xref: /linux-6.15/arch/x86/kernel/cpu/microcode/amd.c (revision d8317f3d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <[email protected]>
10  *
11  *  Author: Peter Oruba <[email protected]>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <[email protected]>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <[email protected]>
20  *  Fixes: Borislav Petkov <[email protected]>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/uaccess.h>
27 #include <linux/vmalloc.h>
28 #include <linux/initrd.h>
29 #include <linux/kernel.h>
30 #include <linux/pci.h>
31 
32 #include <asm/microcode.h>
33 #include <asm/processor.h>
34 #include <asm/setup.h>
35 #include <asm/cpu.h>
36 #include <asm/msr.h>
37 #include <asm/tlb.h>
38 
39 #include "internal.h"
40 
41 struct ucode_patch {
42 	struct list_head plist;
43 	void *data;
44 	unsigned int size;
45 	u32 patch_id;
46 	u16 equiv_cpu;
47 };
48 
49 static LIST_HEAD(microcode_cache);
50 
51 #define UCODE_MAGIC			0x00414d44
52 #define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
53 #define UCODE_UCODE_TYPE		0x00000001
54 
55 #define SECTION_HDR_SIZE		8
56 #define CONTAINER_HDR_SZ		12
57 
58 struct equiv_cpu_entry {
59 	u32	installed_cpu;
60 	u32	fixed_errata_mask;
61 	u32	fixed_errata_compare;
62 	u16	equiv_cpu;
63 	u16	res;
64 } __packed;
65 
66 struct microcode_header_amd {
67 	u32	data_code;
68 	u32	patch_id;
69 	u16	mc_patch_data_id;
70 	u8	mc_patch_data_len;
71 	u8	init_flag;
72 	u32	mc_patch_data_checksum;
73 	u32	nb_dev_id;
74 	u32	sb_dev_id;
75 	u16	processor_rev_id;
76 	u8	nb_rev_id;
77 	u8	sb_rev_id;
78 	u8	bios_api_rev;
79 	u8	reserved1[3];
80 	u32	match_reg[8];
81 } __packed;
82 
83 struct microcode_amd {
84 	struct microcode_header_amd	hdr;
85 	unsigned int			mpb[];
86 };
87 
88 static struct equiv_cpu_table {
89 	unsigned int num_entries;
90 	struct equiv_cpu_entry *entry;
91 } equiv_table;
92 
93 union zen_patch_rev {
94 	struct {
95 		__u32 rev	 : 8,
96 		      stepping	 : 4,
97 		      model	 : 4,
98 		      __reserved : 4,
99 		      ext_model	 : 4,
100 		      ext_fam	 : 8;
101 	};
102 	__u32 ucode_rev;
103 };
104 
105 union cpuid_1_eax {
106 	struct {
107 		__u32 stepping    : 4,
108 		      model	  : 4,
109 		      family	  : 4,
110 		      __reserved0 : 4,
111 		      ext_model   : 4,
112 		      ext_fam     : 8,
113 		      __reserved1 : 4;
114 	};
115 	__u32 full;
116 };
117 
118 /*
119  * This points to the current valid container of microcode patches which we will
120  * save from the initrd/builtin before jettisoning its contents. @mc is the
121  * microcode patch we found to match.
122  */
123 struct cont_desc {
124 	struct microcode_amd *mc;
125 	u32		     psize;
126 	u8		     *data;
127 	size_t		     size;
128 };
129 
130 /*
131  * Microcode patch container file is prepended to the initrd in cpio
132  * format. See Documentation/arch/x86/microcode.rst
133  */
134 static const char
135 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
136 
137 /*
138  * This is CPUID(1).EAX on the BSP. It is used in two ways:
139  *
140  * 1. To ignore the equivalence table on Zen1 and newer.
141  *
142  * 2. To match which patches to load because the patch revision ID
143  *    already contains the f/m/s for which the microcode is destined
144  *    for.
145  */
146 static u32 bsp_cpuid_1_eax __ro_after_init;
147 
148 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
149 {
150 	union zen_patch_rev p;
151 	union cpuid_1_eax c;
152 
153 	p.ucode_rev = val;
154 	c.full = 0;
155 
156 	c.stepping  = p.stepping;
157 	c.model     = p.model;
158 	c.ext_model = p.ext_model;
159 	c.family    = 0xf;
160 	c.ext_fam   = p.ext_fam;
161 
162 	return c;
163 }
164 
165 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
166 {
167 	unsigned int i;
168 
169 	/* Zen and newer do not need an equivalence table. */
170 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
171 		return 0;
172 
173 	if (!et || !et->num_entries)
174 		return 0;
175 
176 	for (i = 0; i < et->num_entries; i++) {
177 		struct equiv_cpu_entry *e = &et->entry[i];
178 
179 		if (sig == e->installed_cpu)
180 			return e->equiv_cpu;
181 	}
182 	return 0;
183 }
184 
185 /*
186  * Check whether there is a valid microcode container file at the beginning
187  * of @buf of size @buf_size.
188  */
189 static bool verify_container(const u8 *buf, size_t buf_size)
190 {
191 	u32 cont_magic;
192 
193 	if (buf_size <= CONTAINER_HDR_SZ) {
194 		pr_debug("Truncated microcode container header.\n");
195 		return false;
196 	}
197 
198 	cont_magic = *(const u32 *)buf;
199 	if (cont_magic != UCODE_MAGIC) {
200 		pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
201 		return false;
202 	}
203 
204 	return true;
205 }
206 
207 /*
208  * Check whether there is a valid, non-truncated CPU equivalence table at the
209  * beginning of @buf of size @buf_size.
210  */
211 static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
212 {
213 	const u32 *hdr = (const u32 *)buf;
214 	u32 cont_type, equiv_tbl_len;
215 
216 	if (!verify_container(buf, buf_size))
217 		return false;
218 
219 	/* Zen and newer do not need an equivalence table. */
220 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
221 		return true;
222 
223 	cont_type = hdr[1];
224 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
225 		pr_debug("Wrong microcode container equivalence table type: %u.\n",
226 			 cont_type);
227 		return false;
228 	}
229 
230 	buf_size -= CONTAINER_HDR_SZ;
231 
232 	equiv_tbl_len = hdr[2];
233 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
234 	    buf_size < equiv_tbl_len) {
235 		pr_debug("Truncated equivalence table.\n");
236 		return false;
237 	}
238 
239 	return true;
240 }
241 
242 /*
243  * Check whether there is a valid, non-truncated microcode patch section at the
244  * beginning of @buf of size @buf_size.
245  *
246  * On success, @sh_psize returns the patch size according to the section header,
247  * to the caller.
248  */
249 static bool
250 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
251 {
252 	u32 p_type, p_size;
253 	const u32 *hdr;
254 
255 	if (buf_size < SECTION_HDR_SIZE) {
256 		pr_debug("Truncated patch section.\n");
257 		return false;
258 	}
259 
260 	hdr = (const u32 *)buf;
261 	p_type = hdr[0];
262 	p_size = hdr[1];
263 
264 	if (p_type != UCODE_UCODE_TYPE) {
265 		pr_debug("Invalid type field (0x%x) in container file section header.\n",
266 			 p_type);
267 		return false;
268 	}
269 
270 	if (p_size < sizeof(struct microcode_header_amd)) {
271 		pr_debug("Patch of size %u too short.\n", p_size);
272 		return false;
273 	}
274 
275 	*sh_psize = p_size;
276 
277 	return true;
278 }
279 
280 /*
281  * Check whether the passed remaining file @buf_size is large enough to contain
282  * a patch of the indicated @sh_psize (and also whether this size does not
283  * exceed the per-family maximum). @sh_psize is the size read from the section
284  * header.
285  */
286 static bool __verify_patch_size(u32 sh_psize, size_t buf_size)
287 {
288 	u8 family = x86_family(bsp_cpuid_1_eax);
289 	u32 max_size;
290 
291 	if (family >= 0x15)
292 		goto ret;
293 
294 #define F1XH_MPB_MAX_SIZE 2048
295 #define F14H_MPB_MAX_SIZE 1824
296 
297 	switch (family) {
298 	case 0x10 ... 0x12:
299 		max_size = F1XH_MPB_MAX_SIZE;
300 		break;
301 	case 0x14:
302 		max_size = F14H_MPB_MAX_SIZE;
303 		break;
304 	default:
305 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
306 		return false;
307 	}
308 
309 	if (sh_psize > max_size)
310 		return false;
311 
312 ret:
313 	/* Working with the whole buffer so < is ok. */
314 	return sh_psize <= buf_size;
315 }
316 
317 /*
318  * Verify the patch in @buf.
319  *
320  * Returns:
321  * negative: on error
322  * positive: patch is not for this family, skip it
323  * 0: success
324  */
325 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
326 {
327 	u8 family = x86_family(bsp_cpuid_1_eax);
328 	struct microcode_header_amd *mc_hdr;
329 	u32 sh_psize;
330 	u16 proc_id;
331 	u8 patch_fam;
332 
333 	if (!__verify_patch_section(buf, buf_size, &sh_psize))
334 		return -1;
335 
336 	/*
337 	 * The section header length is not included in this indicated size
338 	 * but is present in the leftover file length so we need to subtract
339 	 * it before passing this value to the function below.
340 	 */
341 	buf_size -= SECTION_HDR_SIZE;
342 
343 	/*
344 	 * Check if the remaining buffer is big enough to contain a patch of
345 	 * size sh_psize, as the section claims.
346 	 */
347 	if (buf_size < sh_psize) {
348 		pr_debug("Patch of size %u truncated.\n", sh_psize);
349 		return -1;
350 	}
351 
352 	if (!__verify_patch_size(sh_psize, buf_size)) {
353 		pr_debug("Per-family patch size mismatch.\n");
354 		return -1;
355 	}
356 
357 	*patch_size = sh_psize;
358 
359 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
360 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
361 		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
362 		return -1;
363 	}
364 
365 	proc_id	= mc_hdr->processor_rev_id;
366 	patch_fam = 0xf + (proc_id >> 12);
367 	if (patch_fam != family)
368 		return 1;
369 
370 	return 0;
371 }
372 
373 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
374 {
375 	/* Zen and newer do not need an equivalence table. */
376 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
377 		return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
378 	else
379 		return eq_id == mc->hdr.processor_rev_id;
380 }
381 
382 /*
383  * This scans the ucode blob for the proper container as we can have multiple
384  * containers glued together.
385  *
386  * Returns the amount of bytes consumed while scanning. @desc contains all the
387  * data we're going to use in later stages of the application.
388  */
389 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
390 {
391 	struct equiv_cpu_table table;
392 	size_t orig_size = size;
393 	u32 *hdr = (u32 *)ucode;
394 	u16 eq_id;
395 	u8 *buf;
396 
397 	if (!verify_equivalence_table(ucode, size))
398 		return 0;
399 
400 	buf = ucode;
401 
402 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
403 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
404 
405 	/*
406 	 * Find the equivalence ID of our CPU in this table. Even if this table
407 	 * doesn't contain a patch for the CPU, scan through the whole container
408 	 * so that it can be skipped in case there are other containers appended.
409 	 */
410 	eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
411 
412 	buf  += hdr[2] + CONTAINER_HDR_SZ;
413 	size -= hdr[2] + CONTAINER_HDR_SZ;
414 
415 	/*
416 	 * Scan through the rest of the container to find where it ends. We do
417 	 * some basic sanity-checking too.
418 	 */
419 	while (size > 0) {
420 		struct microcode_amd *mc;
421 		u32 patch_size;
422 		int ret;
423 
424 		ret = verify_patch(buf, size, &patch_size);
425 		if (ret < 0) {
426 			/*
427 			 * Patch verification failed, skip to the next container, if
428 			 * there is one. Before exit, check whether that container has
429 			 * found a patch already. If so, use it.
430 			 */
431 			goto out;
432 		} else if (ret > 0) {
433 			goto skip;
434 		}
435 
436 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
437 		if (mc_patch_matches(mc, eq_id)) {
438 			desc->psize = patch_size;
439 			desc->mc = mc;
440 		}
441 
442 skip:
443 		/* Skip patch section header too: */
444 		buf  += patch_size + SECTION_HDR_SIZE;
445 		size -= patch_size + SECTION_HDR_SIZE;
446 	}
447 
448 out:
449 	/*
450 	 * If we have found a patch (desc->mc), it means we're looking at the
451 	 * container which has a patch for this CPU so return 0 to mean, @ucode
452 	 * already points to the proper container. Otherwise, we return the size
453 	 * we scanned so that we can advance to the next container in the
454 	 * buffer.
455 	 */
456 	if (desc->mc) {
457 		desc->data = ucode;
458 		desc->size = orig_size - size;
459 
460 		return 0;
461 	}
462 
463 	return orig_size - size;
464 }
465 
466 /*
467  * Scan the ucode blob for the proper container as we can have multiple
468  * containers glued together.
469  */
470 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
471 {
472 	while (size) {
473 		size_t s = parse_container(ucode, size, desc);
474 		if (!s)
475 			return;
476 
477 		/* catch wraparound */
478 		if (size >= s) {
479 			ucode += s;
480 			size  -= s;
481 		} else {
482 			return;
483 		}
484 	}
485 }
486 
487 static int __apply_microcode_amd(struct microcode_amd *mc, unsigned int psize)
488 {
489 	unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
490 	u32 rev, dummy;
491 
492 	native_wrmsrl(MSR_AMD64_PATCH_LOADER, p_addr);
493 
494 	if (x86_family(bsp_cpuid_1_eax) == 0x17) {
495 		unsigned long p_addr_end = p_addr + psize - 1;
496 
497 		invlpg(p_addr);
498 
499 		/*
500 		 * Flush next page too if patch image is crossing a page
501 		 * boundary.
502 		 */
503 		if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
504 			invlpg(p_addr_end);
505 	}
506 
507 	/* verify patch application was successful */
508 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
509 
510 	if (rev != mc->hdr.patch_id)
511 		return -1;
512 
513 	return 0;
514 }
515 
516 /*
517  * Early load occurs before we can vmalloc(). So we look for the microcode
518  * patch container file in initrd, traverse equivalent cpu table, look for a
519  * matching microcode patch, and update, all in initrd memory in place.
520  * When vmalloc() is available for use later -- on 64-bit during first AP load,
521  * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
522  * load_microcode_amd() to save equivalent cpu table and microcode patches in
523  * kernel heap memory.
524  *
525  * Returns true if container found (sets @desc), false otherwise.
526  */
527 static bool early_apply_microcode(u32 old_rev, void *ucode, size_t size)
528 {
529 	struct cont_desc desc = { 0 };
530 	struct microcode_amd *mc;
531 	bool ret = false;
532 
533 	scan_containers(ucode, size, &desc);
534 
535 	mc = desc.mc;
536 	if (!mc)
537 		return ret;
538 
539 	/*
540 	 * Allow application of the same revision to pick up SMT-specific
541 	 * changes even if the revision of the other SMT thread is already
542 	 * up-to-date.
543 	 */
544 	if (old_rev > mc->hdr.patch_id)
545 		return ret;
546 
547 	return !__apply_microcode_amd(mc, desc.psize);
548 }
549 
550 static bool get_builtin_microcode(struct cpio_data *cp)
551 {
552 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
553 	u8 family = x86_family(bsp_cpuid_1_eax);
554 	struct firmware fw;
555 
556 	if (IS_ENABLED(CONFIG_X86_32))
557 		return false;
558 
559 	if (family >= 0x15)
560 		snprintf(fw_name, sizeof(fw_name),
561 			 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
562 
563 	if (firmware_request_builtin(&fw, fw_name)) {
564 		cp->size = fw.size;
565 		cp->data = (void *)fw.data;
566 		return true;
567 	}
568 
569 	return false;
570 }
571 
572 static bool __init find_blobs_in_containers(struct cpio_data *ret)
573 {
574 	struct cpio_data cp;
575 	bool found;
576 
577 	if (!get_builtin_microcode(&cp))
578 		cp = find_microcode_in_initrd(ucode_path);
579 
580 	found = cp.data && cp.size;
581 	if (found)
582 		*ret = cp;
583 
584 	return found;
585 }
586 
587 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
588 {
589 	struct cpio_data cp = { };
590 	u32 dummy;
591 
592 	bsp_cpuid_1_eax = cpuid_1_eax;
593 
594 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->old_rev, dummy);
595 
596 	/* Needed in load_microcode_amd() */
597 	ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
598 
599 	if (!find_blobs_in_containers(&cp))
600 		return;
601 
602 	if (early_apply_microcode(ed->old_rev, cp.data, cp.size))
603 		native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->new_rev, dummy);
604 }
605 
606 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size);
607 
608 static int __init save_microcode_in_initrd(void)
609 {
610 	unsigned int cpuid_1_eax = native_cpuid_eax(1);
611 	struct cpuinfo_x86 *c = &boot_cpu_data;
612 	struct cont_desc desc = { 0 };
613 	enum ucode_state ret;
614 	struct cpio_data cp;
615 
616 	if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
617 		return 0;
618 
619 	if (!find_blobs_in_containers(&cp))
620 		return -EINVAL;
621 
622 	scan_containers(cp.data, cp.size, &desc);
623 	if (!desc.mc)
624 		return -EINVAL;
625 
626 	ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
627 	if (ret > UCODE_UPDATED)
628 		return -EINVAL;
629 
630 	return 0;
631 }
632 early_initcall(save_microcode_in_initrd);
633 
634 static inline bool patch_cpus_equivalent(struct ucode_patch *p,
635 					 struct ucode_patch *n,
636 					 bool ignore_stepping)
637 {
638 	/* Zen and newer hardcode the f/m/s in the patch ID */
639         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
640 		union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
641 		union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
642 
643 		if (ignore_stepping) {
644 			p_cid.stepping = 0;
645 			n_cid.stepping = 0;
646 		}
647 
648 		return p_cid.full == n_cid.full;
649 	} else {
650 		return p->equiv_cpu == n->equiv_cpu;
651 	}
652 }
653 
654 /*
655  * a small, trivial cache of per-family ucode patches
656  */
657 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
658 {
659 	struct ucode_patch *p;
660 	struct ucode_patch n;
661 
662 	n.equiv_cpu = equiv_cpu;
663 	n.patch_id  = uci->cpu_sig.rev;
664 
665 	WARN_ON_ONCE(!n.patch_id);
666 
667 	list_for_each_entry(p, &microcode_cache, plist)
668 		if (patch_cpus_equivalent(p, &n, false))
669 			return p;
670 
671 	return NULL;
672 }
673 
674 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
675 {
676 	/* Zen and newer hardcode the f/m/s in the patch ID */
677         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
678 		union zen_patch_rev zp, zn;
679 
680 		zp.ucode_rev = p->patch_id;
681 		zn.ucode_rev = n->patch_id;
682 
683 		if (zn.stepping != zp.stepping)
684 			return -1;
685 
686 		return zn.rev > zp.rev;
687 	} else {
688 		return n->patch_id > p->patch_id;
689 	}
690 }
691 
692 static void update_cache(struct ucode_patch *new_patch)
693 {
694 	struct ucode_patch *p;
695 	int ret;
696 
697 	list_for_each_entry(p, &microcode_cache, plist) {
698 		if (patch_cpus_equivalent(p, new_patch, true)) {
699 			ret = patch_newer(p, new_patch);
700 			if (ret < 0)
701 				continue;
702 			else if (!ret) {
703 				/* we already have the latest patch */
704 				kfree(new_patch->data);
705 				kfree(new_patch);
706 				return;
707 			}
708 
709 			list_replace(&p->plist, &new_patch->plist);
710 			kfree(p->data);
711 			kfree(p);
712 			return;
713 		}
714 	}
715 	/* no patch found, add it */
716 	list_add_tail(&new_patch->plist, &microcode_cache);
717 }
718 
719 static void free_cache(void)
720 {
721 	struct ucode_patch *p, *tmp;
722 
723 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
724 		__list_del(p->plist.prev, p->plist.next);
725 		kfree(p->data);
726 		kfree(p);
727 	}
728 }
729 
730 static struct ucode_patch *find_patch(unsigned int cpu)
731 {
732 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
733 	u32 rev, dummy __always_unused;
734 	u16 equiv_id = 0;
735 
736 	/* fetch rev if not populated yet: */
737 	if (!uci->cpu_sig.rev) {
738 		rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
739 		uci->cpu_sig.rev = rev;
740 	}
741 
742 	if (x86_family(bsp_cpuid_1_eax) < 0x17) {
743 		equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
744 		if (!equiv_id)
745 			return NULL;
746 	}
747 
748 	return cache_find_patch(uci, equiv_id);
749 }
750 
751 void reload_ucode_amd(unsigned int cpu)
752 {
753 	u32 rev, dummy __always_unused;
754 	struct microcode_amd *mc;
755 	struct ucode_patch *p;
756 
757 	p = find_patch(cpu);
758 	if (!p)
759 		return;
760 
761 	mc = p->data;
762 
763 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
764 
765 	if (rev < mc->hdr.patch_id) {
766 		if (!__apply_microcode_amd(mc, p->size))
767 			pr_info_once("reload revision: 0x%08x\n", mc->hdr.patch_id);
768 	}
769 }
770 
771 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
772 {
773 	struct cpuinfo_x86 *c = &cpu_data(cpu);
774 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
775 	struct ucode_patch *p;
776 
777 	csig->sig = cpuid_eax(0x00000001);
778 	csig->rev = c->microcode;
779 
780 	/*
781 	 * a patch could have been loaded early, set uci->mc so that
782 	 * mc_bp_resume() can call apply_microcode()
783 	 */
784 	p = find_patch(cpu);
785 	if (p && (p->patch_id == csig->rev))
786 		uci->mc = p->data;
787 
788 	return 0;
789 }
790 
791 static enum ucode_state apply_microcode_amd(int cpu)
792 {
793 	struct cpuinfo_x86 *c = &cpu_data(cpu);
794 	struct microcode_amd *mc_amd;
795 	struct ucode_cpu_info *uci;
796 	struct ucode_patch *p;
797 	enum ucode_state ret;
798 	u32 rev;
799 
800 	BUG_ON(raw_smp_processor_id() != cpu);
801 
802 	uci = ucode_cpu_info + cpu;
803 
804 	p = find_patch(cpu);
805 	if (!p)
806 		return UCODE_NFOUND;
807 
808 	rev = uci->cpu_sig.rev;
809 
810 	mc_amd  = p->data;
811 	uci->mc = p->data;
812 
813 	/* need to apply patch? */
814 	if (rev > mc_amd->hdr.patch_id) {
815 		ret = UCODE_OK;
816 		goto out;
817 	}
818 
819 	if (__apply_microcode_amd(mc_amd, p->size)) {
820 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
821 			cpu, mc_amd->hdr.patch_id);
822 		return UCODE_ERROR;
823 	}
824 
825 	rev = mc_amd->hdr.patch_id;
826 	ret = UCODE_UPDATED;
827 
828 out:
829 	uci->cpu_sig.rev = rev;
830 	c->microcode	 = rev;
831 
832 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
833 	if (c->cpu_index == boot_cpu_data.cpu_index)
834 		boot_cpu_data.microcode = rev;
835 
836 	return ret;
837 }
838 
839 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
840 {
841 	unsigned int cpu = smp_processor_id();
842 
843 	ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
844 	apply_microcode_amd(cpu);
845 }
846 
847 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
848 {
849 	u32 equiv_tbl_len;
850 	const u32 *hdr;
851 
852 	if (!verify_equivalence_table(buf, buf_size))
853 		return 0;
854 
855 	hdr = (const u32 *)buf;
856 	equiv_tbl_len = hdr[2];
857 
858 	/* Zen and newer do not need an equivalence table. */
859 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
860 		goto out;
861 
862 	equiv_table.entry = vmalloc(equiv_tbl_len);
863 	if (!equiv_table.entry) {
864 		pr_err("failed to allocate equivalent CPU table\n");
865 		return 0;
866 	}
867 
868 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
869 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
870 
871 out:
872 	/* add header length */
873 	return equiv_tbl_len + CONTAINER_HDR_SZ;
874 }
875 
876 static void free_equiv_cpu_table(void)
877 {
878 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
879 		return;
880 
881 	vfree(equiv_table.entry);
882 	memset(&equiv_table, 0, sizeof(equiv_table));
883 }
884 
885 static void cleanup(void)
886 {
887 	free_equiv_cpu_table();
888 	free_cache();
889 }
890 
891 /*
892  * Return a non-negative value even if some of the checks failed so that
893  * we can skip over the next patch. If we return a negative value, we
894  * signal a grave error like a memory allocation has failed and the
895  * driver cannot continue functioning normally. In such cases, we tear
896  * down everything we've used up so far and exit.
897  */
898 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
899 				unsigned int *patch_size)
900 {
901 	struct microcode_header_amd *mc_hdr;
902 	struct ucode_patch *patch;
903 	u16 proc_id;
904 	int ret;
905 
906 	ret = verify_patch(fw, leftover, patch_size);
907 	if (ret)
908 		return ret;
909 
910 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
911 	if (!patch) {
912 		pr_err("Patch allocation failure.\n");
913 		return -EINVAL;
914 	}
915 
916 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
917 	if (!patch->data) {
918 		pr_err("Patch data allocation failure.\n");
919 		kfree(patch);
920 		return -EINVAL;
921 	}
922 	patch->size = *patch_size;
923 
924 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
925 	proc_id     = mc_hdr->processor_rev_id;
926 
927 	INIT_LIST_HEAD(&patch->plist);
928 	patch->patch_id  = mc_hdr->patch_id;
929 	patch->equiv_cpu = proc_id;
930 
931 	pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
932 		 __func__, patch->patch_id, proc_id);
933 
934 	/* ... and add to cache. */
935 	update_cache(patch);
936 
937 	return 0;
938 }
939 
940 /* Scan the blob in @data and add microcode patches to the cache. */
941 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
942 					     size_t size)
943 {
944 	u8 *fw = (u8 *)data;
945 	size_t offset;
946 
947 	offset = install_equiv_cpu_table(data, size);
948 	if (!offset)
949 		return UCODE_ERROR;
950 
951 	fw   += offset;
952 	size -= offset;
953 
954 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
955 		pr_err("invalid type field in container file section header\n");
956 		free_equiv_cpu_table();
957 		return UCODE_ERROR;
958 	}
959 
960 	while (size > 0) {
961 		unsigned int crnt_size = 0;
962 		int ret;
963 
964 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
965 		if (ret < 0)
966 			return UCODE_ERROR;
967 
968 		fw   +=  crnt_size + SECTION_HDR_SIZE;
969 		size -= (crnt_size + SECTION_HDR_SIZE);
970 	}
971 
972 	return UCODE_OK;
973 }
974 
975 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
976 {
977 	enum ucode_state ret;
978 
979 	/* free old equiv table */
980 	free_equiv_cpu_table();
981 
982 	ret = __load_microcode_amd(family, data, size);
983 	if (ret != UCODE_OK)
984 		cleanup();
985 
986 	return ret;
987 }
988 
989 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
990 {
991 	struct cpuinfo_x86 *c;
992 	unsigned int nid, cpu;
993 	struct ucode_patch *p;
994 	enum ucode_state ret;
995 
996 	ret = _load_microcode_amd(family, data, size);
997 	if (ret != UCODE_OK)
998 		return ret;
999 
1000 	for_each_node(nid) {
1001 		cpu = cpumask_first(cpumask_of_node(nid));
1002 		c = &cpu_data(cpu);
1003 
1004 		p = find_patch(cpu);
1005 		if (!p)
1006 			continue;
1007 
1008 		if (c->microcode >= p->patch_id)
1009 			continue;
1010 
1011 		ret = UCODE_NEW;
1012 	}
1013 
1014 	return ret;
1015 }
1016 
1017 /*
1018  * AMD microcode firmware naming convention, up to family 15h they are in
1019  * the legacy file:
1020  *
1021  *    amd-ucode/microcode_amd.bin
1022  *
1023  * This legacy file is always smaller than 2K in size.
1024  *
1025  * Beginning with family 15h, they are in family-specific firmware files:
1026  *
1027  *    amd-ucode/microcode_amd_fam15h.bin
1028  *    amd-ucode/microcode_amd_fam16h.bin
1029  *    ...
1030  *
1031  * These might be larger than 2K.
1032  */
1033 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
1034 {
1035 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
1036 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1037 	enum ucode_state ret = UCODE_NFOUND;
1038 	const struct firmware *fw;
1039 
1040 	if (force_minrev)
1041 		return UCODE_NFOUND;
1042 
1043 	if (c->x86 >= 0x15)
1044 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
1045 
1046 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
1047 		pr_debug("failed to load file %s\n", fw_name);
1048 		goto out;
1049 	}
1050 
1051 	ret = UCODE_ERROR;
1052 	if (!verify_container(fw->data, fw->size))
1053 		goto fw_release;
1054 
1055 	ret = load_microcode_amd(c->x86, fw->data, fw->size);
1056 
1057  fw_release:
1058 	release_firmware(fw);
1059 
1060  out:
1061 	return ret;
1062 }
1063 
1064 static void microcode_fini_cpu_amd(int cpu)
1065 {
1066 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
1067 
1068 	uci->mc = NULL;
1069 }
1070 
1071 static struct microcode_ops microcode_amd_ops = {
1072 	.request_microcode_fw	= request_microcode_amd,
1073 	.collect_cpu_info	= collect_cpu_info_amd,
1074 	.apply_microcode	= apply_microcode_amd,
1075 	.microcode_fini_cpu	= microcode_fini_cpu_amd,
1076 	.nmi_safe		= true,
1077 };
1078 
1079 struct microcode_ops * __init init_amd_microcode(void)
1080 {
1081 	struct cpuinfo_x86 *c = &boot_cpu_data;
1082 
1083 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
1084 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
1085 		return NULL;
1086 	}
1087 	return &microcode_amd_ops;
1088 }
1089 
1090 void __exit exit_amd_microcode(void)
1091 {
1092 	cleanup();
1093 }
1094