1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD CPU Microcode Update Driver for Linux 4 * 5 * This driver allows to upgrade microcode on F10h AMD 6 * CPUs and later. 7 * 8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc. 9 * 2013-2018 Borislav Petkov <[email protected]> 10 * 11 * Author: Peter Oruba <[email protected]> 12 * 13 * Based on work by: 14 * Tigran Aivazian <[email protected]> 15 * 16 * early loader: 17 * Copyright (C) 2013 Advanced Micro Devices, Inc. 18 * 19 * Author: Jacob Shin <[email protected]> 20 * Fixes: Borislav Petkov <[email protected]> 21 */ 22 #define pr_fmt(fmt) "microcode: " fmt 23 24 #include <linux/earlycpio.h> 25 #include <linux/firmware.h> 26 #include <linux/uaccess.h> 27 #include <linux/vmalloc.h> 28 #include <linux/initrd.h> 29 #include <linux/kernel.h> 30 #include <linux/pci.h> 31 32 #include <asm/microcode.h> 33 #include <asm/processor.h> 34 #include <asm/setup.h> 35 #include <asm/cpu.h> 36 #include <asm/msr.h> 37 #include <asm/tlb.h> 38 39 #include "internal.h" 40 41 struct ucode_patch { 42 struct list_head plist; 43 void *data; 44 unsigned int size; 45 u32 patch_id; 46 u16 equiv_cpu; 47 }; 48 49 static LIST_HEAD(microcode_cache); 50 51 #define UCODE_MAGIC 0x00414d44 52 #define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000 53 #define UCODE_UCODE_TYPE 0x00000001 54 55 #define SECTION_HDR_SIZE 8 56 #define CONTAINER_HDR_SZ 12 57 58 struct equiv_cpu_entry { 59 u32 installed_cpu; 60 u32 fixed_errata_mask; 61 u32 fixed_errata_compare; 62 u16 equiv_cpu; 63 u16 res; 64 } __packed; 65 66 struct microcode_header_amd { 67 u32 data_code; 68 u32 patch_id; 69 u16 mc_patch_data_id; 70 u8 mc_patch_data_len; 71 u8 init_flag; 72 u32 mc_patch_data_checksum; 73 u32 nb_dev_id; 74 u32 sb_dev_id; 75 u16 processor_rev_id; 76 u8 nb_rev_id; 77 u8 sb_rev_id; 78 u8 bios_api_rev; 79 u8 reserved1[3]; 80 u32 match_reg[8]; 81 } __packed; 82 83 struct microcode_amd { 84 struct microcode_header_amd hdr; 85 unsigned int mpb[]; 86 }; 87 88 static struct equiv_cpu_table { 89 unsigned int num_entries; 90 struct equiv_cpu_entry *entry; 91 } equiv_table; 92 93 union zen_patch_rev { 94 struct { 95 __u32 rev : 8, 96 stepping : 4, 97 model : 4, 98 __reserved : 4, 99 ext_model : 4, 100 ext_fam : 8; 101 }; 102 __u32 ucode_rev; 103 }; 104 105 union cpuid_1_eax { 106 struct { 107 __u32 stepping : 4, 108 model : 4, 109 family : 4, 110 __reserved0 : 4, 111 ext_model : 4, 112 ext_fam : 8, 113 __reserved1 : 4; 114 }; 115 __u32 full; 116 }; 117 118 /* 119 * This points to the current valid container of microcode patches which we will 120 * save from the initrd/builtin before jettisoning its contents. @mc is the 121 * microcode patch we found to match. 122 */ 123 struct cont_desc { 124 struct microcode_amd *mc; 125 u32 psize; 126 u8 *data; 127 size_t size; 128 }; 129 130 /* 131 * Microcode patch container file is prepended to the initrd in cpio 132 * format. See Documentation/arch/x86/microcode.rst 133 */ 134 static const char 135 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; 136 137 /* 138 * This is CPUID(1).EAX on the BSP. It is used in two ways: 139 * 140 * 1. To ignore the equivalence table on Zen1 and newer. 141 * 142 * 2. To match which patches to load because the patch revision ID 143 * already contains the f/m/s for which the microcode is destined 144 * for. 145 */ 146 static u32 bsp_cpuid_1_eax __ro_after_init; 147 148 static u32 get_patch_level(void) 149 { 150 u32 rev, dummy __always_unused; 151 152 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 153 154 return rev; 155 } 156 157 static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val) 158 { 159 union zen_patch_rev p; 160 union cpuid_1_eax c; 161 162 p.ucode_rev = val; 163 c.full = 0; 164 165 c.stepping = p.stepping; 166 c.model = p.model; 167 c.ext_model = p.ext_model; 168 c.family = 0xf; 169 c.ext_fam = p.ext_fam; 170 171 return c; 172 } 173 174 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig) 175 { 176 unsigned int i; 177 178 /* Zen and newer do not need an equivalence table. */ 179 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 180 return 0; 181 182 if (!et || !et->num_entries) 183 return 0; 184 185 for (i = 0; i < et->num_entries; i++) { 186 struct equiv_cpu_entry *e = &et->entry[i]; 187 188 if (sig == e->installed_cpu) 189 return e->equiv_cpu; 190 } 191 return 0; 192 } 193 194 /* 195 * Check whether there is a valid microcode container file at the beginning 196 * of @buf of size @buf_size. 197 */ 198 static bool verify_container(const u8 *buf, size_t buf_size) 199 { 200 u32 cont_magic; 201 202 if (buf_size <= CONTAINER_HDR_SZ) { 203 pr_debug("Truncated microcode container header.\n"); 204 return false; 205 } 206 207 cont_magic = *(const u32 *)buf; 208 if (cont_magic != UCODE_MAGIC) { 209 pr_debug("Invalid magic value (0x%08x).\n", cont_magic); 210 return false; 211 } 212 213 return true; 214 } 215 216 /* 217 * Check whether there is a valid, non-truncated CPU equivalence table at the 218 * beginning of @buf of size @buf_size. 219 */ 220 static bool verify_equivalence_table(const u8 *buf, size_t buf_size) 221 { 222 const u32 *hdr = (const u32 *)buf; 223 u32 cont_type, equiv_tbl_len; 224 225 if (!verify_container(buf, buf_size)) 226 return false; 227 228 /* Zen and newer do not need an equivalence table. */ 229 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 230 return true; 231 232 cont_type = hdr[1]; 233 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) { 234 pr_debug("Wrong microcode container equivalence table type: %u.\n", 235 cont_type); 236 return false; 237 } 238 239 buf_size -= CONTAINER_HDR_SZ; 240 241 equiv_tbl_len = hdr[2]; 242 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) || 243 buf_size < equiv_tbl_len) { 244 pr_debug("Truncated equivalence table.\n"); 245 return false; 246 } 247 248 return true; 249 } 250 251 /* 252 * Check whether there is a valid, non-truncated microcode patch section at the 253 * beginning of @buf of size @buf_size. 254 * 255 * On success, @sh_psize returns the patch size according to the section header, 256 * to the caller. 257 */ 258 static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize) 259 { 260 u32 p_type, p_size; 261 const u32 *hdr; 262 263 if (buf_size < SECTION_HDR_SIZE) { 264 pr_debug("Truncated patch section.\n"); 265 return false; 266 } 267 268 hdr = (const u32 *)buf; 269 p_type = hdr[0]; 270 p_size = hdr[1]; 271 272 if (p_type != UCODE_UCODE_TYPE) { 273 pr_debug("Invalid type field (0x%x) in container file section header.\n", 274 p_type); 275 return false; 276 } 277 278 if (p_size < sizeof(struct microcode_header_amd)) { 279 pr_debug("Patch of size %u too short.\n", p_size); 280 return false; 281 } 282 283 *sh_psize = p_size; 284 285 return true; 286 } 287 288 /* 289 * Check whether the passed remaining file @buf_size is large enough to contain 290 * a patch of the indicated @sh_psize (and also whether this size does not 291 * exceed the per-family maximum). @sh_psize is the size read from the section 292 * header. 293 */ 294 static bool __verify_patch_size(u32 sh_psize, size_t buf_size) 295 { 296 u8 family = x86_family(bsp_cpuid_1_eax); 297 u32 max_size; 298 299 if (family >= 0x15) 300 goto ret; 301 302 #define F1XH_MPB_MAX_SIZE 2048 303 #define F14H_MPB_MAX_SIZE 1824 304 305 switch (family) { 306 case 0x10 ... 0x12: 307 max_size = F1XH_MPB_MAX_SIZE; 308 break; 309 case 0x14: 310 max_size = F14H_MPB_MAX_SIZE; 311 break; 312 default: 313 WARN(1, "%s: WTF family: 0x%x\n", __func__, family); 314 return false; 315 } 316 317 if (sh_psize > max_size) 318 return false; 319 320 ret: 321 /* Working with the whole buffer so < is ok. */ 322 return sh_psize <= buf_size; 323 } 324 325 /* 326 * Verify the patch in @buf. 327 * 328 * Returns: 329 * negative: on error 330 * positive: patch is not for this family, skip it 331 * 0: success 332 */ 333 static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size) 334 { 335 u8 family = x86_family(bsp_cpuid_1_eax); 336 struct microcode_header_amd *mc_hdr; 337 u32 sh_psize; 338 u16 proc_id; 339 u8 patch_fam; 340 341 if (!__verify_patch_section(buf, buf_size, &sh_psize)) 342 return -1; 343 344 /* 345 * The section header length is not included in this indicated size 346 * but is present in the leftover file length so we need to subtract 347 * it before passing this value to the function below. 348 */ 349 buf_size -= SECTION_HDR_SIZE; 350 351 /* 352 * Check if the remaining buffer is big enough to contain a patch of 353 * size sh_psize, as the section claims. 354 */ 355 if (buf_size < sh_psize) { 356 pr_debug("Patch of size %u truncated.\n", sh_psize); 357 return -1; 358 } 359 360 if (!__verify_patch_size(sh_psize, buf_size)) { 361 pr_debug("Per-family patch size mismatch.\n"); 362 return -1; 363 } 364 365 *patch_size = sh_psize; 366 367 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE); 368 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { 369 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); 370 return -1; 371 } 372 373 proc_id = mc_hdr->processor_rev_id; 374 patch_fam = 0xf + (proc_id >> 12); 375 if (patch_fam != family) 376 return 1; 377 378 return 0; 379 } 380 381 static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id) 382 { 383 /* Zen and newer do not need an equivalence table. */ 384 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 385 return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax; 386 else 387 return eq_id == mc->hdr.processor_rev_id; 388 } 389 390 /* 391 * This scans the ucode blob for the proper container as we can have multiple 392 * containers glued together. 393 * 394 * Returns the amount of bytes consumed while scanning. @desc contains all the 395 * data we're going to use in later stages of the application. 396 */ 397 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc) 398 { 399 struct equiv_cpu_table table; 400 size_t orig_size = size; 401 u32 *hdr = (u32 *)ucode; 402 u16 eq_id; 403 u8 *buf; 404 405 if (!verify_equivalence_table(ucode, size)) 406 return 0; 407 408 buf = ucode; 409 410 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); 411 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry); 412 413 /* 414 * Find the equivalence ID of our CPU in this table. Even if this table 415 * doesn't contain a patch for the CPU, scan through the whole container 416 * so that it can be skipped in case there are other containers appended. 417 */ 418 eq_id = find_equiv_id(&table, bsp_cpuid_1_eax); 419 420 buf += hdr[2] + CONTAINER_HDR_SZ; 421 size -= hdr[2] + CONTAINER_HDR_SZ; 422 423 /* 424 * Scan through the rest of the container to find where it ends. We do 425 * some basic sanity-checking too. 426 */ 427 while (size > 0) { 428 struct microcode_amd *mc; 429 u32 patch_size; 430 int ret; 431 432 ret = verify_patch(buf, size, &patch_size); 433 if (ret < 0) { 434 /* 435 * Patch verification failed, skip to the next container, if 436 * there is one. Before exit, check whether that container has 437 * found a patch already. If so, use it. 438 */ 439 goto out; 440 } else if (ret > 0) { 441 goto skip; 442 } 443 444 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE); 445 if (mc_patch_matches(mc, eq_id)) { 446 desc->psize = patch_size; 447 desc->mc = mc; 448 } 449 450 skip: 451 /* Skip patch section header too: */ 452 buf += patch_size + SECTION_HDR_SIZE; 453 size -= patch_size + SECTION_HDR_SIZE; 454 } 455 456 out: 457 /* 458 * If we have found a patch (desc->mc), it means we're looking at the 459 * container which has a patch for this CPU so return 0 to mean, @ucode 460 * already points to the proper container. Otherwise, we return the size 461 * we scanned so that we can advance to the next container in the 462 * buffer. 463 */ 464 if (desc->mc) { 465 desc->data = ucode; 466 desc->size = orig_size - size; 467 468 return 0; 469 } 470 471 return orig_size - size; 472 } 473 474 /* 475 * Scan the ucode blob for the proper container as we can have multiple 476 * containers glued together. 477 */ 478 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc) 479 { 480 while (size) { 481 size_t s = parse_container(ucode, size, desc); 482 if (!s) 483 return; 484 485 /* catch wraparound */ 486 if (size >= s) { 487 ucode += s; 488 size -= s; 489 } else { 490 return; 491 } 492 } 493 } 494 495 static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev, 496 unsigned int psize) 497 { 498 unsigned long p_addr = (unsigned long)&mc->hdr.data_code; 499 500 native_wrmsrl(MSR_AMD64_PATCH_LOADER, p_addr); 501 502 if (x86_family(bsp_cpuid_1_eax) == 0x17) { 503 unsigned long p_addr_end = p_addr + psize - 1; 504 505 invlpg(p_addr); 506 507 /* 508 * Flush next page too if patch image is crossing a page 509 * boundary. 510 */ 511 if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT) 512 invlpg(p_addr_end); 513 } 514 515 /* verify patch application was successful */ 516 *cur_rev = get_patch_level(); 517 if (*cur_rev != mc->hdr.patch_id) 518 return false; 519 520 return true; 521 } 522 523 static bool get_builtin_microcode(struct cpio_data *cp) 524 { 525 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 526 u8 family = x86_family(bsp_cpuid_1_eax); 527 struct firmware fw; 528 529 if (IS_ENABLED(CONFIG_X86_32)) 530 return false; 531 532 if (family >= 0x15) 533 snprintf(fw_name, sizeof(fw_name), 534 "amd-ucode/microcode_amd_fam%02hhxh.bin", family); 535 536 if (firmware_request_builtin(&fw, fw_name)) { 537 cp->size = fw.size; 538 cp->data = (void *)fw.data; 539 return true; 540 } 541 542 return false; 543 } 544 545 static bool __init find_blobs_in_containers(struct cpio_data *ret) 546 { 547 struct cpio_data cp; 548 bool found; 549 550 if (!get_builtin_microcode(&cp)) 551 cp = find_microcode_in_initrd(ucode_path); 552 553 found = cp.data && cp.size; 554 if (found) 555 *ret = cp; 556 557 return found; 558 } 559 560 /* 561 * Early load occurs before we can vmalloc(). So we look for the microcode 562 * patch container file in initrd, traverse equivalent cpu table, look for a 563 * matching microcode patch, and update, all in initrd memory in place. 564 * When vmalloc() is available for use later -- on 64-bit during first AP load, 565 * and on 32-bit during save_microcode_in_initrd() -- we can call 566 * load_microcode_amd() to save equivalent cpu table and microcode patches in 567 * kernel heap memory. 568 */ 569 void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax) 570 { 571 struct cont_desc desc = { }; 572 struct microcode_amd *mc; 573 struct cpio_data cp = { }; 574 u32 rev; 575 576 bsp_cpuid_1_eax = cpuid_1_eax; 577 578 rev = get_patch_level(); 579 ed->old_rev = rev; 580 581 /* Needed in load_microcode_amd() */ 582 ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax; 583 584 if (!find_blobs_in_containers(&cp)) 585 return; 586 587 scan_containers(cp.data, cp.size, &desc); 588 589 mc = desc.mc; 590 if (!mc) 591 return; 592 593 /* 594 * Allow application of the same revision to pick up SMT-specific 595 * changes even if the revision of the other SMT thread is already 596 * up-to-date. 597 */ 598 if (ed->old_rev > mc->hdr.patch_id) 599 return; 600 601 if (__apply_microcode_amd(mc, &rev, desc.psize)) 602 ed->new_rev = rev; 603 } 604 605 static inline bool patch_cpus_equivalent(struct ucode_patch *p, 606 struct ucode_patch *n, 607 bool ignore_stepping) 608 { 609 /* Zen and newer hardcode the f/m/s in the patch ID */ 610 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 611 union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id); 612 union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id); 613 614 if (ignore_stepping) { 615 p_cid.stepping = 0; 616 n_cid.stepping = 0; 617 } 618 619 return p_cid.full == n_cid.full; 620 } else { 621 return p->equiv_cpu == n->equiv_cpu; 622 } 623 } 624 625 /* 626 * a small, trivial cache of per-family ucode patches 627 */ 628 static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu) 629 { 630 struct ucode_patch *p; 631 struct ucode_patch n; 632 633 n.equiv_cpu = equiv_cpu; 634 n.patch_id = uci->cpu_sig.rev; 635 636 WARN_ON_ONCE(!n.patch_id); 637 638 list_for_each_entry(p, µcode_cache, plist) 639 if (patch_cpus_equivalent(p, &n, false)) 640 return p; 641 642 return NULL; 643 } 644 645 static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n) 646 { 647 /* Zen and newer hardcode the f/m/s in the patch ID */ 648 if (x86_family(bsp_cpuid_1_eax) >= 0x17) { 649 union zen_patch_rev zp, zn; 650 651 zp.ucode_rev = p->patch_id; 652 zn.ucode_rev = n->patch_id; 653 654 if (zn.stepping != zp.stepping) 655 return -1; 656 657 return zn.rev > zp.rev; 658 } else { 659 return n->patch_id > p->patch_id; 660 } 661 } 662 663 static void update_cache(struct ucode_patch *new_patch) 664 { 665 struct ucode_patch *p; 666 int ret; 667 668 list_for_each_entry(p, µcode_cache, plist) { 669 if (patch_cpus_equivalent(p, new_patch, true)) { 670 ret = patch_newer(p, new_patch); 671 if (ret < 0) 672 continue; 673 else if (!ret) { 674 /* we already have the latest patch */ 675 kfree(new_patch->data); 676 kfree(new_patch); 677 return; 678 } 679 680 list_replace(&p->plist, &new_patch->plist); 681 kfree(p->data); 682 kfree(p); 683 return; 684 } 685 } 686 /* no patch found, add it */ 687 list_add_tail(&new_patch->plist, µcode_cache); 688 } 689 690 static void free_cache(void) 691 { 692 struct ucode_patch *p, *tmp; 693 694 list_for_each_entry_safe(p, tmp, µcode_cache, plist) { 695 __list_del(p->plist.prev, p->plist.next); 696 kfree(p->data); 697 kfree(p); 698 } 699 } 700 701 static struct ucode_patch *find_patch(unsigned int cpu) 702 { 703 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 704 u16 equiv_id = 0; 705 706 uci->cpu_sig.rev = get_patch_level(); 707 708 if (x86_family(bsp_cpuid_1_eax) < 0x17) { 709 equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig); 710 if (!equiv_id) 711 return NULL; 712 } 713 714 return cache_find_patch(uci, equiv_id); 715 } 716 717 void reload_ucode_amd(unsigned int cpu) 718 { 719 u32 rev, dummy __always_unused; 720 struct microcode_amd *mc; 721 struct ucode_patch *p; 722 723 p = find_patch(cpu); 724 if (!p) 725 return; 726 727 mc = p->data; 728 729 rev = get_patch_level(); 730 if (rev < mc->hdr.patch_id) { 731 if (__apply_microcode_amd(mc, &rev, p->size)) 732 pr_info_once("reload revision: 0x%08x\n", rev); 733 } 734 } 735 736 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) 737 { 738 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 739 struct ucode_patch *p; 740 741 csig->sig = cpuid_eax(0x00000001); 742 csig->rev = get_patch_level(); 743 744 /* 745 * a patch could have been loaded early, set uci->mc so that 746 * mc_bp_resume() can call apply_microcode() 747 */ 748 p = find_patch(cpu); 749 if (p && (p->patch_id == csig->rev)) 750 uci->mc = p->data; 751 752 return 0; 753 } 754 755 static enum ucode_state apply_microcode_amd(int cpu) 756 { 757 struct cpuinfo_x86 *c = &cpu_data(cpu); 758 struct microcode_amd *mc_amd; 759 struct ucode_cpu_info *uci; 760 struct ucode_patch *p; 761 enum ucode_state ret; 762 u32 rev; 763 764 BUG_ON(raw_smp_processor_id() != cpu); 765 766 uci = ucode_cpu_info + cpu; 767 768 p = find_patch(cpu); 769 if (!p) 770 return UCODE_NFOUND; 771 772 rev = uci->cpu_sig.rev; 773 774 mc_amd = p->data; 775 uci->mc = p->data; 776 777 /* need to apply patch? */ 778 if (rev > mc_amd->hdr.patch_id) { 779 ret = UCODE_OK; 780 goto out; 781 } 782 783 if (!__apply_microcode_amd(mc_amd, &rev, p->size)) { 784 pr_err("CPU%d: update failed for patch_level=0x%08x\n", 785 cpu, mc_amd->hdr.patch_id); 786 return UCODE_ERROR; 787 } 788 789 rev = mc_amd->hdr.patch_id; 790 ret = UCODE_UPDATED; 791 792 out: 793 uci->cpu_sig.rev = rev; 794 c->microcode = rev; 795 796 /* Update boot_cpu_data's revision too, if we're on the BSP: */ 797 if (c->cpu_index == boot_cpu_data.cpu_index) 798 boot_cpu_data.microcode = rev; 799 800 return ret; 801 } 802 803 void load_ucode_amd_ap(unsigned int cpuid_1_eax) 804 { 805 unsigned int cpu = smp_processor_id(); 806 807 ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax; 808 apply_microcode_amd(cpu); 809 } 810 811 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size) 812 { 813 u32 equiv_tbl_len; 814 const u32 *hdr; 815 816 if (!verify_equivalence_table(buf, buf_size)) 817 return 0; 818 819 hdr = (const u32 *)buf; 820 equiv_tbl_len = hdr[2]; 821 822 /* Zen and newer do not need an equivalence table. */ 823 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 824 goto out; 825 826 equiv_table.entry = vmalloc(equiv_tbl_len); 827 if (!equiv_table.entry) { 828 pr_err("failed to allocate equivalent CPU table\n"); 829 return 0; 830 } 831 832 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len); 833 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry); 834 835 out: 836 /* add header length */ 837 return equiv_tbl_len + CONTAINER_HDR_SZ; 838 } 839 840 static void free_equiv_cpu_table(void) 841 { 842 if (x86_family(bsp_cpuid_1_eax) >= 0x17) 843 return; 844 845 vfree(equiv_table.entry); 846 memset(&equiv_table, 0, sizeof(equiv_table)); 847 } 848 849 static void cleanup(void) 850 { 851 free_equiv_cpu_table(); 852 free_cache(); 853 } 854 855 /* 856 * Return a non-negative value even if some of the checks failed so that 857 * we can skip over the next patch. If we return a negative value, we 858 * signal a grave error like a memory allocation has failed and the 859 * driver cannot continue functioning normally. In such cases, we tear 860 * down everything we've used up so far and exit. 861 */ 862 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover, 863 unsigned int *patch_size) 864 { 865 struct microcode_header_amd *mc_hdr; 866 struct ucode_patch *patch; 867 u16 proc_id; 868 int ret; 869 870 ret = verify_patch(fw, leftover, patch_size); 871 if (ret) 872 return ret; 873 874 patch = kzalloc(sizeof(*patch), GFP_KERNEL); 875 if (!patch) { 876 pr_err("Patch allocation failure.\n"); 877 return -EINVAL; 878 } 879 880 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL); 881 if (!patch->data) { 882 pr_err("Patch data allocation failure.\n"); 883 kfree(patch); 884 return -EINVAL; 885 } 886 patch->size = *patch_size; 887 888 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); 889 proc_id = mc_hdr->processor_rev_id; 890 891 INIT_LIST_HEAD(&patch->plist); 892 patch->patch_id = mc_hdr->patch_id; 893 patch->equiv_cpu = proc_id; 894 895 pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n", 896 __func__, patch->patch_id, proc_id); 897 898 /* ... and add to cache. */ 899 update_cache(patch); 900 901 return 0; 902 } 903 904 /* Scan the blob in @data and add microcode patches to the cache. */ 905 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, 906 size_t size) 907 { 908 u8 *fw = (u8 *)data; 909 size_t offset; 910 911 offset = install_equiv_cpu_table(data, size); 912 if (!offset) 913 return UCODE_ERROR; 914 915 fw += offset; 916 size -= offset; 917 918 if (*(u32 *)fw != UCODE_UCODE_TYPE) { 919 pr_err("invalid type field in container file section header\n"); 920 free_equiv_cpu_table(); 921 return UCODE_ERROR; 922 } 923 924 while (size > 0) { 925 unsigned int crnt_size = 0; 926 int ret; 927 928 ret = verify_and_add_patch(family, fw, size, &crnt_size); 929 if (ret < 0) 930 return UCODE_ERROR; 931 932 fw += crnt_size + SECTION_HDR_SIZE; 933 size -= (crnt_size + SECTION_HDR_SIZE); 934 } 935 936 return UCODE_OK; 937 } 938 939 static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size) 940 { 941 enum ucode_state ret; 942 943 /* free old equiv table */ 944 free_equiv_cpu_table(); 945 946 ret = __load_microcode_amd(family, data, size); 947 if (ret != UCODE_OK) 948 cleanup(); 949 950 return ret; 951 } 952 953 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size) 954 { 955 struct cpuinfo_x86 *c; 956 unsigned int nid, cpu; 957 struct ucode_patch *p; 958 enum ucode_state ret; 959 960 ret = _load_microcode_amd(family, data, size); 961 if (ret != UCODE_OK) 962 return ret; 963 964 for_each_node(nid) { 965 cpu = cpumask_first(cpumask_of_node(nid)); 966 c = &cpu_data(cpu); 967 968 p = find_patch(cpu); 969 if (!p) 970 continue; 971 972 if (c->microcode >= p->patch_id) 973 continue; 974 975 ret = UCODE_NEW; 976 } 977 978 return ret; 979 } 980 981 static int __init save_microcode_in_initrd(void) 982 { 983 unsigned int cpuid_1_eax = native_cpuid_eax(1); 984 struct cpuinfo_x86 *c = &boot_cpu_data; 985 struct cont_desc desc = { 0 }; 986 enum ucode_state ret; 987 struct cpio_data cp; 988 989 if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) 990 return 0; 991 992 if (!find_blobs_in_containers(&cp)) 993 return -EINVAL; 994 995 scan_containers(cp.data, cp.size, &desc); 996 if (!desc.mc) 997 return -EINVAL; 998 999 ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size); 1000 if (ret > UCODE_UPDATED) 1001 return -EINVAL; 1002 1003 return 0; 1004 } 1005 early_initcall(save_microcode_in_initrd); 1006 1007 /* 1008 * AMD microcode firmware naming convention, up to family 15h they are in 1009 * the legacy file: 1010 * 1011 * amd-ucode/microcode_amd.bin 1012 * 1013 * This legacy file is always smaller than 2K in size. 1014 * 1015 * Beginning with family 15h, they are in family-specific firmware files: 1016 * 1017 * amd-ucode/microcode_amd_fam15h.bin 1018 * amd-ucode/microcode_amd_fam16h.bin 1019 * ... 1020 * 1021 * These might be larger than 2K. 1022 */ 1023 static enum ucode_state request_microcode_amd(int cpu, struct device *device) 1024 { 1025 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 1026 struct cpuinfo_x86 *c = &cpu_data(cpu); 1027 enum ucode_state ret = UCODE_NFOUND; 1028 const struct firmware *fw; 1029 1030 if (force_minrev) 1031 return UCODE_NFOUND; 1032 1033 if (c->x86 >= 0x15) 1034 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); 1035 1036 if (request_firmware_direct(&fw, (const char *)fw_name, device)) { 1037 pr_debug("failed to load file %s\n", fw_name); 1038 goto out; 1039 } 1040 1041 ret = UCODE_ERROR; 1042 if (!verify_container(fw->data, fw->size)) 1043 goto fw_release; 1044 1045 ret = load_microcode_amd(c->x86, fw->data, fw->size); 1046 1047 fw_release: 1048 release_firmware(fw); 1049 1050 out: 1051 return ret; 1052 } 1053 1054 static void microcode_fini_cpu_amd(int cpu) 1055 { 1056 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 1057 1058 uci->mc = NULL; 1059 } 1060 1061 static struct microcode_ops microcode_amd_ops = { 1062 .request_microcode_fw = request_microcode_amd, 1063 .collect_cpu_info = collect_cpu_info_amd, 1064 .apply_microcode = apply_microcode_amd, 1065 .microcode_fini_cpu = microcode_fini_cpu_amd, 1066 .nmi_safe = true, 1067 }; 1068 1069 struct microcode_ops * __init init_amd_microcode(void) 1070 { 1071 struct cpuinfo_x86 *c = &boot_cpu_data; 1072 1073 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { 1074 pr_warn("AMD CPU family 0x%x not supported\n", c->x86); 1075 return NULL; 1076 } 1077 return µcode_amd_ops; 1078 } 1079 1080 void __exit exit_amd_microcode(void) 1081 { 1082 cleanup(); 1083 } 1084