1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * CPU Microcode Update Driver for Linux 4 * 5 * Copyright (C) 2000-2006 Tigran Aivazian <[email protected]> 6 * 2006 Shaohua Li <[email protected]> 7 * 2013-2016 Borislav Petkov <[email protected]> 8 * 9 * X86 CPU microcode early update for Linux: 10 * 11 * Copyright (C) 2012 Fenghua Yu <[email protected]> 12 * H Peter Anvin" <[email protected]> 13 * (C) 2015 Borislav Petkov <[email protected]> 14 * 15 * This driver allows to upgrade microcode on x86 processors. 16 */ 17 18 #define pr_fmt(fmt) "microcode: " fmt 19 20 #include <linux/platform_device.h> 21 #include <linux/stop_machine.h> 22 #include <linux/syscore_ops.h> 23 #include <linux/miscdevice.h> 24 #include <linux/capability.h> 25 #include <linux/firmware.h> 26 #include <linux/cpumask.h> 27 #include <linux/kernel.h> 28 #include <linux/delay.h> 29 #include <linux/mutex.h> 30 #include <linux/cpu.h> 31 #include <linux/nmi.h> 32 #include <linux/fs.h> 33 #include <linux/mm.h> 34 35 #include <asm/apic.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/perf_event.h> 38 #include <asm/processor.h> 39 #include <asm/cmdline.h> 40 #include <asm/setup.h> 41 42 #include "internal.h" 43 44 #define DRIVER_VERSION "2.2" 45 46 static struct microcode_ops *microcode_ops; 47 bool dis_ucode_ldr = true; 48 49 /* 50 * Synchronization. 51 * 52 * All non cpu-hotplug-callback call sites use: 53 * 54 * - cpus_read_lock/unlock() to synchronize with 55 * the cpu-hotplug-callback call sites. 56 * 57 * We guarantee that only a single cpu is being 58 * updated at any particular moment of time. 59 */ 60 struct ucode_cpu_info ucode_cpu_info[NR_CPUS]; 61 62 struct cpu_info_ctx { 63 struct cpu_signature *cpu_sig; 64 int err; 65 }; 66 67 /* 68 * Those patch levels cannot be updated to newer ones and thus should be final. 69 */ 70 static u32 final_levels[] = { 71 0x01000098, 72 0x0100009f, 73 0x010000af, 74 0, /* T-101 terminator */ 75 }; 76 77 /* 78 * Check the current patch level on this CPU. 79 * 80 * Returns: 81 * - true: if update should stop 82 * - false: otherwise 83 */ 84 static bool amd_check_current_patch_level(void) 85 { 86 u32 lvl, dummy, i; 87 u32 *levels; 88 89 native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy); 90 91 levels = final_levels; 92 93 for (i = 0; levels[i]; i++) { 94 if (lvl == levels[i]) 95 return true; 96 } 97 return false; 98 } 99 100 static bool __init check_loader_disabled_bsp(void) 101 { 102 static const char *__dis_opt_str = "dis_ucode_ldr"; 103 const char *cmdline = boot_command_line; 104 const char *option = __dis_opt_str; 105 106 /* 107 * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not 108 * completely accurate as xen pv guests don't see that CPUID bit set but 109 * that's good enough as they don't land on the BSP path anyway. 110 */ 111 if (native_cpuid_ecx(1) & BIT(31)) 112 return true; 113 114 if (x86_cpuid_vendor() == X86_VENDOR_AMD) { 115 if (amd_check_current_patch_level()) 116 return true; 117 } 118 119 if (cmdline_find_option_bool(cmdline, option) <= 0) 120 dis_ucode_ldr = false; 121 122 return dis_ucode_ldr; 123 } 124 125 void __init load_ucode_bsp(void) 126 { 127 unsigned int cpuid_1_eax; 128 bool intel = true; 129 130 if (!have_cpuid_p()) 131 return; 132 133 cpuid_1_eax = native_cpuid_eax(1); 134 135 switch (x86_cpuid_vendor()) { 136 case X86_VENDOR_INTEL: 137 if (x86_family(cpuid_1_eax) < 6) 138 return; 139 break; 140 141 case X86_VENDOR_AMD: 142 if (x86_family(cpuid_1_eax) < 0x10) 143 return; 144 intel = false; 145 break; 146 147 default: 148 return; 149 } 150 151 if (check_loader_disabled_bsp()) 152 return; 153 154 if (intel) 155 load_ucode_intel_bsp(); 156 else 157 load_ucode_amd_bsp(cpuid_1_eax); 158 } 159 160 void load_ucode_ap(void) 161 { 162 unsigned int cpuid_1_eax; 163 164 if (dis_ucode_ldr) 165 return; 166 167 cpuid_1_eax = native_cpuid_eax(1); 168 169 switch (x86_cpuid_vendor()) { 170 case X86_VENDOR_INTEL: 171 if (x86_family(cpuid_1_eax) >= 6) 172 load_ucode_intel_ap(); 173 break; 174 case X86_VENDOR_AMD: 175 if (x86_family(cpuid_1_eax) >= 0x10) 176 load_ucode_amd_ap(cpuid_1_eax); 177 break; 178 default: 179 break; 180 } 181 } 182 183 struct cpio_data __init find_microcode_in_initrd(const char *path) 184 { 185 #ifdef CONFIG_BLK_DEV_INITRD 186 unsigned long start = 0; 187 size_t size; 188 189 #ifdef CONFIG_X86_32 190 size = boot_params.hdr.ramdisk_size; 191 /* Early load on BSP has a temporary mapping. */ 192 if (size) 193 start = initrd_start_early; 194 195 #else /* CONFIG_X86_64 */ 196 size = (unsigned long)boot_params.ext_ramdisk_size << 32; 197 size |= boot_params.hdr.ramdisk_size; 198 199 if (size) { 200 start = (unsigned long)boot_params.ext_ramdisk_image << 32; 201 start |= boot_params.hdr.ramdisk_image; 202 start += PAGE_OFFSET; 203 } 204 #endif 205 206 /* 207 * Fixup the start address: after reserve_initrd() runs, initrd_start 208 * has the virtual address of the beginning of the initrd. It also 209 * possibly relocates the ramdisk. In either case, initrd_start contains 210 * the updated address so use that instead. 211 */ 212 if (initrd_start) 213 start = initrd_start; 214 215 return find_cpio_data(path, (void *)start, size, NULL); 216 #else /* !CONFIG_BLK_DEV_INITRD */ 217 return (struct cpio_data){ NULL, 0, "" }; 218 #endif 219 } 220 221 static void reload_early_microcode(unsigned int cpu) 222 { 223 int vendor, family; 224 225 vendor = x86_cpuid_vendor(); 226 family = x86_cpuid_family(); 227 228 switch (vendor) { 229 case X86_VENDOR_INTEL: 230 if (family >= 6) 231 reload_ucode_intel(); 232 break; 233 case X86_VENDOR_AMD: 234 if (family >= 0x10) 235 reload_ucode_amd(cpu); 236 break; 237 default: 238 break; 239 } 240 } 241 242 /* fake device for request_firmware */ 243 static struct platform_device *microcode_pdev; 244 245 #ifdef CONFIG_MICROCODE_LATE_LOADING 246 /* 247 * Late loading dance. Why the heavy-handed stomp_machine effort? 248 * 249 * - HT siblings must be idle and not execute other code while the other sibling 250 * is loading microcode in order to avoid any negative interactions caused by 251 * the loading. 252 * 253 * - In addition, microcode update on the cores must be serialized until this 254 * requirement can be relaxed in the future. Right now, this is conservative 255 * and good. 256 */ 257 enum sibling_ctrl { 258 /* Spinwait with timeout */ 259 SCTRL_WAIT, 260 /* Invoke the microcode_apply() callback */ 261 SCTRL_APPLY, 262 /* Proceed without invoking the microcode_apply() callback */ 263 SCTRL_DONE, 264 }; 265 266 struct microcode_ctrl { 267 enum sibling_ctrl ctrl; 268 enum ucode_state result; 269 unsigned int ctrl_cpu; 270 bool nmi_enabled; 271 }; 272 273 DEFINE_STATIC_KEY_FALSE(microcode_nmi_handler_enable); 274 static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl); 275 static atomic_t late_cpus_in, offline_in_nmi; 276 static unsigned int loops_per_usec; 277 static cpumask_t cpu_offline_mask; 278 279 static noinstr bool wait_for_cpus(atomic_t *cnt) 280 { 281 unsigned int timeout, loops; 282 283 WARN_ON_ONCE(raw_atomic_dec_return(cnt) < 0); 284 285 for (timeout = 0; timeout < USEC_PER_SEC; timeout++) { 286 if (!raw_atomic_read(cnt)) 287 return true; 288 289 for (loops = 0; loops < loops_per_usec; loops++) 290 cpu_relax(); 291 292 /* If invoked directly, tickle the NMI watchdog */ 293 if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) { 294 instrumentation_begin(); 295 touch_nmi_watchdog(); 296 instrumentation_end(); 297 } 298 } 299 /* Prevent the late comers from making progress and let them time out */ 300 raw_atomic_inc(cnt); 301 return false; 302 } 303 304 static noinstr bool wait_for_ctrl(void) 305 { 306 unsigned int timeout, loops; 307 308 for (timeout = 0; timeout < USEC_PER_SEC; timeout++) { 309 if (raw_cpu_read(ucode_ctrl.ctrl) != SCTRL_WAIT) 310 return true; 311 312 for (loops = 0; loops < loops_per_usec; loops++) 313 cpu_relax(); 314 315 /* If invoked directly, tickle the NMI watchdog */ 316 if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) { 317 instrumentation_begin(); 318 touch_nmi_watchdog(); 319 instrumentation_end(); 320 } 321 } 322 return false; 323 } 324 325 /* 326 * Protected against instrumentation up to the point where the primary 327 * thread completed the update. See microcode_nmi_handler() for details. 328 */ 329 static noinstr bool load_secondary_wait(unsigned int ctrl_cpu) 330 { 331 /* Initial rendezvous to ensure that all CPUs have arrived */ 332 if (!wait_for_cpus(&late_cpus_in)) { 333 raw_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); 334 return false; 335 } 336 337 /* 338 * Wait for primary threads to complete. If one of them hangs due 339 * to the update, there is no way out. This is non-recoverable 340 * because the CPU might hold locks or resources and confuse the 341 * scheduler, watchdogs etc. There is no way to safely evacuate the 342 * machine. 343 */ 344 if (wait_for_ctrl()) 345 return true; 346 347 instrumentation_begin(); 348 panic("Microcode load: Primary CPU %d timed out\n", ctrl_cpu); 349 instrumentation_end(); 350 } 351 352 /* 353 * Protected against instrumentation up to the point where the primary 354 * thread completed the update. See microcode_nmi_handler() for details. 355 */ 356 static noinstr void load_secondary(unsigned int cpu) 357 { 358 unsigned int ctrl_cpu = raw_cpu_read(ucode_ctrl.ctrl_cpu); 359 enum ucode_state ret; 360 361 if (!load_secondary_wait(ctrl_cpu)) { 362 instrumentation_begin(); 363 pr_err_once("load: %d CPUs timed out\n", 364 atomic_read(&late_cpus_in) - 1); 365 instrumentation_end(); 366 return; 367 } 368 369 /* Primary thread completed. Allow to invoke instrumentable code */ 370 instrumentation_begin(); 371 /* 372 * If the primary succeeded then invoke the apply() callback, 373 * otherwise copy the state from the primary thread. 374 */ 375 if (this_cpu_read(ucode_ctrl.ctrl) == SCTRL_APPLY) 376 ret = microcode_ops->apply_microcode(cpu); 377 else 378 ret = per_cpu(ucode_ctrl.result, ctrl_cpu); 379 380 this_cpu_write(ucode_ctrl.result, ret); 381 this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE); 382 instrumentation_end(); 383 } 384 385 static void __load_primary(unsigned int cpu) 386 { 387 struct cpumask *secondaries = topology_sibling_cpumask(cpu); 388 enum sibling_ctrl ctrl; 389 enum ucode_state ret; 390 unsigned int sibling; 391 392 /* Initial rendezvous to ensure that all CPUs have arrived */ 393 if (!wait_for_cpus(&late_cpus_in)) { 394 this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); 395 pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1); 396 return; 397 } 398 399 ret = microcode_ops->apply_microcode(cpu); 400 this_cpu_write(ucode_ctrl.result, ret); 401 this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE); 402 403 /* 404 * If the update was successful, let the siblings run the apply() 405 * callback. If not, tell them it's done. This also covers the 406 * case where the CPU has uniform loading at package or system 407 * scope implemented but does not advertise it. 408 */ 409 if (ret == UCODE_UPDATED || ret == UCODE_OK) 410 ctrl = SCTRL_APPLY; 411 else 412 ctrl = SCTRL_DONE; 413 414 for_each_cpu(sibling, secondaries) { 415 if (sibling != cpu) 416 per_cpu(ucode_ctrl.ctrl, sibling) = ctrl; 417 } 418 } 419 420 static bool kick_offline_cpus(unsigned int nr_offl) 421 { 422 unsigned int cpu, timeout; 423 424 for_each_cpu(cpu, &cpu_offline_mask) { 425 /* Enable the rendezvous handler and send NMI */ 426 per_cpu(ucode_ctrl.nmi_enabled, cpu) = true; 427 apic_send_nmi_to_offline_cpu(cpu); 428 } 429 430 /* Wait for them to arrive */ 431 for (timeout = 0; timeout < (USEC_PER_SEC / 2); timeout++) { 432 if (atomic_read(&offline_in_nmi) == nr_offl) 433 return true; 434 udelay(1); 435 } 436 /* Let the others time out */ 437 return false; 438 } 439 440 static void release_offline_cpus(void) 441 { 442 unsigned int cpu; 443 444 for_each_cpu(cpu, &cpu_offline_mask) 445 per_cpu(ucode_ctrl.ctrl, cpu) = SCTRL_DONE; 446 } 447 448 static void load_primary(unsigned int cpu) 449 { 450 unsigned int nr_offl = cpumask_weight(&cpu_offline_mask); 451 bool proceed = true; 452 453 /* Kick soft-offlined SMT siblings if required */ 454 if (!cpu && nr_offl) 455 proceed = kick_offline_cpus(nr_offl); 456 457 /* If the soft-offlined CPUs did not respond, abort */ 458 if (proceed) 459 __load_primary(cpu); 460 461 /* Unconditionally release soft-offlined SMT siblings if required */ 462 if (!cpu && nr_offl) 463 release_offline_cpus(); 464 } 465 466 /* 467 * Minimal stub rendezvous handler for soft-offlined CPUs which participate 468 * in the NMI rendezvous to protect against a concurrent NMI on affected 469 * CPUs. 470 */ 471 void noinstr microcode_offline_nmi_handler(void) 472 { 473 if (!raw_cpu_read(ucode_ctrl.nmi_enabled)) 474 return; 475 raw_cpu_write(ucode_ctrl.nmi_enabled, false); 476 raw_cpu_write(ucode_ctrl.result, UCODE_OFFLINE); 477 raw_atomic_inc(&offline_in_nmi); 478 wait_for_ctrl(); 479 } 480 481 static noinstr bool microcode_update_handler(void) 482 { 483 unsigned int cpu = raw_smp_processor_id(); 484 485 if (raw_cpu_read(ucode_ctrl.ctrl_cpu) == cpu) { 486 instrumentation_begin(); 487 load_primary(cpu); 488 instrumentation_end(); 489 } else { 490 load_secondary(cpu); 491 } 492 493 instrumentation_begin(); 494 touch_nmi_watchdog(); 495 instrumentation_end(); 496 497 return true; 498 } 499 500 /* 501 * Protection against instrumentation is required for CPUs which are not 502 * safe against an NMI which is delivered to the secondary SMT sibling 503 * while the primary thread updates the microcode. Instrumentation can end 504 * up in #INT3, #DB and #PF. The IRET from those exceptions reenables NMI 505 * which is the opposite of what the NMI rendezvous is trying to achieve. 506 * 507 * The primary thread is safe versus instrumentation as the actual 508 * microcode update handles this correctly. It's only the sibling code 509 * path which must be NMI safe until the primary thread completed the 510 * update. 511 */ 512 bool noinstr microcode_nmi_handler(void) 513 { 514 if (!raw_cpu_read(ucode_ctrl.nmi_enabled)) 515 return false; 516 517 raw_cpu_write(ucode_ctrl.nmi_enabled, false); 518 return microcode_update_handler(); 519 } 520 521 static int load_cpus_stopped(void *unused) 522 { 523 if (microcode_ops->use_nmi) { 524 /* Enable the NMI handler and raise NMI */ 525 this_cpu_write(ucode_ctrl.nmi_enabled, true); 526 apic->send_IPI(smp_processor_id(), NMI_VECTOR); 527 } else { 528 /* Just invoke the handler directly */ 529 microcode_update_handler(); 530 } 531 return 0; 532 } 533 534 static int load_late_stop_cpus(void) 535 { 536 unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0; 537 unsigned int nr_offl, offline = 0; 538 int old_rev = boot_cpu_data.microcode; 539 struct cpuinfo_x86 prev_info; 540 541 pr_err("Attempting late microcode loading - it is dangerous and taints the kernel.\n"); 542 pr_err("You should switch to early loading, if possible.\n"); 543 544 atomic_set(&late_cpus_in, num_online_cpus()); 545 atomic_set(&offline_in_nmi, 0); 546 loops_per_usec = loops_per_jiffy / (TICK_NSEC / 1000); 547 548 /* 549 * Take a snapshot before the microcode update in order to compare and 550 * check whether any bits changed after an update. 551 */ 552 store_cpu_caps(&prev_info); 553 554 if (microcode_ops->use_nmi) 555 static_branch_enable_cpuslocked(µcode_nmi_handler_enable); 556 557 stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask); 558 559 if (microcode_ops->use_nmi) 560 static_branch_disable_cpuslocked(µcode_nmi_handler_enable); 561 562 /* Analyze the results */ 563 for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { 564 switch (per_cpu(ucode_ctrl.result, cpu)) { 565 case UCODE_UPDATED: updated++; break; 566 case UCODE_TIMEOUT: timedout++; break; 567 case UCODE_OK: siblings++; break; 568 case UCODE_OFFLINE: offline++; break; 569 default: failed++; break; 570 } 571 } 572 573 if (microcode_ops->finalize_late_load) 574 microcode_ops->finalize_late_load(!updated); 575 576 if (!updated) { 577 /* Nothing changed. */ 578 if (!failed && !timedout) 579 return 0; 580 581 nr_offl = cpumask_weight(&cpu_offline_mask); 582 if (offline < nr_offl) { 583 pr_warn("%u offline siblings did not respond.\n", 584 nr_offl - atomic_read(&offline_in_nmi)); 585 return -EIO; 586 } 587 pr_err("update failed: %u CPUs failed %u CPUs timed out\n", 588 failed, timedout); 589 return -EIO; 590 } 591 592 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 593 pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings); 594 if (failed || timedout) { 595 pr_err("load incomplete. %u CPUs timed out or failed\n", 596 num_online_cpus() - (updated + siblings)); 597 } 598 pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode); 599 microcode_check(&prev_info); 600 601 return updated + siblings == num_online_cpus() ? 0 : -EIO; 602 } 603 604 /* 605 * This function does two things: 606 * 607 * 1) Ensure that all required CPUs which are present and have been booted 608 * once are online. 609 * 610 * To pass this check, all primary threads must be online. 611 * 612 * If the microcode load is not safe against NMI then all SMT threads 613 * must be online as well because they still react to NMIs when they are 614 * soft-offlined and parked in one of the play_dead() variants. So if a 615 * NMI hits while the primary thread updates the microcode the resulting 616 * behaviour is undefined. The default play_dead() implementation on 617 * modern CPUs uses MWAIT, which is also not guaranteed to be safe 618 * against a microcode update which affects MWAIT. 619 * 620 * As soft-offlined CPUs still react on NMIs, the SMT sibling 621 * restriction can be lifted when the vendor driver signals to use NMI 622 * for rendezvous and the APIC provides a mechanism to send an NMI to a 623 * soft-offlined CPU. The soft-offlined CPUs are then able to 624 * participate in the rendezvous in a trivial stub handler. 625 * 626 * 2) Initialize the per CPU control structure and create a cpumask 627 * which contains "offline"; secondary threads, so they can be handled 628 * correctly by a control CPU. 629 */ 630 static bool setup_cpus(void) 631 { 632 struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, }; 633 bool allow_smt_offline; 634 unsigned int cpu; 635 636 allow_smt_offline = microcode_ops->nmi_safe || 637 (microcode_ops->use_nmi && apic->nmi_to_offline_cpu); 638 639 cpumask_clear(&cpu_offline_mask); 640 641 for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { 642 /* 643 * Offline CPUs sit in one of the play_dead() functions 644 * with interrupts disabled, but they still react on NMIs 645 * and execute arbitrary code. Also MWAIT being updated 646 * while the offline CPU sits there is not necessarily safe 647 * on all CPU variants. 648 * 649 * Mark them in the offline_cpus mask which will be handled 650 * by CPU0 later in the update process. 651 * 652 * Ensure that the primary thread is online so that it is 653 * guaranteed that all cores are updated. 654 */ 655 if (!cpu_online(cpu)) { 656 if (topology_is_primary_thread(cpu) || !allow_smt_offline) { 657 pr_err("CPU %u not online, loading aborted\n", cpu); 658 return false; 659 } 660 cpumask_set_cpu(cpu, &cpu_offline_mask); 661 per_cpu(ucode_ctrl, cpu) = ctrl; 662 continue; 663 } 664 665 /* 666 * Initialize the per CPU state. This is core scope for now, 667 * but prepared to take package or system scope into account. 668 */ 669 ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu)); 670 per_cpu(ucode_ctrl, cpu) = ctrl; 671 } 672 return true; 673 } 674 675 static int load_late_locked(void) 676 { 677 if (!setup_cpus()) 678 return -EBUSY; 679 680 switch (microcode_ops->request_microcode_fw(0, µcode_pdev->dev)) { 681 case UCODE_NEW: 682 return load_late_stop_cpus(); 683 case UCODE_NFOUND: 684 return -ENOENT; 685 default: 686 return -EBADFD; 687 } 688 } 689 690 static ssize_t reload_store(struct device *dev, 691 struct device_attribute *attr, 692 const char *buf, size_t size) 693 { 694 unsigned long val; 695 ssize_t ret; 696 697 ret = kstrtoul(buf, 0, &val); 698 if (ret || val != 1) 699 return -EINVAL; 700 701 cpus_read_lock(); 702 ret = load_late_locked(); 703 cpus_read_unlock(); 704 705 return ret ? : size; 706 } 707 708 static DEVICE_ATTR_WO(reload); 709 #endif 710 711 static ssize_t version_show(struct device *dev, 712 struct device_attribute *attr, char *buf) 713 { 714 struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; 715 716 return sprintf(buf, "0x%x\n", uci->cpu_sig.rev); 717 } 718 719 static ssize_t processor_flags_show(struct device *dev, 720 struct device_attribute *attr, char *buf) 721 { 722 struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; 723 724 return sprintf(buf, "0x%x\n", uci->cpu_sig.pf); 725 } 726 727 static DEVICE_ATTR_RO(version); 728 static DEVICE_ATTR_RO(processor_flags); 729 730 static struct attribute *mc_default_attrs[] = { 731 &dev_attr_version.attr, 732 &dev_attr_processor_flags.attr, 733 NULL 734 }; 735 736 static const struct attribute_group mc_attr_group = { 737 .attrs = mc_default_attrs, 738 .name = "microcode", 739 }; 740 741 static void microcode_fini_cpu(int cpu) 742 { 743 if (microcode_ops->microcode_fini_cpu) 744 microcode_ops->microcode_fini_cpu(cpu); 745 } 746 747 /** 748 * microcode_bsp_resume - Update boot CPU microcode during resume. 749 */ 750 void microcode_bsp_resume(void) 751 { 752 int cpu = smp_processor_id(); 753 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 754 755 if (uci->mc) 756 microcode_ops->apply_microcode(cpu); 757 else 758 reload_early_microcode(cpu); 759 } 760 761 static struct syscore_ops mc_syscore_ops = { 762 .resume = microcode_bsp_resume, 763 }; 764 765 static int mc_cpu_online(unsigned int cpu) 766 { 767 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 768 struct device *dev = get_cpu_device(cpu); 769 770 memset(uci, 0, sizeof(*uci)); 771 772 microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig); 773 cpu_data(cpu).microcode = uci->cpu_sig.rev; 774 if (!cpu) 775 boot_cpu_data.microcode = uci->cpu_sig.rev; 776 777 if (sysfs_create_group(&dev->kobj, &mc_attr_group)) 778 pr_err("Failed to create group for CPU%d\n", cpu); 779 return 0; 780 } 781 782 static int mc_cpu_down_prep(unsigned int cpu) 783 { 784 struct device *dev = get_cpu_device(cpu); 785 786 microcode_fini_cpu(cpu); 787 sysfs_remove_group(&dev->kobj, &mc_attr_group); 788 return 0; 789 } 790 791 static struct attribute *cpu_root_microcode_attrs[] = { 792 #ifdef CONFIG_MICROCODE_LATE_LOADING 793 &dev_attr_reload.attr, 794 #endif 795 NULL 796 }; 797 798 static const struct attribute_group cpu_root_microcode_group = { 799 .name = "microcode", 800 .attrs = cpu_root_microcode_attrs, 801 }; 802 803 static int __init microcode_init(void) 804 { 805 struct device *dev_root; 806 struct cpuinfo_x86 *c = &boot_cpu_data; 807 int error; 808 809 if (dis_ucode_ldr) 810 return -EINVAL; 811 812 if (c->x86_vendor == X86_VENDOR_INTEL) 813 microcode_ops = init_intel_microcode(); 814 else if (c->x86_vendor == X86_VENDOR_AMD) 815 microcode_ops = init_amd_microcode(); 816 else 817 pr_err("no support for this CPU vendor\n"); 818 819 if (!microcode_ops) 820 return -ENODEV; 821 822 microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0); 823 if (IS_ERR(microcode_pdev)) 824 return PTR_ERR(microcode_pdev); 825 826 dev_root = bus_get_dev_root(&cpu_subsys); 827 if (dev_root) { 828 error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group); 829 put_device(dev_root); 830 if (error) { 831 pr_err("Error creating microcode group!\n"); 832 goto out_pdev; 833 } 834 } 835 836 register_syscore_ops(&mc_syscore_ops); 837 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online", 838 mc_cpu_online, mc_cpu_down_prep); 839 840 pr_info("Microcode Update Driver: v%s.", DRIVER_VERSION); 841 842 return 0; 843 844 out_pdev: 845 platform_device_unregister(microcode_pdev); 846 return error; 847 848 } 849 late_initcall(microcode_init); 850