xref: /linux-6.15/arch/powerpc/kernel/process.c (revision e91c2518)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan ([email protected]) and
6  *  Paul Mackerras ([email protected])
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas ([email protected])
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 
46 #include <asm/pgtable.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>
49 #include <asm/mmu.h>
50 #include <asm/prom.h>
51 #include <asm/machdep.h>
52 #include <asm/time.h>
53 #include <asm/runlatch.h>
54 #include <asm/syscalls.h>
55 #include <asm/switch_to.h>
56 #include <asm/tm.h>
57 #include <asm/debug.h>
58 #ifdef CONFIG_PPC64
59 #include <asm/firmware.h>
60 #endif
61 #include <asm/code-patching.h>
62 #include <asm/exec.h>
63 #include <asm/livepatch.h>
64 #include <asm/cpu_has_feature.h>
65 #include <asm/asm-prototypes.h>
66 
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69 
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76 
77 extern unsigned long _get_SP(void);
78 
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 /*
81  * Are we running in "Suspend disabled" mode? If so we have to block any
82  * sigreturn that would get us into suspended state, and we also warn in some
83  * other paths that we should never reach with suspend disabled.
84  */
85 bool tm_suspend_disabled __ro_after_init = false;
86 
87 static void check_if_tm_restore_required(struct task_struct *tsk)
88 {
89 	/*
90 	 * If we are saving the current thread's registers, and the
91 	 * thread is in a transactional state, set the TIF_RESTORE_TM
92 	 * bit so that we know to restore the registers before
93 	 * returning to userspace.
94 	 */
95 	if (tsk == current && tsk->thread.regs &&
96 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
97 	    !test_thread_flag(TIF_RESTORE_TM)) {
98 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
99 		set_thread_flag(TIF_RESTORE_TM);
100 	}
101 }
102 
103 static inline bool msr_tm_active(unsigned long msr)
104 {
105 	return MSR_TM_ACTIVE(msr);
106 }
107 
108 static bool tm_active_with_fp(struct task_struct *tsk)
109 {
110 	return msr_tm_active(tsk->thread.regs->msr) &&
111 		(tsk->thread.ckpt_regs.msr & MSR_FP);
112 }
113 
114 static bool tm_active_with_altivec(struct task_struct *tsk)
115 {
116 	return msr_tm_active(tsk->thread.regs->msr) &&
117 		(tsk->thread.ckpt_regs.msr & MSR_VEC);
118 }
119 #else
120 static inline bool msr_tm_active(unsigned long msr) { return false; }
121 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
122 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
123 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
124 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
125 
126 bool strict_msr_control;
127 EXPORT_SYMBOL(strict_msr_control);
128 
129 static int __init enable_strict_msr_control(char *str)
130 {
131 	strict_msr_control = true;
132 	pr_info("Enabling strict facility control\n");
133 
134 	return 0;
135 }
136 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
137 
138 unsigned long msr_check_and_set(unsigned long bits)
139 {
140 	unsigned long oldmsr = mfmsr();
141 	unsigned long newmsr;
142 
143 	newmsr = oldmsr | bits;
144 
145 #ifdef CONFIG_VSX
146 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
147 		newmsr |= MSR_VSX;
148 #endif
149 
150 	if (oldmsr != newmsr)
151 		mtmsr_isync(newmsr);
152 
153 	return newmsr;
154 }
155 
156 void __msr_check_and_clear(unsigned long bits)
157 {
158 	unsigned long oldmsr = mfmsr();
159 	unsigned long newmsr;
160 
161 	newmsr = oldmsr & ~bits;
162 
163 #ifdef CONFIG_VSX
164 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
165 		newmsr &= ~MSR_VSX;
166 #endif
167 
168 	if (oldmsr != newmsr)
169 		mtmsr_isync(newmsr);
170 }
171 EXPORT_SYMBOL(__msr_check_and_clear);
172 
173 #ifdef CONFIG_PPC_FPU
174 void __giveup_fpu(struct task_struct *tsk)
175 {
176 	unsigned long msr;
177 
178 	save_fpu(tsk);
179 	msr = tsk->thread.regs->msr;
180 	msr &= ~MSR_FP;
181 #ifdef CONFIG_VSX
182 	if (cpu_has_feature(CPU_FTR_VSX))
183 		msr &= ~MSR_VSX;
184 #endif
185 	tsk->thread.regs->msr = msr;
186 }
187 
188 void giveup_fpu(struct task_struct *tsk)
189 {
190 	check_if_tm_restore_required(tsk);
191 
192 	msr_check_and_set(MSR_FP);
193 	__giveup_fpu(tsk);
194 	msr_check_and_clear(MSR_FP);
195 }
196 EXPORT_SYMBOL(giveup_fpu);
197 
198 /*
199  * Make sure the floating-point register state in the
200  * the thread_struct is up to date for task tsk.
201  */
202 void flush_fp_to_thread(struct task_struct *tsk)
203 {
204 	if (tsk->thread.regs) {
205 		/*
206 		 * We need to disable preemption here because if we didn't,
207 		 * another process could get scheduled after the regs->msr
208 		 * test but before we have finished saving the FP registers
209 		 * to the thread_struct.  That process could take over the
210 		 * FPU, and then when we get scheduled again we would store
211 		 * bogus values for the remaining FP registers.
212 		 */
213 		preempt_disable();
214 		if (tsk->thread.regs->msr & MSR_FP) {
215 			/*
216 			 * This should only ever be called for current or
217 			 * for a stopped child process.  Since we save away
218 			 * the FP register state on context switch,
219 			 * there is something wrong if a stopped child appears
220 			 * to still have its FP state in the CPU registers.
221 			 */
222 			BUG_ON(tsk != current);
223 			giveup_fpu(tsk);
224 		}
225 		preempt_enable();
226 	}
227 }
228 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
229 
230 void enable_kernel_fp(void)
231 {
232 	unsigned long cpumsr;
233 
234 	WARN_ON(preemptible());
235 
236 	cpumsr = msr_check_and_set(MSR_FP);
237 
238 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
239 		check_if_tm_restore_required(current);
240 		/*
241 		 * If a thread has already been reclaimed then the
242 		 * checkpointed registers are on the CPU but have definitely
243 		 * been saved by the reclaim code. Don't need to and *cannot*
244 		 * giveup as this would save  to the 'live' structure not the
245 		 * checkpointed structure.
246 		 */
247 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
248 			return;
249 		__giveup_fpu(current);
250 	}
251 }
252 EXPORT_SYMBOL(enable_kernel_fp);
253 
254 static int restore_fp(struct task_struct *tsk)
255 {
256 	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
257 		load_fp_state(&current->thread.fp_state);
258 		current->thread.load_fp++;
259 		return 1;
260 	}
261 	return 0;
262 }
263 #else
264 static int restore_fp(struct task_struct *tsk) { return 0; }
265 #endif /* CONFIG_PPC_FPU */
266 
267 #ifdef CONFIG_ALTIVEC
268 #define loadvec(thr) ((thr).load_vec)
269 
270 static void __giveup_altivec(struct task_struct *tsk)
271 {
272 	unsigned long msr;
273 
274 	save_altivec(tsk);
275 	msr = tsk->thread.regs->msr;
276 	msr &= ~MSR_VEC;
277 #ifdef CONFIG_VSX
278 	if (cpu_has_feature(CPU_FTR_VSX))
279 		msr &= ~MSR_VSX;
280 #endif
281 	tsk->thread.regs->msr = msr;
282 }
283 
284 void giveup_altivec(struct task_struct *tsk)
285 {
286 	check_if_tm_restore_required(tsk);
287 
288 	msr_check_and_set(MSR_VEC);
289 	__giveup_altivec(tsk);
290 	msr_check_and_clear(MSR_VEC);
291 }
292 EXPORT_SYMBOL(giveup_altivec);
293 
294 void enable_kernel_altivec(void)
295 {
296 	unsigned long cpumsr;
297 
298 	WARN_ON(preemptible());
299 
300 	cpumsr = msr_check_and_set(MSR_VEC);
301 
302 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
303 		check_if_tm_restore_required(current);
304 		/*
305 		 * If a thread has already been reclaimed then the
306 		 * checkpointed registers are on the CPU but have definitely
307 		 * been saved by the reclaim code. Don't need to and *cannot*
308 		 * giveup as this would save  to the 'live' structure not the
309 		 * checkpointed structure.
310 		 */
311 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
312 			return;
313 		__giveup_altivec(current);
314 	}
315 }
316 EXPORT_SYMBOL(enable_kernel_altivec);
317 
318 /*
319  * Make sure the VMX/Altivec register state in the
320  * the thread_struct is up to date for task tsk.
321  */
322 void flush_altivec_to_thread(struct task_struct *tsk)
323 {
324 	if (tsk->thread.regs) {
325 		preempt_disable();
326 		if (tsk->thread.regs->msr & MSR_VEC) {
327 			BUG_ON(tsk != current);
328 			giveup_altivec(tsk);
329 		}
330 		preempt_enable();
331 	}
332 }
333 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
334 
335 static int restore_altivec(struct task_struct *tsk)
336 {
337 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
338 		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
339 		load_vr_state(&tsk->thread.vr_state);
340 		tsk->thread.used_vr = 1;
341 		tsk->thread.load_vec++;
342 
343 		return 1;
344 	}
345 	return 0;
346 }
347 #else
348 #define loadvec(thr) 0
349 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
350 #endif /* CONFIG_ALTIVEC */
351 
352 #ifdef CONFIG_VSX
353 static void __giveup_vsx(struct task_struct *tsk)
354 {
355 	unsigned long msr = tsk->thread.regs->msr;
356 
357 	/*
358 	 * We should never be ssetting MSR_VSX without also setting
359 	 * MSR_FP and MSR_VEC
360 	 */
361 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
362 
363 	/* __giveup_fpu will clear MSR_VSX */
364 	if (msr & MSR_FP)
365 		__giveup_fpu(tsk);
366 	if (msr & MSR_VEC)
367 		__giveup_altivec(tsk);
368 }
369 
370 static void giveup_vsx(struct task_struct *tsk)
371 {
372 	check_if_tm_restore_required(tsk);
373 
374 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
375 	__giveup_vsx(tsk);
376 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
377 }
378 
379 void enable_kernel_vsx(void)
380 {
381 	unsigned long cpumsr;
382 
383 	WARN_ON(preemptible());
384 
385 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
386 
387 	if (current->thread.regs &&
388 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
389 		check_if_tm_restore_required(current);
390 		/*
391 		 * If a thread has already been reclaimed then the
392 		 * checkpointed registers are on the CPU but have definitely
393 		 * been saved by the reclaim code. Don't need to and *cannot*
394 		 * giveup as this would save  to the 'live' structure not the
395 		 * checkpointed structure.
396 		 */
397 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
398 			return;
399 		__giveup_vsx(current);
400 	}
401 }
402 EXPORT_SYMBOL(enable_kernel_vsx);
403 
404 void flush_vsx_to_thread(struct task_struct *tsk)
405 {
406 	if (tsk->thread.regs) {
407 		preempt_disable();
408 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
409 			BUG_ON(tsk != current);
410 			giveup_vsx(tsk);
411 		}
412 		preempt_enable();
413 	}
414 }
415 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
416 
417 static int restore_vsx(struct task_struct *tsk)
418 {
419 	if (cpu_has_feature(CPU_FTR_VSX)) {
420 		tsk->thread.used_vsr = 1;
421 		return 1;
422 	}
423 
424 	return 0;
425 }
426 #else
427 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
428 #endif /* CONFIG_VSX */
429 
430 #ifdef CONFIG_SPE
431 void giveup_spe(struct task_struct *tsk)
432 {
433 	check_if_tm_restore_required(tsk);
434 
435 	msr_check_and_set(MSR_SPE);
436 	__giveup_spe(tsk);
437 	msr_check_and_clear(MSR_SPE);
438 }
439 EXPORT_SYMBOL(giveup_spe);
440 
441 void enable_kernel_spe(void)
442 {
443 	WARN_ON(preemptible());
444 
445 	msr_check_and_set(MSR_SPE);
446 
447 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
448 		check_if_tm_restore_required(current);
449 		__giveup_spe(current);
450 	}
451 }
452 EXPORT_SYMBOL(enable_kernel_spe);
453 
454 void flush_spe_to_thread(struct task_struct *tsk)
455 {
456 	if (tsk->thread.regs) {
457 		preempt_disable();
458 		if (tsk->thread.regs->msr & MSR_SPE) {
459 			BUG_ON(tsk != current);
460 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
461 			giveup_spe(tsk);
462 		}
463 		preempt_enable();
464 	}
465 }
466 #endif /* CONFIG_SPE */
467 
468 static unsigned long msr_all_available;
469 
470 static int __init init_msr_all_available(void)
471 {
472 #ifdef CONFIG_PPC_FPU
473 	msr_all_available |= MSR_FP;
474 #endif
475 #ifdef CONFIG_ALTIVEC
476 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
477 		msr_all_available |= MSR_VEC;
478 #endif
479 #ifdef CONFIG_VSX
480 	if (cpu_has_feature(CPU_FTR_VSX))
481 		msr_all_available |= MSR_VSX;
482 #endif
483 #ifdef CONFIG_SPE
484 	if (cpu_has_feature(CPU_FTR_SPE))
485 		msr_all_available |= MSR_SPE;
486 #endif
487 
488 	return 0;
489 }
490 early_initcall(init_msr_all_available);
491 
492 void giveup_all(struct task_struct *tsk)
493 {
494 	unsigned long usermsr;
495 
496 	if (!tsk->thread.regs)
497 		return;
498 
499 	usermsr = tsk->thread.regs->msr;
500 
501 	if ((usermsr & msr_all_available) == 0)
502 		return;
503 
504 	msr_check_and_set(msr_all_available);
505 	check_if_tm_restore_required(tsk);
506 
507 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
508 
509 #ifdef CONFIG_PPC_FPU
510 	if (usermsr & MSR_FP)
511 		__giveup_fpu(tsk);
512 #endif
513 #ifdef CONFIG_ALTIVEC
514 	if (usermsr & MSR_VEC)
515 		__giveup_altivec(tsk);
516 #endif
517 #ifdef CONFIG_SPE
518 	if (usermsr & MSR_SPE)
519 		__giveup_spe(tsk);
520 #endif
521 
522 	msr_check_and_clear(msr_all_available);
523 }
524 EXPORT_SYMBOL(giveup_all);
525 
526 void restore_math(struct pt_regs *regs)
527 {
528 	unsigned long msr;
529 
530 	if (!msr_tm_active(regs->msr) &&
531 		!current->thread.load_fp && !loadvec(current->thread))
532 		return;
533 
534 	msr = regs->msr;
535 	msr_check_and_set(msr_all_available);
536 
537 	/*
538 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
539 	 * indicates that the registers are hot
540 	 */
541 	if ((!(msr & MSR_FP)) && restore_fp(current))
542 		msr |= MSR_FP | current->thread.fpexc_mode;
543 
544 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
545 		msr |= MSR_VEC;
546 
547 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
548 			restore_vsx(current)) {
549 		msr |= MSR_VSX;
550 	}
551 
552 	msr_check_and_clear(msr_all_available);
553 
554 	regs->msr = msr;
555 }
556 
557 void save_all(struct task_struct *tsk)
558 {
559 	unsigned long usermsr;
560 
561 	if (!tsk->thread.regs)
562 		return;
563 
564 	usermsr = tsk->thread.regs->msr;
565 
566 	if ((usermsr & msr_all_available) == 0)
567 		return;
568 
569 	msr_check_and_set(msr_all_available);
570 
571 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
572 
573 	if (usermsr & MSR_FP)
574 		save_fpu(tsk);
575 
576 	if (usermsr & MSR_VEC)
577 		save_altivec(tsk);
578 
579 	if (usermsr & MSR_SPE)
580 		__giveup_spe(tsk);
581 
582 	msr_check_and_clear(msr_all_available);
583 }
584 
585 void flush_all_to_thread(struct task_struct *tsk)
586 {
587 	if (tsk->thread.regs) {
588 		preempt_disable();
589 		BUG_ON(tsk != current);
590 		save_all(tsk);
591 
592 #ifdef CONFIG_SPE
593 		if (tsk->thread.regs->msr & MSR_SPE)
594 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
595 #endif
596 
597 		preempt_enable();
598 	}
599 }
600 EXPORT_SYMBOL(flush_all_to_thread);
601 
602 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
603 void do_send_trap(struct pt_regs *regs, unsigned long address,
604 		  unsigned long error_code, int breakpt)
605 {
606 	current->thread.trap_nr = TRAP_HWBKPT;
607 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
608 			11, SIGSEGV) == NOTIFY_STOP)
609 		return;
610 
611 	/* Deliver the signal to userspace */
612 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
613 				    (void __user *)address);
614 }
615 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
616 void do_break (struct pt_regs *regs, unsigned long address,
617 		    unsigned long error_code)
618 {
619 	siginfo_t info;
620 
621 	current->thread.trap_nr = TRAP_HWBKPT;
622 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
623 			11, SIGSEGV) == NOTIFY_STOP)
624 		return;
625 
626 	if (debugger_break_match(regs))
627 		return;
628 
629 	/* Clear the breakpoint */
630 	hw_breakpoint_disable();
631 
632 	/* Deliver the signal to userspace */
633 	info.si_signo = SIGTRAP;
634 	info.si_errno = 0;
635 	info.si_code = TRAP_HWBKPT;
636 	info.si_addr = (void __user *)address;
637 	force_sig_info(SIGTRAP, &info, current);
638 }
639 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
640 
641 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
642 
643 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
644 /*
645  * Set the debug registers back to their default "safe" values.
646  */
647 static void set_debug_reg_defaults(struct thread_struct *thread)
648 {
649 	thread->debug.iac1 = thread->debug.iac2 = 0;
650 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
651 	thread->debug.iac3 = thread->debug.iac4 = 0;
652 #endif
653 	thread->debug.dac1 = thread->debug.dac2 = 0;
654 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
655 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
656 #endif
657 	thread->debug.dbcr0 = 0;
658 #ifdef CONFIG_BOOKE
659 	/*
660 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
661 	 */
662 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
663 			DBCR1_IAC3US | DBCR1_IAC4US;
664 	/*
665 	 * Force Data Address Compare User/Supervisor bits to be User-only
666 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
667 	 */
668 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
669 #else
670 	thread->debug.dbcr1 = 0;
671 #endif
672 }
673 
674 static void prime_debug_regs(struct debug_reg *debug)
675 {
676 	/*
677 	 * We could have inherited MSR_DE from userspace, since
678 	 * it doesn't get cleared on exception entry.  Make sure
679 	 * MSR_DE is clear before we enable any debug events.
680 	 */
681 	mtmsr(mfmsr() & ~MSR_DE);
682 
683 	mtspr(SPRN_IAC1, debug->iac1);
684 	mtspr(SPRN_IAC2, debug->iac2);
685 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
686 	mtspr(SPRN_IAC3, debug->iac3);
687 	mtspr(SPRN_IAC4, debug->iac4);
688 #endif
689 	mtspr(SPRN_DAC1, debug->dac1);
690 	mtspr(SPRN_DAC2, debug->dac2);
691 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
692 	mtspr(SPRN_DVC1, debug->dvc1);
693 	mtspr(SPRN_DVC2, debug->dvc2);
694 #endif
695 	mtspr(SPRN_DBCR0, debug->dbcr0);
696 	mtspr(SPRN_DBCR1, debug->dbcr1);
697 #ifdef CONFIG_BOOKE
698 	mtspr(SPRN_DBCR2, debug->dbcr2);
699 #endif
700 }
701 /*
702  * Unless neither the old or new thread are making use of the
703  * debug registers, set the debug registers from the values
704  * stored in the new thread.
705  */
706 void switch_booke_debug_regs(struct debug_reg *new_debug)
707 {
708 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
709 		|| (new_debug->dbcr0 & DBCR0_IDM))
710 			prime_debug_regs(new_debug);
711 }
712 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
713 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
714 #ifndef CONFIG_HAVE_HW_BREAKPOINT
715 static void set_debug_reg_defaults(struct thread_struct *thread)
716 {
717 	thread->hw_brk.address = 0;
718 	thread->hw_brk.type = 0;
719 	set_breakpoint(&thread->hw_brk);
720 }
721 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
722 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
723 
724 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
725 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
726 {
727 	mtspr(SPRN_DAC1, dabr);
728 #ifdef CONFIG_PPC_47x
729 	isync();
730 #endif
731 	return 0;
732 }
733 #elif defined(CONFIG_PPC_BOOK3S)
734 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
735 {
736 	mtspr(SPRN_DABR, dabr);
737 	if (cpu_has_feature(CPU_FTR_DABRX))
738 		mtspr(SPRN_DABRX, dabrx);
739 	return 0;
740 }
741 #elif defined(CONFIG_PPC_8xx)
742 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
743 {
744 	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
745 	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
746 	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
747 
748 	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
749 		lctrl1 |= 0xa0000;
750 	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
751 		lctrl1 |= 0xf0000;
752 	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
753 		lctrl2 = 0;
754 
755 	mtspr(SPRN_LCTRL2, 0);
756 	mtspr(SPRN_CMPE, addr);
757 	mtspr(SPRN_CMPF, addr + 4);
758 	mtspr(SPRN_LCTRL1, lctrl1);
759 	mtspr(SPRN_LCTRL2, lctrl2);
760 
761 	return 0;
762 }
763 #else
764 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
765 {
766 	return -EINVAL;
767 }
768 #endif
769 
770 static inline int set_dabr(struct arch_hw_breakpoint *brk)
771 {
772 	unsigned long dabr, dabrx;
773 
774 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
775 	dabrx = ((brk->type >> 3) & 0x7);
776 
777 	if (ppc_md.set_dabr)
778 		return ppc_md.set_dabr(dabr, dabrx);
779 
780 	return __set_dabr(dabr, dabrx);
781 }
782 
783 static inline int set_dawr(struct arch_hw_breakpoint *brk)
784 {
785 	unsigned long dawr, dawrx, mrd;
786 
787 	dawr = brk->address;
788 
789 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
790 		                   << (63 - 58); //* read/write bits */
791 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
792 		                   << (63 - 59); //* translate */
793 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
794 		                   >> 3; //* PRIM bits */
795 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
796 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
797 	   0b111111=64DW.
798 	   brk->len is in bytes.
799 	   This aligns up to double word size, shifts and does the bias.
800 	*/
801 	mrd = ((brk->len + 7) >> 3) - 1;
802 	dawrx |= (mrd & 0x3f) << (63 - 53);
803 
804 	if (ppc_md.set_dawr)
805 		return ppc_md.set_dawr(dawr, dawrx);
806 	mtspr(SPRN_DAWR, dawr);
807 	mtspr(SPRN_DAWRX, dawrx);
808 	return 0;
809 }
810 
811 void __set_breakpoint(struct arch_hw_breakpoint *brk)
812 {
813 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
814 
815 	if (cpu_has_feature(CPU_FTR_DAWR))
816 		set_dawr(brk);
817 	else
818 		set_dabr(brk);
819 }
820 
821 void set_breakpoint(struct arch_hw_breakpoint *brk)
822 {
823 	preempt_disable();
824 	__set_breakpoint(brk);
825 	preempt_enable();
826 }
827 
828 #ifdef CONFIG_PPC64
829 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
830 #endif
831 
832 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
833 			      struct arch_hw_breakpoint *b)
834 {
835 	if (a->address != b->address)
836 		return false;
837 	if (a->type != b->type)
838 		return false;
839 	if (a->len != b->len)
840 		return false;
841 	return true;
842 }
843 
844 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
845 
846 static inline bool tm_enabled(struct task_struct *tsk)
847 {
848 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
849 }
850 
851 static void tm_reclaim_thread(struct thread_struct *thr,
852 			      struct thread_info *ti, uint8_t cause)
853 {
854 	/*
855 	 * Use the current MSR TM suspended bit to track if we have
856 	 * checkpointed state outstanding.
857 	 * On signal delivery, we'd normally reclaim the checkpointed
858 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
859 	 * This will then directly return to userspace without going
860 	 * through __switch_to(). However, if the stack frame is bad,
861 	 * we need to exit this thread which calls __switch_to() which
862 	 * will again attempt to reclaim the already saved tm state.
863 	 * Hence we need to check that we've not already reclaimed
864 	 * this state.
865 	 * We do this using the current MSR, rather tracking it in
866 	 * some specific thread_struct bit, as it has the additional
867 	 * benefit of checking for a potential TM bad thing exception.
868 	 */
869 	if (!MSR_TM_SUSPENDED(mfmsr()))
870 		return;
871 
872 	giveup_all(container_of(thr, struct task_struct, thread));
873 
874 	tm_reclaim(thr, cause);
875 
876 	/*
877 	 * If we are in a transaction and FP is off then we can't have
878 	 * used FP inside that transaction. Hence the checkpointed
879 	 * state is the same as the live state. We need to copy the
880 	 * live state to the checkpointed state so that when the
881 	 * transaction is restored, the checkpointed state is correct
882 	 * and the aborted transaction sees the correct state. We use
883 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
884 	 * determine if it's going to write the checkpointed state or
885 	 * not. So either this will write the checkpointed registers,
886 	 * or reclaim will. Similarly for VMX.
887 	 */
888 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
889 		memcpy(&thr->ckfp_state, &thr->fp_state,
890 		       sizeof(struct thread_fp_state));
891 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
892 		memcpy(&thr->ckvr_state, &thr->vr_state,
893 		       sizeof(struct thread_vr_state));
894 }
895 
896 void tm_reclaim_current(uint8_t cause)
897 {
898 	tm_enable();
899 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
900 }
901 
902 static inline void tm_reclaim_task(struct task_struct *tsk)
903 {
904 	/* We have to work out if we're switching from/to a task that's in the
905 	 * middle of a transaction.
906 	 *
907 	 * In switching we need to maintain a 2nd register state as
908 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
909 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
910 	 * ckvr_state
911 	 *
912 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
913 	 */
914 	struct thread_struct *thr = &tsk->thread;
915 
916 	if (!thr->regs)
917 		return;
918 
919 	if (!MSR_TM_ACTIVE(thr->regs->msr))
920 		goto out_and_saveregs;
921 
922 	WARN_ON(tm_suspend_disabled);
923 
924 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
925 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
926 		 tsk->pid, thr->regs->nip,
927 		 thr->regs->ccr, thr->regs->msr,
928 		 thr->regs->trap);
929 
930 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
931 
932 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
933 		 tsk->pid);
934 
935 out_and_saveregs:
936 	/* Always save the regs here, even if a transaction's not active.
937 	 * This context-switches a thread's TM info SPRs.  We do it here to
938 	 * be consistent with the restore path (in recheckpoint) which
939 	 * cannot happen later in _switch().
940 	 */
941 	tm_save_sprs(thr);
942 }
943 
944 extern void __tm_recheckpoint(struct thread_struct *thread);
945 
946 void tm_recheckpoint(struct thread_struct *thread)
947 {
948 	unsigned long flags;
949 
950 	if (!(thread->regs->msr & MSR_TM))
951 		return;
952 
953 	/* We really can't be interrupted here as the TEXASR registers can't
954 	 * change and later in the trecheckpoint code, we have a userspace R1.
955 	 * So let's hard disable over this region.
956 	 */
957 	local_irq_save(flags);
958 	hard_irq_disable();
959 
960 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
961 	 * before the trecheckpoint and no explosion occurs.
962 	 */
963 	tm_restore_sprs(thread);
964 
965 	__tm_recheckpoint(thread);
966 
967 	local_irq_restore(flags);
968 }
969 
970 static inline void tm_recheckpoint_new_task(struct task_struct *new)
971 {
972 	if (!cpu_has_feature(CPU_FTR_TM))
973 		return;
974 
975 	/* Recheckpoint the registers of the thread we're about to switch to.
976 	 *
977 	 * If the task was using FP, we non-lazily reload both the original and
978 	 * the speculative FP register states.  This is because the kernel
979 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
980 	 * unavailable later, we are unable to determine which set of FP regs
981 	 * need to be restored.
982 	 */
983 	if (!tm_enabled(new))
984 		return;
985 
986 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
987 		tm_restore_sprs(&new->thread);
988 		return;
989 	}
990 	/* Recheckpoint to restore original checkpointed register state. */
991 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
992 		 new->pid, new->thread.regs->msr);
993 
994 	tm_recheckpoint(&new->thread);
995 
996 	/*
997 	 * The checkpointed state has been restored but the live state has
998 	 * not, ensure all the math functionality is turned off to trigger
999 	 * restore_math() to reload.
1000 	 */
1001 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1002 
1003 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1004 		 "(kernel msr 0x%lx)\n",
1005 		 new->pid, mfmsr());
1006 }
1007 
1008 static inline void __switch_to_tm(struct task_struct *prev,
1009 		struct task_struct *new)
1010 {
1011 	if (cpu_has_feature(CPU_FTR_TM)) {
1012 		if (tm_enabled(prev) || tm_enabled(new))
1013 			tm_enable();
1014 
1015 		if (tm_enabled(prev)) {
1016 			prev->thread.load_tm++;
1017 			tm_reclaim_task(prev);
1018 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1019 				prev->thread.regs->msr &= ~MSR_TM;
1020 		}
1021 
1022 		tm_recheckpoint_new_task(new);
1023 	}
1024 }
1025 
1026 /*
1027  * This is called if we are on the way out to userspace and the
1028  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1029  * FP and/or vector state and does so if necessary.
1030  * If userspace is inside a transaction (whether active or
1031  * suspended) and FP/VMX/VSX instructions have ever been enabled
1032  * inside that transaction, then we have to keep them enabled
1033  * and keep the FP/VMX/VSX state loaded while ever the transaction
1034  * continues.  The reason is that if we didn't, and subsequently
1035  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1036  * we don't know whether it's the same transaction, and thus we
1037  * don't know which of the checkpointed state and the transactional
1038  * state to use.
1039  */
1040 void restore_tm_state(struct pt_regs *regs)
1041 {
1042 	unsigned long msr_diff;
1043 
1044 	/*
1045 	 * This is the only moment we should clear TIF_RESTORE_TM as
1046 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1047 	 * again, anything else could lead to an incorrect ckpt_msr being
1048 	 * saved and therefore incorrect signal contexts.
1049 	 */
1050 	clear_thread_flag(TIF_RESTORE_TM);
1051 	if (!MSR_TM_ACTIVE(regs->msr))
1052 		return;
1053 
1054 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1055 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1056 
1057 	/* Ensure that restore_math() will restore */
1058 	if (msr_diff & MSR_FP)
1059 		current->thread.load_fp = 1;
1060 #ifdef CONFIG_ALTIVEC
1061 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1062 		current->thread.load_vec = 1;
1063 #endif
1064 	restore_math(regs);
1065 
1066 	regs->msr |= msr_diff;
1067 }
1068 
1069 #else
1070 #define tm_recheckpoint_new_task(new)
1071 #define __switch_to_tm(prev, new)
1072 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1073 
1074 static inline void save_sprs(struct thread_struct *t)
1075 {
1076 #ifdef CONFIG_ALTIVEC
1077 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1078 		t->vrsave = mfspr(SPRN_VRSAVE);
1079 #endif
1080 #ifdef CONFIG_PPC_BOOK3S_64
1081 	if (cpu_has_feature(CPU_FTR_DSCR))
1082 		t->dscr = mfspr(SPRN_DSCR);
1083 
1084 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1085 		t->bescr = mfspr(SPRN_BESCR);
1086 		t->ebbhr = mfspr(SPRN_EBBHR);
1087 		t->ebbrr = mfspr(SPRN_EBBRR);
1088 
1089 		t->fscr = mfspr(SPRN_FSCR);
1090 
1091 		/*
1092 		 * Note that the TAR is not available for use in the kernel.
1093 		 * (To provide this, the TAR should be backed up/restored on
1094 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1095 		 * this should be in pt_regs anyway (for debug).)
1096 		 */
1097 		t->tar = mfspr(SPRN_TAR);
1098 	}
1099 #endif
1100 }
1101 
1102 static inline void restore_sprs(struct thread_struct *old_thread,
1103 				struct thread_struct *new_thread)
1104 {
1105 #ifdef CONFIG_ALTIVEC
1106 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1107 	    old_thread->vrsave != new_thread->vrsave)
1108 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1109 #endif
1110 #ifdef CONFIG_PPC_BOOK3S_64
1111 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1112 		u64 dscr = get_paca()->dscr_default;
1113 		if (new_thread->dscr_inherit)
1114 			dscr = new_thread->dscr;
1115 
1116 		if (old_thread->dscr != dscr)
1117 			mtspr(SPRN_DSCR, dscr);
1118 	}
1119 
1120 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1121 		if (old_thread->bescr != new_thread->bescr)
1122 			mtspr(SPRN_BESCR, new_thread->bescr);
1123 		if (old_thread->ebbhr != new_thread->ebbhr)
1124 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1125 		if (old_thread->ebbrr != new_thread->ebbrr)
1126 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1127 
1128 		if (old_thread->fscr != new_thread->fscr)
1129 			mtspr(SPRN_FSCR, new_thread->fscr);
1130 
1131 		if (old_thread->tar != new_thread->tar)
1132 			mtspr(SPRN_TAR, new_thread->tar);
1133 	}
1134 
1135 	if (cpu_has_feature(CPU_FTR_ARCH_300) &&
1136 	    old_thread->tidr != new_thread->tidr)
1137 		mtspr(SPRN_TIDR, new_thread->tidr);
1138 #endif
1139 }
1140 
1141 #ifdef CONFIG_PPC_BOOK3S_64
1142 #define CP_SIZE 128
1143 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1144 #endif
1145 
1146 struct task_struct *__switch_to(struct task_struct *prev,
1147 	struct task_struct *new)
1148 {
1149 	struct thread_struct *new_thread, *old_thread;
1150 	struct task_struct *last;
1151 #ifdef CONFIG_PPC_BOOK3S_64
1152 	struct ppc64_tlb_batch *batch;
1153 #endif
1154 
1155 	new_thread = &new->thread;
1156 	old_thread = &current->thread;
1157 
1158 	WARN_ON(!irqs_disabled());
1159 
1160 #ifdef CONFIG_PPC64
1161 	/*
1162 	 * Collect processor utilization data per process
1163 	 */
1164 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1165 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1166 		long unsigned start_tb, current_tb;
1167 		start_tb = old_thread->start_tb;
1168 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
1169 		old_thread->accum_tb += (current_tb - start_tb);
1170 		new_thread->start_tb = current_tb;
1171 	}
1172 #endif /* CONFIG_PPC64 */
1173 
1174 #ifdef CONFIG_PPC_BOOK3S_64
1175 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1176 	if (batch->active) {
1177 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1178 		if (batch->index)
1179 			__flush_tlb_pending(batch);
1180 		batch->active = 0;
1181 	}
1182 #endif /* CONFIG_PPC_BOOK3S_64 */
1183 
1184 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1185 	switch_booke_debug_regs(&new->thread.debug);
1186 #else
1187 /*
1188  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1189  * schedule DABR
1190  */
1191 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1192 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1193 		__set_breakpoint(&new->thread.hw_brk);
1194 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1195 #endif
1196 
1197 	/*
1198 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1199 	 * change a number of them.
1200 	 */
1201 	save_sprs(&prev->thread);
1202 
1203 	/* Save FPU, Altivec, VSX and SPE state */
1204 	giveup_all(prev);
1205 
1206 	__switch_to_tm(prev, new);
1207 
1208 	if (!radix_enabled()) {
1209 		/*
1210 		 * We can't take a PMU exception inside _switch() since there
1211 		 * is a window where the kernel stack SLB and the kernel stack
1212 		 * are out of sync. Hard disable here.
1213 		 */
1214 		hard_irq_disable();
1215 	}
1216 
1217 	/*
1218 	 * Call restore_sprs() before calling _switch(). If we move it after
1219 	 * _switch() then we miss out on calling it for new tasks. The reason
1220 	 * for this is we manually create a stack frame for new tasks that
1221 	 * directly returns through ret_from_fork() or
1222 	 * ret_from_kernel_thread(). See copy_thread() for details.
1223 	 */
1224 	restore_sprs(old_thread, new_thread);
1225 
1226 	last = _switch(old_thread, new_thread);
1227 
1228 #ifdef CONFIG_PPC_BOOK3S_64
1229 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1230 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1231 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1232 		batch->active = 1;
1233 	}
1234 
1235 	if (current_thread_info()->task->thread.regs) {
1236 		restore_math(current_thread_info()->task->thread.regs);
1237 
1238 		/*
1239 		 * The copy-paste buffer can only store into foreign real
1240 		 * addresses, so unprivileged processes can not see the
1241 		 * data or use it in any way unless they have foreign real
1242 		 * mappings. If the new process has the foreign real address
1243 		 * mappings, we must issue a cp_abort to clear any state and
1244 		 * prevent snooping, corruption or a covert channel.
1245 		 *
1246 		 * DD1 allows paste into normal system memory so we do an
1247 		 * unpaired copy, rather than cp_abort, to clear the buffer,
1248 		 * since cp_abort is quite expensive.
1249 		 */
1250 		if (current_thread_info()->task->thread.used_vas) {
1251 			asm volatile(PPC_CP_ABORT);
1252 		} else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1253 			asm volatile(PPC_COPY(%0, %1)
1254 					: : "r"(dummy_copy_buffer), "r"(0));
1255 		}
1256 	}
1257 #endif /* CONFIG_PPC_BOOK3S_64 */
1258 
1259 	return last;
1260 }
1261 
1262 static int instructions_to_print = 16;
1263 
1264 static void show_instructions(struct pt_regs *regs)
1265 {
1266 	int i;
1267 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1268 			sizeof(int));
1269 
1270 	printk("Instruction dump:");
1271 
1272 	for (i = 0; i < instructions_to_print; i++) {
1273 		int instr;
1274 
1275 		if (!(i % 8))
1276 			pr_cont("\n");
1277 
1278 #if !defined(CONFIG_BOOKE)
1279 		/* If executing with the IMMU off, adjust pc rather
1280 		 * than print XXXXXXXX.
1281 		 */
1282 		if (!(regs->msr & MSR_IR))
1283 			pc = (unsigned long)phys_to_virt(pc);
1284 #endif
1285 
1286 		if (!__kernel_text_address(pc) ||
1287 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1288 			pr_cont("XXXXXXXX ");
1289 		} else {
1290 			if (regs->nip == pc)
1291 				pr_cont("<%08x> ", instr);
1292 			else
1293 				pr_cont("%08x ", instr);
1294 		}
1295 
1296 		pc += sizeof(int);
1297 	}
1298 
1299 	pr_cont("\n");
1300 }
1301 
1302 struct regbit {
1303 	unsigned long bit;
1304 	const char *name;
1305 };
1306 
1307 static struct regbit msr_bits[] = {
1308 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1309 	{MSR_SF,	"SF"},
1310 	{MSR_HV,	"HV"},
1311 #endif
1312 	{MSR_VEC,	"VEC"},
1313 	{MSR_VSX,	"VSX"},
1314 #ifdef CONFIG_BOOKE
1315 	{MSR_CE,	"CE"},
1316 #endif
1317 	{MSR_EE,	"EE"},
1318 	{MSR_PR,	"PR"},
1319 	{MSR_FP,	"FP"},
1320 	{MSR_ME,	"ME"},
1321 #ifdef CONFIG_BOOKE
1322 	{MSR_DE,	"DE"},
1323 #else
1324 	{MSR_SE,	"SE"},
1325 	{MSR_BE,	"BE"},
1326 #endif
1327 	{MSR_IR,	"IR"},
1328 	{MSR_DR,	"DR"},
1329 	{MSR_PMM,	"PMM"},
1330 #ifndef CONFIG_BOOKE
1331 	{MSR_RI,	"RI"},
1332 	{MSR_LE,	"LE"},
1333 #endif
1334 	{0,		NULL}
1335 };
1336 
1337 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1338 {
1339 	const char *s = "";
1340 
1341 	for (; bits->bit; ++bits)
1342 		if (val & bits->bit) {
1343 			pr_cont("%s%s", s, bits->name);
1344 			s = sep;
1345 		}
1346 }
1347 
1348 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1349 static struct regbit msr_tm_bits[] = {
1350 	{MSR_TS_T,	"T"},
1351 	{MSR_TS_S,	"S"},
1352 	{MSR_TM,	"E"},
1353 	{0,		NULL}
1354 };
1355 
1356 static void print_tm_bits(unsigned long val)
1357 {
1358 /*
1359  * This only prints something if at least one of the TM bit is set.
1360  * Inside the TM[], the output means:
1361  *   E: Enabled		(bit 32)
1362  *   S: Suspended	(bit 33)
1363  *   T: Transactional	(bit 34)
1364  */
1365 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1366 		pr_cont(",TM[");
1367 		print_bits(val, msr_tm_bits, "");
1368 		pr_cont("]");
1369 	}
1370 }
1371 #else
1372 static void print_tm_bits(unsigned long val) {}
1373 #endif
1374 
1375 static void print_msr_bits(unsigned long val)
1376 {
1377 	pr_cont("<");
1378 	print_bits(val, msr_bits, ",");
1379 	print_tm_bits(val);
1380 	pr_cont(">");
1381 }
1382 
1383 #ifdef CONFIG_PPC64
1384 #define REG		"%016lx"
1385 #define REGS_PER_LINE	4
1386 #define LAST_VOLATILE	13
1387 #else
1388 #define REG		"%08lx"
1389 #define REGS_PER_LINE	8
1390 #define LAST_VOLATILE	12
1391 #endif
1392 
1393 void show_regs(struct pt_regs * regs)
1394 {
1395 	int i, trap;
1396 
1397 	show_regs_print_info(KERN_DEFAULT);
1398 
1399 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1400 	       regs->nip, regs->link, regs->ctr);
1401 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1402 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1403 	printk("MSR:  "REG" ", regs->msr);
1404 	print_msr_bits(regs->msr);
1405 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1406 	trap = TRAP(regs);
1407 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1408 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1409 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1410 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1411 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1412 #else
1413 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1414 #endif
1415 #ifdef CONFIG_PPC64
1416 	pr_cont("SOFTE: %ld ", regs->softe);
1417 #endif
1418 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1419 	if (MSR_TM_ACTIVE(regs->msr))
1420 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1421 #endif
1422 
1423 	for (i = 0;  i < 32;  i++) {
1424 		if ((i % REGS_PER_LINE) == 0)
1425 			pr_cont("\nGPR%02d: ", i);
1426 		pr_cont(REG " ", regs->gpr[i]);
1427 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1428 			break;
1429 	}
1430 	pr_cont("\n");
1431 #ifdef CONFIG_KALLSYMS
1432 	/*
1433 	 * Lookup NIP late so we have the best change of getting the
1434 	 * above info out without failing
1435 	 */
1436 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1437 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1438 #endif
1439 	show_stack(current, (unsigned long *) regs->gpr[1]);
1440 	if (!user_mode(regs))
1441 		show_instructions(regs);
1442 }
1443 
1444 void flush_thread(void)
1445 {
1446 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1447 	flush_ptrace_hw_breakpoint(current);
1448 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1449 	set_debug_reg_defaults(&current->thread);
1450 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1451 }
1452 
1453 int set_thread_uses_vas(void)
1454 {
1455 #ifdef CONFIG_PPC_BOOK3S_64
1456 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1457 		return -EINVAL;
1458 
1459 	current->thread.used_vas = 1;
1460 
1461 	/*
1462 	 * Even a process that has no foreign real address mapping can use
1463 	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1464 	 * to clear any pending COPY and prevent a covert channel.
1465 	 *
1466 	 * __switch_to() will issue CP_ABORT on future context switches.
1467 	 */
1468 	asm volatile(PPC_CP_ABORT);
1469 
1470 #endif /* CONFIG_PPC_BOOK3S_64 */
1471 	return 0;
1472 }
1473 
1474 #ifdef CONFIG_PPC64
1475 static DEFINE_SPINLOCK(vas_thread_id_lock);
1476 static DEFINE_IDA(vas_thread_ida);
1477 
1478 /*
1479  * We need to assign a unique thread id to each thread in a process.
1480  *
1481  * This thread id, referred to as TIDR, and separate from the Linux's tgid,
1482  * is intended to be used to direct an ASB_Notify from the hardware to the
1483  * thread, when a suitable event occurs in the system.
1484  *
1485  * One such event is a "paste" instruction in the context of Fast Thread
1486  * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard
1487  * (VAS) in POWER9.
1488  *
1489  * To get a unique TIDR per process we could simply reuse task_pid_nr() but
1490  * the problem is that task_pid_nr() is not yet available copy_thread() is
1491  * called. Fixing that would require changing more intrusive arch-neutral
1492  * code in code path in copy_process()?.
1493  *
1494  * Further, to assign unique TIDRs within each process, we need an atomic
1495  * field (or an IDR) in task_struct, which again intrudes into the arch-
1496  * neutral code. So try to assign globally unique TIDRs for now.
1497  *
1498  * NOTE: TIDR 0 indicates that the thread does not need a TIDR value.
1499  *	 For now, only threads that expect to be notified by the VAS
1500  *	 hardware need a TIDR value and we assign values > 0 for those.
1501  */
1502 #define MAX_THREAD_CONTEXT	((1 << 16) - 1)
1503 static int assign_thread_tidr(void)
1504 {
1505 	int index;
1506 	int err;
1507 
1508 again:
1509 	if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL))
1510 		return -ENOMEM;
1511 
1512 	spin_lock(&vas_thread_id_lock);
1513 	err = ida_get_new_above(&vas_thread_ida, 1, &index);
1514 	spin_unlock(&vas_thread_id_lock);
1515 
1516 	if (err == -EAGAIN)
1517 		goto again;
1518 	else if (err)
1519 		return err;
1520 
1521 	if (index > MAX_THREAD_CONTEXT) {
1522 		spin_lock(&vas_thread_id_lock);
1523 		ida_remove(&vas_thread_ida, index);
1524 		spin_unlock(&vas_thread_id_lock);
1525 		return -ENOMEM;
1526 	}
1527 
1528 	return index;
1529 }
1530 
1531 static void free_thread_tidr(int id)
1532 {
1533 	spin_lock(&vas_thread_id_lock);
1534 	ida_remove(&vas_thread_ida, id);
1535 	spin_unlock(&vas_thread_id_lock);
1536 }
1537 
1538 /*
1539  * Clear any TIDR value assigned to this thread.
1540  */
1541 void clear_thread_tidr(struct task_struct *t)
1542 {
1543 	if (!t->thread.tidr)
1544 		return;
1545 
1546 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1547 		WARN_ON_ONCE(1);
1548 		return;
1549 	}
1550 
1551 	mtspr(SPRN_TIDR, 0);
1552 	free_thread_tidr(t->thread.tidr);
1553 	t->thread.tidr = 0;
1554 }
1555 
1556 void arch_release_task_struct(struct task_struct *t)
1557 {
1558 	clear_thread_tidr(t);
1559 }
1560 
1561 /*
1562  * Assign a unique TIDR (thread id) for task @t and set it in the thread
1563  * structure. For now, we only support setting TIDR for 'current' task.
1564  */
1565 int set_thread_tidr(struct task_struct *t)
1566 {
1567 	int rc;
1568 
1569 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1570 		return -EINVAL;
1571 
1572 	if (t != current)
1573 		return -EINVAL;
1574 
1575 	if (t->thread.tidr)
1576 		return 0;
1577 
1578 	rc = assign_thread_tidr();
1579 	if (rc < 0)
1580 		return rc;
1581 
1582 	t->thread.tidr = rc;
1583 	mtspr(SPRN_TIDR, t->thread.tidr);
1584 
1585 	return 0;
1586 }
1587 
1588 #endif /* CONFIG_PPC64 */
1589 
1590 void
1591 release_thread(struct task_struct *t)
1592 {
1593 }
1594 
1595 /*
1596  * this gets called so that we can store coprocessor state into memory and
1597  * copy the current task into the new thread.
1598  */
1599 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1600 {
1601 	flush_all_to_thread(src);
1602 	/*
1603 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1604 	 * flush but it removes the checkpointed state from the current CPU and
1605 	 * transitions the CPU out of TM mode.  Hence we need to call
1606 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1607 	 * checkpointed state back and the TM mode.
1608 	 *
1609 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1610 	 * dst is only important for __switch_to()
1611 	 */
1612 	__switch_to_tm(src, src);
1613 
1614 	*dst = *src;
1615 
1616 	clear_task_ebb(dst);
1617 
1618 	return 0;
1619 }
1620 
1621 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1622 {
1623 #ifdef CONFIG_PPC_BOOK3S_64
1624 	unsigned long sp_vsid;
1625 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1626 
1627 	if (radix_enabled())
1628 		return;
1629 
1630 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1631 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1632 			<< SLB_VSID_SHIFT_1T;
1633 	else
1634 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1635 			<< SLB_VSID_SHIFT;
1636 	sp_vsid |= SLB_VSID_KERNEL | llp;
1637 	p->thread.ksp_vsid = sp_vsid;
1638 #endif
1639 }
1640 
1641 /*
1642  * Copy a thread..
1643  */
1644 
1645 /*
1646  * Copy architecture-specific thread state
1647  */
1648 int copy_thread(unsigned long clone_flags, unsigned long usp,
1649 		unsigned long kthread_arg, struct task_struct *p)
1650 {
1651 	struct pt_regs *childregs, *kregs;
1652 	extern void ret_from_fork(void);
1653 	extern void ret_from_kernel_thread(void);
1654 	void (*f)(void);
1655 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1656 	struct thread_info *ti = task_thread_info(p);
1657 
1658 	klp_init_thread_info(ti);
1659 
1660 	/* Copy registers */
1661 	sp -= sizeof(struct pt_regs);
1662 	childregs = (struct pt_regs *) sp;
1663 	if (unlikely(p->flags & PF_KTHREAD)) {
1664 		/* kernel thread */
1665 		memset(childregs, 0, sizeof(struct pt_regs));
1666 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1667 		/* function */
1668 		if (usp)
1669 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1670 #ifdef CONFIG_PPC64
1671 		clear_tsk_thread_flag(p, TIF_32BIT);
1672 		childregs->softe = 1;
1673 #endif
1674 		childregs->gpr[15] = kthread_arg;
1675 		p->thread.regs = NULL;	/* no user register state */
1676 		ti->flags |= _TIF_RESTOREALL;
1677 		f = ret_from_kernel_thread;
1678 	} else {
1679 		/* user thread */
1680 		struct pt_regs *regs = current_pt_regs();
1681 		CHECK_FULL_REGS(regs);
1682 		*childregs = *regs;
1683 		if (usp)
1684 			childregs->gpr[1] = usp;
1685 		p->thread.regs = childregs;
1686 		childregs->gpr[3] = 0;  /* Result from fork() */
1687 		if (clone_flags & CLONE_SETTLS) {
1688 #ifdef CONFIG_PPC64
1689 			if (!is_32bit_task())
1690 				childregs->gpr[13] = childregs->gpr[6];
1691 			else
1692 #endif
1693 				childregs->gpr[2] = childregs->gpr[6];
1694 		}
1695 
1696 		f = ret_from_fork;
1697 	}
1698 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1699 	sp -= STACK_FRAME_OVERHEAD;
1700 
1701 	/*
1702 	 * The way this works is that at some point in the future
1703 	 * some task will call _switch to switch to the new task.
1704 	 * That will pop off the stack frame created below and start
1705 	 * the new task running at ret_from_fork.  The new task will
1706 	 * do some house keeping and then return from the fork or clone
1707 	 * system call, using the stack frame created above.
1708 	 */
1709 	((unsigned long *)sp)[0] = 0;
1710 	sp -= sizeof(struct pt_regs);
1711 	kregs = (struct pt_regs *) sp;
1712 	sp -= STACK_FRAME_OVERHEAD;
1713 	p->thread.ksp = sp;
1714 #ifdef CONFIG_PPC32
1715 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1716 				_ALIGN_UP(sizeof(struct thread_info), 16);
1717 #endif
1718 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1719 	p->thread.ptrace_bps[0] = NULL;
1720 #endif
1721 
1722 	p->thread.fp_save_area = NULL;
1723 #ifdef CONFIG_ALTIVEC
1724 	p->thread.vr_save_area = NULL;
1725 #endif
1726 
1727 	setup_ksp_vsid(p, sp);
1728 
1729 #ifdef CONFIG_PPC64
1730 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1731 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1732 		p->thread.dscr = mfspr(SPRN_DSCR);
1733 	}
1734 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1735 		p->thread.ppr = INIT_PPR;
1736 
1737 	p->thread.tidr = 0;
1738 #endif
1739 	kregs->nip = ppc_function_entry(f);
1740 	return 0;
1741 }
1742 
1743 /*
1744  * Set up a thread for executing a new program
1745  */
1746 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1747 {
1748 #ifdef CONFIG_PPC64
1749 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1750 #endif
1751 
1752 	/*
1753 	 * If we exec out of a kernel thread then thread.regs will not be
1754 	 * set.  Do it now.
1755 	 */
1756 	if (!current->thread.regs) {
1757 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1758 		current->thread.regs = regs - 1;
1759 	}
1760 
1761 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1762 	/*
1763 	 * Clear any transactional state, we're exec()ing. The cause is
1764 	 * not important as there will never be a recheckpoint so it's not
1765 	 * user visible.
1766 	 */
1767 	if (MSR_TM_SUSPENDED(mfmsr()))
1768 		tm_reclaim_current(0);
1769 #endif
1770 
1771 	memset(regs->gpr, 0, sizeof(regs->gpr));
1772 	regs->ctr = 0;
1773 	regs->link = 0;
1774 	regs->xer = 0;
1775 	regs->ccr = 0;
1776 	regs->gpr[1] = sp;
1777 
1778 	/*
1779 	 * We have just cleared all the nonvolatile GPRs, so make
1780 	 * FULL_REGS(regs) return true.  This is necessary to allow
1781 	 * ptrace to examine the thread immediately after exec.
1782 	 */
1783 	regs->trap &= ~1UL;
1784 
1785 #ifdef CONFIG_PPC32
1786 	regs->mq = 0;
1787 	regs->nip = start;
1788 	regs->msr = MSR_USER;
1789 #else
1790 	if (!is_32bit_task()) {
1791 		unsigned long entry;
1792 
1793 		if (is_elf2_task()) {
1794 			/* Look ma, no function descriptors! */
1795 			entry = start;
1796 
1797 			/*
1798 			 * Ulrich says:
1799 			 *   The latest iteration of the ABI requires that when
1800 			 *   calling a function (at its global entry point),
1801 			 *   the caller must ensure r12 holds the entry point
1802 			 *   address (so that the function can quickly
1803 			 *   establish addressability).
1804 			 */
1805 			regs->gpr[12] = start;
1806 			/* Make sure that's restored on entry to userspace. */
1807 			set_thread_flag(TIF_RESTOREALL);
1808 		} else {
1809 			unsigned long toc;
1810 
1811 			/* start is a relocated pointer to the function
1812 			 * descriptor for the elf _start routine.  The first
1813 			 * entry in the function descriptor is the entry
1814 			 * address of _start and the second entry is the TOC
1815 			 * value we need to use.
1816 			 */
1817 			__get_user(entry, (unsigned long __user *)start);
1818 			__get_user(toc, (unsigned long __user *)start+1);
1819 
1820 			/* Check whether the e_entry function descriptor entries
1821 			 * need to be relocated before we can use them.
1822 			 */
1823 			if (load_addr != 0) {
1824 				entry += load_addr;
1825 				toc   += load_addr;
1826 			}
1827 			regs->gpr[2] = toc;
1828 		}
1829 		regs->nip = entry;
1830 		regs->msr = MSR_USER64;
1831 	} else {
1832 		regs->nip = start;
1833 		regs->gpr[2] = 0;
1834 		regs->msr = MSR_USER32;
1835 	}
1836 #endif
1837 #ifdef CONFIG_VSX
1838 	current->thread.used_vsr = 0;
1839 #endif
1840 	current->thread.load_fp = 0;
1841 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1842 	current->thread.fp_save_area = NULL;
1843 #ifdef CONFIG_ALTIVEC
1844 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1845 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1846 	current->thread.vr_save_area = NULL;
1847 	current->thread.vrsave = 0;
1848 	current->thread.used_vr = 0;
1849 	current->thread.load_vec = 0;
1850 #endif /* CONFIG_ALTIVEC */
1851 #ifdef CONFIG_SPE
1852 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1853 	current->thread.acc = 0;
1854 	current->thread.spefscr = 0;
1855 	current->thread.used_spe = 0;
1856 #endif /* CONFIG_SPE */
1857 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1858 	current->thread.tm_tfhar = 0;
1859 	current->thread.tm_texasr = 0;
1860 	current->thread.tm_tfiar = 0;
1861 	current->thread.load_tm = 0;
1862 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1863 }
1864 EXPORT_SYMBOL(start_thread);
1865 
1866 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1867 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1868 
1869 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1870 {
1871 	struct pt_regs *regs = tsk->thread.regs;
1872 
1873 	/* This is a bit hairy.  If we are an SPE enabled  processor
1874 	 * (have embedded fp) we store the IEEE exception enable flags in
1875 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1876 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1877 	if (val & PR_FP_EXC_SW_ENABLE) {
1878 #ifdef CONFIG_SPE
1879 		if (cpu_has_feature(CPU_FTR_SPE)) {
1880 			/*
1881 			 * When the sticky exception bits are set
1882 			 * directly by userspace, it must call prctl
1883 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1884 			 * in the existing prctl settings) or
1885 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1886 			 * the bits being set).  <fenv.h> functions
1887 			 * saving and restoring the whole
1888 			 * floating-point environment need to do so
1889 			 * anyway to restore the prctl settings from
1890 			 * the saved environment.
1891 			 */
1892 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1893 			tsk->thread.fpexc_mode = val &
1894 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1895 			return 0;
1896 		} else {
1897 			return -EINVAL;
1898 		}
1899 #else
1900 		return -EINVAL;
1901 #endif
1902 	}
1903 
1904 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1905 	 * __pack_fe01 use do not overlap with bits used for
1906 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1907 	 * on CONFIG_SPE implementations are reserved so writing to
1908 	 * them does not change anything */
1909 	if (val > PR_FP_EXC_PRECISE)
1910 		return -EINVAL;
1911 	tsk->thread.fpexc_mode = __pack_fe01(val);
1912 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1913 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1914 			| tsk->thread.fpexc_mode;
1915 	return 0;
1916 }
1917 
1918 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1919 {
1920 	unsigned int val;
1921 
1922 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1923 #ifdef CONFIG_SPE
1924 		if (cpu_has_feature(CPU_FTR_SPE)) {
1925 			/*
1926 			 * When the sticky exception bits are set
1927 			 * directly by userspace, it must call prctl
1928 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1929 			 * in the existing prctl settings) or
1930 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1931 			 * the bits being set).  <fenv.h> functions
1932 			 * saving and restoring the whole
1933 			 * floating-point environment need to do so
1934 			 * anyway to restore the prctl settings from
1935 			 * the saved environment.
1936 			 */
1937 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1938 			val = tsk->thread.fpexc_mode;
1939 		} else
1940 			return -EINVAL;
1941 #else
1942 		return -EINVAL;
1943 #endif
1944 	else
1945 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1946 	return put_user(val, (unsigned int __user *) adr);
1947 }
1948 
1949 int set_endian(struct task_struct *tsk, unsigned int val)
1950 {
1951 	struct pt_regs *regs = tsk->thread.regs;
1952 
1953 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1954 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1955 		return -EINVAL;
1956 
1957 	if (regs == NULL)
1958 		return -EINVAL;
1959 
1960 	if (val == PR_ENDIAN_BIG)
1961 		regs->msr &= ~MSR_LE;
1962 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1963 		regs->msr |= MSR_LE;
1964 	else
1965 		return -EINVAL;
1966 
1967 	return 0;
1968 }
1969 
1970 int get_endian(struct task_struct *tsk, unsigned long adr)
1971 {
1972 	struct pt_regs *regs = tsk->thread.regs;
1973 	unsigned int val;
1974 
1975 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1976 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1977 		return -EINVAL;
1978 
1979 	if (regs == NULL)
1980 		return -EINVAL;
1981 
1982 	if (regs->msr & MSR_LE) {
1983 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1984 			val = PR_ENDIAN_LITTLE;
1985 		else
1986 			val = PR_ENDIAN_PPC_LITTLE;
1987 	} else
1988 		val = PR_ENDIAN_BIG;
1989 
1990 	return put_user(val, (unsigned int __user *)adr);
1991 }
1992 
1993 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1994 {
1995 	tsk->thread.align_ctl = val;
1996 	return 0;
1997 }
1998 
1999 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2000 {
2001 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2002 }
2003 
2004 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2005 				  unsigned long nbytes)
2006 {
2007 	unsigned long stack_page;
2008 	unsigned long cpu = task_cpu(p);
2009 
2010 	/*
2011 	 * Avoid crashing if the stack has overflowed and corrupted
2012 	 * task_cpu(p), which is in the thread_info struct.
2013 	 */
2014 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
2015 		stack_page = (unsigned long) hardirq_ctx[cpu];
2016 		if (sp >= stack_page + sizeof(struct thread_struct)
2017 		    && sp <= stack_page + THREAD_SIZE - nbytes)
2018 			return 1;
2019 
2020 		stack_page = (unsigned long) softirq_ctx[cpu];
2021 		if (sp >= stack_page + sizeof(struct thread_struct)
2022 		    && sp <= stack_page + THREAD_SIZE - nbytes)
2023 			return 1;
2024 	}
2025 	return 0;
2026 }
2027 
2028 int validate_sp(unsigned long sp, struct task_struct *p,
2029 		       unsigned long nbytes)
2030 {
2031 	unsigned long stack_page = (unsigned long)task_stack_page(p);
2032 
2033 	if (sp >= stack_page + sizeof(struct thread_struct)
2034 	    && sp <= stack_page + THREAD_SIZE - nbytes)
2035 		return 1;
2036 
2037 	return valid_irq_stack(sp, p, nbytes);
2038 }
2039 
2040 EXPORT_SYMBOL(validate_sp);
2041 
2042 unsigned long get_wchan(struct task_struct *p)
2043 {
2044 	unsigned long ip, sp;
2045 	int count = 0;
2046 
2047 	if (!p || p == current || p->state == TASK_RUNNING)
2048 		return 0;
2049 
2050 	sp = p->thread.ksp;
2051 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2052 		return 0;
2053 
2054 	do {
2055 		sp = *(unsigned long *)sp;
2056 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2057 		    p->state == TASK_RUNNING)
2058 			return 0;
2059 		if (count > 0) {
2060 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2061 			if (!in_sched_functions(ip))
2062 				return ip;
2063 		}
2064 	} while (count++ < 16);
2065 	return 0;
2066 }
2067 
2068 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2069 
2070 void show_stack(struct task_struct *tsk, unsigned long *stack)
2071 {
2072 	unsigned long sp, ip, lr, newsp;
2073 	int count = 0;
2074 	int firstframe = 1;
2075 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2076 	int curr_frame = current->curr_ret_stack;
2077 	extern void return_to_handler(void);
2078 	unsigned long rth = (unsigned long)return_to_handler;
2079 #endif
2080 
2081 	sp = (unsigned long) stack;
2082 	if (tsk == NULL)
2083 		tsk = current;
2084 	if (sp == 0) {
2085 		if (tsk == current)
2086 			sp = current_stack_pointer();
2087 		else
2088 			sp = tsk->thread.ksp;
2089 	}
2090 
2091 	lr = 0;
2092 	printk("Call Trace:\n");
2093 	do {
2094 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2095 			return;
2096 
2097 		stack = (unsigned long *) sp;
2098 		newsp = stack[0];
2099 		ip = stack[STACK_FRAME_LR_SAVE];
2100 		if (!firstframe || ip != lr) {
2101 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2102 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2103 			if ((ip == rth) && curr_frame >= 0) {
2104 				pr_cont(" (%pS)",
2105 				       (void *)current->ret_stack[curr_frame].ret);
2106 				curr_frame--;
2107 			}
2108 #endif
2109 			if (firstframe)
2110 				pr_cont(" (unreliable)");
2111 			pr_cont("\n");
2112 		}
2113 		firstframe = 0;
2114 
2115 		/*
2116 		 * See if this is an exception frame.
2117 		 * We look for the "regshere" marker in the current frame.
2118 		 */
2119 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2120 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2121 			struct pt_regs *regs = (struct pt_regs *)
2122 				(sp + STACK_FRAME_OVERHEAD);
2123 			lr = regs->link;
2124 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2125 			       regs->trap, (void *)regs->nip, (void *)lr);
2126 			firstframe = 1;
2127 		}
2128 
2129 		sp = newsp;
2130 	} while (count++ < kstack_depth_to_print);
2131 }
2132 
2133 #ifdef CONFIG_PPC64
2134 /* Called with hard IRQs off */
2135 void notrace __ppc64_runlatch_on(void)
2136 {
2137 	struct thread_info *ti = current_thread_info();
2138 
2139 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2140 		/*
2141 		 * Least significant bit (RUN) is the only writable bit of
2142 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2143 		 * earliest ISA where this is the case, but it's convenient.
2144 		 */
2145 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2146 	} else {
2147 		unsigned long ctrl;
2148 
2149 		/*
2150 		 * Some architectures (e.g., Cell) have writable fields other
2151 		 * than RUN, so do the read-modify-write.
2152 		 */
2153 		ctrl = mfspr(SPRN_CTRLF);
2154 		ctrl |= CTRL_RUNLATCH;
2155 		mtspr(SPRN_CTRLT, ctrl);
2156 	}
2157 
2158 	ti->local_flags |= _TLF_RUNLATCH;
2159 }
2160 
2161 /* Called with hard IRQs off */
2162 void notrace __ppc64_runlatch_off(void)
2163 {
2164 	struct thread_info *ti = current_thread_info();
2165 
2166 	ti->local_flags &= ~_TLF_RUNLATCH;
2167 
2168 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2169 		mtspr(SPRN_CTRLT, 0);
2170 	} else {
2171 		unsigned long ctrl;
2172 
2173 		ctrl = mfspr(SPRN_CTRLF);
2174 		ctrl &= ~CTRL_RUNLATCH;
2175 		mtspr(SPRN_CTRLT, ctrl);
2176 	}
2177 }
2178 #endif /* CONFIG_PPC64 */
2179 
2180 unsigned long arch_align_stack(unsigned long sp)
2181 {
2182 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2183 		sp -= get_random_int() & ~PAGE_MASK;
2184 	return sp & ~0xf;
2185 }
2186 
2187 static inline unsigned long brk_rnd(void)
2188 {
2189         unsigned long rnd = 0;
2190 
2191 	/* 8MB for 32bit, 1GB for 64bit */
2192 	if (is_32bit_task())
2193 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2194 	else
2195 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2196 
2197 	return rnd << PAGE_SHIFT;
2198 }
2199 
2200 unsigned long arch_randomize_brk(struct mm_struct *mm)
2201 {
2202 	unsigned long base = mm->brk;
2203 	unsigned long ret;
2204 
2205 #ifdef CONFIG_PPC_BOOK3S_64
2206 	/*
2207 	 * If we are using 1TB segments and we are allowed to randomise
2208 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2209 	 * segment. Otherwise the heap will be in the bottom 1TB
2210 	 * which always uses 256MB segments and this may result in a
2211 	 * performance penalty. We don't need to worry about radix. For
2212 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2213 	 */
2214 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2215 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2216 #endif
2217 
2218 	ret = PAGE_ALIGN(base + brk_rnd());
2219 
2220 	if (ret < mm->brk)
2221 		return mm->brk;
2222 
2223 	return ret;
2224 }
2225 
2226