct binder_buffer *buffer;
982 	struct rb_node *n;
983 
984 	mutex_lock(&alloc->mutex);
985 	for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) {
986 		buffer = rb_entry(n, struct binder_buffer, rb_node);
987 		seq_printf(m, "  buffer %d: %lx size %zd:%zd:%zd %s\n",
988 			   buffer->debug_id,
989 			   buffer->user_data - alloc->buffer,
990 			   buffer->data_size, buffer->offsets_size,
991 			   buffer->extra_buffers_size,
992 			   buffer->transaction ? "active" : "delivered");
993 	}
994 	mutex_unlock(&alloc->mutex);
995 }
996 
997 /**
998  * binder_alloc_print_pages() - print page usage
999  * @m:     seq_file for output via seq_printf()
1000  * @alloc: binder_alloc for this proc
1001  */
1002 void binder_alloc_print_pages(struct seq_file *m,
1003 			      struct binder_alloc *alloc)
1004 {
1005 	struct binder_lru_page *page;
1006 	int i;
1007 	int active = 0;
1008 	int lru = 0;
1009 	int free = 0;
1010 
1011 	mutex_lock(&alloc->mutex);
1012 	/*
1013 	 * Make sure the binder_alloc is fully initialized, otherwise we might
1014 	 * read inconsistent state.
1015 	 */
1016 	if (binder_alloc_get_vma(alloc) != NULL) {
1017 		for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
1018 			page = &alloc->pages[i];
1019 			if (!page->page_ptr)
1020 				free++;
1021 			else if (list_empty(&page->lru))
1022 				active++;
1023 			else
1024 				lru++;
1025 		}
1026 	}
1027 	mutex_unlock(&alloc->mutex);
1028 	seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
1029 	seq_printf(m, "  pages high watermark: %zu\n", alloc->pages_high);
1030 }
1031 
1032 /**
1033  * binder_alloc_get_allocated_count() - return count of buffers
1034  * @alloc: binder_alloc for this proc
1035  *
1036  * Return: count of allocated buffers
1037  */
1038 int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
1039 {
1040 	struct rb_node *n;
1041 	int count = 0;
1042 
1043 	mutex_lock(&alloc->mutex);
1044 	for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
1045 		count++;
1046 	mutex_unlock(&alloc->mutex);
1047 	return count;
1048 }
1049 
1050 
1051 /**
1052  * binder_alloc_vma_close() - invalidate address space
1053  * @alloc: binder_alloc for this proc
1054  *
1055  * Called from binder_vma_close() when releasing address space.
1056  * Clears alloc->vma to prevent new incoming transactions from
1057  * allocating more buffers.
1058  */
1059 void binder_alloc_vma_close(struct binder_alloc *alloc)
1060 {
1061 	binder_alloc_set_vma(alloc, NULL);
1062 }
1063 
1064 /**
1065  * binder_alloc_free_page() - shrinker callback to free pages
1066  * @item:   item to free
1067  * @lru:    list_lru instance of the item
1068  * @cb_arg: callback argument
1069  *
1070  * Called from list_lru_walk() in binder_shrink_scan() to free
1071  * up pages when the system is under memory pressure.
1072  */
1073 enum lru_status binder_alloc_free_page(struct list_head *item,
1074 				       struct list_lru_one *lru,
1075 				       void *cb_arg)
1076 	__must_hold(&lru->lock)
1077 {
1078 	struct binder_lru_page *page = container_of(item, typeof(*page), lru);
1079 	struct binder_alloc *alloc = page->alloc;
1080 	struct mm_struct *mm = alloc->mm;
1081 	struct vm_area_struct *vma;
1082 	struct page *page_to_free;
1083 	unsigned long page_addr;
1084 	size_t index;
1085 
1086 	if (!mmget_not_zero(mm))
1087 		goto err_mmget;
1088 	if (!mmap_read_trylock(mm))
1089 		goto err_mmap_read_lock_failed;
1090 	if (!mutex_trylock(&alloc->mutex))
1091 		goto err_get_alloc_mutex_failed;
1092 	if (!page->page_ptr)
1093 		goto err_page_already_freed;
1094 
1095 	index = page - alloc->pages;
1096 	page_addr = alloc->buffer + index * PAGE_SIZE;
1097 
1098 	vma = vma_lookup(mm, page_addr);
1099 	if (vma && vma != binder_alloc_get_vma(alloc))
1100 		goto err_invalid_vma;
1101 
1102 	trace_binder_unmap_kernel_start(alloc, index);
1103 
1104 	page_to_free = page->page_ptr;
1105 	page->page_ptr = NULL;
1106 
1107 	trace_binder_unmap_kernel_end(alloc, index);
1108 
1109 	list_lru_isolate(lru, item);
1110 	spin_unlock(&lru->lock);
1111 
1112 	if (vma) {
1113 		trace_binder_unmap_user_start(alloc, index);
1114 
1115 		zap_page_range_single(vma, page_addr, PAGE_SIZE, NULL);
1116 
1117 		trace_binder_unmap_user_end(alloc, index);
1118 	}
1119 
1120 	mutex_unlock(&alloc->mutex);
1121 	mmap_read_unlock(mm);
1122 	mmput_async(mm);
1123 	__free_page(page_to_free);
1124 
1125 	return LRU_REMOVED_RETRY;
1126 
1127 err_invalid_vma:
1128 err_page_already_freed:
1129 	mutex_unlock(&alloc->mutex);
1130 err_get_alloc_mutex_failed:
1131 	mmap_read_unlock(mm);
1132 err_mmap_read_lock_failed:
1133 	mmput_async(mm);
1134 err_mmget:
1135 	return LRU_SKIP;
1136 }
1137 
1138 static unsigned long
1139 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1140 {
1141 	return list_lru_count(&binder_freelist);
1142 }
1143 
1144 static unsigned long
1145 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1146 {
1147 	return list_lru_walk(&binder_freelist, binder_alloc_free_page,
1148 			    NULL, sc->nr_to_scan);
1149 }
1150 
1151 static struct shrinker *binder_shrinker;
1152 
1153 /**
1154  * binder_alloc_init() - called by binder_open() for per-proc initialization
1155  * @alloc: binder_alloc for this proc
1156  *
1157  * Called from binder_open() to initialize binder_alloc fields for
1158  * new binder proc
1159  */
1160 void binder_alloc_init(struct binder_alloc *alloc)
1161 {
1162 	alloc->pid = current->group_leader->pid;
1163 	alloc->mm = current->mm;
1164 	mmgrab(alloc->mm);
1165 	mutex_init(&alloc->mutex);
1166 	INIT_LIST_HEAD(&alloc->buffers);
1167 }
1168 
1169 int binder_alloc_shrinker_init(void)
1170 {
1171 	int ret;
1172 
1173 	ret = list_lru_init(&binder_freelist);
1174 	if (ret)
1175 		return ret;
1176 
1177 	binder_shrinker = shrinker_alloc(0, "android-binder");
1178 	if (!binder_shrinker) {
1179 		list_lru_destroy(&binder_freelist);
1180 		return -ENOMEM;
1181 	}
1182 
1183 	binder_shrinker->count_objects = binder_shrink_count;
1184 	binder_shrinker->scan_objects = binder_shrink_scan;
1185 
1186 	shrinker_register(binder_shrinker);
1187 
1188 	return 0;
1189 }
1190 
1191 void binder_alloc_shrinker_exit(void)
1192 {
1193 	shrinker_free(binder_shrinker);
1194 	list_lru_destroy(&binder_freelist);
1195 }
1196 
1197 /**
1198  * check_buffer() - verify that buffer/offset is safe to access
1199  * @alloc: binder_alloc for this proc
1200  * @buffer: binder buffer to be accessed
1201  * @offset: offset into @buffer data
1202  * @bytes: bytes to access from offset
1203  *
1204  * Check that the @offset/@bytes are within the size of the given
1205  * @buffer and that the buffer is currently active and not freeable.
1206  * Offsets must also be multiples of sizeof(u32). The kernel is
1207  * allowed to touch the buffer in two cases:
1208  *
1209  * 1) when the buffer is being created:
1210  *     (buffer->free == 0 && buffer->allow_user_free == 0)
1211  * 2) when the buffer is being torn down:
1212  *     (buffer->free == 0 && buffer->transaction == NULL).
1213  *
1214  * Return: true if the buffer is safe to access
1215  */
1216 static inline bool check_buffer(struct binder_alloc *alloc,
1217 				struct binder_buffer *buffer,
1218 				binder_size_t offset, size_t bytes)
1219 {
1220 	size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1221 
1222 	return buffer_size >= bytes &&
1223 		offset <= buffer_size - bytes &&
1224 		IS_ALIGNED(offset, sizeof(u32)) &&
1225 		!buffer->free &&
1226 		(!buffer->allow_user_free || !buffer->transaction);
1227 }
1228 
1229 /**
1230  * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1231  * @alloc: binder_alloc for this proc
1232  * @buffer: binder buffer to be accessed
1233  * @buffer_offset: offset into @buffer data
1234  * @from: userspace pointer to source buffer
1235  * @bytes: bytes to copy
1236  *
1237  * Copy bytes from source userspace to target buffer.
1238  *
1239  * Return: bytes remaining to be copied
1240  */
1241 unsigned long
1242 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1243 				 struct binder_buffer *buffer,
1244 				 binder_size_t buffer_offset,
1245 				 const void __user *from,
1246 				 size_t bytes)
1247 {
1248 	if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1249 		return bytes;
1250 
1251 	while (bytes) {
1252 		unsigned long size;
1253 		unsigned long ret;
1254 		struct page *page;
1255 		pgoff_t pgoff;
1256 		void *kptr;
1257 
1258 		page = binder_alloc_get_page(alloc, buffer,
1259 					     buffer_offset, &pgoff);
1260 		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1261 		kptr = kmap_local_page(page) + pgoff;
1262 		ret = copy_from_user(kptr, from, size);
1263 		kunmap_local(kptr);
1264 		if (ret)
1265 			return bytes - size + ret;
1266 		bytes -= size;
1267 		from += size;
1268 		buffer_offset += size;
1269 	}
1270 	return 0;
1271 }
1272 
1273 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1274 				       bool to_buffer,
1275 				       struct binder_buffer *buffer,
1276 				       binder_size_t buffer_offset,
1277 				       void *ptr,
1278 				       size_t bytes)
1279 {
1280 	/* All copies must be 32-bit aligned and 32-bit size */
1281 	if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1282 		return -EINVAL;
1283 
1284 	while (bytes) {
1285 		unsigned long size;
1286 		struct page *page;
1287 		pgoff_t pgoff;
1288 
1289 		page = binder_alloc_get_page(alloc, buffer,
1290 					     buffer_offset, &pgoff);
1291 		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1292 		if (to_buffer)
1293 			memcpy_to_page(page, pgoff, ptr, size);
1294 		else
1295 			memcpy_from_page(ptr, page, pgoff, size);
1296 		bytes -= size;
1297 		pgoff = 0;
1298 		ptr = ptr + size;
1299 		buffer_offset += size;
1300 	}
1301 	return 0;
1302 }
1303 
1304 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1305 				struct binder_buffer *buffer,
1306 				binder_size_t buffer_offset,
1307 				void *src,
1308 				size_t bytes)
1309 {
1310 	return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1311 					   src, bytes);
1312 }
1313 
1314 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1315 				  void *dest,
1316 				  struct binder_buffer *buffer,
1317 				  binder_size_t buffer_offset,
1318 				  size_t bytes)
1319 {
1320 	return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1321 					   dest, bytes);
1322 }
1323