1 // SPDX-License-Identifier: GPL-2.0-only 2 /* binder_alloc.c 3 * 4 * Android IPC Subsystem 5 * 6 * Copyright (C) 2007-2017 Google, Inc. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/list.h> 12 #include <linux/sched/mm.h> 13 #include <linux/module.h> 14 #include <linux/rtmutex.h> 15 #include <linux/rbtree.h> 16 #include <linux/seq_file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/list_lru.h> 21 #include <linux/ratelimit.h> 22 #include <asm/cacheflush.h> 23 #include <linux/uaccess.h> 24 #include <linux/highmem.h> 25 #include <linux/sizes.h> 26 #include "binder_alloc.h" 27 #include "binder_trace.h" 28 29 struct list_lru binder_alloc_lru; 30 31 static DEFINE_MUTEX(binder_alloc_mmap_lock); 32 33 enum { 34 BINDER_DEBUG_USER_ERROR = 1U << 0, 35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1, 36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2, 37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3, 38 }; 39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR; 40 41 module_param_named(debug_mask, binder_alloc_debug_mask, 42 uint, 0644); 43 44 #define binder_alloc_debug(mask, x...) \ 45 do { \ 46 if (binder_alloc_debug_mask & mask) \ 47 pr_info_ratelimited(x); \ 48 } while (0) 49 50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer) 51 { 52 return list_entry(buffer->entry.next, struct binder_buffer, entry); 53 } 54 55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer) 56 { 57 return list_entry(buffer->entry.prev, struct binder_buffer, entry); 58 } 59 60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc, 61 struct binder_buffer *buffer) 62 { 63 if (list_is_last(&buffer->entry, &alloc->buffers)) 64 return alloc->buffer + alloc->buffer_size - buffer->user_data; 65 return binder_buffer_next(buffer)->user_data - buffer->user_data; 66 } 67 68 static void binder_insert_free_buffer(struct binder_alloc *alloc, 69 struct binder_buffer *new_buffer) 70 { 71 struct rb_node **p = &alloc->free_buffers.rb_node; 72 struct rb_node *parent = NULL; 73 struct binder_buffer *buffer; 74 size_t buffer_size; 75 size_t new_buffer_size; 76 77 BUG_ON(!new_buffer->free); 78 79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer); 80 81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 82 "%d: add free buffer, size %zd, at %pK\n", 83 alloc->pid, new_buffer_size, new_buffer); 84 85 while (*p) { 86 parent = *p; 87 buffer = rb_entry(parent, struct binder_buffer, rb_node); 88 BUG_ON(!buffer->free); 89 90 buffer_size = binder_alloc_buffer_size(alloc, buffer); 91 92 if (new_buffer_size < buffer_size) 93 p = &parent->rb_left; 94 else 95 p = &parent->rb_right; 96 } 97 rb_link_node(&new_buffer->rb_node, parent, p); 98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers); 99 } 100 101 static void binder_insert_allocated_buffer_locked( 102 struct binder_alloc *alloc, struct binder_buffer *new_buffer) 103 { 104 struct rb_node **p = &alloc->allocated_buffers.rb_node; 105 struct rb_node *parent = NULL; 106 struct binder_buffer *buffer; 107 108 BUG_ON(new_buffer->free); 109 110 while (*p) { 111 parent = *p; 112 buffer = rb_entry(parent, struct binder_buffer, rb_node); 113 BUG_ON(buffer->free); 114 115 if (new_buffer->user_data < buffer->user_data) 116 p = &parent->rb_left; 117 else if (new_buffer->user_data > buffer->user_data) 118 p = &parent->rb_right; 119 else 120 BUG(); 121 } 122 rb_link_node(&new_buffer->rb_node, parent, p); 123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers); 124 } 125 126 static struct binder_buffer *binder_alloc_prepare_to_free_locked( 127 struct binder_alloc *alloc, 128 unsigned long user_ptr) 129 { 130 struct rb_node *n = alloc->allocated_buffers.rb_node; 131 struct binder_buffer *buffer; 132 133 while (n) { 134 buffer = rb_entry(n, struct binder_buffer, rb_node); 135 BUG_ON(buffer->free); 136 137 if (user_ptr < buffer->user_data) { 138 n = n->rb_left; 139 } else if (user_ptr > buffer->user_data) { 140 n = n->rb_right; 141 } else { 142 /* 143 * Guard against user threads attempting to 144 * free the buffer when in use by kernel or 145 * after it's already been freed. 146 */ 147 if (!buffer->allow_user_free) 148 return ERR_PTR(-EPERM); 149 buffer->allow_user_free = 0; 150 return buffer; 151 } 152 } 153 return NULL; 154 } 155 156 /** 157 * binder_alloc_prepare_to_free() - get buffer given user ptr 158 * @alloc: binder_alloc for this proc 159 * @user_ptr: User pointer to buffer data 160 * 161 * Validate userspace pointer to buffer data and return buffer corresponding to 162 * that user pointer. Search the rb tree for buffer that matches user data 163 * pointer. 164 * 165 * Return: Pointer to buffer or NULL 166 */ 167 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc, 168 unsigned long user_ptr) 169 { 170 struct binder_buffer *buffer; 171 172 mutex_lock(&alloc->mutex); 173 buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr); 174 mutex_unlock(&alloc->mutex); 175 return buffer; 176 } 177 178 static inline void 179 binder_set_installed_page(struct binder_lru_page *lru_page, 180 struct page *page) 181 { 182 /* Pairs with acquire in binder_get_installed_page() */ 183 smp_store_release(&lru_page->page_ptr, page); 184 } 185 186 static inline struct page * 187 binder_get_installed_page(struct binder_lru_page *lru_page) 188 { 189 /* Pairs with release in binder_set_installed_page() */ 190 return smp_load_acquire(&lru_page->page_ptr); 191 } 192 193 static void binder_free_page_range(struct binder_alloc *alloc, 194 unsigned long start, unsigned long end) 195 { 196 struct binder_lru_page *page; 197 unsigned long page_addr; 198 199 trace_binder_update_page_range(alloc, false, start, end); 200 201 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 202 size_t index; 203 int ret; 204 205 index = (page_addr - alloc->buffer) / PAGE_SIZE; 206 page = &alloc->pages[index]; 207 208 if (!binder_get_installed_page(page)) 209 continue; 210 211 trace_binder_free_lru_start(alloc, index); 212 213 ret = list_lru_add(&binder_alloc_lru, &page->lru); 214 WARN_ON(!ret); 215 216 trace_binder_free_lru_end(alloc, index); 217 } 218 } 219 220 static int binder_install_single_page(struct binder_alloc *alloc, 221 struct binder_lru_page *lru_page, 222 unsigned long addr) 223 { 224 struct page *page; 225 int ret = 0; 226 227 if (!mmget_not_zero(alloc->mm)) 228 return -ESRCH; 229 230 /* 231 * Protected with mmap_sem in write mode as multiple tasks 232 * might race to install the same page. 233 */ 234 mmap_write_lock(alloc->mm); 235 if (binder_get_installed_page(lru_page)) 236 goto out; 237 238 if (!alloc->vma) { 239 pr_err("%d: %s failed, no vma\n", alloc->pid, __func__); 240 ret = -ESRCH; 241 goto out; 242 } 243 244 page = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 245 if (!page) { 246 pr_err("%d: failed to allocate page\n", alloc->pid); 247 ret = -ENOMEM; 248 goto out; 249 } 250 251 ret = vm_insert_page(alloc->vma, addr, page); 252 if (ret) { 253 pr_err("%d: %s failed to insert page at %lx with %d\n", 254 alloc->pid, __func__, addr, ret); 255 __free_page(page); 256 ret = -ENOMEM; 257 goto out; 258 } 259 260 /* Mark page installation complete and safe to use */ 261 binder_set_installed_page(lru_page, page); 262 out: 263 mmap_write_unlock(alloc->mm); 264 mmput_async(alloc->mm); 265 return ret; 266 } 267 268 static int binder_install_buffer_pages(struct binder_alloc *alloc, 269 struct binder_buffer *buffer, 270 size_t size) 271 { 272 struct binder_lru_page *page; 273 unsigned long start, final; 274 unsigned long page_addr; 275 276 start = buffer->user_data & PAGE_MASK; 277 final = PAGE_ALIGN(buffer->user_data + size); 278 279 for (page_addr = start; page_addr < final; page_addr += PAGE_SIZE) { 280 unsigned long index; 281 int ret; 282 283 index = (page_addr - alloc->buffer) / PAGE_SIZE; 284 page = &alloc->pages[index]; 285 286 if (binder_get_installed_page(page)) 287 continue; 288 289 trace_binder_alloc_page_start(alloc, index); 290 291 ret = binder_install_single_page(alloc, page, page_addr); 292 if (ret) 293 return ret; 294 295 trace_binder_alloc_page_end(alloc, index); 296 } 297 298 return 0; 299 } 300 301 /* The range of pages should exclude those shared with other buffers */ 302 static void binder_allocate_page_range(struct binder_alloc *alloc, 303 unsigned long start, unsigned long end) 304 { 305 struct binder_lru_page *page; 306 unsigned long page_addr; 307 308 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 309 "%d: allocate pages %lx-%lx\n", 310 alloc->pid, start, end); 311 312 trace_binder_update_page_range(alloc, true, start, end); 313 314 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 315 unsigned long index; 316 bool on_lru; 317 318 index = (page_addr - alloc->buffer) / PAGE_SIZE; 319 page = &alloc->pages[index]; 320 321 if (page->page_ptr) { 322 trace_binder_alloc_lru_start(alloc, index); 323 324 on_lru = list_lru_del(&binder_alloc_lru, &page->lru); 325 WARN_ON(!on_lru); 326 327 trace_binder_alloc_lru_end(alloc, index); 328 continue; 329 } 330 331 if (index + 1 > alloc->pages_high) 332 alloc->pages_high = index + 1; 333 } 334 } 335 336 static inline void binder_alloc_set_vma(struct binder_alloc *alloc, 337 struct vm_area_struct *vma) 338 { 339 /* pairs with smp_load_acquire in binder_alloc_get_vma() */ 340 smp_store_release(&alloc->vma, vma); 341 } 342 343 static inline struct vm_area_struct *binder_alloc_get_vma( 344 struct binder_alloc *alloc) 345 { 346 /* pairs with smp_store_release in binder_alloc_set_vma() */ 347 return smp_load_acquire(&alloc->vma); 348 } 349 350 static void debug_no_space_locked(struct binder_alloc *alloc) 351 { 352 size_t largest_alloc_size = 0; 353 struct binder_buffer *buffer; 354 size_t allocated_buffers = 0; 355 size_t largest_free_size = 0; 356 size_t total_alloc_size = 0; 357 size_t total_free_size = 0; 358 size_t free_buffers = 0; 359 size_t buffer_size; 360 struct rb_node *n; 361 362 for (n = rb_first(&alloc->allocated_buffers); n; n = rb_next(n)) { 363 buffer = rb_entry(n, struct binder_buffer, rb_node); 364 buffer_size = binder_alloc_buffer_size(alloc, buffer); 365 allocated_buffers++; 366 total_alloc_size += buffer_size; 367 if (buffer_size > largest_alloc_size) 368 largest_alloc_size = buffer_size; 369 } 370 371 for (n = rb_first(&alloc->free_buffers); n; n = rb_next(n)) { 372 buffer = rb_entry(n, struct binder_buffer, rb_node); 373 buffer_size = binder_alloc_buffer_size(alloc, buffer); 374 free_buffers++; 375 total_free_size += buffer_size; 376 if (buffer_size > largest_free_size) 377 largest_free_size = buffer_size; 378 } 379 380 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 381 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n", 382 total_alloc_size, allocated_buffers, 383 largest_alloc_size, total_free_size, 384 free_buffers, largest_free_size); 385 } 386 387 static bool debug_low_async_space_locked(struct binder_alloc *alloc) 388 { 389 /* 390 * Find the amount and size of buffers allocated by the current caller; 391 * The idea is that once we cross the threshold, whoever is responsible 392 * for the low async space is likely to try to send another async txn, 393 * and at some point we'll catch them in the act. This is more efficient 394 * than keeping a map per pid. 395 */ 396 struct binder_buffer *buffer; 397 size_t total_alloc_size = 0; 398 int pid = current->tgid; 399 size_t num_buffers = 0; 400 struct rb_node *n; 401 402 /* 403 * Only start detecting spammers once we have less than 20% of async 404 * space left (which is less than 10% of total buffer size). 405 */ 406 if (alloc->free_async_space >= alloc->buffer_size / 10) { 407 alloc->oneway_spam_detected = false; 408 return false; 409 } 410 411 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 412 n = rb_next(n)) { 413 buffer = rb_entry(n, struct binder_buffer, rb_node); 414 if (buffer->pid != pid) 415 continue; 416 if (!buffer->async_transaction) 417 continue; 418 total_alloc_size += binder_alloc_buffer_size(alloc, buffer); 419 num_buffers++; 420 } 421 422 /* 423 * Warn if this pid has more than 50 transactions, or more than 50% of 424 * async space (which is 25% of total buffer size). Oneway spam is only 425 * detected when the threshold is exceeded. 426 */ 427 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) { 428 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 429 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n", 430 alloc->pid, pid, num_buffers, total_alloc_size); 431 if (!alloc->oneway_spam_detected) { 432 alloc->oneway_spam_detected = true; 433 return true; 434 } 435 } 436 return false; 437 } 438 439 /* Callers preallocate @new_buffer, it is freed by this function if unused */ 440 static struct binder_buffer *binder_alloc_new_buf_locked( 441 struct binder_alloc *alloc, 442 struct binder_buffer *new_buffer, 443 size_t size, 444 int is_async) 445 { 446 struct rb_node *n = alloc->free_buffers.rb_node; 447 struct rb_node *best_fit = NULL; 448 struct binder_buffer *buffer; 449 unsigned long has_page_addr; 450 unsigned long end_page_addr; 451 size_t buffer_size; 452 453 if (is_async && alloc->free_async_space < size) { 454 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 455 "%d: binder_alloc_buf size %zd failed, no async space left\n", 456 alloc->pid, size); 457 buffer = ERR_PTR(-ENOSPC); 458 goto out; 459 } 460 461 while (n) { 462 buffer = rb_entry(n, struct binder_buffer, rb_node); 463 BUG_ON(!buffer->free); 464 buffer_size = binder_alloc_buffer_size(alloc, buffer); 465 466 if (size < buffer_size) { 467 best_fit = n; 468 n = n->rb_left; 469 } else if (size > buffer_size) { 470 n = n->rb_right; 471 } else { 472 best_fit = n; 473 break; 474 } 475 } 476 477 if (unlikely(!best_fit)) { 478 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 479 "%d: binder_alloc_buf size %zd failed, no address space\n", 480 alloc->pid, size); 481 debug_no_space_locked(alloc); 482 buffer = ERR_PTR(-ENOSPC); 483 goto out; 484 } 485 486 if (n == NULL) { 487 buffer = rb_entry(best_fit, struct binder_buffer, rb_node); 488 buffer_size = binder_alloc_buffer_size(alloc, buffer); 489 } 490 491 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 492 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n", 493 alloc->pid, size, buffer, buffer_size); 494 495 WARN_ON(n && buffer_size != size); 496 497 has_page_addr = (buffer->user_data + buffer_size) & PAGE_MASK; 498 end_page_addr = PAGE_ALIGN(buffer->user_data + size); 499 if (end_page_addr > has_page_addr) 500 end_page_addr = has_page_addr; 501 binder_allocate_page_range(alloc, PAGE_ALIGN(buffer->user_data), 502 end_page_addr); 503 if (buffer_size != size) { 504 new_buffer->user_data = buffer->user_data + size; 505 list_add(&new_buffer->entry, &buffer->entry); 506 new_buffer->free = 1; 507 binder_insert_free_buffer(alloc, new_buffer); 508 new_buffer = NULL; 509 } 510 511 rb_erase(best_fit, &alloc->free_buffers); 512 buffer->free = 0; 513 buffer->allow_user_free = 0; 514 binder_insert_allocated_buffer_locked(alloc, buffer); 515 buffer->async_transaction = is_async; 516 buffer->oneway_spam_suspect = false; 517 if (is_async) { 518 alloc->free_async_space -= size; 519 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 520 "%d: binder_alloc_buf size %zd async free %zd\n", 521 alloc->pid, size, alloc->free_async_space); 522 if (debug_low_async_space_locked(alloc)) 523 buffer->oneway_spam_suspect = true; 524 } 525 526 out: 527 /* Discard possibly unused new_buffer */ 528 kfree(new_buffer); 529 return buffer; 530 } 531 532 /* Calculate the sanitized total size, returns 0 for invalid request */ 533 static inline size_t sanitized_size(size_t data_size, 534 size_t offsets_size, 535 size_t extra_buffers_size) 536 { 537 size_t total, tmp; 538 539 /* Align to pointer size and check for overflows */ 540 tmp = ALIGN(data_size, sizeof(void *)) + 541 ALIGN(offsets_size, sizeof(void *)); 542 if (tmp < data_size || tmp < offsets_size) 543 return 0; 544 total = tmp + ALIGN(extra_buffers_size, sizeof(void *)); 545 if (total < tmp || total < extra_buffers_size) 546 return 0; 547 548 /* Pad 0-sized buffers so they get a unique address */ 549 total = max(total, sizeof(void *)); 550 551 return total; 552 } 553 554 /** 555 * binder_alloc_new_buf() - Allocate a new binder buffer 556 * @alloc: binder_alloc for this proc 557 * @data_size: size of user data buffer 558 * @offsets_size: user specified buffer offset 559 * @extra_buffers_size: size of extra space for meta-data (eg, security context) 560 * @is_async: buffer for async transaction 561 * 562 * Allocate a new buffer given the requested sizes. Returns 563 * the kernel version of the buffer pointer. The size allocated 564 * is the sum of the three given sizes (each rounded up to 565 * pointer-sized boundary) 566 * 567 * Return: The allocated buffer or %ERR_PTR(-errno) if error 568 */ 569 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc, 570 size_t data_size, 571 size_t offsets_size, 572 size_t extra_buffers_size, 573 int is_async) 574 { 575 struct binder_buffer *buffer, *next; 576 size_t size; 577 int ret; 578 579 /* Check binder_alloc is fully initialized */ 580 if (!binder_alloc_get_vma(alloc)) { 581 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 582 "%d: binder_alloc_buf, no vma\n", 583 alloc->pid); 584 return ERR_PTR(-ESRCH); 585 } 586 587 size = sanitized_size(data_size, offsets_size, extra_buffers_size); 588 if (unlikely(!size)) { 589 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 590 "%d: got transaction with invalid size %zd-%zd-%zd\n", 591 alloc->pid, data_size, offsets_size, 592 extra_buffers_size); 593 return ERR_PTR(-EINVAL); 594 } 595 596 /* Preallocate the next buffer */ 597 next = kzalloc(sizeof(*next), GFP_KERNEL); 598 if (!next) 599 return ERR_PTR(-ENOMEM); 600 601 mutex_lock(&alloc->mutex); 602 buffer = binder_alloc_new_buf_locked(alloc, next, size, is_async); 603 if (IS_ERR(buffer)) { 604 mutex_unlock(&alloc->mutex); 605 goto out; 606 } 607 608 buffer->data_size = data_size; 609 buffer->offsets_size = offsets_size; 610 buffer->extra_buffers_size = extra_buffers_size; 611 buffer->pid = current->tgid; 612 mutex_unlock(&alloc->mutex); 613 614 ret = binder_install_buffer_pages(alloc, buffer, size); 615 if (ret) { 616 binder_alloc_free_buf(alloc, buffer); 617 buffer = ERR_PTR(ret); 618 } 619 out: 620 return buffer; 621 } 622 623 static unsigned long buffer_start_page(struct binder_buffer *buffer) 624 { 625 return buffer->user_data & PAGE_MASK; 626 } 627 628 static unsigned long prev_buffer_end_page(struct binder_buffer *buffer) 629 { 630 return (buffer->user_data - 1) & PAGE_MASK; 631 } 632 633 static void binder_delete_free_buffer(struct binder_alloc *alloc, 634 struct binder_buffer *buffer) 635 { 636 struct binder_buffer *prev, *next = NULL; 637 bool to_free = true; 638 639 BUG_ON(alloc->buffers.next == &buffer->entry); 640 prev = binder_buffer_prev(buffer); 641 BUG_ON(!prev->free); 642 if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) { 643 to_free = false; 644 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 645 "%d: merge free, buffer %lx share page with %lx\n", 646 alloc->pid, buffer->user_data, 647 prev->user_data); 648 } 649 650 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 651 next = binder_buffer_next(buffer); 652 if (buffer_start_page(next) == buffer_start_page(buffer)) { 653 to_free = false; 654 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 655 "%d: merge free, buffer %lx share page with %lx\n", 656 alloc->pid, 657 buffer->user_data, 658 next->user_data); 659 } 660 } 661 662 if (PAGE_ALIGNED(buffer->user_data)) { 663 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 664 "%d: merge free, buffer start %lx is page aligned\n", 665 alloc->pid, buffer->user_data); 666 to_free = false; 667 } 668 669 if (to_free) { 670 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 671 "%d: merge free, buffer %lx do not share page with %lx or %lx\n", 672 alloc->pid, buffer->user_data, 673 prev->user_data, 674 next ? next->user_data : 0); 675 binder_free_page_range(alloc, buffer_start_page(buffer), 676 buffer_start_page(buffer) + PAGE_SIZE); 677 } 678 list_del(&buffer->entry); 679 kfree(buffer); 680 } 681 682 static void binder_free_buf_locked(struct binder_alloc *alloc, 683 struct binder_buffer *buffer) 684 { 685 size_t size, buffer_size; 686 687 buffer_size = binder_alloc_buffer_size(alloc, buffer); 688 689 size = ALIGN(buffer->data_size, sizeof(void *)) + 690 ALIGN(buffer->offsets_size, sizeof(void *)) + 691 ALIGN(buffer->extra_buffers_size, sizeof(void *)); 692 693 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 694 "%d: binder_free_buf %pK size %zd buffer_size %zd\n", 695 alloc->pid, buffer, size, buffer_size); 696 697 BUG_ON(buffer->free); 698 BUG_ON(size > buffer_size); 699 BUG_ON(buffer->transaction != NULL); 700 BUG_ON(buffer->user_data < alloc->buffer); 701 BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size); 702 703 if (buffer->async_transaction) { 704 alloc->free_async_space += buffer_size; 705 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 706 "%d: binder_free_buf size %zd async free %zd\n", 707 alloc->pid, size, alloc->free_async_space); 708 } 709 710 binder_free_page_range(alloc, PAGE_ALIGN(buffer->user_data), 711 (buffer->user_data + buffer_size) & PAGE_MASK); 712 713 rb_erase(&buffer->rb_node, &alloc->allocated_buffers); 714 buffer->free = 1; 715 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 716 struct binder_buffer *next = binder_buffer_next(buffer); 717 718 if (next->free) { 719 rb_erase(&next->rb_node, &alloc->free_buffers); 720 binder_delete_free_buffer(alloc, next); 721 } 722 } 723 if (alloc->buffers.next != &buffer->entry) { 724 struct binder_buffer *prev = binder_buffer_prev(buffer); 725 726 if (prev->free) { 727 binder_delete_free_buffer(alloc, buffer); 728 rb_erase(&prev->rb_node, &alloc->free_buffers); 729 buffer = prev; 730 } 731 } 732 binder_insert_free_buffer(alloc, buffer); 733 } 734 735 /** 736 * binder_alloc_get_page() - get kernel pointer for given buffer offset 737 * @alloc: binder_alloc for this proc 738 * @buffer: binder buffer to be accessed 739 * @buffer_offset: offset into @buffer data 740 * @pgoffp: address to copy final page offset to 741 * 742 * Lookup the struct page corresponding to the address 743 * at @buffer_offset into @buffer->user_data. If @pgoffp is not 744 * NULL, the byte-offset into the page is written there. 745 * 746 * The caller is responsible to ensure that the offset points 747 * to a valid address within the @buffer and that @buffer is 748 * not freeable by the user. Since it can't be freed, we are 749 * guaranteed that the corresponding elements of @alloc->pages[] 750 * cannot change. 751 * 752 * Return: struct page 753 */ 754 static struct page *binder_alloc_get_page(struct binder_alloc *alloc, 755 struct binder_buffer *buffer, 756 binder_size_t buffer_offset, 757 pgoff_t *pgoffp) 758 { 759 binder_size_t buffer_space_offset = buffer_offset + 760 (buffer->user_data - alloc->buffer); 761 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK; 762 size_t index = buffer_space_offset >> PAGE_SHIFT; 763 struct binder_lru_page *lru_page; 764 765 lru_page = &alloc->pages[index]; 766 *pgoffp = pgoff; 767 return lru_page->page_ptr; 768 } 769 770 /** 771 * binder_alloc_clear_buf() - zero out buffer 772 * @alloc: binder_alloc for this proc 773 * @buffer: binder buffer to be cleared 774 * 775 * memset the given buffer to 0 776 */ 777 static void binder_alloc_clear_buf(struct binder_alloc *alloc, 778 struct binder_buffer *buffer) 779 { 780 size_t bytes = binder_alloc_buffer_size(alloc, buffer); 781 binder_size_t buffer_offset = 0; 782 783 while (bytes) { 784 unsigned long size; 785 struct page *page; 786 pgoff_t pgoff; 787 788 page = binder_alloc_get_page(alloc, buffer, 789 buffer_offset, &pgoff); 790 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 791 memset_page(page, pgoff, 0, size); 792 bytes -= size; 793 buffer_offset += size; 794 } 795 } 796 797 /** 798 * binder_alloc_free_buf() - free a binder buffer 799 * @alloc: binder_alloc for this proc 800 * @buffer: kernel pointer to buffer 801 * 802 * Free the buffer allocated via binder_alloc_new_buf() 803 */ 804 void binder_alloc_free_buf(struct binder_alloc *alloc, 805 struct binder_buffer *buffer) 806 { 807 /* 808 * We could eliminate the call to binder_alloc_clear_buf() 809 * from binder_alloc_deferred_release() by moving this to 810 * binder_free_buf_locked(). However, that could 811 * increase contention for the alloc mutex if clear_on_free 812 * is used frequently for large buffers. The mutex is not 813 * needed for correctness here. 814 */ 815 if (buffer->clear_on_free) { 816 binder_alloc_clear_buf(alloc, buffer); 817 buffer->clear_on_free = false; 818 } 819 mutex_lock(&alloc->mutex); 820 binder_free_buf_locked(alloc, buffer); 821 mutex_unlock(&alloc->mutex); 822 } 823 824 /** 825 * binder_alloc_mmap_handler() - map virtual address space for proc 826 * @alloc: alloc structure for this proc 827 * @vma: vma passed to mmap() 828 * 829 * Called by binder_mmap() to initialize the space specified in 830 * vma for allocating binder buffers 831 * 832 * Return: 833 * 0 = success 834 * -EBUSY = address space already mapped 835 * -ENOMEM = failed to map memory to given address space 836 */ 837 int binder_alloc_mmap_handler(struct binder_alloc *alloc, 838 struct vm_area_struct *vma) 839 { 840 struct binder_buffer *buffer; 841 const char *failure_string; 842 int ret, i; 843 844 if (unlikely(vma->vm_mm != alloc->mm)) { 845 ret = -EINVAL; 846 failure_string = "invalid vma->vm_mm"; 847 goto err_invalid_mm; 848 } 849 850 mutex_lock(&binder_alloc_mmap_lock); 851 if (alloc->buffer_size) { 852 ret = -EBUSY; 853 failure_string = "already mapped"; 854 goto err_already_mapped; 855 } 856 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start, 857 SZ_4M); 858 mutex_unlock(&binder_alloc_mmap_lock); 859 860 alloc->buffer = vma->vm_start; 861 862 alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE, 863 sizeof(alloc->pages[0]), 864 GFP_KERNEL); 865 if (alloc->pages == NULL) { 866 ret = -ENOMEM; 867 failure_string = "alloc page array"; 868 goto err_alloc_pages_failed; 869 } 870 871 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 872 alloc->pages[i].alloc = alloc; 873 INIT_LIST_HEAD(&alloc->pages[i].lru); 874 } 875 876 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 877 if (!buffer) { 878 ret = -ENOMEM; 879 failure_string = "alloc buffer struct"; 880 goto err_alloc_buf_struct_failed; 881 } 882 883 buffer->user_data = alloc->buffer; 884 list_add(&buffer->entry, &alloc->buffers); 885 buffer->free = 1; 886 binder_insert_free_buffer(alloc, buffer); 887 alloc->free_async_space = alloc->buffer_size / 2; 888 889 /* Signal binder_alloc is fully initialized */ 890 binder_alloc_set_vma(alloc, vma); 891 892 return 0; 893 894 err_alloc_buf_struct_failed: 895 kfree(alloc->pages); 896 alloc->pages = NULL; 897 err_alloc_pages_failed: 898 alloc->buffer = 0; 899 mutex_lock(&binder_alloc_mmap_lock); 900 alloc->buffer_size = 0; 901 err_already_mapped: 902 mutex_unlock(&binder_alloc_mmap_lock); 903 err_invalid_mm: 904 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 905 "%s: %d %lx-%lx %s failed %d\n", __func__, 906 alloc->pid, vma->vm_start, vma->vm_end, 907 failure_string, ret); 908 return ret; 909 } 910 911 912 void binder_alloc_deferred_release(struct binder_alloc *alloc) 913 { 914 struct rb_node *n; 915 int buffers, page_count; 916 struct binder_buffer *buffer; 917 918 buffers = 0; 919 mutex_lock(&alloc->mutex); 920 BUG_ON(alloc->vma); 921 922 while ((n = rb_first(&alloc->allocated_buffers))) { 923 buffer = rb_entry(n, struct binder_buffer, rb_node); 924 925 /* Transaction should already have been freed */ 926 BUG_ON(buffer->transaction); 927 928 if (buffer->clear_on_free) { 929 binder_alloc_clear_buf(alloc, buffer); 930 buffer->clear_on_free = false; 931 } 932 binder_free_buf_locked(alloc, buffer); 933 buffers++; 934 } 935 936 while (!list_empty(&alloc->buffers)) { 937 buffer = list_first_entry(&alloc->buffers, 938 struct binder_buffer, entry); 939 WARN_ON(!buffer->free); 940 941 list_del(&buffer->entry); 942 WARN_ON_ONCE(!list_empty(&alloc->buffers)); 943 kfree(buffer); 944 } 945 946 page_count = 0; 947 if (alloc->pages) { 948 int i; 949 950 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 951 unsigned long page_addr; 952 bool on_lru; 953 954 if (!alloc->pages[i].page_ptr) 955 continue; 956 957 on_lru = list_lru_del(&binder_alloc_lru, 958 &alloc->pages[i].lru); 959 page_addr = alloc->buffer + i * PAGE_SIZE; 960 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 961 "%s: %d: page %d at %lx %s\n", 962 __func__, alloc->pid, i, page_addr, 963 on_lru ? "on lru" : "active"); 964 __free_page(alloc->pages[i].page_ptr); 965 page_count++; 966 } 967 kfree(alloc->pages); 968 } 969 mutex_unlock(&alloc->mutex); 970 if (alloc->mm) 971 mmdrop(alloc->mm); 972 973 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE, 974 "%s: %d buffers %d, pages %d\n", 975 __func__, alloc->pid, buffers, page_count); 976 } 977 978 static void print_binder_buffer(struct seq_file *m, const char *prefix, 979 struct binder_buffer *buffer) 980 { 981 seq_printf(m, "%s %d: %lx size %zd:%zd:%zd %s\n", 982 prefix, buffer->debug_id, buffer->user_data, 983 buffer->data_size, buffer->offsets_size, 984 buffer->extra_buffers_size, 985 buffer->transaction ? "active" : "delivered"); 986 } 987 988 /** 989 * binder_alloc_print_allocated() - print buffer info 990 * @m: seq_file for output via seq_printf() 991 * @alloc: binder_alloc for this proc 992 * 993 * Prints information about every buffer associated with 994 * the binder_alloc state to the given seq_file 995 */ 996 void binder_alloc_print_allocated(struct seq_file *m, 997 struct binder_alloc *alloc) 998 { 999 struct rb_node *n; 1000 1001 mutex_lock(&alloc->mutex); 1002 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 1003 print_binder_buffer(m, " buffer", 1004 rb_entry(n, struct binder_buffer, rb_node)); 1005 mutex_unlock(&alloc->mutex); 1006 } 1007 1008 /** 1009 * binder_alloc_print_pages() - print page usage 1010 * @m: seq_file for output via seq_printf() 1011 * @alloc: binder_alloc for this proc 1012 */ 1013 void binder_alloc_print_pages(struct seq_file *m, 1014 struct binder_alloc *alloc) 1015 { 1016 struct binder_lru_page *page; 1017 int i; 1018 int active = 0; 1019 int lru = 0; 1020 int free = 0; 1021 1022 mutex_lock(&alloc->mutex); 1023 /* 1024 * Make sure the binder_alloc is fully initialized, otherwise we might 1025 * read inconsistent state. 1026 */ 1027 if (binder_alloc_get_vma(alloc) != NULL) { 1028 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 1029 page = &alloc->pages[i]; 1030 if (!page->page_ptr) 1031 free++; 1032 else if (list_empty(&page->lru)) 1033 active++; 1034 else 1035 lru++; 1036 } 1037 } 1038 mutex_unlock(&alloc->mutex); 1039 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free); 1040 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high); 1041 } 1042 1043 /** 1044 * binder_alloc_get_allocated_count() - return count of buffers 1045 * @alloc: binder_alloc for this proc 1046 * 1047 * Return: count of allocated buffers 1048 */ 1049 int binder_alloc_get_allocated_count(struct binder_alloc *alloc) 1050 { 1051 struct rb_node *n; 1052 int count = 0; 1053 1054 mutex_lock(&alloc->mutex); 1055 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 1056 count++; 1057 mutex_unlock(&alloc->mutex); 1058 return count; 1059 } 1060 1061 1062 /** 1063 * binder_alloc_vma_close() - invalidate address space 1064 * @alloc: binder_alloc for this proc 1065 * 1066 * Called from binder_vma_close() when releasing address space. 1067 * Clears alloc->vma to prevent new incoming transactions from 1068 * allocating more buffers. 1069 */ 1070 void binder_alloc_vma_close(struct binder_alloc *alloc) 1071 { 1072 binder_alloc_set_vma(alloc, NULL); 1073 } 1074 1075 /** 1076 * binder_alloc_free_page() - shrinker callback to free pages 1077 * @item: item to free 1078 * @lock: lock protecting the item 1079 * @cb_arg: callback argument 1080 * 1081 * Called from list_lru_walk() in binder_shrink_scan() to free 1082 * up pages when the system is under memory pressure. 1083 */ 1084 enum lru_status binder_alloc_free_page(struct list_head *item, 1085 struct list_lru_one *lru, 1086 spinlock_t *lock, 1087 void *cb_arg) 1088 __must_hold(lock) 1089 { 1090 struct mm_struct *mm = NULL; 1091 struct binder_lru_page *page = container_of(item, 1092 struct binder_lru_page, 1093 lru); 1094 struct binder_alloc *alloc; 1095 unsigned long page_addr; 1096 size_t index; 1097 struct vm_area_struct *vma; 1098 1099 alloc = page->alloc; 1100 if (!mutex_trylock(&alloc->mutex)) 1101 goto err_get_alloc_mutex_failed; 1102 1103 if (!page->page_ptr) 1104 goto err_page_already_freed; 1105 1106 index = page - alloc->pages; 1107 page_addr = alloc->buffer + index * PAGE_SIZE; 1108 1109 mm = alloc->mm; 1110 if (!mmget_not_zero(mm)) 1111 goto err_mmget; 1112 if (!mmap_read_trylock(mm)) 1113 goto err_mmap_read_lock_failed; 1114 vma = vma_lookup(mm, page_addr); 1115 if (vma && vma != binder_alloc_get_vma(alloc)) 1116 goto err_invalid_vma; 1117 1118 list_lru_isolate(lru, item); 1119 spin_unlock(lock); 1120 1121 if (vma) { 1122 trace_binder_unmap_user_start(alloc, index); 1123 1124 zap_page_range_single(vma, page_addr, PAGE_SIZE, NULL); 1125 1126 trace_binder_unmap_user_end(alloc, index); 1127 } 1128 mmap_read_unlock(mm); 1129 mmput_async(mm); 1130 1131 trace_binder_unmap_kernel_start(alloc, index); 1132 1133 __free_page(page->page_ptr); 1134 page->page_ptr = NULL; 1135 1136 trace_binder_unmap_kernel_end(alloc, index); 1137 1138 spin_lock(lock); 1139 mutex_unlock(&alloc->mutex); 1140 return LRU_REMOVED_RETRY; 1141 1142 err_invalid_vma: 1143 mmap_read_unlock(mm); 1144 err_mmap_read_lock_failed: 1145 mmput_async(mm); 1146 err_mmget: 1147 err_page_already_freed: 1148 mutex_unlock(&alloc->mutex); 1149 err_get_alloc_mutex_failed: 1150 return LRU_SKIP; 1151 } 1152 1153 static unsigned long 1154 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1155 { 1156 return list_lru_count(&binder_alloc_lru); 1157 } 1158 1159 static unsigned long 1160 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1161 { 1162 return list_lru_walk(&binder_alloc_lru, binder_alloc_free_page, 1163 NULL, sc->nr_to_scan); 1164 } 1165 1166 static struct shrinker *binder_shrinker; 1167 1168 /** 1169 * binder_alloc_init() - called by binder_open() for per-proc initialization 1170 * @alloc: binder_alloc for this proc 1171 * 1172 * Called from binder_open() to initialize binder_alloc fields for 1173 * new binder proc 1174 */ 1175 void binder_alloc_init(struct binder_alloc *alloc) 1176 { 1177 alloc->pid = current->group_leader->pid; 1178 alloc->mm = current->mm; 1179 mmgrab(alloc->mm); 1180 mutex_init(&alloc->mutex); 1181 INIT_LIST_HEAD(&alloc->buffers); 1182 } 1183 1184 int binder_alloc_shrinker_init(void) 1185 { 1186 int ret; 1187 1188 ret = list_lru_init(&binder_alloc_lru); 1189 if (ret) 1190 return ret; 1191 1192 binder_shrinker = shrinker_alloc(0, "android-binder"); 1193 if (!binder_shrinker) { 1194 list_lru_destroy(&binder_alloc_lru); 1195 return -ENOMEM; 1196 } 1197 1198 binder_shrinker->count_objects = binder_shrink_count; 1199 binder_shrinker->scan_objects = binder_shrink_scan; 1200 1201 shrinker_register(binder_shrinker); 1202 1203 return 0; 1204 } 1205 1206 void binder_alloc_shrinker_exit(void) 1207 { 1208 shrinker_free(binder_shrinker); 1209 list_lru_destroy(&binder_alloc_lru); 1210 } 1211 1212 /** 1213 * check_buffer() - verify that buffer/offset is safe to access 1214 * @alloc: binder_alloc for this proc 1215 * @buffer: binder buffer to be accessed 1216 * @offset: offset into @buffer data 1217 * @bytes: bytes to access from offset 1218 * 1219 * Check that the @offset/@bytes are within the size of the given 1220 * @buffer and that the buffer is currently active and not freeable. 1221 * Offsets must also be multiples of sizeof(u32). The kernel is 1222 * allowed to touch the buffer in two cases: 1223 * 1224 * 1) when the buffer is being created: 1225 * (buffer->free == 0 && buffer->allow_user_free == 0) 1226 * 2) when the buffer is being torn down: 1227 * (buffer->free == 0 && buffer->transaction == NULL). 1228 * 1229 * Return: true if the buffer is safe to access 1230 */ 1231 static inline bool check_buffer(struct binder_alloc *alloc, 1232 struct binder_buffer *buffer, 1233 binder_size_t offset, size_t bytes) 1234 { 1235 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer); 1236 1237 return buffer_size >= bytes && 1238 offset <= buffer_size - bytes && 1239 IS_ALIGNED(offset, sizeof(u32)) && 1240 !buffer->free && 1241 (!buffer->allow_user_free || !buffer->transaction); 1242 } 1243 1244 /** 1245 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user 1246 * @alloc: binder_alloc for this proc 1247 * @buffer: binder buffer to be accessed 1248 * @buffer_offset: offset into @buffer data 1249 * @from: userspace pointer to source buffer 1250 * @bytes: bytes to copy 1251 * 1252 * Copy bytes from source userspace to target buffer. 1253 * 1254 * Return: bytes remaining to be copied 1255 */ 1256 unsigned long 1257 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc, 1258 struct binder_buffer *buffer, 1259 binder_size_t buffer_offset, 1260 const void __user *from, 1261 size_t bytes) 1262 { 1263 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1264 return bytes; 1265 1266 while (bytes) { 1267 unsigned long size; 1268 unsigned long ret; 1269 struct page *page; 1270 pgoff_t pgoff; 1271 void *kptr; 1272 1273 page = binder_alloc_get_page(alloc, buffer, 1274 buffer_offset, &pgoff); 1275 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1276 kptr = kmap_local_page(page) + pgoff; 1277 ret = copy_from_user(kptr, from, size); 1278 kunmap_local(kptr); 1279 if (ret) 1280 return bytes - size + ret; 1281 bytes -= size; 1282 from += size; 1283 buffer_offset += size; 1284 } 1285 return 0; 1286 } 1287 1288 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc, 1289 bool to_buffer, 1290 struct binder_buffer *buffer, 1291 binder_size_t buffer_offset, 1292 void *ptr, 1293 size_t bytes) 1294 { 1295 /* All copies must be 32-bit aligned and 32-bit size */ 1296 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1297 return -EINVAL; 1298 1299 while (bytes) { 1300 unsigned long size; 1301 struct page *page; 1302 pgoff_t pgoff; 1303 1304 page = binder_alloc_get_page(alloc, buffer, 1305 buffer_offset, &pgoff); 1306 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1307 if (to_buffer) 1308 memcpy_to_page(page, pgoff, ptr, size); 1309 else 1310 memcpy_from_page(ptr, page, pgoff, size); 1311 bytes -= size; 1312 pgoff = 0; 1313 ptr = ptr + size; 1314 buffer_offset += size; 1315 } 1316 return 0; 1317 } 1318 1319 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc, 1320 struct binder_buffer *buffer, 1321 binder_size_t buffer_offset, 1322 void *src, 1323 size_t bytes) 1324 { 1325 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset, 1326 src, bytes); 1327 } 1328 1329 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc, 1330 void *dest, 1331 struct binder_buffer *buffer, 1332 binder_size_t buffer_offset, 1333 size_t bytes) 1334 { 1335 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset, 1336 dest, bytes); 1337 } 1338 1339