xref: /linux-6.15/arch/x86/kernel/cpu/microcode/core.c (revision 6f059e63)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * CPU Microcode Update Driver for Linux
4  *
5  * Copyright (C) 2000-2006 Tigran Aivazian <[email protected]>
6  *	      2006	Shaohua Li <[email protected]>
7  *	      2013-2016	Borislav Petkov <[email protected]>
8  *
9  * X86 CPU microcode early update for Linux:
10  *
11  *	Copyright (C) 2012 Fenghua Yu <[email protected]>
12  *			   H Peter Anvin" <[email protected]>
13  *		  (C) 2015 Borislav Petkov <[email protected]>
14  *
15  * This driver allows to upgrade microcode on x86 processors.
16  */
17 
18 #define pr_fmt(fmt) "microcode: " fmt
19 
20 #include <linux/platform_device.h>
21 #include <linux/stop_machine.h>
22 #include <linux/syscore_ops.h>
23 #include <linux/miscdevice.h>
24 #include <linux/capability.h>
25 #include <linux/firmware.h>
26 #include <linux/kernel.h>
27 #include <linux/delay.h>
28 #include <linux/mutex.h>
29 #include <linux/cpu.h>
30 #include <linux/nmi.h>
31 #include <linux/fs.h>
32 #include <linux/mm.h>
33 
34 #include <asm/cpu_device_id.h>
35 #include <asm/perf_event.h>
36 #include <asm/processor.h>
37 #include <asm/cmdline.h>
38 #include <asm/setup.h>
39 
40 #include "internal.h"
41 
42 #define DRIVER_VERSION	"2.2"
43 
44 static struct microcode_ops	*microcode_ops;
45 bool dis_ucode_ldr = true;
46 
47 /*
48  * Synchronization.
49  *
50  * All non cpu-hotplug-callback call sites use:
51  *
52  * - cpus_read_lock/unlock() to synchronize with
53  *   the cpu-hotplug-callback call sites.
54  *
55  * We guarantee that only a single cpu is being
56  * updated at any particular moment of time.
57  */
58 struct ucode_cpu_info		ucode_cpu_info[NR_CPUS];
59 
60 struct cpu_info_ctx {
61 	struct cpu_signature	*cpu_sig;
62 	int			err;
63 };
64 
65 /*
66  * Those patch levels cannot be updated to newer ones and thus should be final.
67  */
68 static u32 final_levels[] = {
69 	0x01000098,
70 	0x0100009f,
71 	0x010000af,
72 	0, /* T-101 terminator */
73 };
74 
75 /*
76  * Check the current patch level on this CPU.
77  *
78  * Returns:
79  *  - true: if update should stop
80  *  - false: otherwise
81  */
82 static bool amd_check_current_patch_level(void)
83 {
84 	u32 lvl, dummy, i;
85 	u32 *levels;
86 
87 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
88 
89 	levels = final_levels;
90 
91 	for (i = 0; levels[i]; i++) {
92 		if (lvl == levels[i])
93 			return true;
94 	}
95 	return false;
96 }
97 
98 static bool __init check_loader_disabled_bsp(void)
99 {
100 	static const char *__dis_opt_str = "dis_ucode_ldr";
101 	const char *cmdline = boot_command_line;
102 	const char *option  = __dis_opt_str;
103 
104 	/*
105 	 * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not
106 	 * completely accurate as xen pv guests don't see that CPUID bit set but
107 	 * that's good enough as they don't land on the BSP path anyway.
108 	 */
109 	if (native_cpuid_ecx(1) & BIT(31))
110 		return true;
111 
112 	if (x86_cpuid_vendor() == X86_VENDOR_AMD) {
113 		if (amd_check_current_patch_level())
114 			return true;
115 	}
116 
117 	if (cmdline_find_option_bool(cmdline, option) <= 0)
118 		dis_ucode_ldr = false;
119 
120 	return dis_ucode_ldr;
121 }
122 
123 void __init load_ucode_bsp(void)
124 {
125 	unsigned int cpuid_1_eax;
126 	bool intel = true;
127 
128 	if (!have_cpuid_p())
129 		return;
130 
131 	cpuid_1_eax = native_cpuid_eax(1);
132 
133 	switch (x86_cpuid_vendor()) {
134 	case X86_VENDOR_INTEL:
135 		if (x86_family(cpuid_1_eax) < 6)
136 			return;
137 		break;
138 
139 	case X86_VENDOR_AMD:
140 		if (x86_family(cpuid_1_eax) < 0x10)
141 			return;
142 		intel = false;
143 		break;
144 
145 	default:
146 		return;
147 	}
148 
149 	if (check_loader_disabled_bsp())
150 		return;
151 
152 	if (intel)
153 		load_ucode_intel_bsp();
154 	else
155 		load_ucode_amd_bsp(cpuid_1_eax);
156 }
157 
158 void load_ucode_ap(void)
159 {
160 	unsigned int cpuid_1_eax;
161 
162 	if (dis_ucode_ldr)
163 		return;
164 
165 	cpuid_1_eax = native_cpuid_eax(1);
166 
167 	switch (x86_cpuid_vendor()) {
168 	case X86_VENDOR_INTEL:
169 		if (x86_family(cpuid_1_eax) >= 6)
170 			load_ucode_intel_ap();
171 		break;
172 	case X86_VENDOR_AMD:
173 		if (x86_family(cpuid_1_eax) >= 0x10)
174 			load_ucode_amd_ap(cpuid_1_eax);
175 		break;
176 	default:
177 		break;
178 	}
179 }
180 
181 struct cpio_data __init find_microcode_in_initrd(const char *path)
182 {
183 #ifdef CONFIG_BLK_DEV_INITRD
184 	unsigned long start = 0;
185 	size_t size;
186 
187 #ifdef CONFIG_X86_32
188 	size = boot_params.hdr.ramdisk_size;
189 	/* Early load on BSP has a temporary mapping. */
190 	if (size)
191 		start = initrd_start_early;
192 
193 #else /* CONFIG_X86_64 */
194 	size  = (unsigned long)boot_params.ext_ramdisk_size << 32;
195 	size |= boot_params.hdr.ramdisk_size;
196 
197 	if (size) {
198 		start  = (unsigned long)boot_params.ext_ramdisk_image << 32;
199 		start |= boot_params.hdr.ramdisk_image;
200 		start += PAGE_OFFSET;
201 	}
202 #endif
203 
204 	/*
205 	 * Fixup the start address: after reserve_initrd() runs, initrd_start
206 	 * has the virtual address of the beginning of the initrd. It also
207 	 * possibly relocates the ramdisk. In either case, initrd_start contains
208 	 * the updated address so use that instead.
209 	 */
210 	if (initrd_start)
211 		start = initrd_start;
212 
213 	return find_cpio_data(path, (void *)start, size, NULL);
214 #else /* !CONFIG_BLK_DEV_INITRD */
215 	return (struct cpio_data){ NULL, 0, "" };
216 #endif
217 }
218 
219 static void reload_early_microcode(unsigned int cpu)
220 {
221 	int vendor, family;
222 
223 	vendor = x86_cpuid_vendor();
224 	family = x86_cpuid_family();
225 
226 	switch (vendor) {
227 	case X86_VENDOR_INTEL:
228 		if (family >= 6)
229 			reload_ucode_intel();
230 		break;
231 	case X86_VENDOR_AMD:
232 		if (family >= 0x10)
233 			reload_ucode_amd(cpu);
234 		break;
235 	default:
236 		break;
237 	}
238 }
239 
240 /* fake device for request_firmware */
241 static struct platform_device	*microcode_pdev;
242 
243 #ifdef CONFIG_MICROCODE_LATE_LOADING
244 /*
245  * Late loading dance. Why the heavy-handed stomp_machine effort?
246  *
247  * - HT siblings must be idle and not execute other code while the other sibling
248  *   is loading microcode in order to avoid any negative interactions caused by
249  *   the loading.
250  *
251  * - In addition, microcode update on the cores must be serialized until this
252  *   requirement can be relaxed in the future. Right now, this is conservative
253  *   and good.
254  */
255 #define SPINUNIT 100 /* 100 nsec */
256 
257 
258 static atomic_t late_cpus_in;
259 static atomic_t late_cpus_out;
260 
261 static int __wait_for_cpus(atomic_t *t, long long timeout)
262 {
263 	int all_cpus = num_online_cpus();
264 
265 	atomic_inc(t);
266 
267 	while (atomic_read(t) < all_cpus) {
268 		if (timeout < SPINUNIT) {
269 			pr_err("Timeout while waiting for CPUs rendezvous, remaining: %d\n",
270 				all_cpus - atomic_read(t));
271 			return 1;
272 		}
273 
274 		ndelay(SPINUNIT);
275 		timeout -= SPINUNIT;
276 
277 		touch_nmi_watchdog();
278 	}
279 	return 0;
280 }
281 
282 /*
283  * Returns:
284  * < 0 - on error
285  *   0 - success (no update done or microcode was updated)
286  */
287 static int __reload_late(void *info)
288 {
289 	int cpu = smp_processor_id();
290 	enum ucode_state err;
291 	int ret = 0;
292 
293 	/*
294 	 * Wait for all CPUs to arrive. A load will not be attempted unless all
295 	 * CPUs show up.
296 	 * */
297 	if (__wait_for_cpus(&late_cpus_in, NSEC_PER_SEC))
298 		return -1;
299 
300 	/*
301 	 * On an SMT system, it suffices to load the microcode on one sibling of
302 	 * the core because the microcode engine is shared between the threads.
303 	 * Synchronization still needs to take place so that no concurrent
304 	 * loading attempts happen on multiple threads of an SMT core. See
305 	 * below.
306 	 */
307 	if (cpumask_first(topology_sibling_cpumask(cpu)) == cpu)
308 		err = microcode_ops->apply_microcode(cpu);
309 	else
310 		goto wait_for_siblings;
311 
312 	if (err >= UCODE_NFOUND) {
313 		if (err == UCODE_ERROR) {
314 			pr_warn("Error reloading microcode on CPU %d\n", cpu);
315 			ret = -1;
316 		}
317 	}
318 
319 wait_for_siblings:
320 	if (__wait_for_cpus(&late_cpus_out, NSEC_PER_SEC))
321 		panic("Timeout during microcode update!\n");
322 
323 	/*
324 	 * At least one thread has completed update on each core.
325 	 * For others, simply call the update to make sure the
326 	 * per-cpu cpuinfo can be updated with right microcode
327 	 * revision.
328 	 */
329 	if (cpumask_first(topology_sibling_cpumask(cpu)) != cpu)
330 		err = microcode_ops->apply_microcode(cpu);
331 
332 	return ret;
333 }
334 
335 /*
336  * Reload microcode late on all CPUs. Wait for a sec until they
337  * all gather together.
338  */
339 static int microcode_reload_late(void)
340 {
341 	int old = boot_cpu_data.microcode, ret;
342 	struct cpuinfo_x86 prev_info;
343 
344 	pr_err("Attempting late microcode loading - it is dangerous and taints the kernel.\n");
345 	pr_err("You should switch to early loading, if possible.\n");
346 
347 	atomic_set(&late_cpus_in,  0);
348 	atomic_set(&late_cpus_out, 0);
349 
350 	/*
351 	 * Take a snapshot before the microcode update in order to compare and
352 	 * check whether any bits changed after an update.
353 	 */
354 	store_cpu_caps(&prev_info);
355 
356 	ret = stop_machine_cpuslocked(__reload_late, NULL, cpu_online_mask);
357 
358 	if (microcode_ops->finalize_late_load)
359 		microcode_ops->finalize_late_load(ret);
360 
361 	if (!ret) {
362 		pr_info("Reload succeeded, microcode revision: 0x%x -> 0x%x\n",
363 			old, boot_cpu_data.microcode);
364 		microcode_check(&prev_info);
365 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
366 	} else {
367 		pr_info("Reload failed, current microcode revision: 0x%x\n",
368 			boot_cpu_data.microcode);
369 	}
370 	return ret;
371 }
372 
373 /*
374  *  Ensure that all required CPUs which are present and have been booted
375  *  once are online.
376  *
377  *    To pass this check, all primary threads must be online.
378  *
379  *    If the microcode load is not safe against NMI then all SMT threads
380  *    must be online as well because they still react to NMIs when they are
381  *    soft-offlined and parked in one of the play_dead() variants. So if a
382  *    NMI hits while the primary thread updates the microcode the resulting
383  *    behaviour is undefined. The default play_dead() implementation on
384  *    modern CPUs uses MWAIT, which is also not guaranteed to be safe
385  *    against a microcode update which affects MWAIT.
386  */
387 static bool ensure_cpus_are_online(void)
388 {
389 	unsigned int cpu;
390 
391 	for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
392 		if (!cpu_online(cpu)) {
393 			if (topology_is_primary_thread(cpu) || !microcode_ops->nmi_safe) {
394 				pr_err("CPU %u not online\n", cpu);
395 				return false;
396 			}
397 		}
398 	}
399 	return true;
400 }
401 
402 static int ucode_load_late_locked(void)
403 {
404 	if (!ensure_cpus_are_online())
405 		return -EBUSY;
406 
407 	switch (microcode_ops->request_microcode_fw(0, &microcode_pdev->dev)) {
408 	case UCODE_NEW:
409 		return microcode_reload_late();
410 	case UCODE_NFOUND:
411 		return -ENOENT;
412 	default:
413 		return -EBADFD;
414 	}
415 }
416 
417 static ssize_t reload_store(struct device *dev,
418 			    struct device_attribute *attr,
419 			    const char *buf, size_t size)
420 {
421 	unsigned long val;
422 	ssize_t ret;
423 
424 	ret = kstrtoul(buf, 0, &val);
425 	if (ret || val != 1)
426 		return -EINVAL;
427 
428 	cpus_read_lock();
429 	ret = ucode_load_late_locked();
430 	cpus_read_unlock();
431 
432 	return ret ? : size;
433 }
434 
435 static DEVICE_ATTR_WO(reload);
436 #endif
437 
438 static ssize_t version_show(struct device *dev,
439 			struct device_attribute *attr, char *buf)
440 {
441 	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
442 
443 	return sprintf(buf, "0x%x\n", uci->cpu_sig.rev);
444 }
445 
446 static ssize_t processor_flags_show(struct device *dev,
447 			struct device_attribute *attr, char *buf)
448 {
449 	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
450 
451 	return sprintf(buf, "0x%x\n", uci->cpu_sig.pf);
452 }
453 
454 static DEVICE_ATTR_RO(version);
455 static DEVICE_ATTR_RO(processor_flags);
456 
457 static struct attribute *mc_default_attrs[] = {
458 	&dev_attr_version.attr,
459 	&dev_attr_processor_flags.attr,
460 	NULL
461 };
462 
463 static const struct attribute_group mc_attr_group = {
464 	.attrs			= mc_default_attrs,
465 	.name			= "microcode",
466 };
467 
468 static void microcode_fini_cpu(int cpu)
469 {
470 	if (microcode_ops->microcode_fini_cpu)
471 		microcode_ops->microcode_fini_cpu(cpu);
472 }
473 
474 /**
475  * microcode_bsp_resume - Update boot CPU microcode during resume.
476  */
477 void microcode_bsp_resume(void)
478 {
479 	int cpu = smp_processor_id();
480 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
481 
482 	if (uci->mc)
483 		microcode_ops->apply_microcode(cpu);
484 	else
485 		reload_early_microcode(cpu);
486 }
487 
488 static struct syscore_ops mc_syscore_ops = {
489 	.resume	= microcode_bsp_resume,
490 };
491 
492 static int mc_cpu_online(unsigned int cpu)
493 {
494 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
495 	struct device *dev = get_cpu_device(cpu);
496 
497 	memset(uci, 0, sizeof(*uci));
498 
499 	microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig);
500 	cpu_data(cpu).microcode = uci->cpu_sig.rev;
501 	if (!cpu)
502 		boot_cpu_data.microcode = uci->cpu_sig.rev;
503 
504 	if (sysfs_create_group(&dev->kobj, &mc_attr_group))
505 		pr_err("Failed to create group for CPU%d\n", cpu);
506 	return 0;
507 }
508 
509 static int mc_cpu_down_prep(unsigned int cpu)
510 {
511 	struct device *dev = get_cpu_device(cpu);
512 
513 	microcode_fini_cpu(cpu);
514 	sysfs_remove_group(&dev->kobj, &mc_attr_group);
515 	return 0;
516 }
517 
518 static struct attribute *cpu_root_microcode_attrs[] = {
519 #ifdef CONFIG_MICROCODE_LATE_LOADING
520 	&dev_attr_reload.attr,
521 #endif
522 	NULL
523 };
524 
525 static const struct attribute_group cpu_root_microcode_group = {
526 	.name  = "microcode",
527 	.attrs = cpu_root_microcode_attrs,
528 };
529 
530 static int __init microcode_init(void)
531 {
532 	struct device *dev_root;
533 	struct cpuinfo_x86 *c = &boot_cpu_data;
534 	int error;
535 
536 	if (dis_ucode_ldr)
537 		return -EINVAL;
538 
539 	if (c->x86_vendor == X86_VENDOR_INTEL)
540 		microcode_ops = init_intel_microcode();
541 	else if (c->x86_vendor == X86_VENDOR_AMD)
542 		microcode_ops = init_amd_microcode();
543 	else
544 		pr_err("no support for this CPU vendor\n");
545 
546 	if (!microcode_ops)
547 		return -ENODEV;
548 
549 	microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0);
550 	if (IS_ERR(microcode_pdev))
551 		return PTR_ERR(microcode_pdev);
552 
553 	dev_root = bus_get_dev_root(&cpu_subsys);
554 	if (dev_root) {
555 		error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group);
556 		put_device(dev_root);
557 		if (error) {
558 			pr_err("Error creating microcode group!\n");
559 			goto out_pdev;
560 		}
561 	}
562 
563 	register_syscore_ops(&mc_syscore_ops);
564 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online",
565 			  mc_cpu_online, mc_cpu_down_prep);
566 
567 	pr_info("Microcode Update Driver: v%s.", DRIVER_VERSION);
568 
569 	return 0;
570 
571  out_pdev:
572 	platform_device_unregister(microcode_pdev);
573 	return error;
574 
575 }
576 late_initcall(microcode_init);
577