1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * CPU Microcode Update Driver for Linux 4 * 5 * Copyright (C) 2000-2006 Tigran Aivazian <[email protected]> 6 * 2006 Shaohua Li <[email protected]> 7 * 2013-2016 Borislav Petkov <[email protected]> 8 * 9 * X86 CPU microcode early update for Linux: 10 * 11 * Copyright (C) 2012 Fenghua Yu <[email protected]> 12 * H Peter Anvin" <[email protected]> 13 * (C) 2015 Borislav Petkov <[email protected]> 14 * 15 * This driver allows to upgrade microcode on x86 processors. 16 */ 17 18 #define pr_fmt(fmt) "microcode: " fmt 19 20 #include <linux/platform_device.h> 21 #include <linux/stop_machine.h> 22 #include <linux/syscore_ops.h> 23 #include <linux/miscdevice.h> 24 #include <linux/capability.h> 25 #include <linux/firmware.h> 26 #include <linux/kernel.h> 27 #include <linux/delay.h> 28 #include <linux/mutex.h> 29 #include <linux/cpu.h> 30 #include <linux/nmi.h> 31 #include <linux/fs.h> 32 #include <linux/mm.h> 33 34 #include <asm/cpu_device_id.h> 35 #include <asm/perf_event.h> 36 #include <asm/processor.h> 37 #include <asm/cmdline.h> 38 #include <asm/setup.h> 39 40 #include "internal.h" 41 42 #define DRIVER_VERSION "2.2" 43 44 static struct microcode_ops *microcode_ops; 45 bool dis_ucode_ldr = true; 46 47 /* 48 * Synchronization. 49 * 50 * All non cpu-hotplug-callback call sites use: 51 * 52 * - cpus_read_lock/unlock() to synchronize with 53 * the cpu-hotplug-callback call sites. 54 * 55 * We guarantee that only a single cpu is being 56 * updated at any particular moment of time. 57 */ 58 struct ucode_cpu_info ucode_cpu_info[NR_CPUS]; 59 60 struct cpu_info_ctx { 61 struct cpu_signature *cpu_sig; 62 int err; 63 }; 64 65 /* 66 * Those patch levels cannot be updated to newer ones and thus should be final. 67 */ 68 static u32 final_levels[] = { 69 0x01000098, 70 0x0100009f, 71 0x010000af, 72 0, /* T-101 terminator */ 73 }; 74 75 /* 76 * Check the current patch level on this CPU. 77 * 78 * Returns: 79 * - true: if update should stop 80 * - false: otherwise 81 */ 82 static bool amd_check_current_patch_level(void) 83 { 84 u32 lvl, dummy, i; 85 u32 *levels; 86 87 native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy); 88 89 levels = final_levels; 90 91 for (i = 0; levels[i]; i++) { 92 if (lvl == levels[i]) 93 return true; 94 } 95 return false; 96 } 97 98 static bool __init check_loader_disabled_bsp(void) 99 { 100 static const char *__dis_opt_str = "dis_ucode_ldr"; 101 const char *cmdline = boot_command_line; 102 const char *option = __dis_opt_str; 103 104 /* 105 * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not 106 * completely accurate as xen pv guests don't see that CPUID bit set but 107 * that's good enough as they don't land on the BSP path anyway. 108 */ 109 if (native_cpuid_ecx(1) & BIT(31)) 110 return true; 111 112 if (x86_cpuid_vendor() == X86_VENDOR_AMD) { 113 if (amd_check_current_patch_level()) 114 return true; 115 } 116 117 if (cmdline_find_option_bool(cmdline, option) <= 0) 118 dis_ucode_ldr = false; 119 120 return dis_ucode_ldr; 121 } 122 123 void __init load_ucode_bsp(void) 124 { 125 unsigned int cpuid_1_eax; 126 bool intel = true; 127 128 if (!have_cpuid_p()) 129 return; 130 131 cpuid_1_eax = native_cpuid_eax(1); 132 133 switch (x86_cpuid_vendor()) { 134 case X86_VENDOR_INTEL: 135 if (x86_family(cpuid_1_eax) < 6) 136 return; 137 break; 138 139 case X86_VENDOR_AMD: 140 if (x86_family(cpuid_1_eax) < 0x10) 141 return; 142 intel = false; 143 break; 144 145 default: 146 return; 147 } 148 149 if (check_loader_disabled_bsp()) 150 return; 151 152 if (intel) 153 load_ucode_intel_bsp(); 154 else 155 load_ucode_amd_bsp(cpuid_1_eax); 156 } 157 158 void load_ucode_ap(void) 159 { 160 unsigned int cpuid_1_eax; 161 162 if (dis_ucode_ldr) 163 return; 164 165 cpuid_1_eax = native_cpuid_eax(1); 166 167 switch (x86_cpuid_vendor()) { 168 case X86_VENDOR_INTEL: 169 if (x86_family(cpuid_1_eax) >= 6) 170 load_ucode_intel_ap(); 171 break; 172 case X86_VENDOR_AMD: 173 if (x86_family(cpuid_1_eax) >= 0x10) 174 load_ucode_amd_ap(cpuid_1_eax); 175 break; 176 default: 177 break; 178 } 179 } 180 181 struct cpio_data __init find_microcode_in_initrd(const char *path) 182 { 183 #ifdef CONFIG_BLK_DEV_INITRD 184 unsigned long start = 0; 185 size_t size; 186 187 #ifdef CONFIG_X86_32 188 size = boot_params.hdr.ramdisk_size; 189 /* Early load on BSP has a temporary mapping. */ 190 if (size) 191 start = initrd_start_early; 192 193 #else /* CONFIG_X86_64 */ 194 size = (unsigned long)boot_params.ext_ramdisk_size << 32; 195 size |= boot_params.hdr.ramdisk_size; 196 197 if (size) { 198 start = (unsigned long)boot_params.ext_ramdisk_image << 32; 199 start |= boot_params.hdr.ramdisk_image; 200 start += PAGE_OFFSET; 201 } 202 #endif 203 204 /* 205 * Fixup the start address: after reserve_initrd() runs, initrd_start 206 * has the virtual address of the beginning of the initrd. It also 207 * possibly relocates the ramdisk. In either case, initrd_start contains 208 * the updated address so use that instead. 209 */ 210 if (initrd_start) 211 start = initrd_start; 212 213 return find_cpio_data(path, (void *)start, size, NULL); 214 #else /* !CONFIG_BLK_DEV_INITRD */ 215 return (struct cpio_data){ NULL, 0, "" }; 216 #endif 217 } 218 219 static void reload_early_microcode(unsigned int cpu) 220 { 221 int vendor, family; 222 223 vendor = x86_cpuid_vendor(); 224 family = x86_cpuid_family(); 225 226 switch (vendor) { 227 case X86_VENDOR_INTEL: 228 if (family >= 6) 229 reload_ucode_intel(); 230 break; 231 case X86_VENDOR_AMD: 232 if (family >= 0x10) 233 reload_ucode_amd(cpu); 234 break; 235 default: 236 break; 237 } 238 } 239 240 /* fake device for request_firmware */ 241 static struct platform_device *microcode_pdev; 242 243 #ifdef CONFIG_MICROCODE_LATE_LOADING 244 /* 245 * Late loading dance. Why the heavy-handed stomp_machine effort? 246 * 247 * - HT siblings must be idle and not execute other code while the other sibling 248 * is loading microcode in order to avoid any negative interactions caused by 249 * the loading. 250 * 251 * - In addition, microcode update on the cores must be serialized until this 252 * requirement can be relaxed in the future. Right now, this is conservative 253 * and good. 254 */ 255 struct microcode_ctrl { 256 enum ucode_state result; 257 }; 258 259 static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl); 260 static atomic_t late_cpus_in, late_cpus_out; 261 262 static bool wait_for_cpus(atomic_t *cnt) 263 { 264 unsigned int timeout; 265 266 WARN_ON_ONCE(atomic_dec_return(cnt) < 0); 267 268 for (timeout = 0; timeout < USEC_PER_SEC; timeout++) { 269 if (!atomic_read(cnt)) 270 return true; 271 272 udelay(1); 273 274 if (!(timeout % USEC_PER_MSEC)) 275 touch_nmi_watchdog(); 276 } 277 /* Prevent the late comers from making progress and let them time out */ 278 atomic_inc(cnt); 279 return false; 280 } 281 282 static int load_cpus_stopped(void *unused) 283 { 284 int cpu = smp_processor_id(); 285 enum ucode_state ret; 286 287 /* 288 * Wait for all CPUs to arrive. A load will not be attempted unless all 289 * CPUs show up. 290 * */ 291 if (!wait_for_cpus(&late_cpus_in)) { 292 this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); 293 return 0; 294 } 295 296 /* 297 * On an SMT system, it suffices to load the microcode on one sibling of 298 * the core because the microcode engine is shared between the threads. 299 * Synchronization still needs to take place so that no concurrent 300 * loading attempts happen on multiple threads of an SMT core. See 301 * below. 302 */ 303 if (cpumask_first(topology_sibling_cpumask(cpu)) != cpu) 304 goto wait_for_siblings; 305 306 ret = microcode_ops->apply_microcode(cpu); 307 this_cpu_write(ucode_ctrl.result, ret); 308 309 wait_for_siblings: 310 if (!wait_for_cpus(&late_cpus_out)) 311 panic("Timeout during microcode update!\n"); 312 313 /* 314 * At least one thread has completed update on each core. 315 * For others, simply call the update to make sure the 316 * per-cpu cpuinfo can be updated with right microcode 317 * revision. 318 */ 319 if (cpumask_first(topology_sibling_cpumask(cpu)) == cpu) 320 return 0; 321 322 ret = microcode_ops->apply_microcode(cpu); 323 this_cpu_write(ucode_ctrl.result, ret); 324 return 0; 325 } 326 327 static int load_late_stop_cpus(void) 328 { 329 unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0; 330 int old_rev = boot_cpu_data.microcode; 331 struct cpuinfo_x86 prev_info; 332 333 pr_err("Attempting late microcode loading - it is dangerous and taints the kernel.\n"); 334 pr_err("You should switch to early loading, if possible.\n"); 335 336 atomic_set(&late_cpus_in, num_online_cpus()); 337 atomic_set(&late_cpus_out, num_online_cpus()); 338 339 /* 340 * Take a snapshot before the microcode update in order to compare and 341 * check whether any bits changed after an update. 342 */ 343 store_cpu_caps(&prev_info); 344 345 stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask); 346 347 /* Analyze the results */ 348 for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { 349 switch (per_cpu(ucode_ctrl.result, cpu)) { 350 case UCODE_UPDATED: updated++; break; 351 case UCODE_TIMEOUT: timedout++; break; 352 case UCODE_OK: siblings++; break; 353 default: failed++; break; 354 } 355 } 356 357 if (microcode_ops->finalize_late_load) 358 microcode_ops->finalize_late_load(!updated); 359 360 if (!updated) { 361 /* Nothing changed. */ 362 if (!failed && !timedout) 363 return 0; 364 pr_err("update failed: %u CPUs failed %u CPUs timed out\n", 365 failed, timedout); 366 return -EIO; 367 } 368 369 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 370 pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings); 371 if (failed || timedout) { 372 pr_err("load incomplete. %u CPUs timed out or failed\n", 373 num_online_cpus() - (updated + siblings)); 374 } 375 pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode); 376 microcode_check(&prev_info); 377 378 return updated + siblings == num_online_cpus() ? 0 : -EIO; 379 } 380 381 /* 382 * This function does two things: 383 * 384 * 1) Ensure that all required CPUs which are present and have been booted 385 * once are online. 386 * 387 * To pass this check, all primary threads must be online. 388 * 389 * If the microcode load is not safe against NMI then all SMT threads 390 * must be online as well because they still react to NMIs when they are 391 * soft-offlined and parked in one of the play_dead() variants. So if a 392 * NMI hits while the primary thread updates the microcode the resulting 393 * behaviour is undefined. The default play_dead() implementation on 394 * modern CPUs uses MWAIT, which is also not guaranteed to be safe 395 * against a microcode update which affects MWAIT. 396 * 397 * 2) Initialize the per CPU control structure 398 */ 399 static bool setup_cpus(void) 400 { 401 struct microcode_ctrl ctrl = { .result = -1, }; 402 unsigned int cpu; 403 404 for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { 405 if (!cpu_online(cpu)) { 406 if (topology_is_primary_thread(cpu) || !microcode_ops->nmi_safe) { 407 pr_err("CPU %u not online\n", cpu); 408 return false; 409 } 410 } 411 /* Initialize the per CPU state */ 412 per_cpu(ucode_ctrl, cpu) = ctrl; 413 } 414 return true; 415 } 416 417 static int load_late_locked(void) 418 { 419 if (!setup_cpus()) 420 return -EBUSY; 421 422 switch (microcode_ops->request_microcode_fw(0, µcode_pdev->dev)) { 423 case UCODE_NEW: 424 return load_late_stop_cpus(); 425 case UCODE_NFOUND: 426 return -ENOENT; 427 default: 428 return -EBADFD; 429 } 430 } 431 432 static ssize_t reload_store(struct device *dev, 433 struct device_attribute *attr, 434 const char *buf, size_t size) 435 { 436 unsigned long val; 437 ssize_t ret; 438 439 ret = kstrtoul(buf, 0, &val); 440 if (ret || val != 1) 441 return -EINVAL; 442 443 cpus_read_lock(); 444 ret = load_late_locked(); 445 cpus_read_unlock(); 446 447 return ret ? : size; 448 } 449 450 static DEVICE_ATTR_WO(reload); 451 #endif 452 453 static ssize_t version_show(struct device *dev, 454 struct device_attribute *attr, char *buf) 455 { 456 struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; 457 458 return sprintf(buf, "0x%x\n", uci->cpu_sig.rev); 459 } 460 461 static ssize_t processor_flags_show(struct device *dev, 462 struct device_attribute *attr, char *buf) 463 { 464 struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; 465 466 return sprintf(buf, "0x%x\n", uci->cpu_sig.pf); 467 } 468 469 static DEVICE_ATTR_RO(version); 470 static DEVICE_ATTR_RO(processor_flags); 471 472 static struct attribute *mc_default_attrs[] = { 473 &dev_attr_version.attr, 474 &dev_attr_processor_flags.attr, 475 NULL 476 }; 477 478 static const struct attribute_group mc_attr_group = { 479 .attrs = mc_default_attrs, 480 .name = "microcode", 481 }; 482 483 static void microcode_fini_cpu(int cpu) 484 { 485 if (microcode_ops->microcode_fini_cpu) 486 microcode_ops->microcode_fini_cpu(cpu); 487 } 488 489 /** 490 * microcode_bsp_resume - Update boot CPU microcode during resume. 491 */ 492 void microcode_bsp_resume(void) 493 { 494 int cpu = smp_processor_id(); 495 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 496 497 if (uci->mc) 498 microcode_ops->apply_microcode(cpu); 499 else 500 reload_early_microcode(cpu); 501 } 502 503 static struct syscore_ops mc_syscore_ops = { 504 .resume = microcode_bsp_resume, 505 }; 506 507 static int mc_cpu_online(unsigned int cpu) 508 { 509 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 510 struct device *dev = get_cpu_device(cpu); 511 512 memset(uci, 0, sizeof(*uci)); 513 514 microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig); 515 cpu_data(cpu).microcode = uci->cpu_sig.rev; 516 if (!cpu) 517 boot_cpu_data.microcode = uci->cpu_sig.rev; 518 519 if (sysfs_create_group(&dev->kobj, &mc_attr_group)) 520 pr_err("Failed to create group for CPU%d\n", cpu); 521 return 0; 522 } 523 524 static int mc_cpu_down_prep(unsigned int cpu) 525 { 526 struct device *dev = get_cpu_device(cpu); 527 528 microcode_fini_cpu(cpu); 529 sysfs_remove_group(&dev->kobj, &mc_attr_group); 530 return 0; 531 } 532 533 static struct attribute *cpu_root_microcode_attrs[] = { 534 #ifdef CONFIG_MICROCODE_LATE_LOADING 535 &dev_attr_reload.attr, 536 #endif 537 NULL 538 }; 539 540 static const struct attribute_group cpu_root_microcode_group = { 541 .name = "microcode", 542 .attrs = cpu_root_microcode_attrs, 543 }; 544 545 static int __init microcode_init(void) 546 { 547 struct device *dev_root; 548 struct cpuinfo_x86 *c = &boot_cpu_data; 549 int error; 550 551 if (dis_ucode_ldr) 552 return -EINVAL; 553 554 if (c->x86_vendor == X86_VENDOR_INTEL) 555 microcode_ops = init_intel_microcode(); 556 else if (c->x86_vendor == X86_VENDOR_AMD) 557 microcode_ops = init_amd_microcode(); 558 else 559 pr_err("no support for this CPU vendor\n"); 560 561 if (!microcode_ops) 562 return -ENODEV; 563 564 microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0); 565 if (IS_ERR(microcode_pdev)) 566 return PTR_ERR(microcode_pdev); 567 568 dev_root = bus_get_dev_root(&cpu_subsys); 569 if (dev_root) { 570 error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group); 571 put_device(dev_root); 572 if (error) { 573 pr_err("Error creating microcode group!\n"); 574 goto out_pdev; 575 } 576 } 577 578 register_syscore_ops(&mc_syscore_ops); 579 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online", 580 mc_cpu_online, mc_cpu_down_prep); 581 582 pr_info("Microcode Update Driver: v%s.", DRIVER_VERSION); 583 584 return 0; 585 586 out_pdev: 587 platform_device_unregister(microcode_pdev); 588 return error; 589 590 } 591 late_initcall(microcode_init); 592