1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * CPU Microcode Update Driver for Linux 4 * 5 * Copyright (C) 2000-2006 Tigran Aivazian <[email protected]> 6 * 2006 Shaohua Li <[email protected]> 7 * 2013-2016 Borislav Petkov <[email protected]> 8 * 9 * X86 CPU microcode early update for Linux: 10 * 11 * Copyright (C) 2012 Fenghua Yu <[email protected]> 12 * H Peter Anvin" <[email protected]> 13 * (C) 2015 Borislav Petkov <[email protected]> 14 * 15 * This driver allows to upgrade microcode on x86 processors. 16 */ 17 18 #define pr_fmt(fmt) "microcode: " fmt 19 20 #include <linux/platform_device.h> 21 #include <linux/stop_machine.h> 22 #include <linux/syscore_ops.h> 23 #include <linux/miscdevice.h> 24 #include <linux/capability.h> 25 #include <linux/firmware.h> 26 #include <linux/cpumask.h> 27 #include <linux/kernel.h> 28 #include <linux/delay.h> 29 #include <linux/mutex.h> 30 #include <linux/cpu.h> 31 #include <linux/nmi.h> 32 #include <linux/fs.h> 33 #include <linux/mm.h> 34 35 #include <asm/apic.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/perf_event.h> 38 #include <asm/processor.h> 39 #include <asm/cmdline.h> 40 #include <asm/setup.h> 41 42 #include "internal.h" 43 44 #define DRIVER_VERSION "2.2" 45 46 static struct microcode_ops *microcode_ops; 47 bool dis_ucode_ldr = true; 48 49 /* 50 * Synchronization. 51 * 52 * All non cpu-hotplug-callback call sites use: 53 * 54 * - cpus_read_lock/unlock() to synchronize with 55 * the cpu-hotplug-callback call sites. 56 * 57 * We guarantee that only a single cpu is being 58 * updated at any particular moment of time. 59 */ 60 struct ucode_cpu_info ucode_cpu_info[NR_CPUS]; 61 62 struct cpu_info_ctx { 63 struct cpu_signature *cpu_sig; 64 int err; 65 }; 66 67 /* 68 * Those patch levels cannot be updated to newer ones and thus should be final. 69 */ 70 static u32 final_levels[] = { 71 0x01000098, 72 0x0100009f, 73 0x010000af, 74 0, /* T-101 terminator */ 75 }; 76 77 /* 78 * Check the current patch level on this CPU. 79 * 80 * Returns: 81 * - true: if update should stop 82 * - false: otherwise 83 */ 84 static bool amd_check_current_patch_level(void) 85 { 86 u32 lvl, dummy, i; 87 u32 *levels; 88 89 native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy); 90 91 levels = final_levels; 92 93 for (i = 0; levels[i]; i++) { 94 if (lvl == levels[i]) 95 return true; 96 } 97 return false; 98 } 99 100 static bool __init check_loader_disabled_bsp(void) 101 { 102 static const char *__dis_opt_str = "dis_ucode_ldr"; 103 const char *cmdline = boot_command_line; 104 const char *option = __dis_opt_str; 105 106 /* 107 * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not 108 * completely accurate as xen pv guests don't see that CPUID bit set but 109 * that's good enough as they don't land on the BSP path anyway. 110 */ 111 if (native_cpuid_ecx(1) & BIT(31)) 112 return true; 113 114 if (x86_cpuid_vendor() == X86_VENDOR_AMD) { 115 if (amd_check_current_patch_level()) 116 return true; 117 } 118 119 if (cmdline_find_option_bool(cmdline, option) <= 0) 120 dis_ucode_ldr = false; 121 122 return dis_ucode_ldr; 123 } 124 125 void __init load_ucode_bsp(void) 126 { 127 unsigned int cpuid_1_eax; 128 bool intel = true; 129 130 if (!have_cpuid_p()) 131 return; 132 133 cpuid_1_eax = native_cpuid_eax(1); 134 135 switch (x86_cpuid_vendor()) { 136 case X86_VENDOR_INTEL: 137 if (x86_family(cpuid_1_eax) < 6) 138 return; 139 break; 140 141 case X86_VENDOR_AMD: 142 if (x86_family(cpuid_1_eax) < 0x10) 143 return; 144 intel = false; 145 break; 146 147 default: 148 return; 149 } 150 151 if (check_loader_disabled_bsp()) 152 return; 153 154 if (intel) 155 load_ucode_intel_bsp(); 156 else 157 load_ucode_amd_bsp(cpuid_1_eax); 158 } 159 160 void load_ucode_ap(void) 161 { 162 unsigned int cpuid_1_eax; 163 164 if (dis_ucode_ldr) 165 return; 166 167 cpuid_1_eax = native_cpuid_eax(1); 168 169 switch (x86_cpuid_vendor()) { 170 case X86_VENDOR_INTEL: 171 if (x86_family(cpuid_1_eax) >= 6) 172 load_ucode_intel_ap(); 173 break; 174 case X86_VENDOR_AMD: 175 if (x86_family(cpuid_1_eax) >= 0x10) 176 load_ucode_amd_ap(cpuid_1_eax); 177 break; 178 default: 179 break; 180 } 181 } 182 183 struct cpio_data __init find_microcode_in_initrd(const char *path) 184 { 185 #ifdef CONFIG_BLK_DEV_INITRD 186 unsigned long start = 0; 187 size_t size; 188 189 #ifdef CONFIG_X86_32 190 size = boot_params.hdr.ramdisk_size; 191 /* Early load on BSP has a temporary mapping. */ 192 if (size) 193 start = initrd_start_early; 194 195 #else /* CONFIG_X86_64 */ 196 size = (unsigned long)boot_params.ext_ramdisk_size << 32; 197 size |= boot_params.hdr.ramdisk_size; 198 199 if (size) { 200 start = (unsigned long)boot_params.ext_ramdisk_image << 32; 201 start |= boot_params.hdr.ramdisk_image; 202 start += PAGE_OFFSET; 203 } 204 #endif 205 206 /* 207 * Fixup the start address: after reserve_initrd() runs, initrd_start 208 * has the virtual address of the beginning of the initrd. It also 209 * possibly relocates the ramdisk. In either case, initrd_start contains 210 * the updated address so use that instead. 211 */ 212 if (initrd_start) 213 start = initrd_start; 214 215 return find_cpio_data(path, (void *)start, size, NULL); 216 #else /* !CONFIG_BLK_DEV_INITRD */ 217 return (struct cpio_data){ NULL, 0, "" }; 218 #endif 219 } 220 221 static void reload_early_microcode(unsigned int cpu) 222 { 223 int vendor, family; 224 225 vendor = x86_cpuid_vendor(); 226 family = x86_cpuid_family(); 227 228 switch (vendor) { 229 case X86_VENDOR_INTEL: 230 if (family >= 6) 231 reload_ucode_intel(); 232 break; 233 case X86_VENDOR_AMD: 234 if (family >= 0x10) 235 reload_ucode_amd(cpu); 236 break; 237 default: 238 break; 239 } 240 } 241 242 /* fake device for request_firmware */ 243 static struct platform_device *microcode_pdev; 244 245 #ifdef CONFIG_MICROCODE_LATE_LOADING 246 /* 247 * Late loading dance. Why the heavy-handed stomp_machine effort? 248 * 249 * - HT siblings must be idle and not execute other code while the other sibling 250 * is loading microcode in order to avoid any negative interactions caused by 251 * the loading. 252 * 253 * - In addition, microcode update on the cores must be serialized until this 254 * requirement can be relaxed in the future. Right now, this is conservative 255 * and good. 256 */ 257 enum sibling_ctrl { 258 /* Spinwait with timeout */ 259 SCTRL_WAIT, 260 /* Invoke the microcode_apply() callback */ 261 SCTRL_APPLY, 262 /* Proceed without invoking the microcode_apply() callback */ 263 SCTRL_DONE, 264 }; 265 266 struct microcode_ctrl { 267 enum sibling_ctrl ctrl; 268 enum ucode_state result; 269 unsigned int ctrl_cpu; 270 bool nmi_enabled; 271 }; 272 273 DEFINE_STATIC_KEY_FALSE(microcode_nmi_handler_enable); 274 static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl); 275 static unsigned int loops_per_usec; 276 static atomic_t late_cpus_in; 277 278 static noinstr bool wait_for_cpus(atomic_t *cnt) 279 { 280 unsigned int timeout, loops; 281 282 WARN_ON_ONCE(raw_atomic_dec_return(cnt) < 0); 283 284 for (timeout = 0; timeout < USEC_PER_SEC; timeout++) { 285 if (!raw_atomic_read(cnt)) 286 return true; 287 288 for (loops = 0; loops < loops_per_usec; loops++) 289 cpu_relax(); 290 291 /* If invoked directly, tickle the NMI watchdog */ 292 if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) { 293 instrumentation_begin(); 294 touch_nmi_watchdog(); 295 instrumentation_end(); 296 } 297 } 298 /* Prevent the late comers from making progress and let them time out */ 299 raw_atomic_inc(cnt); 300 return false; 301 } 302 303 static noinstr bool wait_for_ctrl(void) 304 { 305 unsigned int timeout, loops; 306 307 for (timeout = 0; timeout < USEC_PER_SEC; timeout++) { 308 if (raw_cpu_read(ucode_ctrl.ctrl) != SCTRL_WAIT) 309 return true; 310 311 for (loops = 0; loops < loops_per_usec; loops++) 312 cpu_relax(); 313 314 /* If invoked directly, tickle the NMI watchdog */ 315 if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) { 316 instrumentation_begin(); 317 touch_nmi_watchdog(); 318 instrumentation_end(); 319 } 320 } 321 return false; 322 } 323 324 /* 325 * Protected against instrumentation up to the point where the primary 326 * thread completed the update. See microcode_nmi_handler() for details. 327 */ 328 static noinstr bool load_secondary_wait(unsigned int ctrl_cpu) 329 { 330 /* Initial rendezvous to ensure that all CPUs have arrived */ 331 if (!wait_for_cpus(&late_cpus_in)) { 332 raw_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); 333 return false; 334 } 335 336 /* 337 * Wait for primary threads to complete. If one of them hangs due 338 * to the update, there is no way out. This is non-recoverable 339 * because the CPU might hold locks or resources and confuse the 340 * scheduler, watchdogs etc. There is no way to safely evacuate the 341 * machine. 342 */ 343 if (wait_for_ctrl()) 344 return true; 345 346 instrumentation_begin(); 347 panic("Microcode load: Primary CPU %d timed out\n", ctrl_cpu); 348 instrumentation_end(); 349 } 350 351 /* 352 * Protected against instrumentation up to the point where the primary 353 * thread completed the update. See microcode_nmi_handler() for details. 354 */ 355 static noinstr void load_secondary(unsigned int cpu) 356 { 357 unsigned int ctrl_cpu = raw_cpu_read(ucode_ctrl.ctrl_cpu); 358 enum ucode_state ret; 359 360 if (!load_secondary_wait(ctrl_cpu)) { 361 instrumentation_begin(); 362 pr_err_once("load: %d CPUs timed out\n", 363 atomic_read(&late_cpus_in) - 1); 364 instrumentation_end(); 365 return; 366 } 367 368 /* Primary thread completed. Allow to invoke instrumentable code */ 369 instrumentation_begin(); 370 /* 371 * If the primary succeeded then invoke the apply() callback, 372 * otherwise copy the state from the primary thread. 373 */ 374 if (this_cpu_read(ucode_ctrl.ctrl) == SCTRL_APPLY) 375 ret = microcode_ops->apply_microcode(cpu); 376 else 377 ret = per_cpu(ucode_ctrl.result, ctrl_cpu); 378 379 this_cpu_write(ucode_ctrl.result, ret); 380 this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE); 381 instrumentation_end(); 382 } 383 384 static void load_primary(unsigned int cpu) 385 { 386 struct cpumask *secondaries = topology_sibling_cpumask(cpu); 387 enum sibling_ctrl ctrl; 388 enum ucode_state ret; 389 unsigned int sibling; 390 391 /* Initial rendezvous to ensure that all CPUs have arrived */ 392 if (!wait_for_cpus(&late_cpus_in)) { 393 this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); 394 pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1); 395 return; 396 } 397 398 ret = microcode_ops->apply_microcode(cpu); 399 this_cpu_write(ucode_ctrl.result, ret); 400 this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE); 401 402 /* 403 * If the update was successful, let the siblings run the apply() 404 * callback. If not, tell them it's done. This also covers the 405 * case where the CPU has uniform loading at package or system 406 * scope implemented but does not advertise it. 407 */ 408 if (ret == UCODE_UPDATED || ret == UCODE_OK) 409 ctrl = SCTRL_APPLY; 410 else 411 ctrl = SCTRL_DONE; 412 413 for_each_cpu(sibling, secondaries) { 414 if (sibling != cpu) 415 per_cpu(ucode_ctrl.ctrl, sibling) = ctrl; 416 } 417 } 418 419 static noinstr bool microcode_update_handler(void) 420 { 421 unsigned int cpu = raw_smp_processor_id(); 422 423 if (raw_cpu_read(ucode_ctrl.ctrl_cpu) == cpu) { 424 instrumentation_begin(); 425 load_primary(cpu); 426 instrumentation_end(); 427 } else { 428 load_secondary(cpu); 429 } 430 431 instrumentation_begin(); 432 touch_nmi_watchdog(); 433 instrumentation_end(); 434 435 return true; 436 } 437 438 /* 439 * Protection against instrumentation is required for CPUs which are not 440 * safe against an NMI which is delivered to the secondary SMT sibling 441 * while the primary thread updates the microcode. Instrumentation can end 442 * up in #INT3, #DB and #PF. The IRET from those exceptions reenables NMI 443 * which is the opposite of what the NMI rendezvous is trying to achieve. 444 * 445 * The primary thread is safe versus instrumentation as the actual 446 * microcode update handles this correctly. It's only the sibling code 447 * path which must be NMI safe until the primary thread completed the 448 * update. 449 */ 450 bool noinstr microcode_nmi_handler(void) 451 { 452 if (!raw_cpu_read(ucode_ctrl.nmi_enabled)) 453 return false; 454 455 raw_cpu_write(ucode_ctrl.nmi_enabled, false); 456 return microcode_update_handler(); 457 } 458 459 static int load_cpus_stopped(void *unused) 460 { 461 if (microcode_ops->use_nmi) { 462 /* Enable the NMI handler and raise NMI */ 463 this_cpu_write(ucode_ctrl.nmi_enabled, true); 464 apic->send_IPI(smp_processor_id(), NMI_VECTOR); 465 } else { 466 /* Just invoke the handler directly */ 467 microcode_update_handler(); 468 } 469 return 0; 470 } 471 472 static int load_late_stop_cpus(void) 473 { 474 unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0; 475 int old_rev = boot_cpu_data.microcode; 476 struct cpuinfo_x86 prev_info; 477 478 pr_err("Attempting late microcode loading - it is dangerous and taints the kernel.\n"); 479 pr_err("You should switch to early loading, if possible.\n"); 480 481 atomic_set(&late_cpus_in, num_online_cpus()); 482 loops_per_usec = loops_per_jiffy / (TICK_NSEC / 1000); 483 484 /* 485 * Take a snapshot before the microcode update in order to compare and 486 * check whether any bits changed after an update. 487 */ 488 store_cpu_caps(&prev_info); 489 490 if (microcode_ops->use_nmi) 491 static_branch_enable_cpuslocked(µcode_nmi_handler_enable); 492 493 stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask); 494 495 if (microcode_ops->use_nmi) 496 static_branch_disable_cpuslocked(µcode_nmi_handler_enable); 497 498 /* Analyze the results */ 499 for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { 500 switch (per_cpu(ucode_ctrl.result, cpu)) { 501 case UCODE_UPDATED: updated++; break; 502 case UCODE_TIMEOUT: timedout++; break; 503 case UCODE_OK: siblings++; break; 504 default: failed++; break; 505 } 506 } 507 508 if (microcode_ops->finalize_late_load) 509 microcode_ops->finalize_late_load(!updated); 510 511 if (!updated) { 512 /* Nothing changed. */ 513 if (!failed && !timedout) 514 return 0; 515 pr_err("update failed: %u CPUs failed %u CPUs timed out\n", 516 failed, timedout); 517 return -EIO; 518 } 519 520 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 521 pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings); 522 if (failed || timedout) { 523 pr_err("load incomplete. %u CPUs timed out or failed\n", 524 num_online_cpus() - (updated + siblings)); 525 } 526 pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode); 527 microcode_check(&prev_info); 528 529 return updated + siblings == num_online_cpus() ? 0 : -EIO; 530 } 531 532 /* 533 * This function does two things: 534 * 535 * 1) Ensure that all required CPUs which are present and have been booted 536 * once are online. 537 * 538 * To pass this check, all primary threads must be online. 539 * 540 * If the microcode load is not safe against NMI then all SMT threads 541 * must be online as well because they still react to NMIs when they are 542 * soft-offlined and parked in one of the play_dead() variants. So if a 543 * NMI hits while the primary thread updates the microcode the resulting 544 * behaviour is undefined. The default play_dead() implementation on 545 * modern CPUs uses MWAIT, which is also not guaranteed to be safe 546 * against a microcode update which affects MWAIT. 547 * 548 * 2) Initialize the per CPU control structure 549 */ 550 static bool setup_cpus(void) 551 { 552 struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, }; 553 unsigned int cpu; 554 555 for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { 556 if (!cpu_online(cpu)) { 557 if (topology_is_primary_thread(cpu) || !microcode_ops->nmi_safe) { 558 pr_err("CPU %u not online\n", cpu); 559 return false; 560 } 561 } 562 563 /* 564 * Initialize the per CPU state. This is core scope for now, 565 * but prepared to take package or system scope into account. 566 */ 567 ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu)); 568 per_cpu(ucode_ctrl, cpu) = ctrl; 569 } 570 return true; 571 } 572 573 static int load_late_locked(void) 574 { 575 if (!setup_cpus()) 576 return -EBUSY; 577 578 switch (microcode_ops->request_microcode_fw(0, µcode_pdev->dev)) { 579 case UCODE_NEW: 580 return load_late_stop_cpus(); 581 case UCODE_NFOUND: 582 return -ENOENT; 583 default: 584 return -EBADFD; 585 } 586 } 587 588 static ssize_t reload_store(struct device *dev, 589 struct device_attribute *attr, 590 const char *buf, size_t size) 591 { 592 unsigned long val; 593 ssize_t ret; 594 595 ret = kstrtoul(buf, 0, &val); 596 if (ret || val != 1) 597 return -EINVAL; 598 599 cpus_read_lock(); 600 ret = load_late_locked(); 601 cpus_read_unlock(); 602 603 return ret ? : size; 604 } 605 606 static DEVICE_ATTR_WO(reload); 607 #endif 608 609 static ssize_t version_show(struct device *dev, 610 struct device_attribute *attr, char *buf) 611 { 612 struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; 613 614 return sprintf(buf, "0x%x\n", uci->cpu_sig.rev); 615 } 616 617 static ssize_t processor_flags_show(struct device *dev, 618 struct device_attribute *attr, char *buf) 619 { 620 struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; 621 622 return sprintf(buf, "0x%x\n", uci->cpu_sig.pf); 623 } 624 625 static DEVICE_ATTR_RO(version); 626 static DEVICE_ATTR_RO(processor_flags); 627 628 static struct attribute *mc_default_attrs[] = { 629 &dev_attr_version.attr, 630 &dev_attr_processor_flags.attr, 631 NULL 632 }; 633 634 static const struct attribute_group mc_attr_group = { 635 .attrs = mc_default_attrs, 636 .name = "microcode", 637 }; 638 639 static void microcode_fini_cpu(int cpu) 640 { 641 if (microcode_ops->microcode_fini_cpu) 642 microcode_ops->microcode_fini_cpu(cpu); 643 } 644 645 /** 646 * microcode_bsp_resume - Update boot CPU microcode during resume. 647 */ 648 void microcode_bsp_resume(void) 649 { 650 int cpu = smp_processor_id(); 651 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 652 653 if (uci->mc) 654 microcode_ops->apply_microcode(cpu); 655 else 656 reload_early_microcode(cpu); 657 } 658 659 static struct syscore_ops mc_syscore_ops = { 660 .resume = microcode_bsp_resume, 661 }; 662 663 static int mc_cpu_online(unsigned int cpu) 664 { 665 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 666 struct device *dev = get_cpu_device(cpu); 667 668 memset(uci, 0, sizeof(*uci)); 669 670 microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig); 671 cpu_data(cpu).microcode = uci->cpu_sig.rev; 672 if (!cpu) 673 boot_cpu_data.microcode = uci->cpu_sig.rev; 674 675 if (sysfs_create_group(&dev->kobj, &mc_attr_group)) 676 pr_err("Failed to create group for CPU%d\n", cpu); 677 return 0; 678 } 679 680 static int mc_cpu_down_prep(unsigned int cpu) 681 { 682 struct device *dev = get_cpu_device(cpu); 683 684 microcode_fini_cpu(cpu); 685 sysfs_remove_group(&dev->kobj, &mc_attr_group); 686 return 0; 687 } 688 689 static struct attribute *cpu_root_microcode_attrs[] = { 690 #ifdef CONFIG_MICROCODE_LATE_LOADING 691 &dev_attr_reload.attr, 692 #endif 693 NULL 694 }; 695 696 static const struct attribute_group cpu_root_microcode_group = { 697 .name = "microcode", 698 .attrs = cpu_root_microcode_attrs, 699 }; 700 701 static int __init microcode_init(void) 702 { 703 struct device *dev_root; 704 struct cpuinfo_x86 *c = &boot_cpu_data; 705 int error; 706 707 if (dis_ucode_ldr) 708 return -EINVAL; 709 710 if (c->x86_vendor == X86_VENDOR_INTEL) 711 microcode_ops = init_intel_microcode(); 712 else if (c->x86_vendor == X86_VENDOR_AMD) 713 microcode_ops = init_amd_microcode(); 714 else 715 pr_err("no support for this CPU vendor\n"); 716 717 if (!microcode_ops) 718 return -ENODEV; 719 720 microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0); 721 if (IS_ERR(microcode_pdev)) 722 return PTR_ERR(microcode_pdev); 723 724 dev_root = bus_get_dev_root(&cpu_subsys); 725 if (dev_root) { 726 error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group); 727 put_device(dev_root); 728 if (error) { 729 pr_err("Error creating microcode group!\n"); 730 goto out_pdev; 731 } 732 } 733 734 register_syscore_ops(&mc_syscore_ops); 735 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online", 736 mc_cpu_online, mc_cpu_down_prep); 737 738 pr_info("Microcode Update Driver: v%s.", DRIVER_VERSION); 739 740 return 0; 741 742 out_pdev: 743 platform_device_unregister(microcode_pdev); 744 return error; 745 746 } 747 late_initcall(microcode_init); 748