xref: /linux-6.15/arch/x86/kernel/process.c (revision bcefe12e)
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <trace/events/power.h>
13 #include <linux/hw_breakpoint.h>
14 #include <asm/system.h>
15 #include <asm/apic.h>
16 #include <asm/syscalls.h>
17 #include <asm/idle.h>
18 #include <asm/uaccess.h>
19 #include <asm/i387.h>
20 #include <asm/ds.h>
21 #include <asm/debugreg.h>
22 
23 unsigned long idle_halt;
24 EXPORT_SYMBOL(idle_halt);
25 unsigned long idle_nomwait;
26 EXPORT_SYMBOL(idle_nomwait);
27 
28 struct kmem_cache *task_xstate_cachep;
29 
30 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
31 {
32 	*dst = *src;
33 	if (src->thread.xstate) {
34 		dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
35 						      GFP_KERNEL);
36 		if (!dst->thread.xstate)
37 			return -ENOMEM;
38 		WARN_ON((unsigned long)dst->thread.xstate & 15);
39 		memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
40 	}
41 	return 0;
42 }
43 
44 void free_thread_xstate(struct task_struct *tsk)
45 {
46 	if (tsk->thread.xstate) {
47 		kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
48 		tsk->thread.xstate = NULL;
49 	}
50 
51 	WARN(tsk->thread.ds_ctx, "leaking DS context\n");
52 }
53 
54 void free_thread_info(struct thread_info *ti)
55 {
56 	free_thread_xstate(ti->task);
57 	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
58 }
59 
60 void arch_task_cache_init(void)
61 {
62         task_xstate_cachep =
63         	kmem_cache_create("task_xstate", xstate_size,
64 				  __alignof__(union thread_xstate),
65 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
66 }
67 
68 /*
69  * Free current thread data structures etc..
70  */
71 void exit_thread(void)
72 {
73 	struct task_struct *me = current;
74 	struct thread_struct *t = &me->thread;
75 	unsigned long *bp = t->io_bitmap_ptr;
76 
77 	if (bp) {
78 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
79 
80 		t->io_bitmap_ptr = NULL;
81 		clear_thread_flag(TIF_IO_BITMAP);
82 		/*
83 		 * Careful, clear this in the TSS too:
84 		 */
85 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
86 		t->io_bitmap_max = 0;
87 		put_cpu();
88 		kfree(bp);
89 	}
90 }
91 
92 void flush_thread(void)
93 {
94 	struct task_struct *tsk = current;
95 
96 #ifdef CONFIG_X86_64
97 	if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
98 		clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
99 		if (test_tsk_thread_flag(tsk, TIF_IA32)) {
100 			clear_tsk_thread_flag(tsk, TIF_IA32);
101 		} else {
102 			set_tsk_thread_flag(tsk, TIF_IA32);
103 			current_thread_info()->status |= TS_COMPAT;
104 		}
105 	}
106 #endif
107 
108 	flush_ptrace_hw_breakpoint(tsk);
109 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
110 	/*
111 	 * Forget coprocessor state..
112 	 */
113 	tsk->fpu_counter = 0;
114 	clear_fpu(tsk);
115 	clear_used_math();
116 }
117 
118 static void hard_disable_TSC(void)
119 {
120 	write_cr4(read_cr4() | X86_CR4_TSD);
121 }
122 
123 void disable_TSC(void)
124 {
125 	preempt_disable();
126 	if (!test_and_set_thread_flag(TIF_NOTSC))
127 		/*
128 		 * Must flip the CPU state synchronously with
129 		 * TIF_NOTSC in the current running context.
130 		 */
131 		hard_disable_TSC();
132 	preempt_enable();
133 }
134 
135 static void hard_enable_TSC(void)
136 {
137 	write_cr4(read_cr4() & ~X86_CR4_TSD);
138 }
139 
140 static void enable_TSC(void)
141 {
142 	preempt_disable();
143 	if (test_and_clear_thread_flag(TIF_NOTSC))
144 		/*
145 		 * Must flip the CPU state synchronously with
146 		 * TIF_NOTSC in the current running context.
147 		 */
148 		hard_enable_TSC();
149 	preempt_enable();
150 }
151 
152 int get_tsc_mode(unsigned long adr)
153 {
154 	unsigned int val;
155 
156 	if (test_thread_flag(TIF_NOTSC))
157 		val = PR_TSC_SIGSEGV;
158 	else
159 		val = PR_TSC_ENABLE;
160 
161 	return put_user(val, (unsigned int __user *)adr);
162 }
163 
164 int set_tsc_mode(unsigned int val)
165 {
166 	if (val == PR_TSC_SIGSEGV)
167 		disable_TSC();
168 	else if (val == PR_TSC_ENABLE)
169 		enable_TSC();
170 	else
171 		return -EINVAL;
172 
173 	return 0;
174 }
175 
176 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
177 		      struct tss_struct *tss)
178 {
179 	struct thread_struct *prev, *next;
180 
181 	prev = &prev_p->thread;
182 	next = &next_p->thread;
183 
184 	if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
185 	    test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
186 		ds_switch_to(prev_p, next_p);
187 	else if (next->debugctlmsr != prev->debugctlmsr)
188 		update_debugctlmsr(next->debugctlmsr);
189 
190 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
191 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
192 		/* prev and next are different */
193 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
194 			hard_disable_TSC();
195 		else
196 			hard_enable_TSC();
197 	}
198 
199 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
200 		/*
201 		 * Copy the relevant range of the IO bitmap.
202 		 * Normally this is 128 bytes or less:
203 		 */
204 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
205 		       max(prev->io_bitmap_max, next->io_bitmap_max));
206 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
207 		/*
208 		 * Clear any possible leftover bits:
209 		 */
210 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
211 	}
212 }
213 
214 int sys_fork(struct pt_regs *regs)
215 {
216 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
217 }
218 
219 /*
220  * This is trivial, and on the face of it looks like it
221  * could equally well be done in user mode.
222  *
223  * Not so, for quite unobvious reasons - register pressure.
224  * In user mode vfork() cannot have a stack frame, and if
225  * done by calling the "clone()" system call directly, you
226  * do not have enough call-clobbered registers to hold all
227  * the information you need.
228  */
229 int sys_vfork(struct pt_regs *regs)
230 {
231 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
232 		       NULL, NULL);
233 }
234 
235 
236 /*
237  * Idle related variables and functions
238  */
239 unsigned long boot_option_idle_override = 0;
240 EXPORT_SYMBOL(boot_option_idle_override);
241 
242 /*
243  * Powermanagement idle function, if any..
244  */
245 void (*pm_idle)(void);
246 EXPORT_SYMBOL(pm_idle);
247 
248 #ifdef CONFIG_X86_32
249 /*
250  * This halt magic was a workaround for ancient floppy DMA
251  * wreckage. It should be safe to remove.
252  */
253 static int hlt_counter;
254 void disable_hlt(void)
255 {
256 	hlt_counter++;
257 }
258 EXPORT_SYMBOL(disable_hlt);
259 
260 void enable_hlt(void)
261 {
262 	hlt_counter--;
263 }
264 EXPORT_SYMBOL(enable_hlt);
265 
266 static inline int hlt_use_halt(void)
267 {
268 	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
269 }
270 #else
271 static inline int hlt_use_halt(void)
272 {
273 	return 1;
274 }
275 #endif
276 
277 /*
278  * We use this if we don't have any better
279  * idle routine..
280  */
281 void default_idle(void)
282 {
283 	if (hlt_use_halt()) {
284 		trace_power_start(POWER_CSTATE, 1);
285 		current_thread_info()->status &= ~TS_POLLING;
286 		/*
287 		 * TS_POLLING-cleared state must be visible before we
288 		 * test NEED_RESCHED:
289 		 */
290 		smp_mb();
291 
292 		if (!need_resched())
293 			safe_halt();	/* enables interrupts racelessly */
294 		else
295 			local_irq_enable();
296 		current_thread_info()->status |= TS_POLLING;
297 	} else {
298 		local_irq_enable();
299 		/* loop is done by the caller */
300 		cpu_relax();
301 	}
302 }
303 #ifdef CONFIG_APM_MODULE
304 EXPORT_SYMBOL(default_idle);
305 #endif
306 
307 void stop_this_cpu(void *dummy)
308 {
309 	local_irq_disable();
310 	/*
311 	 * Remove this CPU:
312 	 */
313 	set_cpu_online(smp_processor_id(), false);
314 	disable_local_APIC();
315 
316 	for (;;) {
317 		if (hlt_works(smp_processor_id()))
318 			halt();
319 	}
320 }
321 
322 static void do_nothing(void *unused)
323 {
324 }
325 
326 /*
327  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
328  * pm_idle and update to new pm_idle value. Required while changing pm_idle
329  * handler on SMP systems.
330  *
331  * Caller must have changed pm_idle to the new value before the call. Old
332  * pm_idle value will not be used by any CPU after the return of this function.
333  */
334 void cpu_idle_wait(void)
335 {
336 	smp_mb();
337 	/* kick all the CPUs so that they exit out of pm_idle */
338 	smp_call_function(do_nothing, NULL, 1);
339 }
340 EXPORT_SYMBOL_GPL(cpu_idle_wait);
341 
342 /*
343  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
344  * which can obviate IPI to trigger checking of need_resched.
345  * We execute MONITOR against need_resched and enter optimized wait state
346  * through MWAIT. Whenever someone changes need_resched, we would be woken
347  * up from MWAIT (without an IPI).
348  *
349  * New with Core Duo processors, MWAIT can take some hints based on CPU
350  * capability.
351  */
352 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
353 {
354 	trace_power_start(POWER_CSTATE, (ax>>4)+1);
355 	if (!need_resched()) {
356 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
357 			clflush((void *)&current_thread_info()->flags);
358 
359 		__monitor((void *)&current_thread_info()->flags, 0, 0);
360 		smp_mb();
361 		if (!need_resched())
362 			__mwait(ax, cx);
363 	}
364 }
365 
366 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
367 static void mwait_idle(void)
368 {
369 	if (!need_resched()) {
370 		trace_power_start(POWER_CSTATE, 1);
371 		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
372 			clflush((void *)&current_thread_info()->flags);
373 
374 		__monitor((void *)&current_thread_info()->flags, 0, 0);
375 		smp_mb();
376 		if (!need_resched())
377 			__sti_mwait(0, 0);
378 		else
379 			local_irq_enable();
380 	} else
381 		local_irq_enable();
382 }
383 
384 /*
385  * On SMP it's slightly faster (but much more power-consuming!)
386  * to poll the ->work.need_resched flag instead of waiting for the
387  * cross-CPU IPI to arrive. Use this option with caution.
388  */
389 static void poll_idle(void)
390 {
391 	trace_power_start(POWER_CSTATE, 0);
392 	local_irq_enable();
393 	while (!need_resched())
394 		cpu_relax();
395 	trace_power_end(0);
396 }
397 
398 /*
399  * mwait selection logic:
400  *
401  * It depends on the CPU. For AMD CPUs that support MWAIT this is
402  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
403  * then depend on a clock divisor and current Pstate of the core. If
404  * all cores of a processor are in halt state (C1) the processor can
405  * enter the C1E (C1 enhanced) state. If mwait is used this will never
406  * happen.
407  *
408  * idle=mwait overrides this decision and forces the usage of mwait.
409  */
410 static int __cpuinitdata force_mwait;
411 
412 #define MWAIT_INFO			0x05
413 #define MWAIT_ECX_EXTENDED_INFO		0x01
414 #define MWAIT_EDX_C1			0xf0
415 
416 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
417 {
418 	u32 eax, ebx, ecx, edx;
419 
420 	if (force_mwait)
421 		return 1;
422 
423 	if (c->cpuid_level < MWAIT_INFO)
424 		return 0;
425 
426 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
427 	/* Check, whether EDX has extended info about MWAIT */
428 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
429 		return 1;
430 
431 	/*
432 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
433 	 * C1  supports MWAIT
434 	 */
435 	return (edx & MWAIT_EDX_C1);
436 }
437 
438 /*
439  * Check for AMD CPUs, which have potentially C1E support
440  */
441 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
442 {
443 	if (c->x86_vendor != X86_VENDOR_AMD)
444 		return 0;
445 
446 	if (c->x86 < 0x0F)
447 		return 0;
448 
449 	/* Family 0x0f models < rev F do not have C1E */
450 	if (c->x86 == 0x0f && c->x86_model < 0x40)
451 		return 0;
452 
453 	return 1;
454 }
455 
456 static cpumask_var_t c1e_mask;
457 static int c1e_detected;
458 
459 void c1e_remove_cpu(int cpu)
460 {
461 	if (c1e_mask != NULL)
462 		cpumask_clear_cpu(cpu, c1e_mask);
463 }
464 
465 /*
466  * C1E aware idle routine. We check for C1E active in the interrupt
467  * pending message MSR. If we detect C1E, then we handle it the same
468  * way as C3 power states (local apic timer and TSC stop)
469  */
470 static void c1e_idle(void)
471 {
472 	if (need_resched())
473 		return;
474 
475 	if (!c1e_detected) {
476 		u32 lo, hi;
477 
478 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
479 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
480 			c1e_detected = 1;
481 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
482 				mark_tsc_unstable("TSC halt in AMD C1E");
483 			printk(KERN_INFO "System has AMD C1E enabled\n");
484 			set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
485 		}
486 	}
487 
488 	if (c1e_detected) {
489 		int cpu = smp_processor_id();
490 
491 		if (!cpumask_test_cpu(cpu, c1e_mask)) {
492 			cpumask_set_cpu(cpu, c1e_mask);
493 			/*
494 			 * Force broadcast so ACPI can not interfere.
495 			 */
496 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
497 					   &cpu);
498 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
499 			       cpu);
500 		}
501 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
502 
503 		default_idle();
504 
505 		/*
506 		 * The switch back from broadcast mode needs to be
507 		 * called with interrupts disabled.
508 		 */
509 		 local_irq_disable();
510 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
511 		 local_irq_enable();
512 	} else
513 		default_idle();
514 }
515 
516 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
517 {
518 #ifdef CONFIG_SMP
519 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
520 		printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
521 			" performance may degrade.\n");
522 	}
523 #endif
524 	if (pm_idle)
525 		return;
526 
527 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
528 		/*
529 		 * One CPU supports mwait => All CPUs supports mwait
530 		 */
531 		printk(KERN_INFO "using mwait in idle threads.\n");
532 		pm_idle = mwait_idle;
533 	} else if (check_c1e_idle(c)) {
534 		printk(KERN_INFO "using C1E aware idle routine\n");
535 		pm_idle = c1e_idle;
536 	} else
537 		pm_idle = default_idle;
538 }
539 
540 void __init init_c1e_mask(void)
541 {
542 	/* If we're using c1e_idle, we need to allocate c1e_mask. */
543 	if (pm_idle == c1e_idle)
544 		zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
545 }
546 
547 static int __init idle_setup(char *str)
548 {
549 	if (!str)
550 		return -EINVAL;
551 
552 	if (!strcmp(str, "poll")) {
553 		printk("using polling idle threads.\n");
554 		pm_idle = poll_idle;
555 	} else if (!strcmp(str, "mwait"))
556 		force_mwait = 1;
557 	else if (!strcmp(str, "halt")) {
558 		/*
559 		 * When the boot option of idle=halt is added, halt is
560 		 * forced to be used for CPU idle. In such case CPU C2/C3
561 		 * won't be used again.
562 		 * To continue to load the CPU idle driver, don't touch
563 		 * the boot_option_idle_override.
564 		 */
565 		pm_idle = default_idle;
566 		idle_halt = 1;
567 		return 0;
568 	} else if (!strcmp(str, "nomwait")) {
569 		/*
570 		 * If the boot option of "idle=nomwait" is added,
571 		 * it means that mwait will be disabled for CPU C2/C3
572 		 * states. In such case it won't touch the variable
573 		 * of boot_option_idle_override.
574 		 */
575 		idle_nomwait = 1;
576 		return 0;
577 	} else
578 		return -1;
579 
580 	boot_option_idle_override = 1;
581 	return 0;
582 }
583 early_param("idle", idle_setup);
584 
585 unsigned long arch_align_stack(unsigned long sp)
586 {
587 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
588 		sp -= get_random_int() % 8192;
589 	return sp & ~0xf;
590 }
591 
592 unsigned long arch_randomize_brk(struct mm_struct *mm)
593 {
594 	unsigned long range_end = mm->brk + 0x02000000;
595 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
596 }
597 
598