1 // SPDX-License-Identifier: GPL-2.0-only 2 /* binder_alloc.c 3 * 4 * Android IPC Subsystem 5 * 6 * Copyright (C) 2007-2017 Google, Inc. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/list.h> 12 #include <linux/sched/mm.h> 13 #include <linux/module.h> 14 #include <linux/rtmutex.h> 15 #include <linux/rbtree.h> 16 #include <linux/seq_file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/list_lru.h> 21 #include <linux/ratelimit.h> 22 #include <asm/cacheflush.h> 23 #include <linux/uaccess.h> 24 #include <linux/highmem.h> 25 #include <linux/sizes.h> 26 #include "binder_alloc.h" 27 #include "binder_trace.h" 28 29 struct list_lru binder_freelist; 30 31 static DEFINE_MUTEX(binder_alloc_mmap_lock); 32 33 enum { 34 BINDER_DEBUG_USER_ERROR = 1U << 0, 35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1, 36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2, 37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3, 38 }; 39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR; 40 41 module_param_named(debug_mask, binder_alloc_debug_mask, 42 uint, 0644); 43 44 #define binder_alloc_debug(mask, x...) \ 45 do { \ 46 if (binder_alloc_debug_mask & mask) \ 47 pr_info_ratelimited(x); \ 48 } while (0) 49 50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer) 51 { 52 return list_entry(buffer->entry.next, struct binder_buffer, entry); 53 } 54 55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer) 56 { 57 return list_entry(buffer->entry.prev, struct binder_buffer, entry); 58 } 59 60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc, 61 struct binder_buffer *buffer) 62 { 63 if (list_is_last(&buffer->entry, &alloc->buffers)) 64 return alloc->buffer + alloc->buffer_size - buffer->user_data; 65 return binder_buffer_next(buffer)->user_data - buffer->user_data; 66 } 67 68 static void binder_insert_free_buffer(struct binder_alloc *alloc, 69 struct binder_buffer *new_buffer) 70 { 71 struct rb_node **p = &alloc->free_buffers.rb_node; 72 struct rb_node *parent = NULL; 73 struct binder_buffer *buffer; 74 size_t buffer_size; 75 size_t new_buffer_size; 76 77 BUG_ON(!new_buffer->free); 78 79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer); 80 81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 82 "%d: add free buffer, size %zd, at %pK\n", 83 alloc->pid, new_buffer_size, new_buffer); 84 85 while (*p) { 86 parent = *p; 87 buffer = rb_entry(parent, struct binder_buffer, rb_node); 88 BUG_ON(!buffer->free); 89 90 buffer_size = binder_alloc_buffer_size(alloc, buffer); 91 92 if (new_buffer_size < buffer_size) 93 p = &parent->rb_left; 94 else 95 p = &parent->rb_right; 96 } 97 rb_link_node(&new_buffer->rb_node, parent, p); 98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers); 99 } 100 101 static void binder_insert_allocated_buffer_locked( 102 struct binder_alloc *alloc, struct binder_buffer *new_buffer) 103 { 104 struct rb_node **p = &alloc->allocated_buffers.rb_node; 105 struct rb_node *parent = NULL; 106 struct binder_buffer *buffer; 107 108 BUG_ON(new_buffer->free); 109 110 while (*p) { 111 parent = *p; 112 buffer = rb_entry(parent, struct binder_buffer, rb_node); 113 BUG_ON(buffer->free); 114 115 if (new_buffer->user_data < buffer->user_data) 116 p = &parent->rb_left; 117 else if (new_buffer->user_data > buffer->user_data) 118 p = &parent->rb_right; 119 else 120 BUG(); 121 } 122 rb_link_node(&new_buffer->rb_node, parent, p); 123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers); 124 } 125 126 static struct binder_buffer *binder_alloc_prepare_to_free_locked( 127 struct binder_alloc *alloc, 128 unsigned long user_ptr) 129 { 130 struct rb_node *n = alloc->allocated_buffers.rb_node; 131 struct binder_buffer *buffer; 132 133 while (n) { 134 buffer = rb_entry(n, struct binder_buffer, rb_node); 135 BUG_ON(buffer->free); 136 137 if (user_ptr < buffer->user_data) { 138 n = n->rb_left; 139 } else if (user_ptr > buffer->user_data) { 140 n = n->rb_right; 141 } else { 142 /* 143 * Guard against user threads attempting to 144 * free the buffer when in use by kernel or 145 * after it's already been freed. 146 */ 147 if (!buffer->allow_user_free) 148 return ERR_PTR(-EPERM); 149 buffer->allow_user_free = 0; 150 return buffer; 151 } 152 } 153 return NULL; 154 } 155 156 /** 157 * binder_alloc_prepare_to_free() - get buffer given user ptr 158 * @alloc: binder_alloc for this proc 159 * @user_ptr: User pointer to buffer data 160 * 161 * Validate userspace pointer to buffer data and return buffer corresponding to 162 * that user pointer. Search the rb tree for buffer that matches user data 163 * pointer. 164 * 165 * Return: Pointer to buffer or NULL 166 */ 167 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc, 168 unsigned long user_ptr) 169 { 170 struct binder_buffer *buffer; 171 172 mutex_lock(&alloc->mutex); 173 buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr); 174 mutex_unlock(&alloc->mutex); 175 return buffer; 176 } 177 178 static inline void 179 binder_set_installed_page(struct binder_lru_page *lru_page, 180 struct page *page) 181 { 182 /* Pairs with acquire in binder_get_installed_page() */ 183 smp_store_release(&lru_page->page_ptr, page); 184 } 185 186 static inline struct page * 187 binder_get_installed_page(struct binder_lru_page *lru_page) 188 { 189 /* Pairs with release in binder_set_installed_page() */ 190 return smp_load_acquire(&lru_page->page_ptr); 191 } 192 193 static void binder_lru_freelist_add(struct binder_alloc *alloc, 194 unsigned long start, unsigned long end) 195 { 196 struct binder_lru_page *page; 197 unsigned long page_addr; 198 199 trace_binder_update_page_range(alloc, false, start, end); 200 201 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 202 size_t index; 203 int ret; 204 205 index = (page_addr - alloc->buffer) / PAGE_SIZE; 206 page = &alloc->pages[index]; 207 208 if (!binder_get_installed_page(page)) 209 continue; 210 211 trace_binder_free_lru_start(alloc, index); 212 213 ret = list_lru_add(&binder_freelist, 214 &page->lru, 215 page_to_nid(page->page_ptr), 216 NULL); 217 WARN_ON(!ret); 218 219 trace_binder_free_lru_end(alloc, index); 220 } 221 } 222 223 static int binder_install_single_page(struct binder_alloc *alloc, 224 struct binder_lru_page *lru_page, 225 unsigned long addr) 226 { 227 struct vm_area_struct *vma; 228 struct page *page; 229 long npages; 230 int ret; 231 232 if (!mmget_not_zero(alloc->mm)) 233 return -ESRCH; 234 235 page = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 236 if (!page) { 237 pr_err("%d: failed to allocate page\n", alloc->pid); 238 ret = -ENOMEM; 239 goto out; 240 } 241 242 mmap_read_lock(alloc->mm); 243 vma = vma_lookup(alloc->mm, addr); 244 if (!vma || vma != alloc->vma) { 245 __free_page(page); 246 pr_err("%d: %s failed, no vma\n", alloc->pid, __func__); 247 ret = -ESRCH; 248 goto unlock; 249 } 250 251 ret = vm_insert_page(vma, addr, page); 252 switch (ret) { 253 case -EBUSY: 254 /* 255 * EBUSY is ok. Someone installed the pte first but the 256 * lru_page->page_ptr has not been updated yet. Discard 257 * our page and look up the one already installed. 258 */ 259 ret = 0; 260 __free_page(page); 261 npages = get_user_pages_remote(alloc->mm, addr, 1, 262 FOLL_NOFAULT, &page, NULL); 263 if (npages <= 0) { 264 pr_err("%d: failed to find page at offset %lx\n", 265 alloc->pid, addr - alloc->buffer); 266 ret = -ESRCH; 267 break; 268 } 269 fallthrough; 270 case 0: 271 /* Mark page installation complete and safe to use */ 272 binder_set_installed_page(lru_page, page); 273 break; 274 default: 275 __free_page(page); 276 pr_err("%d: %s failed to insert page at offset %lx with %d\n", 277 alloc->pid, __func__, addr - alloc->buffer, ret); 278 ret = -ENOMEM; 279 break; 280 } 281 unlock: 282 mmap_read_unlock(alloc->mm); 283 out: 284 mmput_async(alloc->mm); 285 return ret; 286 } 287 288 static int binder_install_buffer_pages(struct binder_alloc *alloc, 289 struct binder_buffer *buffer, 290 size_t size) 291 { 292 struct binder_lru_page *page; 293 unsigned long start, final; 294 unsigned long page_addr; 295 296 start = buffer->user_data & PAGE_MASK; 297 final = PAGE_ALIGN(buffer->user_data + size); 298 299 for (page_addr = start; page_addr < final; page_addr += PAGE_SIZE) { 300 unsigned long index; 301 int ret; 302 303 index = (page_addr - alloc->buffer) / PAGE_SIZE; 304 page = &alloc->pages[index]; 305 306 if (binder_get_installed_page(page)) 307 continue; 308 309 trace_binder_alloc_page_start(alloc, index); 310 311 ret = binder_install_single_page(alloc, page, page_addr); 312 if (ret) 313 return ret; 314 315 trace_binder_alloc_page_end(alloc, index); 316 } 317 318 return 0; 319 } 320 321 /* The range of pages should exclude those shared with other buffers */ 322 static void binder_lru_freelist_del(struct binder_alloc *alloc, 323 unsigned long start, unsigned long end) 324 { 325 struct binder_lru_page *page; 326 unsigned long page_addr; 327 328 trace_binder_update_page_range(alloc, true, start, end); 329 330 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 331 unsigned long index; 332 bool on_lru; 333 334 index = (page_addr - alloc->buffer) / PAGE_SIZE; 335 page = &alloc->pages[index]; 336 337 if (page->page_ptr) { 338 trace_binder_alloc_lru_start(alloc, index); 339 340 on_lru = list_lru_del(&binder_freelist, 341 &page->lru, 342 page_to_nid(page->page_ptr), 343 NULL); 344 WARN_ON(!on_lru); 345 346 trace_binder_alloc_lru_end(alloc, index); 347 continue; 348 } 349 350 if (index + 1 > alloc->pages_high) 351 alloc->pages_high = index + 1; 352 } 353 } 354 355 static inline void binder_alloc_set_vma(struct binder_alloc *alloc, 356 struct vm_area_struct *vma) 357 { 358 /* pairs with smp_load_acquire in binder_alloc_get_vma() */ 359 smp_store_release(&alloc->vma, vma); 360 } 361 362 static inline struct vm_area_struct *binder_alloc_get_vma( 363 struct binder_alloc *alloc) 364 { 365 /* pairs with smp_store_release in binder_alloc_set_vma() */ 366 return smp_load_acquire(&alloc->vma); 367 } 368 369 static void debug_no_space_locked(struct binder_alloc *alloc) 370 { 371 size_t largest_alloc_size = 0; 372 struct binder_buffer *buffer; 373 size_t allocated_buffers = 0; 374 size_t largest_free_size = 0; 375 size_t total_alloc_size = 0; 376 size_t total_free_size = 0; 377 size_t free_buffers = 0; 378 size_t buffer_size; 379 struct rb_node *n; 380 381 for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) { 382 buffer = rb_entry(n, struct binder_buffer, rb_node); 383 buffer_size = binder_alloc_buffer_size(alloc, buffer); 384 allocated_buffers++; 385 total_alloc_size += buffer_size; 386 if (buffer_size > largest_alloc_size) 387 largest_alloc_size = buffer_size; 388 } 389 390 for (n = rb_first(&alloc->free_buffers); n; n = rb_next(n)) { 391 buffer = rb_entry(n, struct binder_buffer, rb_node); 392 buffer_size = binder_alloc_buffer_size(alloc, buffer); 393 free_buffers++; 394 total_free_size += buffer_size; 395 if (buffer_size > largest_free_size) 396 largest_free_size = buffer_size; 397 } 398 399 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 400 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n", 401 total_alloc_size, allocated_buffers, 402 largest_alloc_size, total_free_size, 403 free_buffers, largest_free_size); 404 } 405 406 static bool debug_low_async_space_locked(struct binder_alloc *alloc) 407 { 408 /* 409 * Find the amount and size of buffers allocated by the current caller; 410 * The idea is that once we cross the threshold, whoever is responsible 411 * for the low async space is likely to try to send another async txn, 412 * and at some point we'll catch them in the act. This is more efficient 413 * than keeping a map per pid. 414 */ 415 struct binder_buffer *buffer; 416 size_t total_alloc_size = 0; 417 int pid = current->tgid; 418 size_t num_buffers = 0; 419 struct rb_node *n; 420 421 /* 422 * Only start detecting spammers once we have less than 20% of async 423 * space left (which is less than 10% of total buffer size). 424 */ 425 if (alloc->free_async_space >= alloc->buffer_size / 10) { 426 alloc->oneway_spam_detected = false; 427 return false; 428 } 429 430 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 431 n = rb_next(n)) { 432 buffer = rb_entry(n, struct binder_buffer, rb_node); 433 if (buffer->pid != pid) 434 continue; 435 if (!buffer->async_transaction) 436 continue; 437 total_alloc_size += binder_alloc_buffer_size(alloc, buffer); 438 num_buffers++; 439 } 440 441 /* 442 * Warn if this pid has more than 50 transactions, or more than 50% of 443 * async space (which is 25% of total buffer size). Oneway spam is only 444 * detected when the threshold is exceeded. 445 */ 446 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) { 447 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 448 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n", 449 alloc->pid, pid, num_buffers, total_alloc_size); 450 if (!alloc->oneway_spam_detected) { 451 alloc->oneway_spam_detected = true; 452 return true; 453 } 454 } 455 return false; 456 } 457 458 /* Callers preallocate @new_buffer, it is freed by this function if unused */ 459 static struct binder_buffer *binder_alloc_new_buf_locked( 460 struct binder_alloc *alloc, 461 struct binder_buffer *new_buffer, 462 size_t size, 463 int is_async) 464 { 465 struct rb_node *n = alloc->free_buffers.rb_node; 466 struct rb_node *best_fit = NULL; 467 struct binder_buffer *buffer; 468 unsigned long next_used_page; 469 unsigned long curr_last_page; 470 size_t buffer_size; 471 472 if (is_async && alloc->free_async_space < size) { 473 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 474 "%d: binder_alloc_buf size %zd failed, no async space left\n", 475 alloc->pid, size); 476 buffer = ERR_PTR(-ENOSPC); 477 goto out; 478 } 479 480 while (n) { 481 buffer = rb_entry(n, struct binder_buffer, rb_node); 482 BUG_ON(!buffer->free); 483 buffer_size = binder_alloc_buffer_size(alloc, buffer); 484 485 if (size < buffer_size) { 486 best_fit = n; 487 n = n->rb_left; 488 } else if (size > buffer_size) { 489 n = n->rb_right; 490 } else { 491 best_fit = n; 492 break; 493 } 494 } 495 496 if (unlikely(!best_fit)) { 497 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 498 "%d: binder_alloc_buf size %zd failed, no address space\n", 499 alloc->pid, size); 500 debug_no_space_locked(alloc); 501 buffer = ERR_PTR(-ENOSPC); 502 goto out; 503 } 504 505 if (buffer_size != size) { 506 /* Found an oversized buffer and needs to be split */ 507 buffer = rb_entry(best_fit, struct binder_buffer, rb_node); 508 buffer_size = binder_alloc_buffer_size(alloc, buffer); 509 510 WARN_ON(n || buffer_size == size); 511 new_buffer->user_data = buffer->user_data + size; 512 list_add(&new_buffer->entry, &buffer->entry); 513 new_buffer->free = 1; 514 binder_insert_free_buffer(alloc, new_buffer); 515 new_buffer = NULL; 516 } 517 518 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 519 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n", 520 alloc->pid, size, buffer, buffer_size); 521 522 /* 523 * Now we remove the pages from the freelist. A clever calculation 524 * with buffer_size determines if the last page is shared with an 525 * adjacent in-use buffer. In such case, the page has been already 526 * removed from the freelist so we trim our range short. 527 */ 528 next_used_page = (buffer->user_data + buffer_size) & PAGE_MASK; 529 curr_last_page = PAGE_ALIGN(buffer->user_data + size); 530 binder_lru_freelist_del(alloc, PAGE_ALIGN(buffer->user_data), 531 min(next_used_page, curr_last_page)); 532 533 rb_erase(&buffer->rb_node, &alloc->free_buffers); 534 buffer->free = 0; 535 buffer->allow_user_free = 0; 536 binder_insert_allocated_buffer_locked(alloc, buffer); 537 buffer->async_transaction = is_async; 538 buffer->oneway_spam_suspect = false; 539 if (is_async) { 540 alloc->free_async_space -= size; 541 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 542 "%d: binder_alloc_buf size %zd async free %zd\n", 543 alloc->pid, size, alloc->free_async_space); 544 if (debug_low_async_space_locked(alloc)) 545 buffer->oneway_spam_suspect = true; 546 } 547 548 out: 549 /* Discard possibly unused new_buffer */ 550 kfree(new_buffer); 551 return buffer; 552 } 553 554 /* Calculate the sanitized total size, returns 0 for invalid request */ 555 static inline size_t sanitized_size(size_t data_size, 556 size_t offsets_size, 557 size_t extra_buffers_size) 558 { 559 size_t total, tmp; 560 561 /* Align to pointer size and check for overflows */ 562 tmp = ALIGN(data_size, sizeof(void *)) + 563 ALIGN(offsets_size, sizeof(void *)); 564 if (tmp < data_size || tmp < offsets_size) 565 return 0; 566 total = tmp + ALIGN(extra_buffers_size, sizeof(void *)); 567 if (total < tmp || total < extra_buffers_size) 568 return 0; 569 570 /* Pad 0-sized buffers so they get a unique address */ 571 total = max(total, sizeof(void *)); 572 573 return total; 574 } 575 576 /** 577 * binder_alloc_new_buf() - Allocate a new binder buffer 578 * @alloc: binder_alloc for this proc 579 * @data_size: size of user data buffer 580 * @offsets_size: user specified buffer offset 581 * @extra_buffers_size: size of extra space for meta-data (eg, security context) 582 * @is_async: buffer for async transaction 583 * 584 * Allocate a new buffer given the requested sizes. Returns 585 * the kernel version of the buffer pointer. The size allocated 586 * is the sum of the three given sizes (each rounded up to 587 * pointer-sized boundary) 588 * 589 * Return: The allocated buffer or %ERR_PTR(-errno) if error 590 */ 591 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc, 592 size_t data_size, 593 size_t offsets_size, 594 size_t extra_buffers_size, 595 int is_async) 596 { 597 struct binder_buffer *buffer, *next; 598 size_t size; 599 int ret; 600 601 /* Check binder_alloc is fully initialized */ 602 if (!binder_alloc_get_vma(alloc)) { 603 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 604 "%d: binder_alloc_buf, no vma\n", 605 alloc->pid); 606 return ERR_PTR(-ESRCH); 607 } 608 609 size = sanitized_size(data_size, offsets_size, extra_buffers_size); 610 if (unlikely(!size)) { 611 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 612 "%d: got transaction with invalid size %zd-%zd-%zd\n", 613 alloc->pid, data_size, offsets_size, 614 extra_buffers_size); 615 return ERR_PTR(-EINVAL); 616 } 617 618 /* Preallocate the next buffer */ 619 next = kzalloc(sizeof(*next), GFP_KERNEL); 620 if (!next) 621 return ERR_PTR(-ENOMEM); 622 623 mutex_lock(&alloc->mutex); 624 buffer = binder_alloc_new_buf_locked(alloc, next, size, is_async); 625 if (IS_ERR(buffer)) { 626 mutex_unlock(&alloc->mutex); 627 goto out; 628 } 629 630 buffer->data_size = data_size; 631 buffer->offsets_size = offsets_size; 632 buffer->extra_buffers_size = extra_buffers_size; 633 buffer->pid = current->tgid; 634 mutex_unlock(&alloc->mutex); 635 636 ret = binder_install_buffer_pages(alloc, buffer, size); 637 if (ret) { 638 binder_alloc_free_buf(alloc, buffer); 639 buffer = ERR_PTR(ret); 640 } 641 out: 642 return buffer; 643 } 644 645 static unsigned long buffer_start_page(struct binder_buffer *buffer) 646 { 647 return buffer->user_data & PAGE_MASK; 648 } 649 650 static unsigned long prev_buffer_end_page(struct binder_buffer *buffer) 651 { 652 return (buffer->user_data - 1) & PAGE_MASK; 653 } 654 655 static void binder_delete_free_buffer(struct binder_alloc *alloc, 656 struct binder_buffer *buffer) 657 { 658 struct binder_buffer *prev, *next; 659 660 if (PAGE_ALIGNED(buffer->user_data)) 661 goto skip_freelist; 662 663 BUG_ON(alloc->buffers.next == &buffer->entry); 664 prev = binder_buffer_prev(buffer); 665 BUG_ON(!prev->free); 666 if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) 667 goto skip_freelist; 668 669 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 670 next = binder_buffer_next(buffer); 671 if (buffer_start_page(next) == buffer_start_page(buffer)) 672 goto skip_freelist; 673 } 674 675 binder_lru_freelist_add(alloc, buffer_start_page(buffer), 676 buffer_start_page(buffer) + PAGE_SIZE); 677 skip_freelist: 678 list_del(&buffer->entry); 679 kfree(buffer); 680 } 681 682 static void binder_free_buf_locked(struct binder_alloc *alloc, 683 struct binder_buffer *buffer) 684 { 685 size_t size, buffer_size; 686 687 buffer_size = binder_alloc_buffer_size(alloc, buffer); 688 689 size = ALIGN(buffer->data_size, sizeof(void *)) + 690 ALIGN(buffer->offsets_size, sizeof(void *)) + 691 ALIGN(buffer->extra_buffers_size, sizeof(void *)); 692 693 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 694 "%d: binder_free_buf %pK size %zd buffer_size %zd\n", 695 alloc->pid, buffer, size, buffer_size); 696 697 BUG_ON(buffer->free); 698 BUG_ON(size > buffer_size); 699 BUG_ON(buffer->transaction != NULL); 700 BUG_ON(buffer->user_data < alloc->buffer); 701 BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size); 702 703 if (buffer->async_transaction) { 704 alloc->free_async_space += buffer_size; 705 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 706 "%d: binder_free_buf size %zd async free %zd\n", 707 alloc->pid, size, alloc->free_async_space); 708 } 709 710 binder_lru_freelist_add(alloc, PAGE_ALIGN(buffer->user_data), 711 (buffer->user_data + buffer_size) & PAGE_MASK); 712 713 rb_erase(&buffer->rb_node, &alloc->allocated_buffers); 714 buffer->free = 1; 715 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 716 struct binder_buffer *next = binder_buffer_next(buffer); 717 718 if (next->free) { 719 rb_erase(&next->rb_node, &alloc->free_buffers); 720 binder_delete_free_buffer(alloc, next); 721 } 722 } 723 if (alloc->buffers.next != &buffer->entry) { 724 struct binder_buffer *prev = binder_buffer_prev(buffer); 725 726 if (prev->free) { 727 binder_delete_free_buffer(alloc, buffer); 728 rb_erase(&prev->rb_node, &alloc->free_buffers); 729 buffer = prev; 730 } 731 } 732 binder_insert_free_buffer(alloc, buffer); 733 } 734 735 /** 736 * binder_alloc_get_page() - get kernel pointer for given buffer offset 737 * @alloc: binder_alloc for this proc 738 * @buffer: binder buffer to be accessed 739 * @buffer_offset: offset into @buffer data 740 * @pgoffp: address to copy final page offset to 741 * 742 * Lookup the struct page corresponding to the address 743 * at @buffer_offset into @buffer->user_data. If @pgoffp is not 744 * NULL, the byte-offset into the page is written there. 745 * 746 * The caller is responsible to ensure that the offset points 747 * to a valid address within the @buffer and that @buffer is 748 * not freeable by the user. Since it can't be freed, we are 749 * guaranteed that the corresponding elements of @alloc->pages[] 750 * cannot change. 751 * 752 * Return: struct page 753 */ 754 static struct page *binder_alloc_get_page(struct binder_alloc *alloc, 755 struct binder_buffer *buffer, 756 binder_size_t buffer_offset, 757 pgoff_t *pgoffp) 758 { 759 binder_size_t buffer_space_offset = buffer_offset + 760 (buffer->user_data - alloc->buffer); 761 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK; 762 size_t index = buffer_space_offset >> PAGE_SHIFT; 763 struct binder_lru_page *lru_page; 764 765 lru_page = &alloc->pages[index]; 766 *pgoffp = pgoff; 767 return lru_page->page_ptr; 768 } 769 770 /** 771 * binder_alloc_clear_buf() - zero out buffer 772 * @alloc: binder_alloc for this proc 773 * @buffer: binder buffer to be cleared 774 * 775 * memset the given buffer to 0 776 */ 777 static void binder_alloc_clear_buf(struct binder_alloc *alloc, 778 struct binder_buffer *buffer) 779 { 780 size_t bytes = binder_alloc_buffer_size(alloc, buffer); 781 binder_size_t buffer_offset = 0; 782 783 while (bytes) { 784 unsigned long size; 785 struct page *page; 786 pgoff_t pgoff; 787 788 page = binder_alloc_get_page(alloc, buffer, 789 buffer_offset, &pgoff); 790 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 791 memset_page(page, pgoff, 0, size); 792 bytes -= size; 793 buffer_offset += size; 794 } 795 } 796 797 /** 798 * binder_alloc_free_buf() - free a binder buffer 799 * @alloc: binder_alloc for this proc 800 * @buffer: kernel pointer to buffer 801 * 802 * Free the buffer allocated via binder_alloc_new_buf() 803 */ 804 void binder_alloc_free_buf(struct binder_alloc *alloc, 805 struct binder_buffer *buffer) 806 { 807 /* 808 * We could eliminate the call to binder_alloc_clear_buf() 809 * from binder_alloc_deferred_release() by moving this to 810 * binder_free_buf_locked(). However, that could 811 * increase contention for the alloc mutex if clear_on_free 812 * is used frequently for large buffers. The mutex is not 813 * needed for correctness here. 814 */ 815 if (buffer->clear_on_free) { 816 binder_alloc_clear_buf(alloc, buffer); 817 buffer->clear_on_free = false; 818 } 819 mutex_lock(&alloc->mutex); 820 binder_free_buf_locked(alloc, buffer); 821 mutex_unlock(&alloc->mutex); 822 } 823 824 /** 825 * binder_alloc_mmap_handler() - map virtual address space for proc 826 * @alloc: alloc structure for this proc 827 * @vma: vma passed to mmap() 828 * 829 * Called by binder_mmap() to initialize the space specified in 830 * vma for allocating binder buffers 831 * 832 * Return: 833 * 0 = success 834 * -EBUSY = address space already mapped 835 * -ENOMEM = failed to map memory to given address space 836 */ 837 int binder_alloc_mmap_handler(struct binder_alloc *alloc, 838 struct vm_area_struct *vma) 839 { 840 struct binder_buffer *buffer; 841 const char *failure_string; 842 int ret, i; 843 844 if (unlikely(vma->vm_mm != alloc->mm)) { 845 ret = -EINVAL; 846 failure_string = "invalid vma->vm_mm"; 847 goto err_invalid_mm; 848 } 849 850 mutex_lock(&binder_alloc_mmap_lock); 851 if (alloc->buffer_size) { 852 ret = -EBUSY; 853 failure_string = "already mapped"; 854 goto err_already_mapped; 855 } 856 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start, 857 SZ_4M); 858 mutex_unlock(&binder_alloc_mmap_lock); 859 860 alloc->buffer = vma->vm_start; 861 862 alloc->pages = kvcalloc(alloc->buffer_size / PAGE_SIZE, 863 sizeof(alloc->pages[0]), 864 GFP_KERNEL); 865 if (alloc->pages == NULL) { 866 ret = -ENOMEM; 867 failure_string = "alloc page array"; 868 goto err_alloc_pages_failed; 869 } 870 871 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 872 alloc->pages[i].alloc = alloc; 873 INIT_LIST_HEAD(&alloc->pages[i].lru); 874 } 875 876 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 877 if (!buffer) { 878 ret = -ENOMEM; 879 failure_string = "alloc buffer struct"; 880 goto err_alloc_buf_struct_failed; 881 } 882 883 buffer->user_data = alloc->buffer; 884 list_add(&buffer->entry, &alloc->buffers); 885 buffer->free = 1; 886 binder_insert_free_buffer(alloc, buffer); 887 alloc->free_async_space = alloc->buffer_size / 2; 888 889 /* Signal binder_alloc is fully initialized */ 890 binder_alloc_set_vma(alloc, vma); 891 892 return 0; 893 894 err_alloc_buf_struct_failed: 895 kvfree(alloc->pages); 896 alloc->pages = NULL; 897 err_alloc_pages_failed: 898 alloc->buffer = 0; 899 mutex_lock(&binder_alloc_mmap_lock); 900 alloc->buffer_size = 0; 901 err_already_mapped: 902 mutex_unlock(&binder_alloc_mmap_lock); 903 err_invalid_mm: 904 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 905 "%s: %d %lx-%lx %s failed %d\n", __func__, 906 alloc->pid, vma->vm_start, vma->vm_end, 907 failure_string, ret); 908 return ret; 909 } 910 911 912 void binder_alloc_deferred_release(struct binder_alloc *alloc) 913 { 914 struct rb_node *n; 915 int buffers, page_count; 916 struct binder_buffer *buffer; 917 918 buffers = 0; 919 mutex_lock(&alloc->mutex); 920 BUG_ON(alloc->vma); 921 922 while ((n = rb_first(&alloc->allocated_buffers))) { 923 buffer = rb_entry(n, struct binder_buffer, rb_node); 924 925 /* Transaction should already have been freed */ 926 BUG_ON(buffer->transaction); 927 928 if (buffer->clear_on_free) { 929 binder_alloc_clear_buf(alloc, buffer); 930 buffer->clear_on_free = false; 931 } 932 binder_free_buf_locked(alloc, buffer); 933 buffers++; 934 } 935 936 while (!list_empty(&alloc->buffers)) { 937 buffer = list_first_entry(&alloc->buffers, 938 struct binder_buffer, entry); 939 WARN_ON(!buffer->free); 940 941 list_del(&buffer->entry); 942 WARN_ON_ONCE(!list_empty(&alloc->buffers)); 943 kfree(buffer); 944 } 945 946 page_count = 0; 947 if (alloc->pages) { 948 int i; 949 950 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 951 bool on_lru; 952 953 if (!alloc->pages[i].page_ptr) 954 continue; 955 956 on_lru = list_lru_del(&binder_freelist, 957 &alloc->pages[i].lru, 958 page_to_nid(alloc->pages[i].page_ptr), 959 NULL); 960 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 961 "%s: %d: page %d %s\n", 962 __func__, alloc->pid, i, 963 on_lru ? "on lru" : "active"); 964 __free_page(alloc->pages[i].page_ptr); 965 page_count++; 966 } 967 } 968 mutex_unlock(&alloc->mutex); 969 kvfree(alloc->pages); 970 if (alloc->mm) 971 mmdrop(alloc->mm); 972 973 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE, 974 "%s: %d buffers %d, pages %d\n", 975 __func__, alloc->pid, buffers, page_count); 976 } 977 978 /** 979 * binder_alloc_print_allocated() - print buffer info 980 * @m: seq_file for output via seq_printf() 981 * @alloc: binder_alloc for this proc 982 * 983 * Prints information about every buffer associated with 984 * the binder_alloc state to the given seq_file 985 */ 986 void binder_alloc_print_allocated(struct seq_file *m, 987 struct binder_alloc *alloc) 988 { 989 struct binder_buffer *buffer; 990 struct rb_node *n; 991 992 mutex_lock(&alloc->mutex); 993 for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) { 994 buffer = rb_entry(n, struct binder_buffer, rb_node); 995 seq_printf(m, " buffer %d: %lx size %zd:%zd:%zd %s\n", 996 buffer->debug_id, 997 buffer->user_data - alloc->buffer, 998 buffer->data_size, buffer->offsets_size, 999 buffer->extra_buffers_size, 1000 buffer->transaction ? "active" : "delivered"); 1001 } 1002 mutex_unlock(&alloc->mutex); 1003 } 1004 1005 /** 1006 * binder_alloc_print_pages() - print page usage 1007 * @m: seq_file for output via seq_printf() 1008 * @alloc: binder_alloc for this proc 1009 */ 1010 void binder_alloc_print_pages(struct seq_file *m, 1011 struct binder_alloc *alloc) 1012 { 1013 struct binder_lru_page *page; 1014 int i; 1015 int active = 0; 1016 int lru = 0; 1017 int free = 0; 1018 1019 mutex_lock(&alloc->mutex); 1020 /* 1021 * Make sure the binder_alloc is fully initialized, otherwise we might 1022 * read inconsistent state. 1023 */ 1024 if (binder_alloc_get_vma(alloc) != NULL) { 1025 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 1026 page = &alloc->pages[i]; 1027 if (!page->page_ptr) 1028 free++; 1029 else if (list_empty(&page->lru)) 1030 active++; 1031 else 1032 lru++; 1033 } 1034 } 1035 mutex_unlock(&alloc->mutex); 1036 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free); 1037 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high); 1038 } 1039 1040 /** 1041 * binder_alloc_get_allocated_count() - return count of buffers 1042 * @alloc: binder_alloc for this proc 1043 * 1044 * Return: count of allocated buffers 1045 */ 1046 int binder_alloc_get_allocated_count(struct binder_alloc *alloc) 1047 { 1048 struct rb_node *n; 1049 int count = 0; 1050 1051 mutex_lock(&alloc->mutex); 1052 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 1053 count++; 1054 mutex_unlock(&alloc->mutex); 1055 return count; 1056 } 1057 1058 1059 /** 1060 * binder_alloc_vma_close() - invalidate address space 1061 * @alloc: binder_alloc for this proc 1062 * 1063 * Called from binder_vma_close() when releasing address space. 1064 * Clears alloc->vma to prevent new incoming transactions from 1065 * allocating more buffers. 1066 */ 1067 void binder_alloc_vma_close(struct binder_alloc *alloc) 1068 { 1069 binder_alloc_set_vma(alloc, NULL); 1070 } 1071 1072 /** 1073 * binder_alloc_free_page() - shrinker callback to free pages 1074 * @item: item to free 1075 * @lru: list_lru instance of the item 1076 * @cb_arg: callback argument 1077 * 1078 * Called from list_lru_walk() in binder_shrink_scan() to free 1079 * up pages when the system is under memory pressure. 1080 */ 1081 enum lru_status binder_alloc_free_page(struct list_head *item, 1082 struct list_lru_one *lru, 1083 void *cb_arg) 1084 __must_hold(&lru->lock) 1085 { 1086 struct binder_lru_page *page = container_of(item, typeof(*page), lru); 1087 struct binder_alloc *alloc = page->alloc; 1088 struct mm_struct *mm = alloc->mm; 1089 struct vm_area_struct *vma; 1090 struct page *page_to_free; 1091 unsigned long page_addr; 1092 size_t index; 1093 1094 if (!mmget_not_zero(mm)) 1095 goto err_mmget; 1096 if (!mmap_read_trylock(mm)) 1097 goto err_mmap_read_lock_failed; 1098 if (!mutex_trylock(&alloc->mutex)) 1099 goto err_get_alloc_mutex_failed; 1100 if (!page->page_ptr) 1101 goto err_page_already_freed; 1102 1103 index = page - alloc->pages; 1104 page_addr = alloc->buffer + index * PAGE_SIZE; 1105 1106 vma = vma_lookup(mm, page_addr); 1107 if (vma && vma != binder_alloc_get_vma(alloc)) 1108 goto err_invalid_vma; 1109 1110 trace_binder_unmap_kernel_start(alloc, index); 1111 1112 page_to_free = page->page_ptr; 1113 page->page_ptr = NULL; 1114 1115 trace_binder_unmap_kernel_end(alloc, index); 1116 1117 list_lru_isolate(lru, item); 1118 spin_unlock(&lru->lock); 1119 1120 if (vma) { 1121 trace_binder_unmap_user_start(alloc, index); 1122 1123 zap_page_range_single(vma, page_addr, PAGE_SIZE, NULL); 1124 1125 trace_binder_unmap_user_end(alloc, index); 1126 } 1127 1128 mutex_unlock(&alloc->mutex); 1129 mmap_read_unlock(mm); 1130 mmput_async(mm); 1131 __free_page(page_to_free); 1132 1133 return LRU_REMOVED_RETRY; 1134 1135 err_invalid_vma: 1136 err_page_already_freed: 1137 mutex_unlock(&alloc->mutex); 1138 err_get_alloc_mutex_failed: 1139 mmap_read_unlock(mm); 1140 err_mmap_read_lock_failed: 1141 mmput_async(mm); 1142 err_mmget: 1143 return LRU_SKIP; 1144 } 1145 1146 static unsigned long 1147 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1148 { 1149 return list_lru_count(&binder_freelist); 1150 } 1151 1152 static unsigned long 1153 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1154 { 1155 return list_lru_walk(&binder_freelist, binder_alloc_free_page, 1156 NULL, sc->nr_to_scan); 1157 } 1158 1159 static struct shrinker *binder_shrinker; 1160 1161 /** 1162 * binder_alloc_init() - called by binder_open() for per-proc initialization 1163 * @alloc: binder_alloc for this proc 1164 * 1165 * Called from binder_open() to initialize binder_alloc fields for 1166 * new binder proc 1167 */ 1168 void binder_alloc_init(struct binder_alloc *alloc) 1169 { 1170 alloc->pid = current->group_leader->pid; 1171 alloc->mm = current->mm; 1172 mmgrab(alloc->mm); 1173 mutex_init(&alloc->mutex); 1174 INIT_LIST_HEAD(&alloc->buffers); 1175 } 1176 1177 int binder_alloc_shrinker_init(void) 1178 { 1179 int ret; 1180 1181 ret = list_lru_init(&binder_freelist); 1182 if (ret) 1183 return ret; 1184 1185 binder_shrinker = shrinker_alloc(0, "android-binder"); 1186 if (!binder_shrinker) { 1187 list_lru_destroy(&binder_freelist); 1188 return -ENOMEM; 1189 } 1190 1191 binder_shrinker->count_objects = binder_shrink_count; 1192 binder_shrinker->scan_objects = binder_shrink_scan; 1193 1194 shrinker_register(binder_shrinker); 1195 1196 return 0; 1197 } 1198 1199 void binder_alloc_shrinker_exit(void) 1200 { 1201 shrinker_free(binder_shrinker); 1202 list_lru_destroy(&binder_freelist); 1203 } 1204 1205 /** 1206 * check_buffer() - verify that buffer/offset is safe to access 1207 * @alloc: binder_alloc for this proc 1208 * @buffer: binder buffer to be accessed 1209 * @offset: offset into @buffer data 1210 * @bytes: bytes to access from offset 1211 * 1212 * Check that the @offset/@bytes are within the size of the given 1213 * @buffer and that the buffer is currently active and not freeable. 1214 * Offsets must also be multiples of sizeof(u32). The kernel is 1215 * allowed to touch the buffer in two cases: 1216 * 1217 * 1) when the buffer is being created: 1218 * (buffer->free == 0 && buffer->allow_user_free == 0) 1219 * 2) when the buffer is being torn down: 1220 * (buffer->free == 0 && buffer->transaction == NULL). 1221 * 1222 * Return: true if the buffer is safe to access 1223 */ 1224 static inline bool check_buffer(struct binder_alloc *alloc, 1225 struct binder_buffer *buffer, 1226 binder_size_t offset, size_t bytes) 1227 { 1228 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer); 1229 1230 return buffer_size >= bytes && 1231 offset <= buffer_size - bytes && 1232 IS_ALIGNED(offset, sizeof(u32)) && 1233 !buffer->free && 1234 (!buffer->allow_user_free || !buffer->transaction); 1235 } 1236 1237 /** 1238 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user 1239 * @alloc: binder_alloc for this proc 1240 * @buffer: binder buffer to be accessed 1241 * @buffer_offset: offset into @buffer data 1242 * @from: userspace pointer to source buffer 1243 * @bytes: bytes to copy 1244 * 1245 * Copy bytes from source userspace to target buffer. 1246 * 1247 * Return: bytes remaining to be copied 1248 */ 1249 unsigned long 1250 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc, 1251 struct binder_buffer *buffer, 1252 binder_size_t buffer_offset, 1253 const void __user *from, 1254 size_t bytes) 1255 { 1256 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1257 return bytes; 1258 1259 while (bytes) { 1260 unsigned long size; 1261 unsigned long ret; 1262 struct page *page; 1263 pgoff_t pgoff; 1264 void *kptr; 1265 1266 page = binder_alloc_get_page(alloc, buffer, 1267 buffer_offset, &pgoff); 1268 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1269 kptr = kmap_local_page(page) + pgoff; 1270 ret = copy_from_user(kptr, from, size); 1271 kunmap_local(kptr); 1272 if (ret) 1273 return bytes - size + ret; 1274 bytes -= size; 1275 from += size; 1276 buffer_offset += size; 1277 } 1278 return 0; 1279 } 1280 1281 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc, 1282 bool to_buffer, 1283 struct binder_buffer *buffer, 1284 binder_size_t buffer_offset, 1285 void *ptr, 1286 size_t bytes) 1287 { 1288 /* All copies must be 32-bit aligned and 32-bit size */ 1289 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1290 return -EINVAL; 1291 1292 while (bytes) { 1293 unsigned long size; 1294 struct page *page; 1295 pgoff_t pgoff; 1296 1297 page = binder_alloc_get_page(alloc, buffer, 1298 buffer_offset, &pgoff); 1299 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1300 if (to_buffer) 1301 memcpy_to_page(page, pgoff, ptr, size); 1302 else 1303 memcpy_from_page(ptr, page, pgoff, size); 1304 bytes -= size; 1305 pgoff = 0; 1306 ptr = ptr + size; 1307 buffer_offset += size; 1308 } 1309 return 0; 1310 } 1311 1312 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc, 1313 struct binder_buffer *buffer, 1314 binder_size_t buffer_offset, 1315 void *src, 1316 size_t bytes) 1317 { 1318 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset, 1319 src, bytes); 1320 } 1321 1322 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc, 1323 void *dest, 1324 struct binder_buffer *buffer, 1325 binder_size_t buffer_offset, 1326 size_t bytes) 1327 { 1328 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset, 1329 dest, bytes); 1330 } 1331