xref: /linux-6.15/arch/x86/kernel/cpu/microcode/amd.c (revision 3ef0740d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <[email protected]>
10  *
11  *  Author: Peter Oruba <[email protected]>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <[email protected]>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <[email protected]>
20  *  Fixes: Borislav Petkov <[email protected]>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/uaccess.h>
27 #include <linux/vmalloc.h>
28 #include <linux/initrd.h>
29 #include <linux/kernel.h>
30 #include <linux/pci.h>
31 
32 #include <asm/microcode.h>
33 #include <asm/processor.h>
34 #include <asm/setup.h>
35 #include <asm/cpu.h>
36 #include <asm/msr.h>
37 #include <asm/tlb.h>
38 
39 #include "internal.h"
40 
41 struct ucode_patch {
42 	struct list_head plist;
43 	void *data;
44 	unsigned int size;
45 	u32 patch_id;
46 	u16 equiv_cpu;
47 };
48 
49 static LIST_HEAD(microcode_cache);
50 
51 #define UCODE_MAGIC			0x00414d44
52 #define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
53 #define UCODE_UCODE_TYPE		0x00000001
54 
55 #define SECTION_HDR_SIZE		8
56 #define CONTAINER_HDR_SZ		12
57 
58 struct equiv_cpu_entry {
59 	u32	installed_cpu;
60 	u32	fixed_errata_mask;
61 	u32	fixed_errata_compare;
62 	u16	equiv_cpu;
63 	u16	res;
64 } __packed;
65 
66 struct microcode_header_amd {
67 	u32	data_code;
68 	u32	patch_id;
69 	u16	mc_patch_data_id;
70 	u8	mc_patch_data_len;
71 	u8	init_flag;
72 	u32	mc_patch_data_checksum;
73 	u32	nb_dev_id;
74 	u32	sb_dev_id;
75 	u16	processor_rev_id;
76 	u8	nb_rev_id;
77 	u8	sb_rev_id;
78 	u8	bios_api_rev;
79 	u8	reserved1[3];
80 	u32	match_reg[8];
81 } __packed;
82 
83 struct microcode_amd {
84 	struct microcode_header_amd	hdr;
85 	unsigned int			mpb[];
86 };
87 
88 static struct equiv_cpu_table {
89 	unsigned int num_entries;
90 	struct equiv_cpu_entry *entry;
91 } equiv_table;
92 
93 union zen_patch_rev {
94 	struct {
95 		__u32 rev	 : 8,
96 		      stepping	 : 4,
97 		      model	 : 4,
98 		      __reserved : 4,
99 		      ext_model	 : 4,
100 		      ext_fam	 : 8;
101 	};
102 	__u32 ucode_rev;
103 };
104 
105 union cpuid_1_eax {
106 	struct {
107 		__u32 stepping    : 4,
108 		      model	  : 4,
109 		      family	  : 4,
110 		      __reserved0 : 4,
111 		      ext_model   : 4,
112 		      ext_fam     : 8,
113 		      __reserved1 : 4;
114 	};
115 	__u32 full;
116 };
117 
118 /*
119  * This points to the current valid container of microcode patches which we will
120  * save from the initrd/builtin before jettisoning its contents. @mc is the
121  * microcode patch we found to match.
122  */
123 struct cont_desc {
124 	struct microcode_amd *mc;
125 	u32		     psize;
126 	u8		     *data;
127 	size_t		     size;
128 };
129 
130 /*
131  * Microcode patch container file is prepended to the initrd in cpio
132  * format. See Documentation/arch/x86/microcode.rst
133  */
134 static const char
135 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
136 
137 /*
138  * This is CPUID(1).EAX on the BSP. It is used in two ways:
139  *
140  * 1. To ignore the equivalence table on Zen1 and newer.
141  *
142  * 2. To match which patches to load because the patch revision ID
143  *    already contains the f/m/s for which the microcode is destined
144  *    for.
145  */
146 static u32 bsp_cpuid_1_eax __ro_after_init;
147 
148 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
149 {
150 	union zen_patch_rev p;
151 	union cpuid_1_eax c;
152 
153 	p.ucode_rev = val;
154 	c.full = 0;
155 
156 	c.stepping  = p.stepping;
157 	c.model     = p.model;
158 	c.ext_model = p.ext_model;
159 	c.family    = 0xf;
160 	c.ext_fam   = p.ext_fam;
161 
162 	return c;
163 }
164 
165 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
166 {
167 	unsigned int i;
168 
169 	/* Zen and newer do not need an equivalence table. */
170 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
171 		return 0;
172 
173 	if (!et || !et->num_entries)
174 		return 0;
175 
176 	for (i = 0; i < et->num_entries; i++) {
177 		struct equiv_cpu_entry *e = &et->entry[i];
178 
179 		if (sig == e->installed_cpu)
180 			return e->equiv_cpu;
181 	}
182 	return 0;
183 }
184 
185 /*
186  * Check whether there is a valid microcode container file at the beginning
187  * of @buf of size @buf_size.
188  */
189 static bool verify_container(const u8 *buf, size_t buf_size)
190 {
191 	u32 cont_magic;
192 
193 	if (buf_size <= CONTAINER_HDR_SZ) {
194 		pr_debug("Truncated microcode container header.\n");
195 		return false;
196 	}
197 
198 	cont_magic = *(const u32 *)buf;
199 	if (cont_magic != UCODE_MAGIC) {
200 		pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
201 		return false;
202 	}
203 
204 	return true;
205 }
206 
207 /*
208  * Check whether there is a valid, non-truncated CPU equivalence table at the
209  * beginning of @buf of size @buf_size.
210  */
211 static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
212 {
213 	const u32 *hdr = (const u32 *)buf;
214 	u32 cont_type, equiv_tbl_len;
215 
216 	if (!verify_container(buf, buf_size))
217 		return false;
218 
219 	/* Zen and newer do not need an equivalence table. */
220 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
221 		return true;
222 
223 	cont_type = hdr[1];
224 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
225 		pr_debug("Wrong microcode container equivalence table type: %u.\n",
226 			 cont_type);
227 		return false;
228 	}
229 
230 	buf_size -= CONTAINER_HDR_SZ;
231 
232 	equiv_tbl_len = hdr[2];
233 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
234 	    buf_size < equiv_tbl_len) {
235 		pr_debug("Truncated equivalence table.\n");
236 		return false;
237 	}
238 
239 	return true;
240 }
241 
242 /*
243  * Check whether there is a valid, non-truncated microcode patch section at the
244  * beginning of @buf of size @buf_size.
245  *
246  * On success, @sh_psize returns the patch size according to the section header,
247  * to the caller.
248  */
249 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
250 {
251 	u32 p_type, p_size;
252 	const u32 *hdr;
253 
254 	if (buf_size < SECTION_HDR_SIZE) {
255 		pr_debug("Truncated patch section.\n");
256 		return false;
257 	}
258 
259 	hdr = (const u32 *)buf;
260 	p_type = hdr[0];
261 	p_size = hdr[1];
262 
263 	if (p_type != UCODE_UCODE_TYPE) {
264 		pr_debug("Invalid type field (0x%x) in container file section header.\n",
265 			 p_type);
266 		return false;
267 	}
268 
269 	if (p_size < sizeof(struct microcode_header_amd)) {
270 		pr_debug("Patch of size %u too short.\n", p_size);
271 		return false;
272 	}
273 
274 	*sh_psize = p_size;
275 
276 	return true;
277 }
278 
279 /*
280  * Check whether the passed remaining file @buf_size is large enough to contain
281  * a patch of the indicated @sh_psize (and also whether this size does not
282  * exceed the per-family maximum). @sh_psize is the size read from the section
283  * header.
284  */
285 static bool __verify_patch_size(u32 sh_psize, size_t buf_size)
286 {
287 	u8 family = x86_family(bsp_cpuid_1_eax);
288 	u32 max_size;
289 
290 	if (family >= 0x15)
291 		goto ret;
292 
293 #define F1XH_MPB_MAX_SIZE 2048
294 #define F14H_MPB_MAX_SIZE 1824
295 
296 	switch (family) {
297 	case 0x10 ... 0x12:
298 		max_size = F1XH_MPB_MAX_SIZE;
299 		break;
300 	case 0x14:
301 		max_size = F14H_MPB_MAX_SIZE;
302 		break;
303 	default:
304 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
305 		return false;
306 	}
307 
308 	if (sh_psize > max_size)
309 		return false;
310 
311 ret:
312 	/* Working with the whole buffer so < is ok. */
313 	return sh_psize <= buf_size;
314 }
315 
316 /*
317  * Verify the patch in @buf.
318  *
319  * Returns:
320  * negative: on error
321  * positive: patch is not for this family, skip it
322  * 0: success
323  */
324 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
325 {
326 	u8 family = x86_family(bsp_cpuid_1_eax);
327 	struct microcode_header_amd *mc_hdr;
328 	u32 sh_psize;
329 	u16 proc_id;
330 	u8 patch_fam;
331 
332 	if (!__verify_patch_section(buf, buf_size, &sh_psize))
333 		return -1;
334 
335 	/*
336 	 * The section header length is not included in this indicated size
337 	 * but is present in the leftover file length so we need to subtract
338 	 * it before passing this value to the function below.
339 	 */
340 	buf_size -= SECTION_HDR_SIZE;
341 
342 	/*
343 	 * Check if the remaining buffer is big enough to contain a patch of
344 	 * size sh_psize, as the section claims.
345 	 */
346 	if (buf_size < sh_psize) {
347 		pr_debug("Patch of size %u truncated.\n", sh_psize);
348 		return -1;
349 	}
350 
351 	if (!__verify_patch_size(sh_psize, buf_size)) {
352 		pr_debug("Per-family patch size mismatch.\n");
353 		return -1;
354 	}
355 
356 	*patch_size = sh_psize;
357 
358 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
359 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
360 		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
361 		return -1;
362 	}
363 
364 	proc_id	= mc_hdr->processor_rev_id;
365 	patch_fam = 0xf + (proc_id >> 12);
366 	if (patch_fam != family)
367 		return 1;
368 
369 	return 0;
370 }
371 
372 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
373 {
374 	/* Zen and newer do not need an equivalence table. */
375 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
376 		return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
377 	else
378 		return eq_id == mc->hdr.processor_rev_id;
379 }
380 
381 /*
382  * This scans the ucode blob for the proper container as we can have multiple
383  * containers glued together.
384  *
385  * Returns the amount of bytes consumed while scanning. @desc contains all the
386  * data we're going to use in later stages of the application.
387  */
388 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
389 {
390 	struct equiv_cpu_table table;
391 	size_t orig_size = size;
392 	u32 *hdr = (u32 *)ucode;
393 	u16 eq_id;
394 	u8 *buf;
395 
396 	if (!verify_equivalence_table(ucode, size))
397 		return 0;
398 
399 	buf = ucode;
400 
401 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
402 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
403 
404 	/*
405 	 * Find the equivalence ID of our CPU in this table. Even if this table
406 	 * doesn't contain a patch for the CPU, scan through the whole container
407 	 * so that it can be skipped in case there are other containers appended.
408 	 */
409 	eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
410 
411 	buf  += hdr[2] + CONTAINER_HDR_SZ;
412 	size -= hdr[2] + CONTAINER_HDR_SZ;
413 
414 	/*
415 	 * Scan through the rest of the container to find where it ends. We do
416 	 * some basic sanity-checking too.
417 	 */
418 	while (size > 0) {
419 		struct microcode_amd *mc;
420 		u32 patch_size;
421 		int ret;
422 
423 		ret = verify_patch(buf, size, &patch_size);
424 		if (ret < 0) {
425 			/*
426 			 * Patch verification failed, skip to the next container, if
427 			 * there is one. Before exit, check whether that container has
428 			 * found a patch already. If so, use it.
429 			 */
430 			goto out;
431 		} else if (ret > 0) {
432 			goto skip;
433 		}
434 
435 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
436 		if (mc_patch_matches(mc, eq_id)) {
437 			desc->psize = patch_size;
438 			desc->mc = mc;
439 		}
440 
441 skip:
442 		/* Skip patch section header too: */
443 		buf  += patch_size + SECTION_HDR_SIZE;
444 		size -= patch_size + SECTION_HDR_SIZE;
445 	}
446 
447 out:
448 	/*
449 	 * If we have found a patch (desc->mc), it means we're looking at the
450 	 * container which has a patch for this CPU so return 0 to mean, @ucode
451 	 * already points to the proper container. Otherwise, we return the size
452 	 * we scanned so that we can advance to the next container in the
453 	 * buffer.
454 	 */
455 	if (desc->mc) {
456 		desc->data = ucode;
457 		desc->size = orig_size - size;
458 
459 		return 0;
460 	}
461 
462 	return orig_size - size;
463 }
464 
465 /*
466  * Scan the ucode blob for the proper container as we can have multiple
467  * containers glued together.
468  */
469 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
470 {
471 	while (size) {
472 		size_t s = parse_container(ucode, size, desc);
473 		if (!s)
474 			return;
475 
476 		/* catch wraparound */
477 		if (size >= s) {
478 			ucode += s;
479 			size  -= s;
480 		} else {
481 			return;
482 		}
483 	}
484 }
485 
486 static bool __apply_microcode_amd(struct microcode_amd *mc, unsigned int psize)
487 {
488 	unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
489 	u32 rev, dummy;
490 
491 	native_wrmsrl(MSR_AMD64_PATCH_LOADER, p_addr);
492 
493 	if (x86_family(bsp_cpuid_1_eax) == 0x17) {
494 		unsigned long p_addr_end = p_addr + psize - 1;
495 
496 		invlpg(p_addr);
497 
498 		/*
499 		 * Flush next page too if patch image is crossing a page
500 		 * boundary.
501 		 */
502 		if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
503 			invlpg(p_addr_end);
504 	}
505 
506 	/* verify patch application was successful */
507 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
508 
509 	if (rev != mc->hdr.patch_id)
510 		return false;
511 
512 	return true;
513 }
514 
515 /*
516  * Early load occurs before we can vmalloc(). So we look for the microcode
517  * patch container file in initrd, traverse equivalent cpu table, look for a
518  * matching microcode patch, and update, all in initrd memory in place.
519  * When vmalloc() is available for use later -- on 64-bit during first AP load,
520  * and on 32-bit during save_microcode_in_initrd() -- we can call
521  * load_microcode_amd() to save equivalent cpu table and microcode patches in
522  * kernel heap memory.
523  *
524  * Returns true if container found (sets @desc), false otherwise.
525  */
526 static bool early_apply_microcode(u32 old_rev, void *ucode, size_t size)
527 {
528 	struct cont_desc desc = { 0 };
529 	struct microcode_amd *mc;
530 
531 	scan_containers(ucode, size, &desc);
532 
533 	mc = desc.mc;
534 	if (!mc)
535 		return false;
536 
537 	/*
538 	 * Allow application of the same revision to pick up SMT-specific
539 	 * changes even if the revision of the other SMT thread is already
540 	 * up-to-date.
541 	 */
542 	if (old_rev > mc->hdr.patch_id)
543 		return false;
544 
545 	return __apply_microcode_amd(mc, desc.psize);
546 }
547 
548 static bool get_builtin_microcode(struct cpio_data *cp)
549 {
550 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
551 	u8 family = x86_family(bsp_cpuid_1_eax);
552 	struct firmware fw;
553 
554 	if (IS_ENABLED(CONFIG_X86_32))
555 		return false;
556 
557 	if (family >= 0x15)
558 		snprintf(fw_name, sizeof(fw_name),
559 			 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
560 
561 	if (firmware_request_builtin(&fw, fw_name)) {
562 		cp->size = fw.size;
563 		cp->data = (void *)fw.data;
564 		return true;
565 	}
566 
567 	return false;
568 }
569 
570 static bool __init find_blobs_in_containers(struct cpio_data *ret)
571 {
572 	struct cpio_data cp;
573 	bool found;
574 
575 	if (!get_builtin_microcode(&cp))
576 		cp = find_microcode_in_initrd(ucode_path);
577 
578 	found = cp.data && cp.size;
579 	if (found)
580 		*ret = cp;
581 
582 	return found;
583 }
584 
585 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
586 {
587 	struct cpio_data cp = { };
588 	u32 dummy;
589 
590 	bsp_cpuid_1_eax = cpuid_1_eax;
591 
592 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->old_rev, dummy);
593 
594 	/* Needed in load_microcode_amd() */
595 	ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
596 
597 	if (!find_blobs_in_containers(&cp))
598 		return;
599 
600 	if (early_apply_microcode(ed->old_rev, cp.data, cp.size))
601 		native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->new_rev, dummy);
602 }
603 
604 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size);
605 
606 static int __init save_microcode_in_initrd(void)
607 {
608 	unsigned int cpuid_1_eax = native_cpuid_eax(1);
609 	struct cpuinfo_x86 *c = &boot_cpu_data;
610 	struct cont_desc desc = { 0 };
611 	enum ucode_state ret;
612 	struct cpio_data cp;
613 
614 	if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
615 		return 0;
616 
617 	if (!find_blobs_in_containers(&cp))
618 		return -EINVAL;
619 
620 	scan_containers(cp.data, cp.size, &desc);
621 	if (!desc.mc)
622 		return -EINVAL;
623 
624 	ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
625 	if (ret > UCODE_UPDATED)
626 		return -EINVAL;
627 
628 	return 0;
629 }
630 early_initcall(save_microcode_in_initrd);
631 
632 static inline bool patch_cpus_equivalent(struct ucode_patch *p,
633 					 struct ucode_patch *n,
634 					 bool ignore_stepping)
635 {
636 	/* Zen and newer hardcode the f/m/s in the patch ID */
637         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
638 		union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
639 		union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
640 
641 		if (ignore_stepping) {
642 			p_cid.stepping = 0;
643 			n_cid.stepping = 0;
644 		}
645 
646 		return p_cid.full == n_cid.full;
647 	} else {
648 		return p->equiv_cpu == n->equiv_cpu;
649 	}
650 }
651 
652 /*
653  * a small, trivial cache of per-family ucode patches
654  */
655 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
656 {
657 	struct ucode_patch *p;
658 	struct ucode_patch n;
659 
660 	n.equiv_cpu = equiv_cpu;
661 	n.patch_id  = uci->cpu_sig.rev;
662 
663 	WARN_ON_ONCE(!n.patch_id);
664 
665 	list_for_each_entry(p, &microcode_cache, plist)
666 		if (patch_cpus_equivalent(p, &n, false))
667 			return p;
668 
669 	return NULL;
670 }
671 
672 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
673 {
674 	/* Zen and newer hardcode the f/m/s in the patch ID */
675         if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
676 		union zen_patch_rev zp, zn;
677 
678 		zp.ucode_rev = p->patch_id;
679 		zn.ucode_rev = n->patch_id;
680 
681 		if (zn.stepping != zp.stepping)
682 			return -1;
683 
684 		return zn.rev > zp.rev;
685 	} else {
686 		return n->patch_id > p->patch_id;
687 	}
688 }
689 
690 static void update_cache(struct ucode_patch *new_patch)
691 {
692 	struct ucode_patch *p;
693 	int ret;
694 
695 	list_for_each_entry(p, &microcode_cache, plist) {
696 		if (patch_cpus_equivalent(p, new_patch, true)) {
697 			ret = patch_newer(p, new_patch);
698 			if (ret < 0)
699 				continue;
700 			else if (!ret) {
701 				/* we already have the latest patch */
702 				kfree(new_patch->data);
703 				kfree(new_patch);
704 				return;
705 			}
706 
707 			list_replace(&p->plist, &new_patch->plist);
708 			kfree(p->data);
709 			kfree(p);
710 			return;
711 		}
712 	}
713 	/* no patch found, add it */
714 	list_add_tail(&new_patch->plist, &microcode_cache);
715 }
716 
717 static void free_cache(void)
718 {
719 	struct ucode_patch *p, *tmp;
720 
721 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
722 		__list_del(p->plist.prev, p->plist.next);
723 		kfree(p->data);
724 		kfree(p);
725 	}
726 }
727 
728 static struct ucode_patch *find_patch(unsigned int cpu)
729 {
730 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
731 	u32 rev, dummy __always_unused;
732 	u16 equiv_id = 0;
733 
734 	/* fetch rev if not populated yet: */
735 	if (!uci->cpu_sig.rev) {
736 		rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
737 		uci->cpu_sig.rev = rev;
738 	}
739 
740 	if (x86_family(bsp_cpuid_1_eax) < 0x17) {
741 		equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
742 		if (!equiv_id)
743 			return NULL;
744 	}
745 
746 	return cache_find_patch(uci, equiv_id);
747 }
748 
749 void reload_ucode_amd(unsigned int cpu)
750 {
751 	u32 rev, dummy __always_unused;
752 	struct microcode_amd *mc;
753 	struct ucode_patch *p;
754 
755 	p = find_patch(cpu);
756 	if (!p)
757 		return;
758 
759 	mc = p->data;
760 
761 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
762 
763 	if (rev < mc->hdr.patch_id) {
764 		if (__apply_microcode_amd(mc, p->size))
765 			pr_info_once("reload revision: 0x%08x\n", mc->hdr.patch_id);
766 	}
767 }
768 
769 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
770 {
771 	struct cpuinfo_x86 *c = &cpu_data(cpu);
772 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
773 	struct ucode_patch *p;
774 
775 	csig->sig = cpuid_eax(0x00000001);
776 	csig->rev = c->microcode;
777 
778 	/*
779 	 * a patch could have been loaded early, set uci->mc so that
780 	 * mc_bp_resume() can call apply_microcode()
781 	 */
782 	p = find_patch(cpu);
783 	if (p && (p->patch_id == csig->rev))
784 		uci->mc = p->data;
785 
786 	return 0;
787 }
788 
789 static enum ucode_state apply_microcode_amd(int cpu)
790 {
791 	struct cpuinfo_x86 *c = &cpu_data(cpu);
792 	struct microcode_amd *mc_amd;
793 	struct ucode_cpu_info *uci;
794 	struct ucode_patch *p;
795 	enum ucode_state ret;
796 	u32 rev;
797 
798 	BUG_ON(raw_smp_processor_id() != cpu);
799 
800 	uci = ucode_cpu_info + cpu;
801 
802 	p = find_patch(cpu);
803 	if (!p)
804 		return UCODE_NFOUND;
805 
806 	rev = uci->cpu_sig.rev;
807 
808 	mc_amd  = p->data;
809 	uci->mc = p->data;
810 
811 	/* need to apply patch? */
812 	if (rev > mc_amd->hdr.patch_id) {
813 		ret = UCODE_OK;
814 		goto out;
815 	}
816 
817 	if (!__apply_microcode_amd(mc_amd, p->size)) {
818 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
819 			cpu, mc_amd->hdr.patch_id);
820 		return UCODE_ERROR;
821 	}
822 
823 	rev = mc_amd->hdr.patch_id;
824 	ret = UCODE_UPDATED;
825 
826 out:
827 	uci->cpu_sig.rev = rev;
828 	c->microcode	 = rev;
829 
830 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
831 	if (c->cpu_index == boot_cpu_data.cpu_index)
832 		boot_cpu_data.microcode = rev;
833 
834 	return ret;
835 }
836 
837 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
838 {
839 	unsigned int cpu = smp_processor_id();
840 
841 	ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
842 	apply_microcode_amd(cpu);
843 }
844 
845 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
846 {
847 	u32 equiv_tbl_len;
848 	const u32 *hdr;
849 
850 	if (!verify_equivalence_table(buf, buf_size))
851 		return 0;
852 
853 	hdr = (const u32 *)buf;
854 	equiv_tbl_len = hdr[2];
855 
856 	/* Zen and newer do not need an equivalence table. */
857 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
858 		goto out;
859 
860 	equiv_table.entry = vmalloc(equiv_tbl_len);
861 	if (!equiv_table.entry) {
862 		pr_err("failed to allocate equivalent CPU table\n");
863 		return 0;
864 	}
865 
866 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
867 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
868 
869 out:
870 	/* add header length */
871 	return equiv_tbl_len + CONTAINER_HDR_SZ;
872 }
873 
874 static void free_equiv_cpu_table(void)
875 {
876 	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
877 		return;
878 
879 	vfree(equiv_table.entry);
880 	memset(&equiv_table, 0, sizeof(equiv_table));
881 }
882 
883 static void cleanup(void)
884 {
885 	free_equiv_cpu_table();
886 	free_cache();
887 }
888 
889 /*
890  * Return a non-negative value even if some of the checks failed so that
891  * we can skip over the next patch. If we return a negative value, we
892  * signal a grave error like a memory allocation has failed and the
893  * driver cannot continue functioning normally. In such cases, we tear
894  * down everything we've used up so far and exit.
895  */
896 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
897 				unsigned int *patch_size)
898 {
899 	struct microcode_header_amd *mc_hdr;
900 	struct ucode_patch *patch;
901 	u16 proc_id;
902 	int ret;
903 
904 	ret = verify_patch(fw, leftover, patch_size);
905 	if (ret)
906 		return ret;
907 
908 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
909 	if (!patch) {
910 		pr_err("Patch allocation failure.\n");
911 		return -EINVAL;
912 	}
913 
914 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
915 	if (!patch->data) {
916 		pr_err("Patch data allocation failure.\n");
917 		kfree(patch);
918 		return -EINVAL;
919 	}
920 	patch->size = *patch_size;
921 
922 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
923 	proc_id     = mc_hdr->processor_rev_id;
924 
925 	INIT_LIST_HEAD(&patch->plist);
926 	patch->patch_id  = mc_hdr->patch_id;
927 	patch->equiv_cpu = proc_id;
928 
929 	pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
930 		 __func__, patch->patch_id, proc_id);
931 
932 	/* ... and add to cache. */
933 	update_cache(patch);
934 
935 	return 0;
936 }
937 
938 /* Scan the blob in @data and add microcode patches to the cache. */
939 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
940 					     size_t size)
941 {
942 	u8 *fw = (u8 *)data;
943 	size_t offset;
944 
945 	offset = install_equiv_cpu_table(data, size);
946 	if (!offset)
947 		return UCODE_ERROR;
948 
949 	fw   += offset;
950 	size -= offset;
951 
952 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
953 		pr_err("invalid type field in container file section header\n");
954 		free_equiv_cpu_table();
955 		return UCODE_ERROR;
956 	}
957 
958 	while (size > 0) {
959 		unsigned int crnt_size = 0;
960 		int ret;
961 
962 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
963 		if (ret < 0)
964 			return UCODE_ERROR;
965 
966 		fw   +=  crnt_size + SECTION_HDR_SIZE;
967 		size -= (crnt_size + SECTION_HDR_SIZE);
968 	}
969 
970 	return UCODE_OK;
971 }
972 
973 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
974 {
975 	enum ucode_state ret;
976 
977 	/* free old equiv table */
978 	free_equiv_cpu_table();
979 
980 	ret = __load_microcode_amd(family, data, size);
981 	if (ret != UCODE_OK)
982 		cleanup();
983 
984 	return ret;
985 }
986 
987 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
988 {
989 	struct cpuinfo_x86 *c;
990 	unsigned int nid, cpu;
991 	struct ucode_patch *p;
992 	enum ucode_state ret;
993 
994 	ret = _load_microcode_amd(family, data, size);
995 	if (ret != UCODE_OK)
996 		return ret;
997 
998 	for_each_node(nid) {
999 		cpu = cpumask_first(cpumask_of_node(nid));
1000 		c = &cpu_data(cpu);
1001 
1002 		p = find_patch(cpu);
1003 		if (!p)
1004 			continue;
1005 
1006 		if (c->microcode >= p->patch_id)
1007 			continue;
1008 
1009 		ret = UCODE_NEW;
1010 	}
1011 
1012 	return ret;
1013 }
1014 
1015 /*
1016  * AMD microcode firmware naming convention, up to family 15h they are in
1017  * the legacy file:
1018  *
1019  *    amd-ucode/microcode_amd.bin
1020  *
1021  * This legacy file is always smaller than 2K in size.
1022  *
1023  * Beginning with family 15h, they are in family-specific firmware files:
1024  *
1025  *    amd-ucode/microcode_amd_fam15h.bin
1026  *    amd-ucode/microcode_amd_fam16h.bin
1027  *    ...
1028  *
1029  * These might be larger than 2K.
1030  */
1031 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
1032 {
1033 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
1034 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1035 	enum ucode_state ret = UCODE_NFOUND;
1036 	const struct firmware *fw;
1037 
1038 	if (force_minrev)
1039 		return UCODE_NFOUND;
1040 
1041 	if (c->x86 >= 0x15)
1042 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
1043 
1044 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
1045 		pr_debug("failed to load file %s\n", fw_name);
1046 		goto out;
1047 	}
1048 
1049 	ret = UCODE_ERROR;
1050 	if (!verify_container(fw->data, fw->size))
1051 		goto fw_release;
1052 
1053 	ret = load_microcode_amd(c->x86, fw->data, fw->size);
1054 
1055  fw_release:
1056 	release_firmware(fw);
1057 
1058  out:
1059 	return ret;
1060 }
1061 
1062 static void microcode_fini_cpu_amd(int cpu)
1063 {
1064 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
1065 
1066 	uci->mc = NULL;
1067 }
1068 
1069 static struct microcode_ops microcode_amd_ops = {
1070 	.request_microcode_fw	= request_microcode_amd,
1071 	.collect_cpu_info	= collect_cpu_info_amd,
1072 	.apply_microcode	= apply_microcode_amd,
1073 	.microcode_fini_cpu	= microcode_fini_cpu_amd,
1074 	.nmi_safe		= true,
1075 };
1076 
1077 struct microcode_ops * __init init_amd_microcode(void)
1078 {
1079 	struct cpuinfo_x86 *c = &boot_cpu_data;
1080 
1081 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
1082 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
1083 		return NULL;
1084 	}
1085 	return &microcode_amd_ops;
1086 }
1087 
1088 void __exit exit_amd_microcode(void)
1089 {
1090 	cleanup();
1091 }
1092