xref: /linux-6.15/arch/x86/kernel/cpu/microcode/core.c (revision 2e569ada)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * CPU Microcode Update Driver for Linux
4  *
5  * Copyright (C) 2000-2006 Tigran Aivazian <[email protected]>
6  *	      2006	Shaohua Li <[email protected]>
7  *	      2013-2016	Borislav Petkov <[email protected]>
8  *
9  * X86 CPU microcode early update for Linux:
10  *
11  *	Copyright (C) 2012 Fenghua Yu <[email protected]>
12  *			   H Peter Anvin" <[email protected]>
13  *		  (C) 2015 Borislav Petkov <[email protected]>
14  *
15  * This driver allows to upgrade microcode on x86 processors.
16  */
17 
18 #define pr_fmt(fmt) "microcode: " fmt
19 
20 #include <linux/platform_device.h>
21 #include <linux/stop_machine.h>
22 #include <linux/syscore_ops.h>
23 #include <linux/miscdevice.h>
24 #include <linux/capability.h>
25 #include <linux/firmware.h>
26 #include <linux/cpumask.h>
27 #include <linux/kernel.h>
28 #include <linux/delay.h>
29 #include <linux/mutex.h>
30 #include <linux/cpu.h>
31 #include <linux/nmi.h>
32 #include <linux/fs.h>
33 #include <linux/mm.h>
34 
35 #include <asm/apic.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/perf_event.h>
38 #include <asm/processor.h>
39 #include <asm/cmdline.h>
40 #include <asm/setup.h>
41 
42 #include "internal.h"
43 
44 static struct microcode_ops	*microcode_ops;
45 bool dis_ucode_ldr = true;
46 
47 bool force_minrev = IS_ENABLED(CONFIG_MICROCODE_LATE_FORCE_MINREV);
48 module_param(force_minrev, bool, S_IRUSR | S_IWUSR);
49 
50 /*
51  * Synchronization.
52  *
53  * All non cpu-hotplug-callback call sites use:
54  *
55  * - cpus_read_lock/unlock() to synchronize with
56  *   the cpu-hotplug-callback call sites.
57  *
58  * We guarantee that only a single cpu is being
59  * updated at any particular moment of time.
60  */
61 struct ucode_cpu_info		ucode_cpu_info[NR_CPUS];
62 
63 struct cpu_info_ctx {
64 	struct cpu_signature	*cpu_sig;
65 	int			err;
66 };
67 
68 /*
69  * Those patch levels cannot be updated to newer ones and thus should be final.
70  */
71 static u32 final_levels[] = {
72 	0x01000098,
73 	0x0100009f,
74 	0x010000af,
75 	0, /* T-101 terminator */
76 };
77 
78 /*
79  * Check the current patch level on this CPU.
80  *
81  * Returns:
82  *  - true: if update should stop
83  *  - false: otherwise
84  */
85 static bool amd_check_current_patch_level(void)
86 {
87 	u32 lvl, dummy, i;
88 	u32 *levels;
89 
90 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
91 
92 	levels = final_levels;
93 
94 	for (i = 0; levels[i]; i++) {
95 		if (lvl == levels[i])
96 			return true;
97 	}
98 	return false;
99 }
100 
101 static bool __init check_loader_disabled_bsp(void)
102 {
103 	static const char *__dis_opt_str = "dis_ucode_ldr";
104 	const char *cmdline = boot_command_line;
105 	const char *option  = __dis_opt_str;
106 
107 	/*
108 	 * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not
109 	 * completely accurate as xen pv guests don't see that CPUID bit set but
110 	 * that's good enough as they don't land on the BSP path anyway.
111 	 */
112 	if (native_cpuid_ecx(1) & BIT(31))
113 		return true;
114 
115 	if (x86_cpuid_vendor() == X86_VENDOR_AMD) {
116 		if (amd_check_current_patch_level())
117 			return true;
118 	}
119 
120 	if (cmdline_find_option_bool(cmdline, option) <= 0)
121 		dis_ucode_ldr = false;
122 
123 	return dis_ucode_ldr;
124 }
125 
126 void __init load_ucode_bsp(void)
127 {
128 	unsigned int cpuid_1_eax;
129 	bool intel = true;
130 
131 	if (!have_cpuid_p())
132 		return;
133 
134 	cpuid_1_eax = native_cpuid_eax(1);
135 
136 	switch (x86_cpuid_vendor()) {
137 	case X86_VENDOR_INTEL:
138 		if (x86_family(cpuid_1_eax) < 6)
139 			return;
140 		break;
141 
142 	case X86_VENDOR_AMD:
143 		if (x86_family(cpuid_1_eax) < 0x10)
144 			return;
145 		intel = false;
146 		break;
147 
148 	default:
149 		return;
150 	}
151 
152 	if (check_loader_disabled_bsp())
153 		return;
154 
155 	if (intel)
156 		load_ucode_intel_bsp();
157 	else
158 		load_ucode_amd_bsp(cpuid_1_eax);
159 }
160 
161 void load_ucode_ap(void)
162 {
163 	unsigned int cpuid_1_eax;
164 
165 	if (dis_ucode_ldr)
166 		return;
167 
168 	cpuid_1_eax = native_cpuid_eax(1);
169 
170 	switch (x86_cpuid_vendor()) {
171 	case X86_VENDOR_INTEL:
172 		if (x86_family(cpuid_1_eax) >= 6)
173 			load_ucode_intel_ap();
174 		break;
175 	case X86_VENDOR_AMD:
176 		if (x86_family(cpuid_1_eax) >= 0x10)
177 			load_ucode_amd_ap(cpuid_1_eax);
178 		break;
179 	default:
180 		break;
181 	}
182 }
183 
184 struct cpio_data __init find_microcode_in_initrd(const char *path)
185 {
186 #ifdef CONFIG_BLK_DEV_INITRD
187 	unsigned long start = 0;
188 	size_t size;
189 
190 #ifdef CONFIG_X86_32
191 	size = boot_params.hdr.ramdisk_size;
192 	/* Early load on BSP has a temporary mapping. */
193 	if (size)
194 		start = initrd_start_early;
195 
196 #else /* CONFIG_X86_64 */
197 	size  = (unsigned long)boot_params.ext_ramdisk_size << 32;
198 	size |= boot_params.hdr.ramdisk_size;
199 
200 	if (size) {
201 		start  = (unsigned long)boot_params.ext_ramdisk_image << 32;
202 		start |= boot_params.hdr.ramdisk_image;
203 		start += PAGE_OFFSET;
204 	}
205 #endif
206 
207 	/*
208 	 * Fixup the start address: after reserve_initrd() runs, initrd_start
209 	 * has the virtual address of the beginning of the initrd. It also
210 	 * possibly relocates the ramdisk. In either case, initrd_start contains
211 	 * the updated address so use that instead.
212 	 */
213 	if (initrd_start)
214 		start = initrd_start;
215 
216 	return find_cpio_data(path, (void *)start, size, NULL);
217 #else /* !CONFIG_BLK_DEV_INITRD */
218 	return (struct cpio_data){ NULL, 0, "" };
219 #endif
220 }
221 
222 static void reload_early_microcode(unsigned int cpu)
223 {
224 	int vendor, family;
225 
226 	vendor = x86_cpuid_vendor();
227 	family = x86_cpuid_family();
228 
229 	switch (vendor) {
230 	case X86_VENDOR_INTEL:
231 		if (family >= 6)
232 			reload_ucode_intel();
233 		break;
234 	case X86_VENDOR_AMD:
235 		if (family >= 0x10)
236 			reload_ucode_amd(cpu);
237 		break;
238 	default:
239 		break;
240 	}
241 }
242 
243 /* fake device for request_firmware */
244 static struct platform_device	*microcode_pdev;
245 
246 #ifdef CONFIG_MICROCODE_LATE_LOADING
247 /*
248  * Late loading dance. Why the heavy-handed stomp_machine effort?
249  *
250  * - HT siblings must be idle and not execute other code while the other sibling
251  *   is loading microcode in order to avoid any negative interactions caused by
252  *   the loading.
253  *
254  * - In addition, microcode update on the cores must be serialized until this
255  *   requirement can be relaxed in the future. Right now, this is conservative
256  *   and good.
257  */
258 enum sibling_ctrl {
259 	/* Spinwait with timeout */
260 	SCTRL_WAIT,
261 	/* Invoke the microcode_apply() callback */
262 	SCTRL_APPLY,
263 	/* Proceed without invoking the microcode_apply() callback */
264 	SCTRL_DONE,
265 };
266 
267 struct microcode_ctrl {
268 	enum sibling_ctrl	ctrl;
269 	enum ucode_state	result;
270 	unsigned int		ctrl_cpu;
271 	bool			nmi_enabled;
272 };
273 
274 DEFINE_STATIC_KEY_FALSE(microcode_nmi_handler_enable);
275 static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl);
276 static atomic_t late_cpus_in, offline_in_nmi;
277 static unsigned int loops_per_usec;
278 static cpumask_t cpu_offline_mask;
279 
280 static noinstr bool wait_for_cpus(atomic_t *cnt)
281 {
282 	unsigned int timeout, loops;
283 
284 	WARN_ON_ONCE(raw_atomic_dec_return(cnt) < 0);
285 
286 	for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
287 		if (!raw_atomic_read(cnt))
288 			return true;
289 
290 		for (loops = 0; loops < loops_per_usec; loops++)
291 			cpu_relax();
292 
293 		/* If invoked directly, tickle the NMI watchdog */
294 		if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
295 			instrumentation_begin();
296 			touch_nmi_watchdog();
297 			instrumentation_end();
298 		}
299 	}
300 	/* Prevent the late comers from making progress and let them time out */
301 	raw_atomic_inc(cnt);
302 	return false;
303 }
304 
305 static noinstr bool wait_for_ctrl(void)
306 {
307 	unsigned int timeout, loops;
308 
309 	for (timeout = 0; timeout < USEC_PER_SEC; timeout++) {
310 		if (raw_cpu_read(ucode_ctrl.ctrl) != SCTRL_WAIT)
311 			return true;
312 
313 		for (loops = 0; loops < loops_per_usec; loops++)
314 			cpu_relax();
315 
316 		/* If invoked directly, tickle the NMI watchdog */
317 		if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) {
318 			instrumentation_begin();
319 			touch_nmi_watchdog();
320 			instrumentation_end();
321 		}
322 	}
323 	return false;
324 }
325 
326 /*
327  * Protected against instrumentation up to the point where the primary
328  * thread completed the update. See microcode_nmi_handler() for details.
329  */
330 static noinstr bool load_secondary_wait(unsigned int ctrl_cpu)
331 {
332 	/* Initial rendezvous to ensure that all CPUs have arrived */
333 	if (!wait_for_cpus(&late_cpus_in)) {
334 		raw_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
335 		return false;
336 	}
337 
338 	/*
339 	 * Wait for primary threads to complete. If one of them hangs due
340 	 * to the update, there is no way out. This is non-recoverable
341 	 * because the CPU might hold locks or resources and confuse the
342 	 * scheduler, watchdogs etc. There is no way to safely evacuate the
343 	 * machine.
344 	 */
345 	if (wait_for_ctrl())
346 		return true;
347 
348 	instrumentation_begin();
349 	panic("Microcode load: Primary CPU %d timed out\n", ctrl_cpu);
350 	instrumentation_end();
351 }
352 
353 /*
354  * Protected against instrumentation up to the point where the primary
355  * thread completed the update. See microcode_nmi_handler() for details.
356  */
357 static noinstr void load_secondary(unsigned int cpu)
358 {
359 	unsigned int ctrl_cpu = raw_cpu_read(ucode_ctrl.ctrl_cpu);
360 	enum ucode_state ret;
361 
362 	if (!load_secondary_wait(ctrl_cpu)) {
363 		instrumentation_begin();
364 		pr_err_once("load: %d CPUs timed out\n",
365 			    atomic_read(&late_cpus_in) - 1);
366 		instrumentation_end();
367 		return;
368 	}
369 
370 	/* Primary thread completed. Allow to invoke instrumentable code */
371 	instrumentation_begin();
372 	/*
373 	 * If the primary succeeded then invoke the apply() callback,
374 	 * otherwise copy the state from the primary thread.
375 	 */
376 	if (this_cpu_read(ucode_ctrl.ctrl) == SCTRL_APPLY)
377 		ret = microcode_ops->apply_microcode(cpu);
378 	else
379 		ret = per_cpu(ucode_ctrl.result, ctrl_cpu);
380 
381 	this_cpu_write(ucode_ctrl.result, ret);
382 	this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
383 	instrumentation_end();
384 }
385 
386 static void __load_primary(unsigned int cpu)
387 {
388 	struct cpumask *secondaries = topology_sibling_cpumask(cpu);
389 	enum sibling_ctrl ctrl;
390 	enum ucode_state ret;
391 	unsigned int sibling;
392 
393 	/* Initial rendezvous to ensure that all CPUs have arrived */
394 	if (!wait_for_cpus(&late_cpus_in)) {
395 		this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT);
396 		pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1);
397 		return;
398 	}
399 
400 	ret = microcode_ops->apply_microcode(cpu);
401 	this_cpu_write(ucode_ctrl.result, ret);
402 	this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE);
403 
404 	/*
405 	 * If the update was successful, let the siblings run the apply()
406 	 * callback. If not, tell them it's done. This also covers the
407 	 * case where the CPU has uniform loading at package or system
408 	 * scope implemented but does not advertise it.
409 	 */
410 	if (ret == UCODE_UPDATED || ret == UCODE_OK)
411 		ctrl = SCTRL_APPLY;
412 	else
413 		ctrl = SCTRL_DONE;
414 
415 	for_each_cpu(sibling, secondaries) {
416 		if (sibling != cpu)
417 			per_cpu(ucode_ctrl.ctrl, sibling) = ctrl;
418 	}
419 }
420 
421 static bool kick_offline_cpus(unsigned int nr_offl)
422 {
423 	unsigned int cpu, timeout;
424 
425 	for_each_cpu(cpu, &cpu_offline_mask) {
426 		/* Enable the rendezvous handler and send NMI */
427 		per_cpu(ucode_ctrl.nmi_enabled, cpu) = true;
428 		apic_send_nmi_to_offline_cpu(cpu);
429 	}
430 
431 	/* Wait for them to arrive */
432 	for (timeout = 0; timeout < (USEC_PER_SEC / 2); timeout++) {
433 		if (atomic_read(&offline_in_nmi) == nr_offl)
434 			return true;
435 		udelay(1);
436 	}
437 	/* Let the others time out */
438 	return false;
439 }
440 
441 static void release_offline_cpus(void)
442 {
443 	unsigned int cpu;
444 
445 	for_each_cpu(cpu, &cpu_offline_mask)
446 		per_cpu(ucode_ctrl.ctrl, cpu) = SCTRL_DONE;
447 }
448 
449 static void load_primary(unsigned int cpu)
450 {
451 	unsigned int nr_offl = cpumask_weight(&cpu_offline_mask);
452 	bool proceed = true;
453 
454 	/* Kick soft-offlined SMT siblings if required */
455 	if (!cpu && nr_offl)
456 		proceed = kick_offline_cpus(nr_offl);
457 
458 	/* If the soft-offlined CPUs did not respond, abort */
459 	if (proceed)
460 		__load_primary(cpu);
461 
462 	/* Unconditionally release soft-offlined SMT siblings if required */
463 	if (!cpu && nr_offl)
464 		release_offline_cpus();
465 }
466 
467 /*
468  * Minimal stub rendezvous handler for soft-offlined CPUs which participate
469  * in the NMI rendezvous to protect against a concurrent NMI on affected
470  * CPUs.
471  */
472 void noinstr microcode_offline_nmi_handler(void)
473 {
474 	if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
475 		return;
476 	raw_cpu_write(ucode_ctrl.nmi_enabled, false);
477 	raw_cpu_write(ucode_ctrl.result, UCODE_OFFLINE);
478 	raw_atomic_inc(&offline_in_nmi);
479 	wait_for_ctrl();
480 }
481 
482 static noinstr bool microcode_update_handler(void)
483 {
484 	unsigned int cpu = raw_smp_processor_id();
485 
486 	if (raw_cpu_read(ucode_ctrl.ctrl_cpu) == cpu) {
487 		instrumentation_begin();
488 		load_primary(cpu);
489 		instrumentation_end();
490 	} else {
491 		load_secondary(cpu);
492 	}
493 
494 	instrumentation_begin();
495 	touch_nmi_watchdog();
496 	instrumentation_end();
497 
498 	return true;
499 }
500 
501 /*
502  * Protection against instrumentation is required for CPUs which are not
503  * safe against an NMI which is delivered to the secondary SMT sibling
504  * while the primary thread updates the microcode. Instrumentation can end
505  * up in #INT3, #DB and #PF. The IRET from those exceptions reenables NMI
506  * which is the opposite of what the NMI rendezvous is trying to achieve.
507  *
508  * The primary thread is safe versus instrumentation as the actual
509  * microcode update handles this correctly. It's only the sibling code
510  * path which must be NMI safe until the primary thread completed the
511  * update.
512  */
513 bool noinstr microcode_nmi_handler(void)
514 {
515 	if (!raw_cpu_read(ucode_ctrl.nmi_enabled))
516 		return false;
517 
518 	raw_cpu_write(ucode_ctrl.nmi_enabled, false);
519 	return microcode_update_handler();
520 }
521 
522 static int load_cpus_stopped(void *unused)
523 {
524 	if (microcode_ops->use_nmi) {
525 		/* Enable the NMI handler and raise NMI */
526 		this_cpu_write(ucode_ctrl.nmi_enabled, true);
527 		apic->send_IPI(smp_processor_id(), NMI_VECTOR);
528 	} else {
529 		/* Just invoke the handler directly */
530 		microcode_update_handler();
531 	}
532 	return 0;
533 }
534 
535 static int load_late_stop_cpus(bool is_safe)
536 {
537 	unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0;
538 	unsigned int nr_offl, offline = 0;
539 	int old_rev = boot_cpu_data.microcode;
540 	struct cpuinfo_x86 prev_info;
541 
542 	if (!is_safe) {
543 		pr_err("Late microcode loading without minimal revision check.\n");
544 		pr_err("You should switch to early loading, if possible.\n");
545 	}
546 
547 	atomic_set(&late_cpus_in, num_online_cpus());
548 	atomic_set(&offline_in_nmi, 0);
549 	loops_per_usec = loops_per_jiffy / (TICK_NSEC / 1000);
550 
551 	/*
552 	 * Take a snapshot before the microcode update in order to compare and
553 	 * check whether any bits changed after an update.
554 	 */
555 	store_cpu_caps(&prev_info);
556 
557 	if (microcode_ops->use_nmi)
558 		static_branch_enable_cpuslocked(&microcode_nmi_handler_enable);
559 
560 	stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask);
561 
562 	if (microcode_ops->use_nmi)
563 		static_branch_disable_cpuslocked(&microcode_nmi_handler_enable);
564 
565 	/* Analyze the results */
566 	for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
567 		switch (per_cpu(ucode_ctrl.result, cpu)) {
568 		case UCODE_UPDATED:	updated++; break;
569 		case UCODE_TIMEOUT:	timedout++; break;
570 		case UCODE_OK:		siblings++; break;
571 		case UCODE_OFFLINE:	offline++; break;
572 		default:		failed++; break;
573 		}
574 	}
575 
576 	if (microcode_ops->finalize_late_load)
577 		microcode_ops->finalize_late_load(!updated);
578 
579 	if (!updated) {
580 		/* Nothing changed. */
581 		if (!failed && !timedout)
582 			return 0;
583 
584 		nr_offl = cpumask_weight(&cpu_offline_mask);
585 		if (offline < nr_offl) {
586 			pr_warn("%u offline siblings did not respond.\n",
587 				nr_offl - atomic_read(&offline_in_nmi));
588 			return -EIO;
589 		}
590 		pr_err("update failed: %u CPUs failed %u CPUs timed out\n",
591 		       failed, timedout);
592 		return -EIO;
593 	}
594 
595 	if (!is_safe || failed || timedout)
596 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
597 
598 	pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings);
599 	if (failed || timedout) {
600 		pr_err("load incomplete. %u CPUs timed out or failed\n",
601 		       num_online_cpus() - (updated + siblings));
602 	}
603 	pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode);
604 	microcode_check(&prev_info);
605 
606 	return updated + siblings == num_online_cpus() ? 0 : -EIO;
607 }
608 
609 /*
610  * This function does two things:
611  *
612  * 1) Ensure that all required CPUs which are present and have been booted
613  *    once are online.
614  *
615  *    To pass this check, all primary threads must be online.
616  *
617  *    If the microcode load is not safe against NMI then all SMT threads
618  *    must be online as well because they still react to NMIs when they are
619  *    soft-offlined and parked in one of the play_dead() variants. So if a
620  *    NMI hits while the primary thread updates the microcode the resulting
621  *    behaviour is undefined. The default play_dead() implementation on
622  *    modern CPUs uses MWAIT, which is also not guaranteed to be safe
623  *    against a microcode update which affects MWAIT.
624  *
625  *    As soft-offlined CPUs still react on NMIs, the SMT sibling
626  *    restriction can be lifted when the vendor driver signals to use NMI
627  *    for rendezvous and the APIC provides a mechanism to send an NMI to a
628  *    soft-offlined CPU. The soft-offlined CPUs are then able to
629  *    participate in the rendezvous in a trivial stub handler.
630  *
631  * 2) Initialize the per CPU control structure and create a cpumask
632  *    which contains "offline"; secondary threads, so they can be handled
633  *    correctly by a control CPU.
634  */
635 static bool setup_cpus(void)
636 {
637 	struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, };
638 	bool allow_smt_offline;
639 	unsigned int cpu;
640 
641 	allow_smt_offline = microcode_ops->nmi_safe ||
642 		(microcode_ops->use_nmi && apic->nmi_to_offline_cpu);
643 
644 	cpumask_clear(&cpu_offline_mask);
645 
646 	for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) {
647 		/*
648 		 * Offline CPUs sit in one of the play_dead() functions
649 		 * with interrupts disabled, but they still react on NMIs
650 		 * and execute arbitrary code. Also MWAIT being updated
651 		 * while the offline CPU sits there is not necessarily safe
652 		 * on all CPU variants.
653 		 *
654 		 * Mark them in the offline_cpus mask which will be handled
655 		 * by CPU0 later in the update process.
656 		 *
657 		 * Ensure that the primary thread is online so that it is
658 		 * guaranteed that all cores are updated.
659 		 */
660 		if (!cpu_online(cpu)) {
661 			if (topology_is_primary_thread(cpu) || !allow_smt_offline) {
662 				pr_err("CPU %u not online, loading aborted\n", cpu);
663 				return false;
664 			}
665 			cpumask_set_cpu(cpu, &cpu_offline_mask);
666 			per_cpu(ucode_ctrl, cpu) = ctrl;
667 			continue;
668 		}
669 
670 		/*
671 		 * Initialize the per CPU state. This is core scope for now,
672 		 * but prepared to take package or system scope into account.
673 		 */
674 		ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu));
675 		per_cpu(ucode_ctrl, cpu) = ctrl;
676 	}
677 	return true;
678 }
679 
680 static int load_late_locked(void)
681 {
682 	if (!setup_cpus())
683 		return -EBUSY;
684 
685 	switch (microcode_ops->request_microcode_fw(0, &microcode_pdev->dev)) {
686 	case UCODE_NEW:
687 		return load_late_stop_cpus(false);
688 	case UCODE_NEW_SAFE:
689 		return load_late_stop_cpus(true);
690 	case UCODE_NFOUND:
691 		return -ENOENT;
692 	default:
693 		return -EBADFD;
694 	}
695 }
696 
697 static ssize_t reload_store(struct device *dev,
698 			    struct device_attribute *attr,
699 			    const char *buf, size_t size)
700 {
701 	unsigned long val;
702 	ssize_t ret;
703 
704 	ret = kstrtoul(buf, 0, &val);
705 	if (ret || val != 1)
706 		return -EINVAL;
707 
708 	cpus_read_lock();
709 	ret = load_late_locked();
710 	cpus_read_unlock();
711 
712 	return ret ? : size;
713 }
714 
715 static DEVICE_ATTR_WO(reload);
716 #endif
717 
718 static ssize_t version_show(struct device *dev,
719 			struct device_attribute *attr, char *buf)
720 {
721 	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
722 
723 	return sprintf(buf, "0x%x\n", uci->cpu_sig.rev);
724 }
725 
726 static ssize_t processor_flags_show(struct device *dev,
727 			struct device_attribute *attr, char *buf)
728 {
729 	struct ucode_cpu_info *uci = ucode_cpu_info + dev->id;
730 
731 	return sprintf(buf, "0x%x\n", uci->cpu_sig.pf);
732 }
733 
734 static DEVICE_ATTR_RO(version);
735 static DEVICE_ATTR_RO(processor_flags);
736 
737 static struct attribute *mc_default_attrs[] = {
738 	&dev_attr_version.attr,
739 	&dev_attr_processor_flags.attr,
740 	NULL
741 };
742 
743 static const struct attribute_group mc_attr_group = {
744 	.attrs			= mc_default_attrs,
745 	.name			= "microcode",
746 };
747 
748 static void microcode_fini_cpu(int cpu)
749 {
750 	if (microcode_ops->microcode_fini_cpu)
751 		microcode_ops->microcode_fini_cpu(cpu);
752 }
753 
754 /**
755  * microcode_bsp_resume - Update boot CPU microcode during resume.
756  */
757 void microcode_bsp_resume(void)
758 {
759 	int cpu = smp_processor_id();
760 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
761 
762 	if (uci->mc)
763 		microcode_ops->apply_microcode(cpu);
764 	else
765 		reload_early_microcode(cpu);
766 }
767 
768 static struct syscore_ops mc_syscore_ops = {
769 	.resume	= microcode_bsp_resume,
770 };
771 
772 static int mc_cpu_online(unsigned int cpu)
773 {
774 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
775 	struct device *dev = get_cpu_device(cpu);
776 
777 	memset(uci, 0, sizeof(*uci));
778 
779 	microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig);
780 	cpu_data(cpu).microcode = uci->cpu_sig.rev;
781 	if (!cpu)
782 		boot_cpu_data.microcode = uci->cpu_sig.rev;
783 
784 	if (sysfs_create_group(&dev->kobj, &mc_attr_group))
785 		pr_err("Failed to create group for CPU%d\n", cpu);
786 	return 0;
787 }
788 
789 static int mc_cpu_down_prep(unsigned int cpu)
790 {
791 	struct device *dev = get_cpu_device(cpu);
792 
793 	microcode_fini_cpu(cpu);
794 	sysfs_remove_group(&dev->kobj, &mc_attr_group);
795 	return 0;
796 }
797 
798 static struct attribute *cpu_root_microcode_attrs[] = {
799 #ifdef CONFIG_MICROCODE_LATE_LOADING
800 	&dev_attr_reload.attr,
801 #endif
802 	NULL
803 };
804 
805 static const struct attribute_group cpu_root_microcode_group = {
806 	.name  = "microcode",
807 	.attrs = cpu_root_microcode_attrs,
808 };
809 
810 static int __init microcode_init(void)
811 {
812 	struct device *dev_root;
813 	struct cpuinfo_x86 *c = &boot_cpu_data;
814 	int error;
815 
816 	if (dis_ucode_ldr)
817 		return -EINVAL;
818 
819 	if (c->x86_vendor == X86_VENDOR_INTEL)
820 		microcode_ops = init_intel_microcode();
821 	else if (c->x86_vendor == X86_VENDOR_AMD)
822 		microcode_ops = init_amd_microcode();
823 	else
824 		pr_err("no support for this CPU vendor\n");
825 
826 	if (!microcode_ops)
827 		return -ENODEV;
828 
829 	microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0);
830 	if (IS_ERR(microcode_pdev))
831 		return PTR_ERR(microcode_pdev);
832 
833 	dev_root = bus_get_dev_root(&cpu_subsys);
834 	if (dev_root) {
835 		error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group);
836 		put_device(dev_root);
837 		if (error) {
838 			pr_err("Error creating microcode group!\n");
839 			goto out_pdev;
840 		}
841 	}
842 
843 	register_syscore_ops(&mc_syscore_ops);
844 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online",
845 			  mc_cpu_online, mc_cpu_down_prep);
846 
847 	return 0;
848 
849  out_pdev:
850 	platform_device_unregister(microcode_pdev);
851 	return error;
852 
853 }
854 late_initcall(microcode_init);
855