1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * CPU Microcode Update Driver for Linux 4 * 5 * Copyright (C) 2000-2006 Tigran Aivazian <[email protected]> 6 * 2006 Shaohua Li <[email protected]> 7 * 2013-2016 Borislav Petkov <[email protected]> 8 * 9 * X86 CPU microcode early update for Linux: 10 * 11 * Copyright (C) 2012 Fenghua Yu <[email protected]> 12 * H Peter Anvin" <[email protected]> 13 * (C) 2015 Borislav Petkov <[email protected]> 14 * 15 * This driver allows to upgrade microcode on x86 processors. 16 */ 17 18 #define pr_fmt(fmt) "microcode: " fmt 19 20 #include <linux/platform_device.h> 21 #include <linux/stop_machine.h> 22 #include <linux/syscore_ops.h> 23 #include <linux/miscdevice.h> 24 #include <linux/capability.h> 25 #include <linux/firmware.h> 26 #include <linux/kernel.h> 27 #include <linux/delay.h> 28 #include <linux/mutex.h> 29 #include <linux/cpu.h> 30 #include <linux/nmi.h> 31 #include <linux/fs.h> 32 #include <linux/mm.h> 33 34 #include <asm/cpu_device_id.h> 35 #include <asm/perf_event.h> 36 #include <asm/processor.h> 37 #include <asm/cmdline.h> 38 #include <asm/setup.h> 39 40 #include "internal.h" 41 42 #define DRIVER_VERSION "2.2" 43 44 static struct microcode_ops *microcode_ops; 45 bool dis_ucode_ldr = true; 46 47 /* 48 * Synchronization. 49 * 50 * All non cpu-hotplug-callback call sites use: 51 * 52 * - cpus_read_lock/unlock() to synchronize with 53 * the cpu-hotplug-callback call sites. 54 * 55 * We guarantee that only a single cpu is being 56 * updated at any particular moment of time. 57 */ 58 struct ucode_cpu_info ucode_cpu_info[NR_CPUS]; 59 60 struct cpu_info_ctx { 61 struct cpu_signature *cpu_sig; 62 int err; 63 }; 64 65 /* 66 * Those patch levels cannot be updated to newer ones and thus should be final. 67 */ 68 static u32 final_levels[] = { 69 0x01000098, 70 0x0100009f, 71 0x010000af, 72 0, /* T-101 terminator */ 73 }; 74 75 /* 76 * Check the current patch level on this CPU. 77 * 78 * Returns: 79 * - true: if update should stop 80 * - false: otherwise 81 */ 82 static bool amd_check_current_patch_level(void) 83 { 84 u32 lvl, dummy, i; 85 u32 *levels; 86 87 native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy); 88 89 levels = final_levels; 90 91 for (i = 0; levels[i]; i++) { 92 if (lvl == levels[i]) 93 return true; 94 } 95 return false; 96 } 97 98 static bool __init check_loader_disabled_bsp(void) 99 { 100 static const char *__dis_opt_str = "dis_ucode_ldr"; 101 const char *cmdline = boot_command_line; 102 const char *option = __dis_opt_str; 103 104 /* 105 * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not 106 * completely accurate as xen pv guests don't see that CPUID bit set but 107 * that's good enough as they don't land on the BSP path anyway. 108 */ 109 if (native_cpuid_ecx(1) & BIT(31)) 110 return true; 111 112 if (x86_cpuid_vendor() == X86_VENDOR_AMD) { 113 if (amd_check_current_patch_level()) 114 return true; 115 } 116 117 if (cmdline_find_option_bool(cmdline, option) <= 0) 118 dis_ucode_ldr = false; 119 120 return dis_ucode_ldr; 121 } 122 123 void __init load_ucode_bsp(void) 124 { 125 unsigned int cpuid_1_eax; 126 bool intel = true; 127 128 if (!have_cpuid_p()) 129 return; 130 131 cpuid_1_eax = native_cpuid_eax(1); 132 133 switch (x86_cpuid_vendor()) { 134 case X86_VENDOR_INTEL: 135 if (x86_family(cpuid_1_eax) < 6) 136 return; 137 break; 138 139 case X86_VENDOR_AMD: 140 if (x86_family(cpuid_1_eax) < 0x10) 141 return; 142 intel = false; 143 break; 144 145 default: 146 return; 147 } 148 149 if (check_loader_disabled_bsp()) 150 return; 151 152 if (intel) 153 load_ucode_intel_bsp(); 154 else 155 load_ucode_amd_bsp(cpuid_1_eax); 156 } 157 158 void load_ucode_ap(void) 159 { 160 unsigned int cpuid_1_eax; 161 162 if (dis_ucode_ldr) 163 return; 164 165 cpuid_1_eax = native_cpuid_eax(1); 166 167 switch (x86_cpuid_vendor()) { 168 case X86_VENDOR_INTEL: 169 if (x86_family(cpuid_1_eax) >= 6) 170 load_ucode_intel_ap(); 171 break; 172 case X86_VENDOR_AMD: 173 if (x86_family(cpuid_1_eax) >= 0x10) 174 load_ucode_amd_ap(cpuid_1_eax); 175 break; 176 default: 177 break; 178 } 179 } 180 181 struct cpio_data __init find_microcode_in_initrd(const char *path) 182 { 183 #ifdef CONFIG_BLK_DEV_INITRD 184 unsigned long start = 0; 185 size_t size; 186 187 #ifdef CONFIG_X86_32 188 size = boot_params.hdr.ramdisk_size; 189 /* Early load on BSP has a temporary mapping. */ 190 if (size) 191 start = initrd_start_early; 192 193 #else /* CONFIG_X86_64 */ 194 size = (unsigned long)boot_params.ext_ramdisk_size << 32; 195 size |= boot_params.hdr.ramdisk_size; 196 197 if (size) { 198 start = (unsigned long)boot_params.ext_ramdisk_image << 32; 199 start |= boot_params.hdr.ramdisk_image; 200 start += PAGE_OFFSET; 201 } 202 #endif 203 204 /* 205 * Fixup the start address: after reserve_initrd() runs, initrd_start 206 * has the virtual address of the beginning of the initrd. It also 207 * possibly relocates the ramdisk. In either case, initrd_start contains 208 * the updated address so use that instead. 209 */ 210 if (initrd_start) 211 start = initrd_start; 212 213 return find_cpio_data(path, (void *)start, size, NULL); 214 #else /* !CONFIG_BLK_DEV_INITRD */ 215 return (struct cpio_data){ NULL, 0, "" }; 216 #endif 217 } 218 219 static void reload_early_microcode(unsigned int cpu) 220 { 221 int vendor, family; 222 223 vendor = x86_cpuid_vendor(); 224 family = x86_cpuid_family(); 225 226 switch (vendor) { 227 case X86_VENDOR_INTEL: 228 if (family >= 6) 229 reload_ucode_intel(); 230 break; 231 case X86_VENDOR_AMD: 232 if (family >= 0x10) 233 reload_ucode_amd(cpu); 234 break; 235 default: 236 break; 237 } 238 } 239 240 /* fake device for request_firmware */ 241 static struct platform_device *microcode_pdev; 242 243 #ifdef CONFIG_MICROCODE_LATE_LOADING 244 /* 245 * Late loading dance. Why the heavy-handed stomp_machine effort? 246 * 247 * - HT siblings must be idle and not execute other code while the other sibling 248 * is loading microcode in order to avoid any negative interactions caused by 249 * the loading. 250 * 251 * - In addition, microcode update on the cores must be serialized until this 252 * requirement can be relaxed in the future. Right now, this is conservative 253 * and good. 254 */ 255 enum sibling_ctrl { 256 /* Spinwait with timeout */ 257 SCTRL_WAIT, 258 /* Invoke the microcode_apply() callback */ 259 SCTRL_APPLY, 260 /* Proceed without invoking the microcode_apply() callback */ 261 SCTRL_DONE, 262 }; 263 264 struct microcode_ctrl { 265 enum sibling_ctrl ctrl; 266 enum ucode_state result; 267 unsigned int ctrl_cpu; 268 }; 269 270 static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl); 271 static atomic_t late_cpus_in, late_cpus_out; 272 273 static bool wait_for_cpus(atomic_t *cnt) 274 { 275 unsigned int timeout; 276 277 WARN_ON_ONCE(atomic_dec_return(cnt) < 0); 278 279 for (timeout = 0; timeout < USEC_PER_SEC; timeout++) { 280 if (!atomic_read(cnt)) 281 return true; 282 283 udelay(1); 284 285 if (!(timeout % USEC_PER_MSEC)) 286 touch_nmi_watchdog(); 287 } 288 /* Prevent the late comers from making progress and let them time out */ 289 atomic_inc(cnt); 290 return false; 291 } 292 293 static bool wait_for_ctrl(void) 294 { 295 unsigned int timeout; 296 297 for (timeout = 0; timeout < USEC_PER_SEC; timeout++) { 298 if (this_cpu_read(ucode_ctrl.ctrl) != SCTRL_WAIT) 299 return true; 300 udelay(1); 301 if (!(timeout % 1000)) 302 touch_nmi_watchdog(); 303 } 304 return false; 305 } 306 307 static __maybe_unused void load_secondary(unsigned int cpu) 308 { 309 unsigned int ctrl_cpu = this_cpu_read(ucode_ctrl.ctrl_cpu); 310 enum ucode_state ret; 311 312 /* Initial rendezvous to ensure that all CPUs have arrived */ 313 if (!wait_for_cpus(&late_cpus_in)) { 314 pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1); 315 this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); 316 return; 317 } 318 319 /* 320 * Wait for primary threads to complete. If one of them hangs due 321 * to the update, there is no way out. This is non-recoverable 322 * because the CPU might hold locks or resources and confuse the 323 * scheduler, watchdogs etc. There is no way to safely evacuate the 324 * machine. 325 */ 326 if (!wait_for_ctrl()) 327 panic("Microcode load: Primary CPU %d timed out\n", ctrl_cpu); 328 329 /* 330 * If the primary succeeded then invoke the apply() callback, 331 * otherwise copy the state from the primary thread. 332 */ 333 if (this_cpu_read(ucode_ctrl.ctrl) == SCTRL_APPLY) 334 ret = microcode_ops->apply_microcode(cpu); 335 else 336 ret = per_cpu(ucode_ctrl.result, ctrl_cpu); 337 338 this_cpu_write(ucode_ctrl.result, ret); 339 this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE); 340 } 341 342 static __maybe_unused void load_primary(unsigned int cpu) 343 { 344 struct cpumask *secondaries = topology_sibling_cpumask(cpu); 345 enum sibling_ctrl ctrl; 346 enum ucode_state ret; 347 unsigned int sibling; 348 349 /* Initial rendezvous to ensure that all CPUs have arrived */ 350 if (!wait_for_cpus(&late_cpus_in)) { 351 this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); 352 pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1); 353 return; 354 } 355 356 ret = microcode_ops->apply_microcode(cpu); 357 this_cpu_write(ucode_ctrl.result, ret); 358 this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE); 359 360 /* 361 * If the update was successful, let the siblings run the apply() 362 * callback. If not, tell them it's done. This also covers the 363 * case where the CPU has uniform loading at package or system 364 * scope implemented but does not advertise it. 365 */ 366 if (ret == UCODE_UPDATED || ret == UCODE_OK) 367 ctrl = SCTRL_APPLY; 368 else 369 ctrl = SCTRL_DONE; 370 371 for_each_cpu(sibling, secondaries) { 372 if (sibling != cpu) 373 per_cpu(ucode_ctrl.ctrl, sibling) = ctrl; 374 } 375 } 376 377 static int load_cpus_stopped(void *unused) 378 { 379 int cpu = smp_processor_id(); 380 enum ucode_state ret; 381 382 /* 383 * Wait for all CPUs to arrive. A load will not be attempted unless all 384 * CPUs show up. 385 * */ 386 if (!wait_for_cpus(&late_cpus_in)) { 387 this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); 388 return 0; 389 } 390 391 /* 392 * On an SMT system, it suffices to load the microcode on one sibling of 393 * the core because the microcode engine is shared between the threads. 394 * Synchronization still needs to take place so that no concurrent 395 * loading attempts happen on multiple threads of an SMT core. See 396 * below. 397 */ 398 if (cpumask_first(topology_sibling_cpumask(cpu)) != cpu) 399 goto wait_for_siblings; 400 401 ret = microcode_ops->apply_microcode(cpu); 402 this_cpu_write(ucode_ctrl.result, ret); 403 404 wait_for_siblings: 405 if (!wait_for_cpus(&late_cpus_out)) 406 panic("Timeout during microcode update!\n"); 407 408 /* 409 * At least one thread has completed update on each core. 410 * For others, simply call the update to make sure the 411 * per-cpu cpuinfo can be updated with right microcode 412 * revision. 413 */ 414 if (cpumask_first(topology_sibling_cpumask(cpu)) == cpu) 415 return 0; 416 417 ret = microcode_ops->apply_microcode(cpu); 418 this_cpu_write(ucode_ctrl.result, ret); 419 return 0; 420 } 421 422 static int load_late_stop_cpus(void) 423 { 424 unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0; 425 int old_rev = boot_cpu_data.microcode; 426 struct cpuinfo_x86 prev_info; 427 428 pr_err("Attempting late microcode loading - it is dangerous and taints the kernel.\n"); 429 pr_err("You should switch to early loading, if possible.\n"); 430 431 atomic_set(&late_cpus_in, num_online_cpus()); 432 atomic_set(&late_cpus_out, num_online_cpus()); 433 434 /* 435 * Take a snapshot before the microcode update in order to compare and 436 * check whether any bits changed after an update. 437 */ 438 store_cpu_caps(&prev_info); 439 440 stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask); 441 442 /* Analyze the results */ 443 for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { 444 switch (per_cpu(ucode_ctrl.result, cpu)) { 445 case UCODE_UPDATED: updated++; break; 446 case UCODE_TIMEOUT: timedout++; break; 447 case UCODE_OK: siblings++; break; 448 default: failed++; break; 449 } 450 } 451 452 if (microcode_ops->finalize_late_load) 453 microcode_ops->finalize_late_load(!updated); 454 455 if (!updated) { 456 /* Nothing changed. */ 457 if (!failed && !timedout) 458 return 0; 459 pr_err("update failed: %u CPUs failed %u CPUs timed out\n", 460 failed, timedout); 461 return -EIO; 462 } 463 464 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 465 pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings); 466 if (failed || timedout) { 467 pr_err("load incomplete. %u CPUs timed out or failed\n", 468 num_online_cpus() - (updated + siblings)); 469 } 470 pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode); 471 microcode_check(&prev_info); 472 473 return updated + siblings == num_online_cpus() ? 0 : -EIO; 474 } 475 476 /* 477 * This function does two things: 478 * 479 * 1) Ensure that all required CPUs which are present and have been booted 480 * once are online. 481 * 482 * To pass this check, all primary threads must be online. 483 * 484 * If the microcode load is not safe against NMI then all SMT threads 485 * must be online as well because they still react to NMIs when they are 486 * soft-offlined and parked in one of the play_dead() variants. So if a 487 * NMI hits while the primary thread updates the microcode the resulting 488 * behaviour is undefined. The default play_dead() implementation on 489 * modern CPUs uses MWAIT, which is also not guaranteed to be safe 490 * against a microcode update which affects MWAIT. 491 * 492 * 2) Initialize the per CPU control structure 493 */ 494 static bool setup_cpus(void) 495 { 496 struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, }; 497 unsigned int cpu; 498 499 for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { 500 if (!cpu_online(cpu)) { 501 if (topology_is_primary_thread(cpu) || !microcode_ops->nmi_safe) { 502 pr_err("CPU %u not online\n", cpu); 503 return false; 504 } 505 } 506 507 /* 508 * Initialize the per CPU state. This is core scope for now, 509 * but prepared to take package or system scope into account. 510 */ 511 ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu)); 512 per_cpu(ucode_ctrl, cpu) = ctrl; 513 } 514 return true; 515 } 516 517 static int load_late_locked(void) 518 { 519 if (!setup_cpus()) 520 return -EBUSY; 521 522 switch (microcode_ops->request_microcode_fw(0, µcode_pdev->dev)) { 523 case UCODE_NEW: 524 return load_late_stop_cpus(); 525 case UCODE_NFOUND: 526 return -ENOENT; 527 default: 528 return -EBADFD; 529 } 530 } 531 532 static ssize_t reload_store(struct device *dev, 533 struct device_attribute *attr, 534 const char *buf, size_t size) 535 { 536 unsigned long val; 537 ssize_t ret; 538 539 ret = kstrtoul(buf, 0, &val); 540 if (ret || val != 1) 541 return -EINVAL; 542 543 cpus_read_lock(); 544 ret = load_late_locked(); 545 cpus_read_unlock(); 546 547 return ret ? : size; 548 } 549 550 static DEVICE_ATTR_WO(reload); 551 #endif 552 553 static ssize_t version_show(struct device *dev, 554 struct device_attribute *attr, char *buf) 555 { 556 struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; 557 558 return sprintf(buf, "0x%x\n", uci->cpu_sig.rev); 559 } 560 561 static ssize_t processor_flags_show(struct device *dev, 562 struct device_attribute *attr, char *buf) 563 { 564 struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; 565 566 return sprintf(buf, "0x%x\n", uci->cpu_sig.pf); 567 } 568 569 static DEVICE_ATTR_RO(version); 570 static DEVICE_ATTR_RO(processor_flags); 571 572 static struct attribute *mc_default_attrs[] = { 573 &dev_attr_version.attr, 574 &dev_attr_processor_flags.attr, 575 NULL 576 }; 577 578 static const struct attribute_group mc_attr_group = { 579 .attrs = mc_default_attrs, 580 .name = "microcode", 581 }; 582 583 static void microcode_fini_cpu(int cpu) 584 { 585 if (microcode_ops->microcode_fini_cpu) 586 microcode_ops->microcode_fini_cpu(cpu); 587 } 588 589 /** 590 * microcode_bsp_resume - Update boot CPU microcode during resume. 591 */ 592 void microcode_bsp_resume(void) 593 { 594 int cpu = smp_processor_id(); 595 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 596 597 if (uci->mc) 598 microcode_ops->apply_microcode(cpu); 599 else 600 reload_early_microcode(cpu); 601 } 602 603 static struct syscore_ops mc_syscore_ops = { 604 .resume = microcode_bsp_resume, 605 }; 606 607 static int mc_cpu_online(unsigned int cpu) 608 { 609 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 610 struct device *dev = get_cpu_device(cpu); 611 612 memset(uci, 0, sizeof(*uci)); 613 614 microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig); 615 cpu_data(cpu).microcode = uci->cpu_sig.rev; 616 if (!cpu) 617 boot_cpu_data.microcode = uci->cpu_sig.rev; 618 619 if (sysfs_create_group(&dev->kobj, &mc_attr_group)) 620 pr_err("Failed to create group for CPU%d\n", cpu); 621 return 0; 622 } 623 624 static int mc_cpu_down_prep(unsigned int cpu) 625 { 626 struct device *dev = get_cpu_device(cpu); 627 628 microcode_fini_cpu(cpu); 629 sysfs_remove_group(&dev->kobj, &mc_attr_group); 630 return 0; 631 } 632 633 static struct attribute *cpu_root_microcode_attrs[] = { 634 #ifdef CONFIG_MICROCODE_LATE_LOADING 635 &dev_attr_reload.attr, 636 #endif 637 NULL 638 }; 639 640 static const struct attribute_group cpu_root_microcode_group = { 641 .name = "microcode", 642 .attrs = cpu_root_microcode_attrs, 643 }; 644 645 static int __init microcode_init(void) 646 { 647 struct device *dev_root; 648 struct cpuinfo_x86 *c = &boot_cpu_data; 649 int error; 650 651 if (dis_ucode_ldr) 652 return -EINVAL; 653 654 if (c->x86_vendor == X86_VENDOR_INTEL) 655 microcode_ops = init_intel_microcode(); 656 else if (c->x86_vendor == X86_VENDOR_AMD) 657 microcode_ops = init_amd_microcode(); 658 else 659 pr_err("no support for this CPU vendor\n"); 660 661 if (!microcode_ops) 662 return -ENODEV; 663 664 microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0); 665 if (IS_ERR(microcode_pdev)) 666 return PTR_ERR(microcode_pdev); 667 668 dev_root = bus_get_dev_root(&cpu_subsys); 669 if (dev_root) { 670 error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group); 671 put_device(dev_root); 672 if (error) { 673 pr_err("Error creating microcode group!\n"); 674 goto out_pdev; 675 } 676 } 677 678 register_syscore_ops(&mc_syscore_ops); 679 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online", 680 mc_cpu_online, mc_cpu_down_prep); 681 682 pr_info("Microcode Update Driver: v%s.", DRIVER_VERSION); 683 684 return 0; 685 686 out_pdev: 687 platform_device_unregister(microcode_pdev); 688 return error; 689 690 } 691 late_initcall(microcode_init); 692