1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * CPU Microcode Update Driver for Linux 4 * 5 * Copyright (C) 2000-2006 Tigran Aivazian <[email protected]> 6 * 2006 Shaohua Li <[email protected]> 7 * 2013-2016 Borislav Petkov <[email protected]> 8 * 9 * X86 CPU microcode early update for Linux: 10 * 11 * Copyright (C) 2012 Fenghua Yu <[email protected]> 12 * H Peter Anvin" <[email protected]> 13 * (C) 2015 Borislav Petkov <[email protected]> 14 * 15 * This driver allows to upgrade microcode on x86 processors. 16 */ 17 18 #define pr_fmt(fmt) "microcode: " fmt 19 20 #include <linux/platform_device.h> 21 #include <linux/stop_machine.h> 22 #include <linux/syscore_ops.h> 23 #include <linux/miscdevice.h> 24 #include <linux/capability.h> 25 #include <linux/firmware.h> 26 #include <linux/cpumask.h> 27 #include <linux/kernel.h> 28 #include <linux/delay.h> 29 #include <linux/mutex.h> 30 #include <linux/cpu.h> 31 #include <linux/nmi.h> 32 #include <linux/fs.h> 33 #include <linux/mm.h> 34 35 #include <asm/apic.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/perf_event.h> 38 #include <asm/processor.h> 39 #include <asm/cmdline.h> 40 #include <asm/setup.h> 41 42 #include "internal.h" 43 44 static struct microcode_ops *microcode_ops; 45 bool dis_ucode_ldr = true; 46 47 bool force_minrev = IS_ENABLED(CONFIG_MICROCODE_LATE_FORCE_MINREV); 48 module_param(force_minrev, bool, S_IRUSR | S_IWUSR); 49 50 /* 51 * Synchronization. 52 * 53 * All non cpu-hotplug-callback call sites use: 54 * 55 * - cpus_read_lock/unlock() to synchronize with 56 * the cpu-hotplug-callback call sites. 57 * 58 * We guarantee that only a single cpu is being 59 * updated at any particular moment of time. 60 */ 61 struct ucode_cpu_info ucode_cpu_info[NR_CPUS]; 62 63 struct cpu_info_ctx { 64 struct cpu_signature *cpu_sig; 65 int err; 66 }; 67 68 /* 69 * Those patch levels cannot be updated to newer ones and thus should be final. 70 */ 71 static u32 final_levels[] = { 72 0x01000098, 73 0x0100009f, 74 0x010000af, 75 0, /* T-101 terminator */ 76 }; 77 78 /* 79 * Check the current patch level on this CPU. 80 * 81 * Returns: 82 * - true: if update should stop 83 * - false: otherwise 84 */ 85 static bool amd_check_current_patch_level(void) 86 { 87 u32 lvl, dummy, i; 88 u32 *levels; 89 90 native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy); 91 92 levels = final_levels; 93 94 for (i = 0; levels[i]; i++) { 95 if (lvl == levels[i]) 96 return true; 97 } 98 return false; 99 } 100 101 static bool __init check_loader_disabled_bsp(void) 102 { 103 static const char *__dis_opt_str = "dis_ucode_ldr"; 104 const char *cmdline = boot_command_line; 105 const char *option = __dis_opt_str; 106 107 /* 108 * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not 109 * completely accurate as xen pv guests don't see that CPUID bit set but 110 * that's good enough as they don't land on the BSP path anyway. 111 */ 112 if (native_cpuid_ecx(1) & BIT(31)) 113 return true; 114 115 if (x86_cpuid_vendor() == X86_VENDOR_AMD) { 116 if (amd_check_current_patch_level()) 117 return true; 118 } 119 120 if (cmdline_find_option_bool(cmdline, option) <= 0) 121 dis_ucode_ldr = false; 122 123 return dis_ucode_ldr; 124 } 125 126 void __init load_ucode_bsp(void) 127 { 128 unsigned int cpuid_1_eax; 129 bool intel = true; 130 131 if (!have_cpuid_p()) 132 return; 133 134 cpuid_1_eax = native_cpuid_eax(1); 135 136 switch (x86_cpuid_vendor()) { 137 case X86_VENDOR_INTEL: 138 if (x86_family(cpuid_1_eax) < 6) 139 return; 140 break; 141 142 case X86_VENDOR_AMD: 143 if (x86_family(cpuid_1_eax) < 0x10) 144 return; 145 intel = false; 146 break; 147 148 default: 149 return; 150 } 151 152 if (check_loader_disabled_bsp()) 153 return; 154 155 if (intel) 156 load_ucode_intel_bsp(); 157 else 158 load_ucode_amd_bsp(cpuid_1_eax); 159 } 160 161 void load_ucode_ap(void) 162 { 163 unsigned int cpuid_1_eax; 164 165 if (dis_ucode_ldr) 166 return; 167 168 cpuid_1_eax = native_cpuid_eax(1); 169 170 switch (x86_cpuid_vendor()) { 171 case X86_VENDOR_INTEL: 172 if (x86_family(cpuid_1_eax) >= 6) 173 load_ucode_intel_ap(); 174 break; 175 case X86_VENDOR_AMD: 176 if (x86_family(cpuid_1_eax) >= 0x10) 177 load_ucode_amd_ap(cpuid_1_eax); 178 break; 179 default: 180 break; 181 } 182 } 183 184 struct cpio_data __init find_microcode_in_initrd(const char *path) 185 { 186 #ifdef CONFIG_BLK_DEV_INITRD 187 unsigned long start = 0; 188 size_t size; 189 190 #ifdef CONFIG_X86_32 191 size = boot_params.hdr.ramdisk_size; 192 /* Early load on BSP has a temporary mapping. */ 193 if (size) 194 start = initrd_start_early; 195 196 #else /* CONFIG_X86_64 */ 197 size = (unsigned long)boot_params.ext_ramdisk_size << 32; 198 size |= boot_params.hdr.ramdisk_size; 199 200 if (size) { 201 start = (unsigned long)boot_params.ext_ramdisk_image << 32; 202 start |= boot_params.hdr.ramdisk_image; 203 start += PAGE_OFFSET; 204 } 205 #endif 206 207 /* 208 * Fixup the start address: after reserve_initrd() runs, initrd_start 209 * has the virtual address of the beginning of the initrd. It also 210 * possibly relocates the ramdisk. In either case, initrd_start contains 211 * the updated address so use that instead. 212 */ 213 if (initrd_start) 214 start = initrd_start; 215 216 return find_cpio_data(path, (void *)start, size, NULL); 217 #else /* !CONFIG_BLK_DEV_INITRD */ 218 return (struct cpio_data){ NULL, 0, "" }; 219 #endif 220 } 221 222 static void reload_early_microcode(unsigned int cpu) 223 { 224 int vendor, family; 225 226 vendor = x86_cpuid_vendor(); 227 family = x86_cpuid_family(); 228 229 switch (vendor) { 230 case X86_VENDOR_INTEL: 231 if (family >= 6) 232 reload_ucode_intel(); 233 break; 234 case X86_VENDOR_AMD: 235 if (family >= 0x10) 236 reload_ucode_amd(cpu); 237 break; 238 default: 239 break; 240 } 241 } 242 243 /* fake device for request_firmware */ 244 static struct platform_device *microcode_pdev; 245 246 #ifdef CONFIG_MICROCODE_LATE_LOADING 247 /* 248 * Late loading dance. Why the heavy-handed stomp_machine effort? 249 * 250 * - HT siblings must be idle and not execute other code while the other sibling 251 * is loading microcode in order to avoid any negative interactions caused by 252 * the loading. 253 * 254 * - In addition, microcode update on the cores must be serialized until this 255 * requirement can be relaxed in the future. Right now, this is conservative 256 * and good. 257 */ 258 enum sibling_ctrl { 259 /* Spinwait with timeout */ 260 SCTRL_WAIT, 261 /* Invoke the microcode_apply() callback */ 262 SCTRL_APPLY, 263 /* Proceed without invoking the microcode_apply() callback */ 264 SCTRL_DONE, 265 }; 266 267 struct microcode_ctrl { 268 enum sibling_ctrl ctrl; 269 enum ucode_state result; 270 unsigned int ctrl_cpu; 271 bool nmi_enabled; 272 }; 273 274 DEFINE_STATIC_KEY_FALSE(microcode_nmi_handler_enable); 275 static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl); 276 static atomic_t late_cpus_in, offline_in_nmi; 277 static unsigned int loops_per_usec; 278 static cpumask_t cpu_offline_mask; 279 280 static noinstr bool wait_for_cpus(atomic_t *cnt) 281 { 282 unsigned int timeout, loops; 283 284 WARN_ON_ONCE(raw_atomic_dec_return(cnt) < 0); 285 286 for (timeout = 0; timeout < USEC_PER_SEC; timeout++) { 287 if (!raw_atomic_read(cnt)) 288 return true; 289 290 for (loops = 0; loops < loops_per_usec; loops++) 291 cpu_relax(); 292 293 /* If invoked directly, tickle the NMI watchdog */ 294 if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) { 295 instrumentation_begin(); 296 touch_nmi_watchdog(); 297 instrumentation_end(); 298 } 299 } 300 /* Prevent the late comers from making progress and let them time out */ 301 raw_atomic_inc(cnt); 302 return false; 303 } 304 305 static noinstr bool wait_for_ctrl(void) 306 { 307 unsigned int timeout, loops; 308 309 for (timeout = 0; timeout < USEC_PER_SEC; timeout++) { 310 if (raw_cpu_read(ucode_ctrl.ctrl) != SCTRL_WAIT) 311 return true; 312 313 for (loops = 0; loops < loops_per_usec; loops++) 314 cpu_relax(); 315 316 /* If invoked directly, tickle the NMI watchdog */ 317 if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) { 318 instrumentation_begin(); 319 touch_nmi_watchdog(); 320 instrumentation_end(); 321 } 322 } 323 return false; 324 } 325 326 /* 327 * Protected against instrumentation up to the point where the primary 328 * thread completed the update. See microcode_nmi_handler() for details. 329 */ 330 static noinstr bool load_secondary_wait(unsigned int ctrl_cpu) 331 { 332 /* Initial rendezvous to ensure that all CPUs have arrived */ 333 if (!wait_for_cpus(&late_cpus_in)) { 334 raw_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); 335 return false; 336 } 337 338 /* 339 * Wait for primary threads to complete. If one of them hangs due 340 * to the update, there is no way out. This is non-recoverable 341 * because the CPU might hold locks or resources and confuse the 342 * scheduler, watchdogs etc. There is no way to safely evacuate the 343 * machine. 344 */ 345 if (wait_for_ctrl()) 346 return true; 347 348 instrumentation_begin(); 349 panic("Microcode load: Primary CPU %d timed out\n", ctrl_cpu); 350 instrumentation_end(); 351 } 352 353 /* 354 * Protected against instrumentation up to the point where the primary 355 * thread completed the update. See microcode_nmi_handler() for details. 356 */ 357 static noinstr void load_secondary(unsigned int cpu) 358 { 359 unsigned int ctrl_cpu = raw_cpu_read(ucode_ctrl.ctrl_cpu); 360 enum ucode_state ret; 361 362 if (!load_secondary_wait(ctrl_cpu)) { 363 instrumentation_begin(); 364 pr_err_once("load: %d CPUs timed out\n", 365 atomic_read(&late_cpus_in) - 1); 366 instrumentation_end(); 367 return; 368 } 369 370 /* Primary thread completed. Allow to invoke instrumentable code */ 371 instrumentation_begin(); 372 /* 373 * If the primary succeeded then invoke the apply() callback, 374 * otherwise copy the state from the primary thread. 375 */ 376 if (this_cpu_read(ucode_ctrl.ctrl) == SCTRL_APPLY) 377 ret = microcode_ops->apply_microcode(cpu); 378 else 379 ret = per_cpu(ucode_ctrl.result, ctrl_cpu); 380 381 this_cpu_write(ucode_ctrl.result, ret); 382 this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE); 383 instrumentation_end(); 384 } 385 386 static void __load_primary(unsigned int cpu) 387 { 388 struct cpumask *secondaries = topology_sibling_cpumask(cpu); 389 enum sibling_ctrl ctrl; 390 enum ucode_state ret; 391 unsigned int sibling; 392 393 /* Initial rendezvous to ensure that all CPUs have arrived */ 394 if (!wait_for_cpus(&late_cpus_in)) { 395 this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); 396 pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1); 397 return; 398 } 399 400 ret = microcode_ops->apply_microcode(cpu); 401 this_cpu_write(ucode_ctrl.result, ret); 402 this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE); 403 404 /* 405 * If the update was successful, let the siblings run the apply() 406 * callback. If not, tell them it's done. This also covers the 407 * case where the CPU has uniform loading at package or system 408 * scope implemented but does not advertise it. 409 */ 410 if (ret == UCODE_UPDATED || ret == UCODE_OK) 411 ctrl = SCTRL_APPLY; 412 else 413 ctrl = SCTRL_DONE; 414 415 for_each_cpu(sibling, secondaries) { 416 if (sibling != cpu) 417 per_cpu(ucode_ctrl.ctrl, sibling) = ctrl; 418 } 419 } 420 421 static bool kick_offline_cpus(unsigned int nr_offl) 422 { 423 unsigned int cpu, timeout; 424 425 for_each_cpu(cpu, &cpu_offline_mask) { 426 /* Enable the rendezvous handler and send NMI */ 427 per_cpu(ucode_ctrl.nmi_enabled, cpu) = true; 428 apic_send_nmi_to_offline_cpu(cpu); 429 } 430 431 /* Wait for them to arrive */ 432 for (timeout = 0; timeout < (USEC_PER_SEC / 2); timeout++) { 433 if (atomic_read(&offline_in_nmi) == nr_offl) 434 return true; 435 udelay(1); 436 } 437 /* Let the others time out */ 438 return false; 439 } 440 441 static void release_offline_cpus(void) 442 { 443 unsigned int cpu; 444 445 for_each_cpu(cpu, &cpu_offline_mask) 446 per_cpu(ucode_ctrl.ctrl, cpu) = SCTRL_DONE; 447 } 448 449 static void load_primary(unsigned int cpu) 450 { 451 unsigned int nr_offl = cpumask_weight(&cpu_offline_mask); 452 bool proceed = true; 453 454 /* Kick soft-offlined SMT siblings if required */ 455 if (!cpu && nr_offl) 456 proceed = kick_offline_cpus(nr_offl); 457 458 /* If the soft-offlined CPUs did not respond, abort */ 459 if (proceed) 460 __load_primary(cpu); 461 462 /* Unconditionally release soft-offlined SMT siblings if required */ 463 if (!cpu && nr_offl) 464 release_offline_cpus(); 465 } 466 467 /* 468 * Minimal stub rendezvous handler for soft-offlined CPUs which participate 469 * in the NMI rendezvous to protect against a concurrent NMI on affected 470 * CPUs. 471 */ 472 void noinstr microcode_offline_nmi_handler(void) 473 { 474 if (!raw_cpu_read(ucode_ctrl.nmi_enabled)) 475 return; 476 raw_cpu_write(ucode_ctrl.nmi_enabled, false); 477 raw_cpu_write(ucode_ctrl.result, UCODE_OFFLINE); 478 raw_atomic_inc(&offline_in_nmi); 479 wait_for_ctrl(); 480 } 481 482 static noinstr bool microcode_update_handler(void) 483 { 484 unsigned int cpu = raw_smp_processor_id(); 485 486 if (raw_cpu_read(ucode_ctrl.ctrl_cpu) == cpu) { 487 instrumentation_begin(); 488 load_primary(cpu); 489 instrumentation_end(); 490 } else { 491 load_secondary(cpu); 492 } 493 494 instrumentation_begin(); 495 touch_nmi_watchdog(); 496 instrumentation_end(); 497 498 return true; 499 } 500 501 /* 502 * Protection against instrumentation is required for CPUs which are not 503 * safe against an NMI which is delivered to the secondary SMT sibling 504 * while the primary thread updates the microcode. Instrumentation can end 505 * up in #INT3, #DB and #PF. The IRET from those exceptions reenables NMI 506 * which is the opposite of what the NMI rendezvous is trying to achieve. 507 * 508 * The primary thread is safe versus instrumentation as the actual 509 * microcode update handles this correctly. It's only the sibling code 510 * path which must be NMI safe until the primary thread completed the 511 * update. 512 */ 513 bool noinstr microcode_nmi_handler(void) 514 { 515 if (!raw_cpu_read(ucode_ctrl.nmi_enabled)) 516 return false; 517 518 raw_cpu_write(ucode_ctrl.nmi_enabled, false); 519 return microcode_update_handler(); 520 } 521 522 static int load_cpus_stopped(void *unused) 523 { 524 if (microcode_ops->use_nmi) { 525 /* Enable the NMI handler and raise NMI */ 526 this_cpu_write(ucode_ctrl.nmi_enabled, true); 527 apic->send_IPI(smp_processor_id(), NMI_VECTOR); 528 } else { 529 /* Just invoke the handler directly */ 530 microcode_update_handler(); 531 } 532 return 0; 533 } 534 535 static int load_late_stop_cpus(bool is_safe) 536 { 537 unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0; 538 unsigned int nr_offl, offline = 0; 539 int old_rev = boot_cpu_data.microcode; 540 struct cpuinfo_x86 prev_info; 541 542 if (!is_safe) { 543 pr_err("Late microcode loading without minimal revision check.\n"); 544 pr_err("You should switch to early loading, if possible.\n"); 545 } 546 547 atomic_set(&late_cpus_in, num_online_cpus()); 548 atomic_set(&offline_in_nmi, 0); 549 loops_per_usec = loops_per_jiffy / (TICK_NSEC / 1000); 550 551 /* 552 * Take a snapshot before the microcode update in order to compare and 553 * check whether any bits changed after an update. 554 */ 555 store_cpu_caps(&prev_info); 556 557 if (microcode_ops->use_nmi) 558 static_branch_enable_cpuslocked(µcode_nmi_handler_enable); 559 560 stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask); 561 562 if (microcode_ops->use_nmi) 563 static_branch_disable_cpuslocked(µcode_nmi_handler_enable); 564 565 /* Analyze the results */ 566 for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { 567 switch (per_cpu(ucode_ctrl.result, cpu)) { 568 case UCODE_UPDATED: updated++; break; 569 case UCODE_TIMEOUT: timedout++; break; 570 case UCODE_OK: siblings++; break; 571 case UCODE_OFFLINE: offline++; break; 572 default: failed++; break; 573 } 574 } 575 576 if (microcode_ops->finalize_late_load) 577 microcode_ops->finalize_late_load(!updated); 578 579 if (!updated) { 580 /* Nothing changed. */ 581 if (!failed && !timedout) 582 return 0; 583 584 nr_offl = cpumask_weight(&cpu_offline_mask); 585 if (offline < nr_offl) { 586 pr_warn("%u offline siblings did not respond.\n", 587 nr_offl - atomic_read(&offline_in_nmi)); 588 return -EIO; 589 } 590 pr_err("update failed: %u CPUs failed %u CPUs timed out\n", 591 failed, timedout); 592 return -EIO; 593 } 594 595 if (!is_safe || failed || timedout) 596 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 597 598 pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings); 599 if (failed || timedout) { 600 pr_err("load incomplete. %u CPUs timed out or failed\n", 601 num_online_cpus() - (updated + siblings)); 602 } 603 pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode); 604 microcode_check(&prev_info); 605 606 return updated + siblings == num_online_cpus() ? 0 : -EIO; 607 } 608 609 /* 610 * This function does two things: 611 * 612 * 1) Ensure that all required CPUs which are present and have been booted 613 * once are online. 614 * 615 * To pass this check, all primary threads must be online. 616 * 617 * If the microcode load is not safe against NMI then all SMT threads 618 * must be online as well because they still react to NMIs when they are 619 * soft-offlined and parked in one of the play_dead() variants. So if a 620 * NMI hits while the primary thread updates the microcode the resulting 621 * behaviour is undefined. The default play_dead() implementation on 622 * modern CPUs uses MWAIT, which is also not guaranteed to be safe 623 * against a microcode update which affects MWAIT. 624 * 625 * As soft-offlined CPUs still react on NMIs, the SMT sibling 626 * restriction can be lifted when the vendor driver signals to use NMI 627 * for rendezvous and the APIC provides a mechanism to send an NMI to a 628 * soft-offlined CPU. The soft-offlined CPUs are then able to 629 * participate in the rendezvous in a trivial stub handler. 630 * 631 * 2) Initialize the per CPU control structure and create a cpumask 632 * which contains "offline"; secondary threads, so they can be handled 633 * correctly by a control CPU. 634 */ 635 static bool setup_cpus(void) 636 { 637 struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, }; 638 bool allow_smt_offline; 639 unsigned int cpu; 640 641 allow_smt_offline = microcode_ops->nmi_safe || 642 (microcode_ops->use_nmi && apic->nmi_to_offline_cpu); 643 644 cpumask_clear(&cpu_offline_mask); 645 646 for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { 647 /* 648 * Offline CPUs sit in one of the play_dead() functions 649 * with interrupts disabled, but they still react on NMIs 650 * and execute arbitrary code. Also MWAIT being updated 651 * while the offline CPU sits there is not necessarily safe 652 * on all CPU variants. 653 * 654 * Mark them in the offline_cpus mask which will be handled 655 * by CPU0 later in the update process. 656 * 657 * Ensure that the primary thread is online so that it is 658 * guaranteed that all cores are updated. 659 */ 660 if (!cpu_online(cpu)) { 661 if (topology_is_primary_thread(cpu) || !allow_smt_offline) { 662 pr_err("CPU %u not online, loading aborted\n", cpu); 663 return false; 664 } 665 cpumask_set_cpu(cpu, &cpu_offline_mask); 666 per_cpu(ucode_ctrl, cpu) = ctrl; 667 continue; 668 } 669 670 /* 671 * Initialize the per CPU state. This is core scope for now, 672 * but prepared to take package or system scope into account. 673 */ 674 ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu)); 675 per_cpu(ucode_ctrl, cpu) = ctrl; 676 } 677 return true; 678 } 679 680 static int load_late_locked(void) 681 { 682 if (!setup_cpus()) 683 return -EBUSY; 684 685 switch (microcode_ops->request_microcode_fw(0, µcode_pdev->dev)) { 686 case UCODE_NEW: 687 return load_late_stop_cpus(false); 688 case UCODE_NEW_SAFE: 689 return load_late_stop_cpus(true); 690 case UCODE_NFOUND: 691 return -ENOENT; 692 default: 693 return -EBADFD; 694 } 695 } 696 697 static ssize_t reload_store(struct device *dev, 698 struct device_attribute *attr, 699 const char *buf, size_t size) 700 { 701 unsigned long val; 702 ssize_t ret; 703 704 ret = kstrtoul(buf, 0, &val); 705 if (ret || val != 1) 706 return -EINVAL; 707 708 cpus_read_lock(); 709 ret = load_late_locked(); 710 cpus_read_unlock(); 711 712 return ret ? : size; 713 } 714 715 static DEVICE_ATTR_WO(reload); 716 #endif 717 718 static ssize_t version_show(struct device *dev, 719 struct device_attribute *attr, char *buf) 720 { 721 struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; 722 723 return sprintf(buf, "0x%x\n", uci->cpu_sig.rev); 724 } 725 726 static ssize_t processor_flags_show(struct device *dev, 727 struct device_attribute *attr, char *buf) 728 { 729 struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; 730 731 return sprintf(buf, "0x%x\n", uci->cpu_sig.pf); 732 } 733 734 static DEVICE_ATTR_RO(version); 735 static DEVICE_ATTR_RO(processor_flags); 736 737 static struct attribute *mc_default_attrs[] = { 738 &dev_attr_version.attr, 739 &dev_attr_processor_flags.attr, 740 NULL 741 }; 742 743 static const struct attribute_group mc_attr_group = { 744 .attrs = mc_default_attrs, 745 .name = "microcode", 746 }; 747 748 static void microcode_fini_cpu(int cpu) 749 { 750 if (microcode_ops->microcode_fini_cpu) 751 microcode_ops->microcode_fini_cpu(cpu); 752 } 753 754 /** 755 * microcode_bsp_resume - Update boot CPU microcode during resume. 756 */ 757 void microcode_bsp_resume(void) 758 { 759 int cpu = smp_processor_id(); 760 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 761 762 if (uci->mc) 763 microcode_ops->apply_microcode(cpu); 764 else 765 reload_early_microcode(cpu); 766 } 767 768 static struct syscore_ops mc_syscore_ops = { 769 .resume = microcode_bsp_resume, 770 }; 771 772 static int mc_cpu_online(unsigned int cpu) 773 { 774 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 775 struct device *dev = get_cpu_device(cpu); 776 777 memset(uci, 0, sizeof(*uci)); 778 779 microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig); 780 cpu_data(cpu).microcode = uci->cpu_sig.rev; 781 if (!cpu) 782 boot_cpu_data.microcode = uci->cpu_sig.rev; 783 784 if (sysfs_create_group(&dev->kobj, &mc_attr_group)) 785 pr_err("Failed to create group for CPU%d\n", cpu); 786 return 0; 787 } 788 789 static int mc_cpu_down_prep(unsigned int cpu) 790 { 791 struct device *dev = get_cpu_device(cpu); 792 793 microcode_fini_cpu(cpu); 794 sysfs_remove_group(&dev->kobj, &mc_attr_group); 795 return 0; 796 } 797 798 static struct attribute *cpu_root_microcode_attrs[] = { 799 #ifdef CONFIG_MICROCODE_LATE_LOADING 800 &dev_attr_reload.attr, 801 #endif 802 NULL 803 }; 804 805 static const struct attribute_group cpu_root_microcode_group = { 806 .name = "microcode", 807 .attrs = cpu_root_microcode_attrs, 808 }; 809 810 static int __init microcode_init(void) 811 { 812 struct device *dev_root; 813 struct cpuinfo_x86 *c = &boot_cpu_data; 814 int error; 815 816 if (dis_ucode_ldr) 817 return -EINVAL; 818 819 if (c->x86_vendor == X86_VENDOR_INTEL) 820 microcode_ops = init_intel_microcode(); 821 else if (c->x86_vendor == X86_VENDOR_AMD) 822 microcode_ops = init_amd_microcode(); 823 else 824 pr_err("no support for this CPU vendor\n"); 825 826 if (!microcode_ops) 827 return -ENODEV; 828 829 microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0); 830 if (IS_ERR(microcode_pdev)) 831 return PTR_ERR(microcode_pdev); 832 833 dev_root = bus_get_dev_root(&cpu_subsys); 834 if (dev_root) { 835 error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group); 836 put_device(dev_root); 837 if (error) { 838 pr_err("Error creating microcode group!\n"); 839 goto out_pdev; 840 } 841 } 842 843 register_syscore_ops(&mc_syscore_ops); 844 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online", 845 mc_cpu_online, mc_cpu_down_prep); 846 847 return 0; 848 849 out_pdev: 850 platform_device_unregister(microcode_pdev); 851 return error; 852 853 } 854 late_initcall(microcode_init); 855