1 #include <linux/errno.h> 2 #include <linux/kernel.h> 3 #include <linux/mm.h> 4 #include <linux/smp.h> 5 #include <linux/prctl.h> 6 #include <linux/slab.h> 7 #include <linux/sched.h> 8 #include <linux/module.h> 9 #include <linux/pm.h> 10 #include <linux/clockchips.h> 11 #include <linux/random.h> 12 #include <trace/events/power.h> 13 #include <linux/hw_breakpoint.h> 14 #include <asm/system.h> 15 #include <asm/apic.h> 16 #include <asm/syscalls.h> 17 #include <asm/idle.h> 18 #include <asm/uaccess.h> 19 #include <asm/i387.h> 20 #include <asm/ds.h> 21 #include <asm/debugreg.h> 22 23 unsigned long idle_halt; 24 EXPORT_SYMBOL(idle_halt); 25 unsigned long idle_nomwait; 26 EXPORT_SYMBOL(idle_nomwait); 27 28 struct kmem_cache *task_xstate_cachep; 29 30 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 31 { 32 *dst = *src; 33 if (src->thread.xstate) { 34 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep, 35 GFP_KERNEL); 36 if (!dst->thread.xstate) 37 return -ENOMEM; 38 WARN_ON((unsigned long)dst->thread.xstate & 15); 39 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size); 40 } 41 return 0; 42 } 43 44 void free_thread_xstate(struct task_struct *tsk) 45 { 46 if (tsk->thread.xstate) { 47 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate); 48 tsk->thread.xstate = NULL; 49 } 50 51 WARN(tsk->thread.ds_ctx, "leaking DS context\n"); 52 } 53 54 void free_thread_info(struct thread_info *ti) 55 { 56 free_thread_xstate(ti->task); 57 free_pages((unsigned long)ti, get_order(THREAD_SIZE)); 58 } 59 60 void arch_task_cache_init(void) 61 { 62 task_xstate_cachep = 63 kmem_cache_create("task_xstate", xstate_size, 64 __alignof__(union thread_xstate), 65 SLAB_PANIC | SLAB_NOTRACK, NULL); 66 } 67 68 /* 69 * Free current thread data structures etc.. 70 */ 71 void exit_thread(void) 72 { 73 struct task_struct *me = current; 74 struct thread_struct *t = &me->thread; 75 unsigned long *bp = t->io_bitmap_ptr; 76 77 if (bp) { 78 struct tss_struct *tss = &per_cpu(init_tss, get_cpu()); 79 80 t->io_bitmap_ptr = NULL; 81 clear_thread_flag(TIF_IO_BITMAP); 82 /* 83 * Careful, clear this in the TSS too: 84 */ 85 memset(tss->io_bitmap, 0xff, t->io_bitmap_max); 86 t->io_bitmap_max = 0; 87 put_cpu(); 88 kfree(bp); 89 } 90 } 91 92 void flush_thread(void) 93 { 94 struct task_struct *tsk = current; 95 96 #ifdef CONFIG_X86_64 97 if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) { 98 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING); 99 if (test_tsk_thread_flag(tsk, TIF_IA32)) { 100 clear_tsk_thread_flag(tsk, TIF_IA32); 101 } else { 102 set_tsk_thread_flag(tsk, TIF_IA32); 103 current_thread_info()->status |= TS_COMPAT; 104 } 105 } 106 #endif 107 108 flush_ptrace_hw_breakpoint(tsk); 109 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); 110 /* 111 * Forget coprocessor state.. 112 */ 113 tsk->fpu_counter = 0; 114 clear_fpu(tsk); 115 clear_used_math(); 116 } 117 118 static void hard_disable_TSC(void) 119 { 120 write_cr4(read_cr4() | X86_CR4_TSD); 121 } 122 123 void disable_TSC(void) 124 { 125 preempt_disable(); 126 if (!test_and_set_thread_flag(TIF_NOTSC)) 127 /* 128 * Must flip the CPU state synchronously with 129 * TIF_NOTSC in the current running context. 130 */ 131 hard_disable_TSC(); 132 preempt_enable(); 133 } 134 135 static void hard_enable_TSC(void) 136 { 137 write_cr4(read_cr4() & ~X86_CR4_TSD); 138 } 139 140 static void enable_TSC(void) 141 { 142 preempt_disable(); 143 if (test_and_clear_thread_flag(TIF_NOTSC)) 144 /* 145 * Must flip the CPU state synchronously with 146 * TIF_NOTSC in the current running context. 147 */ 148 hard_enable_TSC(); 149 preempt_enable(); 150 } 151 152 int get_tsc_mode(unsigned long adr) 153 { 154 unsigned int val; 155 156 if (test_thread_flag(TIF_NOTSC)) 157 val = PR_TSC_SIGSEGV; 158 else 159 val = PR_TSC_ENABLE; 160 161 return put_user(val, (unsigned int __user *)adr); 162 } 163 164 int set_tsc_mode(unsigned int val) 165 { 166 if (val == PR_TSC_SIGSEGV) 167 disable_TSC(); 168 else if (val == PR_TSC_ENABLE) 169 enable_TSC(); 170 else 171 return -EINVAL; 172 173 return 0; 174 } 175 176 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, 177 struct tss_struct *tss) 178 { 179 struct thread_struct *prev, *next; 180 181 prev = &prev_p->thread; 182 next = &next_p->thread; 183 184 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) || 185 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR)) 186 ds_switch_to(prev_p, next_p); 187 else if (next->debugctlmsr != prev->debugctlmsr) 188 update_debugctlmsr(next->debugctlmsr); 189 190 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ 191 test_tsk_thread_flag(next_p, TIF_NOTSC)) { 192 /* prev and next are different */ 193 if (test_tsk_thread_flag(next_p, TIF_NOTSC)) 194 hard_disable_TSC(); 195 else 196 hard_enable_TSC(); 197 } 198 199 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { 200 /* 201 * Copy the relevant range of the IO bitmap. 202 * Normally this is 128 bytes or less: 203 */ 204 memcpy(tss->io_bitmap, next->io_bitmap_ptr, 205 max(prev->io_bitmap_max, next->io_bitmap_max)); 206 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) { 207 /* 208 * Clear any possible leftover bits: 209 */ 210 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); 211 } 212 } 213 214 int sys_fork(struct pt_regs *regs) 215 { 216 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL); 217 } 218 219 /* 220 * This is trivial, and on the face of it looks like it 221 * could equally well be done in user mode. 222 * 223 * Not so, for quite unobvious reasons - register pressure. 224 * In user mode vfork() cannot have a stack frame, and if 225 * done by calling the "clone()" system call directly, you 226 * do not have enough call-clobbered registers to hold all 227 * the information you need. 228 */ 229 int sys_vfork(struct pt_regs *regs) 230 { 231 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0, 232 NULL, NULL); 233 } 234 235 236 /* 237 * Idle related variables and functions 238 */ 239 unsigned long boot_option_idle_override = 0; 240 EXPORT_SYMBOL(boot_option_idle_override); 241 242 /* 243 * Powermanagement idle function, if any.. 244 */ 245 void (*pm_idle)(void); 246 EXPORT_SYMBOL(pm_idle); 247 248 #ifdef CONFIG_X86_32 249 /* 250 * This halt magic was a workaround for ancient floppy DMA 251 * wreckage. It should be safe to remove. 252 */ 253 static int hlt_counter; 254 void disable_hlt(void) 255 { 256 hlt_counter++; 257 } 258 EXPORT_SYMBOL(disable_hlt); 259 260 void enable_hlt(void) 261 { 262 hlt_counter--; 263 } 264 EXPORT_SYMBOL(enable_hlt); 265 266 static inline int hlt_use_halt(void) 267 { 268 return (!hlt_counter && boot_cpu_data.hlt_works_ok); 269 } 270 #else 271 static inline int hlt_use_halt(void) 272 { 273 return 1; 274 } 275 #endif 276 277 /* 278 * We use this if we don't have any better 279 * idle routine.. 280 */ 281 void default_idle(void) 282 { 283 if (hlt_use_halt()) { 284 trace_power_start(POWER_CSTATE, 1); 285 current_thread_info()->status &= ~TS_POLLING; 286 /* 287 * TS_POLLING-cleared state must be visible before we 288 * test NEED_RESCHED: 289 */ 290 smp_mb(); 291 292 if (!need_resched()) 293 safe_halt(); /* enables interrupts racelessly */ 294 else 295 local_irq_enable(); 296 current_thread_info()->status |= TS_POLLING; 297 } else { 298 local_irq_enable(); 299 /* loop is done by the caller */ 300 cpu_relax(); 301 } 302 } 303 #ifdef CONFIG_APM_MODULE 304 EXPORT_SYMBOL(default_idle); 305 #endif 306 307 void stop_this_cpu(void *dummy) 308 { 309 local_irq_disable(); 310 /* 311 * Remove this CPU: 312 */ 313 set_cpu_online(smp_processor_id(), false); 314 disable_local_APIC(); 315 316 for (;;) { 317 if (hlt_works(smp_processor_id())) 318 halt(); 319 } 320 } 321 322 static void do_nothing(void *unused) 323 { 324 } 325 326 /* 327 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 328 * pm_idle and update to new pm_idle value. Required while changing pm_idle 329 * handler on SMP systems. 330 * 331 * Caller must have changed pm_idle to the new value before the call. Old 332 * pm_idle value will not be used by any CPU after the return of this function. 333 */ 334 void cpu_idle_wait(void) 335 { 336 smp_mb(); 337 /* kick all the CPUs so that they exit out of pm_idle */ 338 smp_call_function(do_nothing, NULL, 1); 339 } 340 EXPORT_SYMBOL_GPL(cpu_idle_wait); 341 342 /* 343 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, 344 * which can obviate IPI to trigger checking of need_resched. 345 * We execute MONITOR against need_resched and enter optimized wait state 346 * through MWAIT. Whenever someone changes need_resched, we would be woken 347 * up from MWAIT (without an IPI). 348 * 349 * New with Core Duo processors, MWAIT can take some hints based on CPU 350 * capability. 351 */ 352 void mwait_idle_with_hints(unsigned long ax, unsigned long cx) 353 { 354 trace_power_start(POWER_CSTATE, (ax>>4)+1); 355 if (!need_resched()) { 356 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 357 clflush((void *)¤t_thread_info()->flags); 358 359 __monitor((void *)¤t_thread_info()->flags, 0, 0); 360 smp_mb(); 361 if (!need_resched()) 362 __mwait(ax, cx); 363 } 364 } 365 366 /* Default MONITOR/MWAIT with no hints, used for default C1 state */ 367 static void mwait_idle(void) 368 { 369 if (!need_resched()) { 370 trace_power_start(POWER_CSTATE, 1); 371 if (cpu_has(¤t_cpu_data, X86_FEATURE_CLFLUSH_MONITOR)) 372 clflush((void *)¤t_thread_info()->flags); 373 374 __monitor((void *)¤t_thread_info()->flags, 0, 0); 375 smp_mb(); 376 if (!need_resched()) 377 __sti_mwait(0, 0); 378 else 379 local_irq_enable(); 380 } else 381 local_irq_enable(); 382 } 383 384 /* 385 * On SMP it's slightly faster (but much more power-consuming!) 386 * to poll the ->work.need_resched flag instead of waiting for the 387 * cross-CPU IPI to arrive. Use this option with caution. 388 */ 389 static void poll_idle(void) 390 { 391 trace_power_start(POWER_CSTATE, 0); 392 local_irq_enable(); 393 while (!need_resched()) 394 cpu_relax(); 395 trace_power_end(0); 396 } 397 398 /* 399 * mwait selection logic: 400 * 401 * It depends on the CPU. For AMD CPUs that support MWAIT this is 402 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings 403 * then depend on a clock divisor and current Pstate of the core. If 404 * all cores of a processor are in halt state (C1) the processor can 405 * enter the C1E (C1 enhanced) state. If mwait is used this will never 406 * happen. 407 * 408 * idle=mwait overrides this decision and forces the usage of mwait. 409 */ 410 static int __cpuinitdata force_mwait; 411 412 #define MWAIT_INFO 0x05 413 #define MWAIT_ECX_EXTENDED_INFO 0x01 414 #define MWAIT_EDX_C1 0xf0 415 416 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) 417 { 418 u32 eax, ebx, ecx, edx; 419 420 if (force_mwait) 421 return 1; 422 423 if (c->cpuid_level < MWAIT_INFO) 424 return 0; 425 426 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx); 427 /* Check, whether EDX has extended info about MWAIT */ 428 if (!(ecx & MWAIT_ECX_EXTENDED_INFO)) 429 return 1; 430 431 /* 432 * edx enumeratios MONITOR/MWAIT extensions. Check, whether 433 * C1 supports MWAIT 434 */ 435 return (edx & MWAIT_EDX_C1); 436 } 437 438 /* 439 * Check for AMD CPUs, which have potentially C1E support 440 */ 441 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c) 442 { 443 if (c->x86_vendor != X86_VENDOR_AMD) 444 return 0; 445 446 if (c->x86 < 0x0F) 447 return 0; 448 449 /* Family 0x0f models < rev F do not have C1E */ 450 if (c->x86 == 0x0f && c->x86_model < 0x40) 451 return 0; 452 453 return 1; 454 } 455 456 static cpumask_var_t c1e_mask; 457 static int c1e_detected; 458 459 void c1e_remove_cpu(int cpu) 460 { 461 if (c1e_mask != NULL) 462 cpumask_clear_cpu(cpu, c1e_mask); 463 } 464 465 /* 466 * C1E aware idle routine. We check for C1E active in the interrupt 467 * pending message MSR. If we detect C1E, then we handle it the same 468 * way as C3 power states (local apic timer and TSC stop) 469 */ 470 static void c1e_idle(void) 471 { 472 if (need_resched()) 473 return; 474 475 if (!c1e_detected) { 476 u32 lo, hi; 477 478 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); 479 if (lo & K8_INTP_C1E_ACTIVE_MASK) { 480 c1e_detected = 1; 481 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 482 mark_tsc_unstable("TSC halt in AMD C1E"); 483 printk(KERN_INFO "System has AMD C1E enabled\n"); 484 set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E); 485 } 486 } 487 488 if (c1e_detected) { 489 int cpu = smp_processor_id(); 490 491 if (!cpumask_test_cpu(cpu, c1e_mask)) { 492 cpumask_set_cpu(cpu, c1e_mask); 493 /* 494 * Force broadcast so ACPI can not interfere. 495 */ 496 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE, 497 &cpu); 498 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n", 499 cpu); 500 } 501 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); 502 503 default_idle(); 504 505 /* 506 * The switch back from broadcast mode needs to be 507 * called with interrupts disabled. 508 */ 509 local_irq_disable(); 510 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); 511 local_irq_enable(); 512 } else 513 default_idle(); 514 } 515 516 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) 517 { 518 #ifdef CONFIG_SMP 519 if (pm_idle == poll_idle && smp_num_siblings > 1) { 520 printk(KERN_WARNING "WARNING: polling idle and HT enabled," 521 " performance may degrade.\n"); 522 } 523 #endif 524 if (pm_idle) 525 return; 526 527 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { 528 /* 529 * One CPU supports mwait => All CPUs supports mwait 530 */ 531 printk(KERN_INFO "using mwait in idle threads.\n"); 532 pm_idle = mwait_idle; 533 } else if (check_c1e_idle(c)) { 534 printk(KERN_INFO "using C1E aware idle routine\n"); 535 pm_idle = c1e_idle; 536 } else 537 pm_idle = default_idle; 538 } 539 540 void __init init_c1e_mask(void) 541 { 542 /* If we're using c1e_idle, we need to allocate c1e_mask. */ 543 if (pm_idle == c1e_idle) 544 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL); 545 } 546 547 static int __init idle_setup(char *str) 548 { 549 if (!str) 550 return -EINVAL; 551 552 if (!strcmp(str, "poll")) { 553 printk("using polling idle threads.\n"); 554 pm_idle = poll_idle; 555 } else if (!strcmp(str, "mwait")) 556 force_mwait = 1; 557 else if (!strcmp(str, "halt")) { 558 /* 559 * When the boot option of idle=halt is added, halt is 560 * forced to be used for CPU idle. In such case CPU C2/C3 561 * won't be used again. 562 * To continue to load the CPU idle driver, don't touch 563 * the boot_option_idle_override. 564 */ 565 pm_idle = default_idle; 566 idle_halt = 1; 567 return 0; 568 } else if (!strcmp(str, "nomwait")) { 569 /* 570 * If the boot option of "idle=nomwait" is added, 571 * it means that mwait will be disabled for CPU C2/C3 572 * states. In such case it won't touch the variable 573 * of boot_option_idle_override. 574 */ 575 idle_nomwait = 1; 576 return 0; 577 } else 578 return -1; 579 580 boot_option_idle_override = 1; 581 return 0; 582 } 583 early_param("idle", idle_setup); 584 585 unsigned long arch_align_stack(unsigned long sp) 586 { 587 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 588 sp -= get_random_int() % 8192; 589 return sp & ~0xf; 590 } 591 592 unsigned long arch_randomize_brk(struct mm_struct *mm) 593 { 594 unsigned long range_end = mm->brk + 0x02000000; 595 return randomize_range(mm->brk, range_end, 0) ? : mm->brk; 596 } 597 598