xref: /linux-6.15/arch/riscv/include/asm/pgtable.h (revision 03dc00a2)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5 
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8 
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11 
12 #include <asm/pgtable-bits.h>
13 
14 #ifndef CONFIG_MMU
15 #define KERNEL_LINK_ADDR	PAGE_OFFSET
16 #define KERN_VIRT_SIZE		(UL(-1))
17 #else
18 
19 #define ADDRESS_SPACE_END	(UL(-1))
20 
21 #ifdef CONFIG_64BIT
22 /* Leave 2GB for kernel and BPF at the end of the address space */
23 #define KERNEL_LINK_ADDR	(ADDRESS_SPACE_END - SZ_2G + 1)
24 #else
25 #define KERNEL_LINK_ADDR	PAGE_OFFSET
26 #endif
27 
28 /* Number of entries in the page global directory */
29 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
30 /* Number of entries in the page table */
31 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
32 
33 /*
34  * Half of the kernel address space (1/4 of the entries of the page global
35  * directory) is for the direct mapping.
36  */
37 #define KERN_VIRT_SIZE          ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
38 
39 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
40 #define VMALLOC_END      PAGE_OFFSET
41 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
42 
43 #define BPF_JIT_REGION_SIZE	(SZ_128M)
44 #ifdef CONFIG_64BIT
45 #define BPF_JIT_REGION_START	(BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
46 #define BPF_JIT_REGION_END	(MODULES_END)
47 #else
48 #define BPF_JIT_REGION_START	(PAGE_OFFSET - BPF_JIT_REGION_SIZE)
49 #define BPF_JIT_REGION_END	(VMALLOC_END)
50 #endif
51 
52 /* Modules always live before the kernel */
53 #ifdef CONFIG_64BIT
54 /* This is used to define the end of the KASAN shadow region */
55 #define MODULES_LOWEST_VADDR	(KERNEL_LINK_ADDR - SZ_2G)
56 #define MODULES_VADDR		(PFN_ALIGN((unsigned long)&_end) - SZ_2G)
57 #define MODULES_END		(PFN_ALIGN((unsigned long)&_start))
58 #else
59 #define MODULES_VADDR		VMALLOC_START
60 #define MODULES_END		VMALLOC_END
61 #endif
62 
63 /*
64  * Roughly size the vmemmap space to be large enough to fit enough
65  * struct pages to map half the virtual address space. Then
66  * position vmemmap directly below the VMALLOC region.
67  */
68 #define VA_BITS_SV32 32
69 #ifdef CONFIG_64BIT
70 #define VA_BITS_SV39 39
71 #define VA_BITS_SV48 48
72 #define VA_BITS_SV57 57
73 
74 #define VA_BITS		(pgtable_l5_enabled ? \
75 				VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
76 #else
77 #define VA_BITS		VA_BITS_SV32
78 #endif
79 
80 #define VMEMMAP_SHIFT \
81 	(VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
82 #define VMEMMAP_SIZE	BIT(VMEMMAP_SHIFT)
83 #define VMEMMAP_END	VMALLOC_START
84 #define VMEMMAP_START	(VMALLOC_START - VMEMMAP_SIZE)
85 
86 /*
87  * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
88  * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
89  */
90 #define vmemmap		((struct page *)VMEMMAP_START - vmemmap_start_pfn)
91 
92 #define PCI_IO_SIZE      SZ_16M
93 #define PCI_IO_END       VMEMMAP_START
94 #define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
95 
96 #define FIXADDR_TOP      PCI_IO_START
97 #ifdef CONFIG_64BIT
98 #define MAX_FDT_SIZE	 PMD_SIZE
99 #define FIX_FDT_SIZE	 (MAX_FDT_SIZE + SZ_2M)
100 #define FIXADDR_SIZE     (PMD_SIZE + FIX_FDT_SIZE)
101 #else
102 #define MAX_FDT_SIZE	 PGDIR_SIZE
103 #define FIX_FDT_SIZE	 MAX_FDT_SIZE
104 #define FIXADDR_SIZE     (PGDIR_SIZE + FIX_FDT_SIZE)
105 #endif
106 #define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
107 
108 #endif
109 
110 #ifndef __ASSEMBLY__
111 
112 #include <asm/page.h>
113 #include <asm/tlbflush.h>
114 #include <linux/mm_types.h>
115 #include <asm/compat.h>
116 #include <asm/cpufeature.h>
117 
118 #define __page_val_to_pfn(_val)  (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
119 
120 #ifdef CONFIG_64BIT
121 #include <asm/pgtable-64.h>
122 
123 #define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1))
124 #define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1))
125 #define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1))
126 
127 #define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
128 #define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
129 #define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
130 #define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
131 #else
132 #include <asm/pgtable-32.h>
133 #endif /* CONFIG_64BIT */
134 
135 #include <linux/page_table_check.h>
136 
137 #ifdef CONFIG_XIP_KERNEL
138 #define XIP_FIXUP(addr) ({							\
139 	extern char _sdata[], _start[], _end[];					\
140 	uintptr_t __rom_start_data = CONFIG_XIP_PHYS_ADDR			\
141 				+ (uintptr_t)&_sdata - (uintptr_t)&_start;	\
142 	uintptr_t __rom_end_data = CONFIG_XIP_PHYS_ADDR				\
143 				+ (uintptr_t)&_end - (uintptr_t)&_start;	\
144 	uintptr_t __a = (uintptr_t)(addr);					\
145 	(__a >= __rom_start_data && __a < __rom_end_data) ?			\
146 		__a - __rom_start_data + CONFIG_PHYS_RAM_BASE :	__a;		\
147 	})
148 #else
149 #define XIP_FIXUP(addr)		(addr)
150 #endif /* CONFIG_XIP_KERNEL */
151 
152 struct pt_alloc_ops {
153 	pte_t *(*get_pte_virt)(phys_addr_t pa);
154 	phys_addr_t (*alloc_pte)(uintptr_t va);
155 #ifndef __PAGETABLE_PMD_FOLDED
156 	pmd_t *(*get_pmd_virt)(phys_addr_t pa);
157 	phys_addr_t (*alloc_pmd)(uintptr_t va);
158 	pud_t *(*get_pud_virt)(phys_addr_t pa);
159 	phys_addr_t (*alloc_pud)(uintptr_t va);
160 	p4d_t *(*get_p4d_virt)(phys_addr_t pa);
161 	phys_addr_t (*alloc_p4d)(uintptr_t va);
162 #endif
163 };
164 
165 extern struct pt_alloc_ops pt_ops __meminitdata;
166 
167 #ifdef CONFIG_MMU
168 /* Number of PGD entries that a user-mode program can use */
169 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
170 
171 /* Page protection bits */
172 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
173 
174 #define PAGE_NONE		__pgprot(_PAGE_PROT_NONE | _PAGE_READ)
175 #define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
176 #define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
177 #define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
178 #define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
179 #define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
180 					 _PAGE_EXEC | _PAGE_WRITE)
181 
182 #define PAGE_COPY		PAGE_READ
183 #define PAGE_COPY_EXEC		PAGE_READ_EXEC
184 #define PAGE_SHARED		PAGE_WRITE
185 #define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
186 
187 #define _PAGE_KERNEL		(_PAGE_READ \
188 				| _PAGE_WRITE \
189 				| _PAGE_PRESENT \
190 				| _PAGE_ACCESSED \
191 				| _PAGE_DIRTY \
192 				| _PAGE_GLOBAL)
193 
194 #define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
195 #define PAGE_KERNEL_READ	__pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
196 #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
197 #define PAGE_KERNEL_READ_EXEC	__pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
198 					 | _PAGE_EXEC)
199 
200 #define PAGE_TABLE		__pgprot(_PAGE_TABLE)
201 
202 #define _PAGE_IOREMAP	((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
203 #define PAGE_KERNEL_IO		__pgprot(_PAGE_IOREMAP)
204 
205 extern pgd_t swapper_pg_dir[];
206 extern pgd_t trampoline_pg_dir[];
207 extern pgd_t early_pg_dir[];
208 
209 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
210 static inline int pmd_present(pmd_t pmd)
211 {
212 	/*
213 	 * Checking for _PAGE_LEAF is needed too because:
214 	 * When splitting a THP, split_huge_page() will temporarily clear
215 	 * the present bit, in this situation, pmd_present() and
216 	 * pmd_trans_huge() still needs to return true.
217 	 */
218 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
219 }
220 #else
221 static inline int pmd_present(pmd_t pmd)
222 {
223 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
224 }
225 #endif
226 
227 static inline int pmd_none(pmd_t pmd)
228 {
229 	return (pmd_val(pmd) == 0);
230 }
231 
232 static inline int pmd_bad(pmd_t pmd)
233 {
234 	return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
235 }
236 
237 #define pmd_leaf	pmd_leaf
238 static inline bool pmd_leaf(pmd_t pmd)
239 {
240 	return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
241 }
242 
243 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
244 {
245 	WRITE_ONCE(*pmdp, pmd);
246 }
247 
248 static inline void pmd_clear(pmd_t *pmdp)
249 {
250 	set_pmd(pmdp, __pmd(0));
251 }
252 
253 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
254 {
255 	unsigned long prot_val = pgprot_val(prot);
256 
257 	ALT_THEAD_PMA(prot_val);
258 
259 	return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
260 }
261 
262 static inline unsigned long _pgd_pfn(pgd_t pgd)
263 {
264 	return __page_val_to_pfn(pgd_val(pgd));
265 }
266 
267 static inline struct page *pmd_page(pmd_t pmd)
268 {
269 	return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
270 }
271 
272 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
273 {
274 	return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
275 }
276 
277 static inline pte_t pmd_pte(pmd_t pmd)
278 {
279 	return __pte(pmd_val(pmd));
280 }
281 
282 static inline pte_t pud_pte(pud_t pud)
283 {
284 	return __pte(pud_val(pud));
285 }
286 
287 #ifdef CONFIG_RISCV_ISA_SVNAPOT
288 
289 static __always_inline bool has_svnapot(void)
290 {
291 	return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
292 }
293 
294 static inline unsigned long pte_napot(pte_t pte)
295 {
296 	return pte_val(pte) & _PAGE_NAPOT;
297 }
298 
299 static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
300 {
301 	int pos = order - 1 + _PAGE_PFN_SHIFT;
302 	unsigned long napot_bit = BIT(pos);
303 	unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
304 
305 	return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
306 }
307 
308 #else
309 
310 static __always_inline bool has_svnapot(void) { return false; }
311 
312 static inline unsigned long pte_napot(pte_t pte)
313 {
314 	return 0;
315 }
316 
317 #endif /* CONFIG_RISCV_ISA_SVNAPOT */
318 
319 /* Yields the page frame number (PFN) of a page table entry */
320 static inline unsigned long pte_pfn(pte_t pte)
321 {
322 	unsigned long res  = __page_val_to_pfn(pte_val(pte));
323 
324 	if (has_svnapot() && pte_napot(pte))
325 		res = res & (res - 1UL);
326 
327 	return res;
328 }
329 
330 #define pte_page(x)     pfn_to_page(pte_pfn(x))
331 
332 /* Constructs a page table entry */
333 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
334 {
335 	unsigned long prot_val = pgprot_val(prot);
336 
337 	ALT_THEAD_PMA(prot_val);
338 
339 	return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
340 }
341 
342 #define mk_pte(page, prot)       pfn_pte(page_to_pfn(page), prot)
343 
344 #define pte_pgprot pte_pgprot
345 static inline pgprot_t pte_pgprot(pte_t pte)
346 {
347 	unsigned long pfn = pte_pfn(pte);
348 
349 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
350 }
351 
352 static inline int pte_present(pte_t pte)
353 {
354 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
355 }
356 
357 #define pte_accessible pte_accessible
358 static inline unsigned long pte_accessible(struct mm_struct *mm, pte_t a)
359 {
360 	if (pte_val(a) & _PAGE_PRESENT)
361 		return true;
362 
363 	if ((pte_val(a) & _PAGE_PROT_NONE) &&
364 	    atomic_read(&mm->tlb_flush_pending))
365 		return true;
366 
367 	return false;
368 }
369 
370 static inline int pte_none(pte_t pte)
371 {
372 	return (pte_val(pte) == 0);
373 }
374 
375 static inline int pte_write(pte_t pte)
376 {
377 	return pte_val(pte) & _PAGE_WRITE;
378 }
379 
380 static inline int pte_exec(pte_t pte)
381 {
382 	return pte_val(pte) & _PAGE_EXEC;
383 }
384 
385 static inline int pte_user(pte_t pte)
386 {
387 	return pte_val(pte) & _PAGE_USER;
388 }
389 
390 static inline int pte_huge(pte_t pte)
391 {
392 	return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
393 }
394 
395 static inline int pte_dirty(pte_t pte)
396 {
397 	return pte_val(pte) & _PAGE_DIRTY;
398 }
399 
400 static inline int pte_young(pte_t pte)
401 {
402 	return pte_val(pte) & _PAGE_ACCESSED;
403 }
404 
405 static inline int pte_special(pte_t pte)
406 {
407 	return pte_val(pte) & _PAGE_SPECIAL;
408 }
409 
410 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
411 static inline int pte_devmap(pte_t pte)
412 {
413 	return pte_val(pte) & _PAGE_DEVMAP;
414 }
415 #endif
416 
417 /* static inline pte_t pte_rdprotect(pte_t pte) */
418 
419 static inline pte_t pte_wrprotect(pte_t pte)
420 {
421 	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
422 }
423 
424 /* static inline pte_t pte_mkread(pte_t pte) */
425 
426 static inline pte_t pte_mkwrite_novma(pte_t pte)
427 {
428 	return __pte(pte_val(pte) | _PAGE_WRITE);
429 }
430 
431 /* static inline pte_t pte_mkexec(pte_t pte) */
432 
433 static inline pte_t pte_mkdirty(pte_t pte)
434 {
435 	return __pte(pte_val(pte) | _PAGE_DIRTY);
436 }
437 
438 static inline pte_t pte_mkclean(pte_t pte)
439 {
440 	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
441 }
442 
443 static inline pte_t pte_mkyoung(pte_t pte)
444 {
445 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
446 }
447 
448 static inline pte_t pte_mkold(pte_t pte)
449 {
450 	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
451 }
452 
453 static inline pte_t pte_mkspecial(pte_t pte)
454 {
455 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
456 }
457 
458 static inline pte_t pte_mkdevmap(pte_t pte)
459 {
460 	return __pte(pte_val(pte) | _PAGE_DEVMAP);
461 }
462 
463 static inline pte_t pte_mkhuge(pte_t pte)
464 {
465 	return pte;
466 }
467 
468 #ifdef CONFIG_RISCV_ISA_SVNAPOT
469 #define pte_leaf_size(pte)	(pte_napot(pte) ?				\
470 					napot_cont_size(napot_cont_order(pte)) :\
471 					PAGE_SIZE)
472 #endif
473 
474 #ifdef CONFIG_NUMA_BALANCING
475 /*
476  * See the comment in include/asm-generic/pgtable.h
477  */
478 static inline int pte_protnone(pte_t pte)
479 {
480 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
481 }
482 
483 static inline int pmd_protnone(pmd_t pmd)
484 {
485 	return pte_protnone(pmd_pte(pmd));
486 }
487 #endif
488 
489 /* Modify page protection bits */
490 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
491 {
492 	unsigned long newprot_val = pgprot_val(newprot);
493 
494 	ALT_THEAD_PMA(newprot_val);
495 
496 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
497 }
498 
499 #define pgd_ERROR(e) \
500 	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
501 
502 
503 /* Commit new configuration to MMU hardware */
504 static inline void update_mmu_cache_range(struct vm_fault *vmf,
505 		struct vm_area_struct *vma, unsigned long address,
506 		pte_t *ptep, unsigned int nr)
507 {
508 	asm goto(ALTERNATIVE("nop", "j %l[svvptc]", 0, RISCV_ISA_EXT_SVVPTC, 1)
509 		 : : : : svvptc);
510 
511 	/*
512 	 * The kernel assumes that TLBs don't cache invalid entries, but
513 	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
514 	 * cache flush; it is necessary even after writing invalid entries.
515 	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
516 	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
517 	 */
518 	while (nr--)
519 		local_flush_tlb_page(address + nr * PAGE_SIZE);
520 
521 svvptc:;
522 	/*
523 	 * Svvptc guarantees that the new valid pte will be visible within
524 	 * a bounded timeframe, so when the uarch does not cache invalid
525 	 * entries, we don't have to do anything.
526 	 */
527 }
528 #define update_mmu_cache(vma, addr, ptep) \
529 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
530 
531 #define update_mmu_tlb_range(vma, addr, ptep, nr) \
532 	update_mmu_cache_range(NULL, vma, addr, ptep, nr)
533 
534 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
535 		unsigned long address, pmd_t *pmdp)
536 {
537 	pte_t *ptep = (pte_t *)pmdp;
538 
539 	update_mmu_cache(vma, address, ptep);
540 }
541 
542 #define __HAVE_ARCH_PTE_SAME
543 static inline int pte_same(pte_t pte_a, pte_t pte_b)
544 {
545 	return pte_val(pte_a) == pte_val(pte_b);
546 }
547 
548 /*
549  * Certain architectures need to do special things when PTEs within
550  * a page table are directly modified.  Thus, the following hook is
551  * made available.
552  */
553 static inline void set_pte(pte_t *ptep, pte_t pteval)
554 {
555 	WRITE_ONCE(*ptep, pteval);
556 }
557 
558 void flush_icache_pte(struct mm_struct *mm, pte_t pte);
559 
560 static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval)
561 {
562 	if (pte_present(pteval) && pte_exec(pteval))
563 		flush_icache_pte(mm, pteval);
564 
565 	set_pte(ptep, pteval);
566 }
567 
568 #define PFN_PTE_SHIFT		_PAGE_PFN_SHIFT
569 
570 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
571 		pte_t *ptep, pte_t pteval, unsigned int nr)
572 {
573 	page_table_check_ptes_set(mm, ptep, pteval, nr);
574 
575 	for (;;) {
576 		__set_pte_at(mm, ptep, pteval);
577 		if (--nr == 0)
578 			break;
579 		ptep++;
580 		pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
581 	}
582 }
583 #define set_ptes set_ptes
584 
585 static inline void pte_clear(struct mm_struct *mm,
586 	unsigned long addr, pte_t *ptep)
587 {
588 	__set_pte_at(mm, ptep, __pte(0));
589 }
590 
591 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS	/* defined in mm/pgtable.c */
592 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
593 				 pte_t *ptep, pte_t entry, int dirty);
594 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG	/* defined in mm/pgtable.c */
595 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address,
596 				     pte_t *ptep);
597 
598 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
599 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
600 				       unsigned long address, pte_t *ptep)
601 {
602 	pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
603 
604 	page_table_check_pte_clear(mm, pte);
605 
606 	return pte;
607 }
608 
609 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
610 static inline void ptep_set_wrprotect(struct mm_struct *mm,
611 				      unsigned long address, pte_t *ptep)
612 {
613 	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
614 }
615 
616 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
617 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
618 					 unsigned long address, pte_t *ptep)
619 {
620 	/*
621 	 * This comment is borrowed from x86, but applies equally to RISC-V:
622 	 *
623 	 * Clearing the accessed bit without a TLB flush
624 	 * doesn't cause data corruption. [ It could cause incorrect
625 	 * page aging and the (mistaken) reclaim of hot pages, but the
626 	 * chance of that should be relatively low. ]
627 	 *
628 	 * So as a performance optimization don't flush the TLB when
629 	 * clearing the accessed bit, it will eventually be flushed by
630 	 * a context switch or a VM operation anyway. [ In the rare
631 	 * event of it not getting flushed for a long time the delay
632 	 * shouldn't really matter because there's no real memory
633 	 * pressure for swapout to react to. ]
634 	 */
635 	return ptep_test_and_clear_young(vma, address, ptep);
636 }
637 
638 #define pgprot_nx pgprot_nx
639 static inline pgprot_t pgprot_nx(pgprot_t _prot)
640 {
641 	return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC);
642 }
643 
644 #define pgprot_noncached pgprot_noncached
645 static inline pgprot_t pgprot_noncached(pgprot_t _prot)
646 {
647 	unsigned long prot = pgprot_val(_prot);
648 
649 	prot &= ~_PAGE_MTMASK;
650 	prot |= _PAGE_IO;
651 
652 	return __pgprot(prot);
653 }
654 
655 #define pgprot_writecombine pgprot_writecombine
656 static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
657 {
658 	unsigned long prot = pgprot_val(_prot);
659 
660 	prot &= ~_PAGE_MTMASK;
661 	prot |= _PAGE_NOCACHE;
662 
663 	return __pgprot(prot);
664 }
665 
666 /*
667  * Both Svade and Svadu control the hardware behavior when the PTE A/D bits need to be set. By
668  * default the M-mode firmware enables the hardware updating scheme when only Svadu is present in
669  * DT.
670  */
671 #define arch_has_hw_pte_young arch_has_hw_pte_young
672 static inline bool arch_has_hw_pte_young(void)
673 {
674 	return riscv_has_extension_unlikely(RISCV_ISA_EXT_SVADU);
675 }
676 
677 /*
678  * THP functions
679  */
680 static inline pmd_t pte_pmd(pte_t pte)
681 {
682 	return __pmd(pte_val(pte));
683 }
684 
685 static inline pud_t pte_pud(pte_t pte)
686 {
687 	return __pud(pte_val(pte));
688 }
689 
690 static inline pmd_t pmd_mkhuge(pmd_t pmd)
691 {
692 	return pmd;
693 }
694 
695 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
696 {
697 	return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
698 }
699 
700 #define __pmd_to_phys(pmd)  (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
701 
702 static inline unsigned long pmd_pfn(pmd_t pmd)
703 {
704 	return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
705 }
706 
707 #define __pud_to_phys(pud)  (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
708 
709 #define pud_pfn pud_pfn
710 static inline unsigned long pud_pfn(pud_t pud)
711 {
712 	return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
713 }
714 
715 #define pmd_pgprot pmd_pgprot
716 static inline pgprot_t pmd_pgprot(pmd_t pmd)
717 {
718 	return pte_pgprot(pmd_pte(pmd));
719 }
720 
721 #define pud_pgprot pud_pgprot
722 static inline pgprot_t pud_pgprot(pud_t pud)
723 {
724 	return pte_pgprot(pud_pte(pud));
725 }
726 
727 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
728 {
729 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
730 }
731 
732 #define pmd_write pmd_write
733 static inline int pmd_write(pmd_t pmd)
734 {
735 	return pte_write(pmd_pte(pmd));
736 }
737 
738 #define pud_write pud_write
739 static inline int pud_write(pud_t pud)
740 {
741 	return pte_write(pud_pte(pud));
742 }
743 
744 #define pmd_dirty pmd_dirty
745 static inline int pmd_dirty(pmd_t pmd)
746 {
747 	return pte_dirty(pmd_pte(pmd));
748 }
749 
750 #define pmd_young pmd_young
751 static inline int pmd_young(pmd_t pmd)
752 {
753 	return pte_young(pmd_pte(pmd));
754 }
755 
756 static inline int pmd_user(pmd_t pmd)
757 {
758 	return pte_user(pmd_pte(pmd));
759 }
760 
761 static inline pmd_t pmd_mkold(pmd_t pmd)
762 {
763 	return pte_pmd(pte_mkold(pmd_pte(pmd)));
764 }
765 
766 static inline pmd_t pmd_mkyoung(pmd_t pmd)
767 {
768 	return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
769 }
770 
771 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
772 {
773 	return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
774 }
775 
776 static inline pmd_t pmd_wrprotect(pmd_t pmd)
777 {
778 	return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
779 }
780 
781 static inline pmd_t pmd_mkclean(pmd_t pmd)
782 {
783 	return pte_pmd(pte_mkclean(pmd_pte(pmd)));
784 }
785 
786 static inline pmd_t pmd_mkdirty(pmd_t pmd)
787 {
788 	return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
789 }
790 
791 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
792 {
793 	return pte_pmd(pte_mkdevmap(pmd_pte(pmd)));
794 }
795 
796 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
797 static inline bool pmd_special(pmd_t pmd)
798 {
799 	return pte_special(pmd_pte(pmd));
800 }
801 
802 static inline pmd_t pmd_mkspecial(pmd_t pmd)
803 {
804 	return pte_pmd(pte_mkspecial(pmd_pte(pmd)));
805 }
806 #endif
807 
808 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
809 static inline bool pud_special(pud_t pud)
810 {
811 	return pte_special(pud_pte(pud));
812 }
813 
814 static inline pud_t pud_mkspecial(pud_t pud)
815 {
816 	return pte_pud(pte_mkspecial(pud_pte(pud)));
817 }
818 #endif
819 
820 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
821 				pmd_t *pmdp, pmd_t pmd)
822 {
823 	page_table_check_pmd_set(mm, pmdp, pmd);
824 	return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd));
825 }
826 
827 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
828 				pud_t *pudp, pud_t pud)
829 {
830 	page_table_check_pud_set(mm, pudp, pud);
831 	return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud));
832 }
833 
834 #ifdef CONFIG_PAGE_TABLE_CHECK
835 static inline bool pte_user_accessible_page(pte_t pte)
836 {
837 	return pte_present(pte) && pte_user(pte);
838 }
839 
840 static inline bool pmd_user_accessible_page(pmd_t pmd)
841 {
842 	return pmd_leaf(pmd) && pmd_user(pmd);
843 }
844 
845 static inline bool pud_user_accessible_page(pud_t pud)
846 {
847 	return pud_leaf(pud) && pud_user(pud);
848 }
849 #endif
850 
851 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
852 static inline int pmd_trans_huge(pmd_t pmd)
853 {
854 	return pmd_leaf(pmd);
855 }
856 
857 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
858 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
859 					unsigned long address, pmd_t *pmdp,
860 					pmd_t entry, int dirty)
861 {
862 	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
863 }
864 
865 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
866 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
867 					unsigned long address, pmd_t *pmdp)
868 {
869 	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
870 }
871 
872 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
873 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
874 					unsigned long address, pmd_t *pmdp)
875 {
876 	pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
877 
878 	page_table_check_pmd_clear(mm, pmd);
879 
880 	return pmd;
881 }
882 
883 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
884 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
885 					unsigned long address, pmd_t *pmdp)
886 {
887 	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
888 }
889 
890 #define pmdp_establish pmdp_establish
891 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
892 				unsigned long address, pmd_t *pmdp, pmd_t pmd)
893 {
894 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
895 	return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
896 }
897 
898 #define pmdp_collapse_flush pmdp_collapse_flush
899 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
900 				 unsigned long address, pmd_t *pmdp);
901 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
902 
903 /*
904  * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
905  * are !pte_none() && !pte_present().
906  *
907  * Format of swap PTE:
908  *	bit            0:	_PAGE_PRESENT (zero)
909  *	bit       1 to 3:       _PAGE_LEAF (zero)
910  *	bit            5:	_PAGE_PROT_NONE (zero)
911  *	bit            6:	exclusive marker
912  *	bits      7 to 11:	swap type
913  *	bits 12 to XLEN-1:	swap offset
914  */
915 #define __SWP_TYPE_SHIFT	7
916 #define __SWP_TYPE_BITS		5
917 #define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
918 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
919 
920 #define MAX_SWAPFILES_CHECK()	\
921 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
922 
923 #define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
924 #define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
925 #define __swp_entry(type, offset) ((swp_entry_t) \
926 	{ (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
927 	  ((offset) << __SWP_OFFSET_SHIFT) })
928 
929 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
930 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
931 
932 static inline int pte_swp_exclusive(pte_t pte)
933 {
934 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
935 }
936 
937 static inline pte_t pte_swp_mkexclusive(pte_t pte)
938 {
939 	return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
940 }
941 
942 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
943 {
944 	return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
945 }
946 
947 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
948 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
949 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
950 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
951 
952 /*
953  * In the RV64 Linux scheme, we give the user half of the virtual-address space
954  * and give the kernel the other (upper) half.
955  */
956 #ifdef CONFIG_64BIT
957 #define KERN_VIRT_START	(-(BIT(VA_BITS)) + TASK_SIZE)
958 #else
959 #define KERN_VIRT_START	FIXADDR_START
960 #endif
961 
962 /*
963  * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
964  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
965  * Task size is:
966  * -        0x9fc00000	(~2.5GB) for RV32.
967  * -      0x4000000000	( 256GB) for RV64 using SV39 mmu
968  * -    0x800000000000	( 128TB) for RV64 using SV48 mmu
969  * - 0x100000000000000	(  64PB) for RV64 using SV57 mmu
970  *
971  * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
972  * Instruction Set Manual Volume II: Privileged Architecture" states that
973  * "load and store effective addresses, which are 64bits, must have bits
974  * 63–48 all equal to bit 47, or else a page-fault exception will occur."
975  * Similarly for SV57, bits 63–57 must be equal to bit 56.
976  */
977 #ifdef CONFIG_64BIT
978 #define TASK_SIZE_64	(PGDIR_SIZE * PTRS_PER_PGD / 2)
979 #define TASK_SIZE_MAX	LONG_MAX
980 
981 #ifdef CONFIG_COMPAT
982 #define TASK_SIZE_32	(_AC(0x80000000, UL) - PAGE_SIZE)
983 #define TASK_SIZE	(is_compat_task() ? \
984 			 TASK_SIZE_32 : TASK_SIZE_64)
985 #else
986 #define TASK_SIZE	TASK_SIZE_64
987 #endif
988 
989 #else
990 #define TASK_SIZE	FIXADDR_START
991 #endif
992 
993 #else /* CONFIG_MMU */
994 
995 #define PAGE_SHARED		__pgprot(0)
996 #define PAGE_KERNEL		__pgprot(0)
997 #define swapper_pg_dir		NULL
998 #define TASK_SIZE		_AC(-1, UL)
999 #define VMALLOC_START		_AC(0, UL)
1000 #define VMALLOC_END		TASK_SIZE
1001 
1002 #endif /* !CONFIG_MMU */
1003 
1004 extern char _start[];
1005 extern void *_dtb_early_va;
1006 extern uintptr_t _dtb_early_pa;
1007 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
1008 #define dtb_early_va	(*(void **)XIP_FIXUP(&_dtb_early_va))
1009 #define dtb_early_pa	(*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
1010 #else
1011 #define dtb_early_va	_dtb_early_va
1012 #define dtb_early_pa	_dtb_early_pa
1013 #endif /* CONFIG_XIP_KERNEL */
1014 extern u64 satp_mode;
1015 
1016 void paging_init(void);
1017 void misc_mem_init(void);
1018 
1019 /*
1020  * ZERO_PAGE is a global shared page that is always zero,
1021  * used for zero-mapped memory areas, etc.
1022  */
1023 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
1024 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
1025 
1026 /*
1027  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1028  * TLB flush will be required as a result of the "set". For example, use
1029  * in scenarios where it is known ahead of time that the routine is
1030  * setting non-present entries, or re-setting an existing entry to the
1031  * same value. Otherwise, use the typical "set" helpers and flush the
1032  * TLB.
1033  */
1034 #define set_p4d_safe(p4dp, p4d) \
1035 ({ \
1036 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1037 	set_p4d(p4dp, p4d); \
1038 })
1039 
1040 #define set_pgd_safe(pgdp, pgd) \
1041 ({ \
1042 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1043 	set_pgd(pgdp, pgd); \
1044 })
1045 #endif /* !__ASSEMBLY__ */
1046 
1047 #endif /* _ASM_RISCV_PGTABLE_H */
1048