1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan ([email protected]) and 6 * Paul Mackerras ([email protected]) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas ([email protected]) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/stddef.h> 26 #include <linux/unistd.h> 27 #include <linux/ptrace.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/elf.h> 31 #include <linux/prctl.h> 32 #include <linux/init_task.h> 33 #include <linux/export.h> 34 #include <linux/kallsyms.h> 35 #include <linux/mqueue.h> 36 #include <linux/hardirq.h> 37 #include <linux/utsname.h> 38 #include <linux/ftrace.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/personality.h> 41 #include <linux/random.h> 42 #include <linux/hw_breakpoint.h> 43 #include <linux/uaccess.h> 44 #include <linux/elf-randomize.h> 45 46 #include <asm/pgtable.h> 47 #include <asm/io.h> 48 #include <asm/processor.h> 49 #include <asm/mmu.h> 50 #include <asm/prom.h> 51 #include <asm/machdep.h> 52 #include <asm/time.h> 53 #include <asm/runlatch.h> 54 #include <asm/syscalls.h> 55 #include <asm/switch_to.h> 56 #include <asm/tm.h> 57 #include <asm/debug.h> 58 #ifdef CONFIG_PPC64 59 #include <asm/firmware.h> 60 #endif 61 #include <asm/code-patching.h> 62 #include <asm/exec.h> 63 #include <asm/livepatch.h> 64 #include <asm/cpu_has_feature.h> 65 #include <asm/asm-prototypes.h> 66 67 #include <linux/kprobes.h> 68 #include <linux/kdebug.h> 69 70 /* Transactional Memory debug */ 71 #ifdef TM_DEBUG_SW 72 #define TM_DEBUG(x...) printk(KERN_INFO x) 73 #else 74 #define TM_DEBUG(x...) do { } while(0) 75 #endif 76 77 extern unsigned long _get_SP(void); 78 79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 80 /* 81 * Are we running in "Suspend disabled" mode? If so we have to block any 82 * sigreturn that would get us into suspended state, and we also warn in some 83 * other paths that we should never reach with suspend disabled. 84 */ 85 bool tm_suspend_disabled __ro_after_init = false; 86 87 static void check_if_tm_restore_required(struct task_struct *tsk) 88 { 89 /* 90 * If we are saving the current thread's registers, and the 91 * thread is in a transactional state, set the TIF_RESTORE_TM 92 * bit so that we know to restore the registers before 93 * returning to userspace. 94 */ 95 if (tsk == current && tsk->thread.regs && 96 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 97 !test_thread_flag(TIF_RESTORE_TM)) { 98 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 99 set_thread_flag(TIF_RESTORE_TM); 100 } 101 } 102 103 static inline bool msr_tm_active(unsigned long msr) 104 { 105 return MSR_TM_ACTIVE(msr); 106 } 107 108 static bool tm_active_with_fp(struct task_struct *tsk) 109 { 110 return msr_tm_active(tsk->thread.regs->msr) && 111 (tsk->thread.ckpt_regs.msr & MSR_FP); 112 } 113 114 static bool tm_active_with_altivec(struct task_struct *tsk) 115 { 116 return msr_tm_active(tsk->thread.regs->msr) && 117 (tsk->thread.ckpt_regs.msr & MSR_VEC); 118 } 119 #else 120 static inline bool msr_tm_active(unsigned long msr) { return false; } 121 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 122 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; } 123 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; } 124 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 125 126 bool strict_msr_control; 127 EXPORT_SYMBOL(strict_msr_control); 128 129 static int __init enable_strict_msr_control(char *str) 130 { 131 strict_msr_control = true; 132 pr_info("Enabling strict facility control\n"); 133 134 return 0; 135 } 136 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 137 138 unsigned long msr_check_and_set(unsigned long bits) 139 { 140 unsigned long oldmsr = mfmsr(); 141 unsigned long newmsr; 142 143 newmsr = oldmsr | bits; 144 145 #ifdef CONFIG_VSX 146 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 147 newmsr |= MSR_VSX; 148 #endif 149 150 if (oldmsr != newmsr) 151 mtmsr_isync(newmsr); 152 153 return newmsr; 154 } 155 156 void __msr_check_and_clear(unsigned long bits) 157 { 158 unsigned long oldmsr = mfmsr(); 159 unsigned long newmsr; 160 161 newmsr = oldmsr & ~bits; 162 163 #ifdef CONFIG_VSX 164 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 165 newmsr &= ~MSR_VSX; 166 #endif 167 168 if (oldmsr != newmsr) 169 mtmsr_isync(newmsr); 170 } 171 EXPORT_SYMBOL(__msr_check_and_clear); 172 173 #ifdef CONFIG_PPC_FPU 174 void __giveup_fpu(struct task_struct *tsk) 175 { 176 unsigned long msr; 177 178 save_fpu(tsk); 179 msr = tsk->thread.regs->msr; 180 msr &= ~MSR_FP; 181 #ifdef CONFIG_VSX 182 if (cpu_has_feature(CPU_FTR_VSX)) 183 msr &= ~MSR_VSX; 184 #endif 185 tsk->thread.regs->msr = msr; 186 } 187 188 void giveup_fpu(struct task_struct *tsk) 189 { 190 check_if_tm_restore_required(tsk); 191 192 msr_check_and_set(MSR_FP); 193 __giveup_fpu(tsk); 194 msr_check_and_clear(MSR_FP); 195 } 196 EXPORT_SYMBOL(giveup_fpu); 197 198 /* 199 * Make sure the floating-point register state in the 200 * the thread_struct is up to date for task tsk. 201 */ 202 void flush_fp_to_thread(struct task_struct *tsk) 203 { 204 if (tsk->thread.regs) { 205 /* 206 * We need to disable preemption here because if we didn't, 207 * another process could get scheduled after the regs->msr 208 * test but before we have finished saving the FP registers 209 * to the thread_struct. That process could take over the 210 * FPU, and then when we get scheduled again we would store 211 * bogus values for the remaining FP registers. 212 */ 213 preempt_disable(); 214 if (tsk->thread.regs->msr & MSR_FP) { 215 /* 216 * This should only ever be called for current or 217 * for a stopped child process. Since we save away 218 * the FP register state on context switch, 219 * there is something wrong if a stopped child appears 220 * to still have its FP state in the CPU registers. 221 */ 222 BUG_ON(tsk != current); 223 giveup_fpu(tsk); 224 } 225 preempt_enable(); 226 } 227 } 228 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 229 230 void enable_kernel_fp(void) 231 { 232 unsigned long cpumsr; 233 234 WARN_ON(preemptible()); 235 236 cpumsr = msr_check_and_set(MSR_FP); 237 238 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 239 check_if_tm_restore_required(current); 240 /* 241 * If a thread has already been reclaimed then the 242 * checkpointed registers are on the CPU but have definitely 243 * been saved by the reclaim code. Don't need to and *cannot* 244 * giveup as this would save to the 'live' structure not the 245 * checkpointed structure. 246 */ 247 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 248 return; 249 __giveup_fpu(current); 250 } 251 } 252 EXPORT_SYMBOL(enable_kernel_fp); 253 254 static int restore_fp(struct task_struct *tsk) 255 { 256 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) { 257 load_fp_state(¤t->thread.fp_state); 258 current->thread.load_fp++; 259 return 1; 260 } 261 return 0; 262 } 263 #else 264 static int restore_fp(struct task_struct *tsk) { return 0; } 265 #endif /* CONFIG_PPC_FPU */ 266 267 #ifdef CONFIG_ALTIVEC 268 #define loadvec(thr) ((thr).load_vec) 269 270 static void __giveup_altivec(struct task_struct *tsk) 271 { 272 unsigned long msr; 273 274 save_altivec(tsk); 275 msr = tsk->thread.regs->msr; 276 msr &= ~MSR_VEC; 277 #ifdef CONFIG_VSX 278 if (cpu_has_feature(CPU_FTR_VSX)) 279 msr &= ~MSR_VSX; 280 #endif 281 tsk->thread.regs->msr = msr; 282 } 283 284 void giveup_altivec(struct task_struct *tsk) 285 { 286 check_if_tm_restore_required(tsk); 287 288 msr_check_and_set(MSR_VEC); 289 __giveup_altivec(tsk); 290 msr_check_and_clear(MSR_VEC); 291 } 292 EXPORT_SYMBOL(giveup_altivec); 293 294 void enable_kernel_altivec(void) 295 { 296 unsigned long cpumsr; 297 298 WARN_ON(preemptible()); 299 300 cpumsr = msr_check_and_set(MSR_VEC); 301 302 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 303 check_if_tm_restore_required(current); 304 /* 305 * If a thread has already been reclaimed then the 306 * checkpointed registers are on the CPU but have definitely 307 * been saved by the reclaim code. Don't need to and *cannot* 308 * giveup as this would save to the 'live' structure not the 309 * checkpointed structure. 310 */ 311 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 312 return; 313 __giveup_altivec(current); 314 } 315 } 316 EXPORT_SYMBOL(enable_kernel_altivec); 317 318 /* 319 * Make sure the VMX/Altivec register state in the 320 * the thread_struct is up to date for task tsk. 321 */ 322 void flush_altivec_to_thread(struct task_struct *tsk) 323 { 324 if (tsk->thread.regs) { 325 preempt_disable(); 326 if (tsk->thread.regs->msr & MSR_VEC) { 327 BUG_ON(tsk != current); 328 giveup_altivec(tsk); 329 } 330 preempt_enable(); 331 } 332 } 333 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 334 335 static int restore_altivec(struct task_struct *tsk) 336 { 337 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 338 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) { 339 load_vr_state(&tsk->thread.vr_state); 340 tsk->thread.used_vr = 1; 341 tsk->thread.load_vec++; 342 343 return 1; 344 } 345 return 0; 346 } 347 #else 348 #define loadvec(thr) 0 349 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 350 #endif /* CONFIG_ALTIVEC */ 351 352 #ifdef CONFIG_VSX 353 static void __giveup_vsx(struct task_struct *tsk) 354 { 355 unsigned long msr = tsk->thread.regs->msr; 356 357 /* 358 * We should never be ssetting MSR_VSX without also setting 359 * MSR_FP and MSR_VEC 360 */ 361 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 362 363 /* __giveup_fpu will clear MSR_VSX */ 364 if (msr & MSR_FP) 365 __giveup_fpu(tsk); 366 if (msr & MSR_VEC) 367 __giveup_altivec(tsk); 368 } 369 370 static void giveup_vsx(struct task_struct *tsk) 371 { 372 check_if_tm_restore_required(tsk); 373 374 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 375 __giveup_vsx(tsk); 376 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 377 } 378 379 void enable_kernel_vsx(void) 380 { 381 unsigned long cpumsr; 382 383 WARN_ON(preemptible()); 384 385 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 386 387 if (current->thread.regs && 388 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 389 check_if_tm_restore_required(current); 390 /* 391 * If a thread has already been reclaimed then the 392 * checkpointed registers are on the CPU but have definitely 393 * been saved by the reclaim code. Don't need to and *cannot* 394 * giveup as this would save to the 'live' structure not the 395 * checkpointed structure. 396 */ 397 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 398 return; 399 __giveup_vsx(current); 400 } 401 } 402 EXPORT_SYMBOL(enable_kernel_vsx); 403 404 void flush_vsx_to_thread(struct task_struct *tsk) 405 { 406 if (tsk->thread.regs) { 407 preempt_disable(); 408 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 409 BUG_ON(tsk != current); 410 giveup_vsx(tsk); 411 } 412 preempt_enable(); 413 } 414 } 415 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 416 417 static int restore_vsx(struct task_struct *tsk) 418 { 419 if (cpu_has_feature(CPU_FTR_VSX)) { 420 tsk->thread.used_vsr = 1; 421 return 1; 422 } 423 424 return 0; 425 } 426 #else 427 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 428 #endif /* CONFIG_VSX */ 429 430 #ifdef CONFIG_SPE 431 void giveup_spe(struct task_struct *tsk) 432 { 433 check_if_tm_restore_required(tsk); 434 435 msr_check_and_set(MSR_SPE); 436 __giveup_spe(tsk); 437 msr_check_and_clear(MSR_SPE); 438 } 439 EXPORT_SYMBOL(giveup_spe); 440 441 void enable_kernel_spe(void) 442 { 443 WARN_ON(preemptible()); 444 445 msr_check_and_set(MSR_SPE); 446 447 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 448 check_if_tm_restore_required(current); 449 __giveup_spe(current); 450 } 451 } 452 EXPORT_SYMBOL(enable_kernel_spe); 453 454 void flush_spe_to_thread(struct task_struct *tsk) 455 { 456 if (tsk->thread.regs) { 457 preempt_disable(); 458 if (tsk->thread.regs->msr & MSR_SPE) { 459 BUG_ON(tsk != current); 460 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 461 giveup_spe(tsk); 462 } 463 preempt_enable(); 464 } 465 } 466 #endif /* CONFIG_SPE */ 467 468 static unsigned long msr_all_available; 469 470 static int __init init_msr_all_available(void) 471 { 472 #ifdef CONFIG_PPC_FPU 473 msr_all_available |= MSR_FP; 474 #endif 475 #ifdef CONFIG_ALTIVEC 476 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 477 msr_all_available |= MSR_VEC; 478 #endif 479 #ifdef CONFIG_VSX 480 if (cpu_has_feature(CPU_FTR_VSX)) 481 msr_all_available |= MSR_VSX; 482 #endif 483 #ifdef CONFIG_SPE 484 if (cpu_has_feature(CPU_FTR_SPE)) 485 msr_all_available |= MSR_SPE; 486 #endif 487 488 return 0; 489 } 490 early_initcall(init_msr_all_available); 491 492 void giveup_all(struct task_struct *tsk) 493 { 494 unsigned long usermsr; 495 496 if (!tsk->thread.regs) 497 return; 498 499 usermsr = tsk->thread.regs->msr; 500 501 if ((usermsr & msr_all_available) == 0) 502 return; 503 504 msr_check_and_set(msr_all_available); 505 check_if_tm_restore_required(tsk); 506 507 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 508 509 #ifdef CONFIG_PPC_FPU 510 if (usermsr & MSR_FP) 511 __giveup_fpu(tsk); 512 #endif 513 #ifdef CONFIG_ALTIVEC 514 if (usermsr & MSR_VEC) 515 __giveup_altivec(tsk); 516 #endif 517 #ifdef CONFIG_SPE 518 if (usermsr & MSR_SPE) 519 __giveup_spe(tsk); 520 #endif 521 522 msr_check_and_clear(msr_all_available); 523 } 524 EXPORT_SYMBOL(giveup_all); 525 526 void restore_math(struct pt_regs *regs) 527 { 528 unsigned long msr; 529 530 if (!msr_tm_active(regs->msr) && 531 !current->thread.load_fp && !loadvec(current->thread)) 532 return; 533 534 msr = regs->msr; 535 msr_check_and_set(msr_all_available); 536 537 /* 538 * Only reload if the bit is not set in the user MSR, the bit BEING set 539 * indicates that the registers are hot 540 */ 541 if ((!(msr & MSR_FP)) && restore_fp(current)) 542 msr |= MSR_FP | current->thread.fpexc_mode; 543 544 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 545 msr |= MSR_VEC; 546 547 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 548 restore_vsx(current)) { 549 msr |= MSR_VSX; 550 } 551 552 msr_check_and_clear(msr_all_available); 553 554 regs->msr = msr; 555 } 556 557 void save_all(struct task_struct *tsk) 558 { 559 unsigned long usermsr; 560 561 if (!tsk->thread.regs) 562 return; 563 564 usermsr = tsk->thread.regs->msr; 565 566 if ((usermsr & msr_all_available) == 0) 567 return; 568 569 msr_check_and_set(msr_all_available); 570 571 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 572 573 if (usermsr & MSR_FP) 574 save_fpu(tsk); 575 576 if (usermsr & MSR_VEC) 577 save_altivec(tsk); 578 579 if (usermsr & MSR_SPE) 580 __giveup_spe(tsk); 581 582 msr_check_and_clear(msr_all_available); 583 } 584 585 void flush_all_to_thread(struct task_struct *tsk) 586 { 587 if (tsk->thread.regs) { 588 preempt_disable(); 589 BUG_ON(tsk != current); 590 save_all(tsk); 591 592 #ifdef CONFIG_SPE 593 if (tsk->thread.regs->msr & MSR_SPE) 594 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 595 #endif 596 597 preempt_enable(); 598 } 599 } 600 EXPORT_SYMBOL(flush_all_to_thread); 601 602 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 603 void do_send_trap(struct pt_regs *regs, unsigned long address, 604 unsigned long error_code, int breakpt) 605 { 606 current->thread.trap_nr = TRAP_HWBKPT; 607 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 608 11, SIGSEGV) == NOTIFY_STOP) 609 return; 610 611 /* Deliver the signal to userspace */ 612 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 613 (void __user *)address); 614 } 615 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 616 void do_break (struct pt_regs *regs, unsigned long address, 617 unsigned long error_code) 618 { 619 siginfo_t info; 620 621 current->thread.trap_nr = TRAP_HWBKPT; 622 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 623 11, SIGSEGV) == NOTIFY_STOP) 624 return; 625 626 if (debugger_break_match(regs)) 627 return; 628 629 /* Clear the breakpoint */ 630 hw_breakpoint_disable(); 631 632 /* Deliver the signal to userspace */ 633 info.si_signo = SIGTRAP; 634 info.si_errno = 0; 635 info.si_code = TRAP_HWBKPT; 636 info.si_addr = (void __user *)address; 637 force_sig_info(SIGTRAP, &info, current); 638 } 639 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 640 641 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 642 643 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 644 /* 645 * Set the debug registers back to their default "safe" values. 646 */ 647 static void set_debug_reg_defaults(struct thread_struct *thread) 648 { 649 thread->debug.iac1 = thread->debug.iac2 = 0; 650 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 651 thread->debug.iac3 = thread->debug.iac4 = 0; 652 #endif 653 thread->debug.dac1 = thread->debug.dac2 = 0; 654 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 655 thread->debug.dvc1 = thread->debug.dvc2 = 0; 656 #endif 657 thread->debug.dbcr0 = 0; 658 #ifdef CONFIG_BOOKE 659 /* 660 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 661 */ 662 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 663 DBCR1_IAC3US | DBCR1_IAC4US; 664 /* 665 * Force Data Address Compare User/Supervisor bits to be User-only 666 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 667 */ 668 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 669 #else 670 thread->debug.dbcr1 = 0; 671 #endif 672 } 673 674 static void prime_debug_regs(struct debug_reg *debug) 675 { 676 /* 677 * We could have inherited MSR_DE from userspace, since 678 * it doesn't get cleared on exception entry. Make sure 679 * MSR_DE is clear before we enable any debug events. 680 */ 681 mtmsr(mfmsr() & ~MSR_DE); 682 683 mtspr(SPRN_IAC1, debug->iac1); 684 mtspr(SPRN_IAC2, debug->iac2); 685 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 686 mtspr(SPRN_IAC3, debug->iac3); 687 mtspr(SPRN_IAC4, debug->iac4); 688 #endif 689 mtspr(SPRN_DAC1, debug->dac1); 690 mtspr(SPRN_DAC2, debug->dac2); 691 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 692 mtspr(SPRN_DVC1, debug->dvc1); 693 mtspr(SPRN_DVC2, debug->dvc2); 694 #endif 695 mtspr(SPRN_DBCR0, debug->dbcr0); 696 mtspr(SPRN_DBCR1, debug->dbcr1); 697 #ifdef CONFIG_BOOKE 698 mtspr(SPRN_DBCR2, debug->dbcr2); 699 #endif 700 } 701 /* 702 * Unless neither the old or new thread are making use of the 703 * debug registers, set the debug registers from the values 704 * stored in the new thread. 705 */ 706 void switch_booke_debug_regs(struct debug_reg *new_debug) 707 { 708 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 709 || (new_debug->dbcr0 & DBCR0_IDM)) 710 prime_debug_regs(new_debug); 711 } 712 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 713 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 714 #ifndef CONFIG_HAVE_HW_BREAKPOINT 715 static void set_debug_reg_defaults(struct thread_struct *thread) 716 { 717 thread->hw_brk.address = 0; 718 thread->hw_brk.type = 0; 719 set_breakpoint(&thread->hw_brk); 720 } 721 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 722 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 723 724 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 725 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 726 { 727 mtspr(SPRN_DAC1, dabr); 728 #ifdef CONFIG_PPC_47x 729 isync(); 730 #endif 731 return 0; 732 } 733 #elif defined(CONFIG_PPC_BOOK3S) 734 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 735 { 736 mtspr(SPRN_DABR, dabr); 737 if (cpu_has_feature(CPU_FTR_DABRX)) 738 mtspr(SPRN_DABRX, dabrx); 739 return 0; 740 } 741 #elif defined(CONFIG_PPC_8xx) 742 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 743 { 744 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 745 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 746 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 747 748 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 749 lctrl1 |= 0xa0000; 750 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 751 lctrl1 |= 0xf0000; 752 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 753 lctrl2 = 0; 754 755 mtspr(SPRN_LCTRL2, 0); 756 mtspr(SPRN_CMPE, addr); 757 mtspr(SPRN_CMPF, addr + 4); 758 mtspr(SPRN_LCTRL1, lctrl1); 759 mtspr(SPRN_LCTRL2, lctrl2); 760 761 return 0; 762 } 763 #else 764 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 765 { 766 return -EINVAL; 767 } 768 #endif 769 770 static inline int set_dabr(struct arch_hw_breakpoint *brk) 771 { 772 unsigned long dabr, dabrx; 773 774 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 775 dabrx = ((brk->type >> 3) & 0x7); 776 777 if (ppc_md.set_dabr) 778 return ppc_md.set_dabr(dabr, dabrx); 779 780 return __set_dabr(dabr, dabrx); 781 } 782 783 static inline int set_dawr(struct arch_hw_breakpoint *brk) 784 { 785 unsigned long dawr, dawrx, mrd; 786 787 dawr = brk->address; 788 789 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 790 << (63 - 58); //* read/write bits */ 791 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 792 << (63 - 59); //* translate */ 793 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 794 >> 3; //* PRIM bits */ 795 /* dawr length is stored in field MDR bits 48:53. Matches range in 796 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 797 0b111111=64DW. 798 brk->len is in bytes. 799 This aligns up to double word size, shifts and does the bias. 800 */ 801 mrd = ((brk->len + 7) >> 3) - 1; 802 dawrx |= (mrd & 0x3f) << (63 - 53); 803 804 if (ppc_md.set_dawr) 805 return ppc_md.set_dawr(dawr, dawrx); 806 mtspr(SPRN_DAWR, dawr); 807 mtspr(SPRN_DAWRX, dawrx); 808 return 0; 809 } 810 811 void __set_breakpoint(struct arch_hw_breakpoint *brk) 812 { 813 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 814 815 if (cpu_has_feature(CPU_FTR_DAWR)) 816 set_dawr(brk); 817 else 818 set_dabr(brk); 819 } 820 821 void set_breakpoint(struct arch_hw_breakpoint *brk) 822 { 823 preempt_disable(); 824 __set_breakpoint(brk); 825 preempt_enable(); 826 } 827 828 #ifdef CONFIG_PPC64 829 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 830 #endif 831 832 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 833 struct arch_hw_breakpoint *b) 834 { 835 if (a->address != b->address) 836 return false; 837 if (a->type != b->type) 838 return false; 839 if (a->len != b->len) 840 return false; 841 return true; 842 } 843 844 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 845 846 static inline bool tm_enabled(struct task_struct *tsk) 847 { 848 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 849 } 850 851 static void tm_reclaim_thread(struct thread_struct *thr, 852 struct thread_info *ti, uint8_t cause) 853 { 854 /* 855 * Use the current MSR TM suspended bit to track if we have 856 * checkpointed state outstanding. 857 * On signal delivery, we'd normally reclaim the checkpointed 858 * state to obtain stack pointer (see:get_tm_stackpointer()). 859 * This will then directly return to userspace without going 860 * through __switch_to(). However, if the stack frame is bad, 861 * we need to exit this thread which calls __switch_to() which 862 * will again attempt to reclaim the already saved tm state. 863 * Hence we need to check that we've not already reclaimed 864 * this state. 865 * We do this using the current MSR, rather tracking it in 866 * some specific thread_struct bit, as it has the additional 867 * benefit of checking for a potential TM bad thing exception. 868 */ 869 if (!MSR_TM_SUSPENDED(mfmsr())) 870 return; 871 872 giveup_all(container_of(thr, struct task_struct, thread)); 873 874 tm_reclaim(thr, cause); 875 876 /* 877 * If we are in a transaction and FP is off then we can't have 878 * used FP inside that transaction. Hence the checkpointed 879 * state is the same as the live state. We need to copy the 880 * live state to the checkpointed state so that when the 881 * transaction is restored, the checkpointed state is correct 882 * and the aborted transaction sees the correct state. We use 883 * ckpt_regs.msr here as that's what tm_reclaim will use to 884 * determine if it's going to write the checkpointed state or 885 * not. So either this will write the checkpointed registers, 886 * or reclaim will. Similarly for VMX. 887 */ 888 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 889 memcpy(&thr->ckfp_state, &thr->fp_state, 890 sizeof(struct thread_fp_state)); 891 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 892 memcpy(&thr->ckvr_state, &thr->vr_state, 893 sizeof(struct thread_vr_state)); 894 } 895 896 void tm_reclaim_current(uint8_t cause) 897 { 898 tm_enable(); 899 tm_reclaim_thread(¤t->thread, current_thread_info(), cause); 900 } 901 902 static inline void tm_reclaim_task(struct task_struct *tsk) 903 { 904 /* We have to work out if we're switching from/to a task that's in the 905 * middle of a transaction. 906 * 907 * In switching we need to maintain a 2nd register state as 908 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 909 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 910 * ckvr_state 911 * 912 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 913 */ 914 struct thread_struct *thr = &tsk->thread; 915 916 if (!thr->regs) 917 return; 918 919 if (!MSR_TM_ACTIVE(thr->regs->msr)) 920 goto out_and_saveregs; 921 922 WARN_ON(tm_suspend_disabled); 923 924 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 925 "ccr=%lx, msr=%lx, trap=%lx)\n", 926 tsk->pid, thr->regs->nip, 927 thr->regs->ccr, thr->regs->msr, 928 thr->regs->trap); 929 930 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); 931 932 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 933 tsk->pid); 934 935 out_and_saveregs: 936 /* Always save the regs here, even if a transaction's not active. 937 * This context-switches a thread's TM info SPRs. We do it here to 938 * be consistent with the restore path (in recheckpoint) which 939 * cannot happen later in _switch(). 940 */ 941 tm_save_sprs(thr); 942 } 943 944 extern void __tm_recheckpoint(struct thread_struct *thread); 945 946 void tm_recheckpoint(struct thread_struct *thread) 947 { 948 unsigned long flags; 949 950 if (!(thread->regs->msr & MSR_TM)) 951 return; 952 953 /* We really can't be interrupted here as the TEXASR registers can't 954 * change and later in the trecheckpoint code, we have a userspace R1. 955 * So let's hard disable over this region. 956 */ 957 local_irq_save(flags); 958 hard_irq_disable(); 959 960 /* The TM SPRs are restored here, so that TEXASR.FS can be set 961 * before the trecheckpoint and no explosion occurs. 962 */ 963 tm_restore_sprs(thread); 964 965 __tm_recheckpoint(thread); 966 967 local_irq_restore(flags); 968 } 969 970 static inline void tm_recheckpoint_new_task(struct task_struct *new) 971 { 972 if (!cpu_has_feature(CPU_FTR_TM)) 973 return; 974 975 /* Recheckpoint the registers of the thread we're about to switch to. 976 * 977 * If the task was using FP, we non-lazily reload both the original and 978 * the speculative FP register states. This is because the kernel 979 * doesn't see if/when a TM rollback occurs, so if we take an FP 980 * unavailable later, we are unable to determine which set of FP regs 981 * need to be restored. 982 */ 983 if (!tm_enabled(new)) 984 return; 985 986 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 987 tm_restore_sprs(&new->thread); 988 return; 989 } 990 /* Recheckpoint to restore original checkpointed register state. */ 991 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 992 new->pid, new->thread.regs->msr); 993 994 tm_recheckpoint(&new->thread); 995 996 /* 997 * The checkpointed state has been restored but the live state has 998 * not, ensure all the math functionality is turned off to trigger 999 * restore_math() to reload. 1000 */ 1001 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1002 1003 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1004 "(kernel msr 0x%lx)\n", 1005 new->pid, mfmsr()); 1006 } 1007 1008 static inline void __switch_to_tm(struct task_struct *prev, 1009 struct task_struct *new) 1010 { 1011 if (cpu_has_feature(CPU_FTR_TM)) { 1012 if (tm_enabled(prev) || tm_enabled(new)) 1013 tm_enable(); 1014 1015 if (tm_enabled(prev)) { 1016 prev->thread.load_tm++; 1017 tm_reclaim_task(prev); 1018 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1019 prev->thread.regs->msr &= ~MSR_TM; 1020 } 1021 1022 tm_recheckpoint_new_task(new); 1023 } 1024 } 1025 1026 /* 1027 * This is called if we are on the way out to userspace and the 1028 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1029 * FP and/or vector state and does so if necessary. 1030 * If userspace is inside a transaction (whether active or 1031 * suspended) and FP/VMX/VSX instructions have ever been enabled 1032 * inside that transaction, then we have to keep them enabled 1033 * and keep the FP/VMX/VSX state loaded while ever the transaction 1034 * continues. The reason is that if we didn't, and subsequently 1035 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1036 * we don't know whether it's the same transaction, and thus we 1037 * don't know which of the checkpointed state and the transactional 1038 * state to use. 1039 */ 1040 void restore_tm_state(struct pt_regs *regs) 1041 { 1042 unsigned long msr_diff; 1043 1044 /* 1045 * This is the only moment we should clear TIF_RESTORE_TM as 1046 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1047 * again, anything else could lead to an incorrect ckpt_msr being 1048 * saved and therefore incorrect signal contexts. 1049 */ 1050 clear_thread_flag(TIF_RESTORE_TM); 1051 if (!MSR_TM_ACTIVE(regs->msr)) 1052 return; 1053 1054 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1055 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1056 1057 /* Ensure that restore_math() will restore */ 1058 if (msr_diff & MSR_FP) 1059 current->thread.load_fp = 1; 1060 #ifdef CONFIG_ALTIVEC 1061 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1062 current->thread.load_vec = 1; 1063 #endif 1064 restore_math(regs); 1065 1066 regs->msr |= msr_diff; 1067 } 1068 1069 #else 1070 #define tm_recheckpoint_new_task(new) 1071 #define __switch_to_tm(prev, new) 1072 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1073 1074 static inline void save_sprs(struct thread_struct *t) 1075 { 1076 #ifdef CONFIG_ALTIVEC 1077 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1078 t->vrsave = mfspr(SPRN_VRSAVE); 1079 #endif 1080 #ifdef CONFIG_PPC_BOOK3S_64 1081 if (cpu_has_feature(CPU_FTR_DSCR)) 1082 t->dscr = mfspr(SPRN_DSCR); 1083 1084 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1085 t->bescr = mfspr(SPRN_BESCR); 1086 t->ebbhr = mfspr(SPRN_EBBHR); 1087 t->ebbrr = mfspr(SPRN_EBBRR); 1088 1089 t->fscr = mfspr(SPRN_FSCR); 1090 1091 /* 1092 * Note that the TAR is not available for use in the kernel. 1093 * (To provide this, the TAR should be backed up/restored on 1094 * exception entry/exit instead, and be in pt_regs. FIXME, 1095 * this should be in pt_regs anyway (for debug).) 1096 */ 1097 t->tar = mfspr(SPRN_TAR); 1098 } 1099 #endif 1100 } 1101 1102 static inline void restore_sprs(struct thread_struct *old_thread, 1103 struct thread_struct *new_thread) 1104 { 1105 #ifdef CONFIG_ALTIVEC 1106 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1107 old_thread->vrsave != new_thread->vrsave) 1108 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1109 #endif 1110 #ifdef CONFIG_PPC_BOOK3S_64 1111 if (cpu_has_feature(CPU_FTR_DSCR)) { 1112 u64 dscr = get_paca()->dscr_default; 1113 if (new_thread->dscr_inherit) 1114 dscr = new_thread->dscr; 1115 1116 if (old_thread->dscr != dscr) 1117 mtspr(SPRN_DSCR, dscr); 1118 } 1119 1120 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1121 if (old_thread->bescr != new_thread->bescr) 1122 mtspr(SPRN_BESCR, new_thread->bescr); 1123 if (old_thread->ebbhr != new_thread->ebbhr) 1124 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1125 if (old_thread->ebbrr != new_thread->ebbrr) 1126 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1127 1128 if (old_thread->fscr != new_thread->fscr) 1129 mtspr(SPRN_FSCR, new_thread->fscr); 1130 1131 if (old_thread->tar != new_thread->tar) 1132 mtspr(SPRN_TAR, new_thread->tar); 1133 } 1134 1135 if (cpu_has_feature(CPU_FTR_ARCH_300) && 1136 old_thread->tidr != new_thread->tidr) 1137 mtspr(SPRN_TIDR, new_thread->tidr); 1138 #endif 1139 } 1140 1141 #ifdef CONFIG_PPC_BOOK3S_64 1142 #define CP_SIZE 128 1143 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE))); 1144 #endif 1145 1146 struct task_struct *__switch_to(struct task_struct *prev, 1147 struct task_struct *new) 1148 { 1149 struct thread_struct *new_thread, *old_thread; 1150 struct task_struct *last; 1151 #ifdef CONFIG_PPC_BOOK3S_64 1152 struct ppc64_tlb_batch *batch; 1153 #endif 1154 1155 new_thread = &new->thread; 1156 old_thread = ¤t->thread; 1157 1158 WARN_ON(!irqs_disabled()); 1159 1160 #ifdef CONFIG_PPC64 1161 /* 1162 * Collect processor utilization data per process 1163 */ 1164 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 1165 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); 1166 long unsigned start_tb, current_tb; 1167 start_tb = old_thread->start_tb; 1168 cu->current_tb = current_tb = mfspr(SPRN_PURR); 1169 old_thread->accum_tb += (current_tb - start_tb); 1170 new_thread->start_tb = current_tb; 1171 } 1172 #endif /* CONFIG_PPC64 */ 1173 1174 #ifdef CONFIG_PPC_BOOK3S_64 1175 batch = this_cpu_ptr(&ppc64_tlb_batch); 1176 if (batch->active) { 1177 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1178 if (batch->index) 1179 __flush_tlb_pending(batch); 1180 batch->active = 0; 1181 } 1182 #endif /* CONFIG_PPC_BOOK3S_64 */ 1183 1184 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1185 switch_booke_debug_regs(&new->thread.debug); 1186 #else 1187 /* 1188 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1189 * schedule DABR 1190 */ 1191 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1192 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1193 __set_breakpoint(&new->thread.hw_brk); 1194 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1195 #endif 1196 1197 /* 1198 * We need to save SPRs before treclaim/trecheckpoint as these will 1199 * change a number of them. 1200 */ 1201 save_sprs(&prev->thread); 1202 1203 /* Save FPU, Altivec, VSX and SPE state */ 1204 giveup_all(prev); 1205 1206 __switch_to_tm(prev, new); 1207 1208 if (!radix_enabled()) { 1209 /* 1210 * We can't take a PMU exception inside _switch() since there 1211 * is a window where the kernel stack SLB and the kernel stack 1212 * are out of sync. Hard disable here. 1213 */ 1214 hard_irq_disable(); 1215 } 1216 1217 /* 1218 * Call restore_sprs() before calling _switch(). If we move it after 1219 * _switch() then we miss out on calling it for new tasks. The reason 1220 * for this is we manually create a stack frame for new tasks that 1221 * directly returns through ret_from_fork() or 1222 * ret_from_kernel_thread(). See copy_thread() for details. 1223 */ 1224 restore_sprs(old_thread, new_thread); 1225 1226 last = _switch(old_thread, new_thread); 1227 1228 #ifdef CONFIG_PPC_BOOK3S_64 1229 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1230 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1231 batch = this_cpu_ptr(&ppc64_tlb_batch); 1232 batch->active = 1; 1233 } 1234 1235 if (current_thread_info()->task->thread.regs) { 1236 restore_math(current_thread_info()->task->thread.regs); 1237 1238 /* 1239 * The copy-paste buffer can only store into foreign real 1240 * addresses, so unprivileged processes can not see the 1241 * data or use it in any way unless they have foreign real 1242 * mappings. If the new process has the foreign real address 1243 * mappings, we must issue a cp_abort to clear any state and 1244 * prevent snooping, corruption or a covert channel. 1245 * 1246 * DD1 allows paste into normal system memory so we do an 1247 * unpaired copy, rather than cp_abort, to clear the buffer, 1248 * since cp_abort is quite expensive. 1249 */ 1250 if (current_thread_info()->task->thread.used_vas) { 1251 asm volatile(PPC_CP_ABORT); 1252 } else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) { 1253 asm volatile(PPC_COPY(%0, %1) 1254 : : "r"(dummy_copy_buffer), "r"(0)); 1255 } 1256 } 1257 #endif /* CONFIG_PPC_BOOK3S_64 */ 1258 1259 return last; 1260 } 1261 1262 static int instructions_to_print = 16; 1263 1264 static void show_instructions(struct pt_regs *regs) 1265 { 1266 int i; 1267 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 1268 sizeof(int)); 1269 1270 printk("Instruction dump:"); 1271 1272 for (i = 0; i < instructions_to_print; i++) { 1273 int instr; 1274 1275 if (!(i % 8)) 1276 pr_cont("\n"); 1277 1278 #if !defined(CONFIG_BOOKE) 1279 /* If executing with the IMMU off, adjust pc rather 1280 * than print XXXXXXXX. 1281 */ 1282 if (!(regs->msr & MSR_IR)) 1283 pc = (unsigned long)phys_to_virt(pc); 1284 #endif 1285 1286 if (!__kernel_text_address(pc) || 1287 probe_kernel_address((unsigned int __user *)pc, instr)) { 1288 pr_cont("XXXXXXXX "); 1289 } else { 1290 if (regs->nip == pc) 1291 pr_cont("<%08x> ", instr); 1292 else 1293 pr_cont("%08x ", instr); 1294 } 1295 1296 pc += sizeof(int); 1297 } 1298 1299 pr_cont("\n"); 1300 } 1301 1302 struct regbit { 1303 unsigned long bit; 1304 const char *name; 1305 }; 1306 1307 static struct regbit msr_bits[] = { 1308 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1309 {MSR_SF, "SF"}, 1310 {MSR_HV, "HV"}, 1311 #endif 1312 {MSR_VEC, "VEC"}, 1313 {MSR_VSX, "VSX"}, 1314 #ifdef CONFIG_BOOKE 1315 {MSR_CE, "CE"}, 1316 #endif 1317 {MSR_EE, "EE"}, 1318 {MSR_PR, "PR"}, 1319 {MSR_FP, "FP"}, 1320 {MSR_ME, "ME"}, 1321 #ifdef CONFIG_BOOKE 1322 {MSR_DE, "DE"}, 1323 #else 1324 {MSR_SE, "SE"}, 1325 {MSR_BE, "BE"}, 1326 #endif 1327 {MSR_IR, "IR"}, 1328 {MSR_DR, "DR"}, 1329 {MSR_PMM, "PMM"}, 1330 #ifndef CONFIG_BOOKE 1331 {MSR_RI, "RI"}, 1332 {MSR_LE, "LE"}, 1333 #endif 1334 {0, NULL} 1335 }; 1336 1337 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1338 { 1339 const char *s = ""; 1340 1341 for (; bits->bit; ++bits) 1342 if (val & bits->bit) { 1343 pr_cont("%s%s", s, bits->name); 1344 s = sep; 1345 } 1346 } 1347 1348 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1349 static struct regbit msr_tm_bits[] = { 1350 {MSR_TS_T, "T"}, 1351 {MSR_TS_S, "S"}, 1352 {MSR_TM, "E"}, 1353 {0, NULL} 1354 }; 1355 1356 static void print_tm_bits(unsigned long val) 1357 { 1358 /* 1359 * This only prints something if at least one of the TM bit is set. 1360 * Inside the TM[], the output means: 1361 * E: Enabled (bit 32) 1362 * S: Suspended (bit 33) 1363 * T: Transactional (bit 34) 1364 */ 1365 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1366 pr_cont(",TM["); 1367 print_bits(val, msr_tm_bits, ""); 1368 pr_cont("]"); 1369 } 1370 } 1371 #else 1372 static void print_tm_bits(unsigned long val) {} 1373 #endif 1374 1375 static void print_msr_bits(unsigned long val) 1376 { 1377 pr_cont("<"); 1378 print_bits(val, msr_bits, ","); 1379 print_tm_bits(val); 1380 pr_cont(">"); 1381 } 1382 1383 #ifdef CONFIG_PPC64 1384 #define REG "%016lx" 1385 #define REGS_PER_LINE 4 1386 #define LAST_VOLATILE 13 1387 #else 1388 #define REG "%08lx" 1389 #define REGS_PER_LINE 8 1390 #define LAST_VOLATILE 12 1391 #endif 1392 1393 void show_regs(struct pt_regs * regs) 1394 { 1395 int i, trap; 1396 1397 show_regs_print_info(KERN_DEFAULT); 1398 1399 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1400 regs->nip, regs->link, regs->ctr); 1401 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1402 regs, regs->trap, print_tainted(), init_utsname()->release); 1403 printk("MSR: "REG" ", regs->msr); 1404 print_msr_bits(regs->msr); 1405 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1406 trap = TRAP(regs); 1407 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1408 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1409 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1410 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1411 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1412 #else 1413 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1414 #endif 1415 #ifdef CONFIG_PPC64 1416 pr_cont("SOFTE: %ld ", regs->softe); 1417 #endif 1418 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1419 if (MSR_TM_ACTIVE(regs->msr)) 1420 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1421 #endif 1422 1423 for (i = 0; i < 32; i++) { 1424 if ((i % REGS_PER_LINE) == 0) 1425 pr_cont("\nGPR%02d: ", i); 1426 pr_cont(REG " ", regs->gpr[i]); 1427 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1428 break; 1429 } 1430 pr_cont("\n"); 1431 #ifdef CONFIG_KALLSYMS 1432 /* 1433 * Lookup NIP late so we have the best change of getting the 1434 * above info out without failing 1435 */ 1436 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1437 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1438 #endif 1439 show_stack(current, (unsigned long *) regs->gpr[1]); 1440 if (!user_mode(regs)) 1441 show_instructions(regs); 1442 } 1443 1444 void flush_thread(void) 1445 { 1446 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1447 flush_ptrace_hw_breakpoint(current); 1448 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1449 set_debug_reg_defaults(¤t->thread); 1450 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1451 } 1452 1453 int set_thread_uses_vas(void) 1454 { 1455 #ifdef CONFIG_PPC_BOOK3S_64 1456 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1457 return -EINVAL; 1458 1459 current->thread.used_vas = 1; 1460 1461 /* 1462 * Even a process that has no foreign real address mapping can use 1463 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1464 * to clear any pending COPY and prevent a covert channel. 1465 * 1466 * __switch_to() will issue CP_ABORT on future context switches. 1467 */ 1468 asm volatile(PPC_CP_ABORT); 1469 1470 #endif /* CONFIG_PPC_BOOK3S_64 */ 1471 return 0; 1472 } 1473 1474 #ifdef CONFIG_PPC64 1475 static DEFINE_SPINLOCK(vas_thread_id_lock); 1476 static DEFINE_IDA(vas_thread_ida); 1477 1478 /* 1479 * We need to assign a unique thread id to each thread in a process. 1480 * 1481 * This thread id, referred to as TIDR, and separate from the Linux's tgid, 1482 * is intended to be used to direct an ASB_Notify from the hardware to the 1483 * thread, when a suitable event occurs in the system. 1484 * 1485 * One such event is a "paste" instruction in the context of Fast Thread 1486 * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard 1487 * (VAS) in POWER9. 1488 * 1489 * To get a unique TIDR per process we could simply reuse task_pid_nr() but 1490 * the problem is that task_pid_nr() is not yet available copy_thread() is 1491 * called. Fixing that would require changing more intrusive arch-neutral 1492 * code in code path in copy_process()?. 1493 * 1494 * Further, to assign unique TIDRs within each process, we need an atomic 1495 * field (or an IDR) in task_struct, which again intrudes into the arch- 1496 * neutral code. So try to assign globally unique TIDRs for now. 1497 * 1498 * NOTE: TIDR 0 indicates that the thread does not need a TIDR value. 1499 * For now, only threads that expect to be notified by the VAS 1500 * hardware need a TIDR value and we assign values > 0 for those. 1501 */ 1502 #define MAX_THREAD_CONTEXT ((1 << 16) - 1) 1503 static int assign_thread_tidr(void) 1504 { 1505 int index; 1506 int err; 1507 1508 again: 1509 if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL)) 1510 return -ENOMEM; 1511 1512 spin_lock(&vas_thread_id_lock); 1513 err = ida_get_new_above(&vas_thread_ida, 1, &index); 1514 spin_unlock(&vas_thread_id_lock); 1515 1516 if (err == -EAGAIN) 1517 goto again; 1518 else if (err) 1519 return err; 1520 1521 if (index > MAX_THREAD_CONTEXT) { 1522 spin_lock(&vas_thread_id_lock); 1523 ida_remove(&vas_thread_ida, index); 1524 spin_unlock(&vas_thread_id_lock); 1525 return -ENOMEM; 1526 } 1527 1528 return index; 1529 } 1530 1531 static void free_thread_tidr(int id) 1532 { 1533 spin_lock(&vas_thread_id_lock); 1534 ida_remove(&vas_thread_ida, id); 1535 spin_unlock(&vas_thread_id_lock); 1536 } 1537 1538 /* 1539 * Clear any TIDR value assigned to this thread. 1540 */ 1541 void clear_thread_tidr(struct task_struct *t) 1542 { 1543 if (!t->thread.tidr) 1544 return; 1545 1546 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1547 WARN_ON_ONCE(1); 1548 return; 1549 } 1550 1551 mtspr(SPRN_TIDR, 0); 1552 free_thread_tidr(t->thread.tidr); 1553 t->thread.tidr = 0; 1554 } 1555 1556 void arch_release_task_struct(struct task_struct *t) 1557 { 1558 clear_thread_tidr(t); 1559 } 1560 1561 /* 1562 * Assign a unique TIDR (thread id) for task @t and set it in the thread 1563 * structure. For now, we only support setting TIDR for 'current' task. 1564 */ 1565 int set_thread_tidr(struct task_struct *t) 1566 { 1567 int rc; 1568 1569 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1570 return -EINVAL; 1571 1572 if (t != current) 1573 return -EINVAL; 1574 1575 if (t->thread.tidr) 1576 return 0; 1577 1578 rc = assign_thread_tidr(); 1579 if (rc < 0) 1580 return rc; 1581 1582 t->thread.tidr = rc; 1583 mtspr(SPRN_TIDR, t->thread.tidr); 1584 1585 return 0; 1586 } 1587 1588 #endif /* CONFIG_PPC64 */ 1589 1590 void 1591 release_thread(struct task_struct *t) 1592 { 1593 } 1594 1595 /* 1596 * this gets called so that we can store coprocessor state into memory and 1597 * copy the current task into the new thread. 1598 */ 1599 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1600 { 1601 flush_all_to_thread(src); 1602 /* 1603 * Flush TM state out so we can copy it. __switch_to_tm() does this 1604 * flush but it removes the checkpointed state from the current CPU and 1605 * transitions the CPU out of TM mode. Hence we need to call 1606 * tm_recheckpoint_new_task() (on the same task) to restore the 1607 * checkpointed state back and the TM mode. 1608 * 1609 * Can't pass dst because it isn't ready. Doesn't matter, passing 1610 * dst is only important for __switch_to() 1611 */ 1612 __switch_to_tm(src, src); 1613 1614 *dst = *src; 1615 1616 clear_task_ebb(dst); 1617 1618 return 0; 1619 } 1620 1621 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1622 { 1623 #ifdef CONFIG_PPC_BOOK3S_64 1624 unsigned long sp_vsid; 1625 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1626 1627 if (radix_enabled()) 1628 return; 1629 1630 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1631 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1632 << SLB_VSID_SHIFT_1T; 1633 else 1634 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1635 << SLB_VSID_SHIFT; 1636 sp_vsid |= SLB_VSID_KERNEL | llp; 1637 p->thread.ksp_vsid = sp_vsid; 1638 #endif 1639 } 1640 1641 /* 1642 * Copy a thread.. 1643 */ 1644 1645 /* 1646 * Copy architecture-specific thread state 1647 */ 1648 int copy_thread(unsigned long clone_flags, unsigned long usp, 1649 unsigned long kthread_arg, struct task_struct *p) 1650 { 1651 struct pt_regs *childregs, *kregs; 1652 extern void ret_from_fork(void); 1653 extern void ret_from_kernel_thread(void); 1654 void (*f)(void); 1655 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1656 struct thread_info *ti = task_thread_info(p); 1657 1658 klp_init_thread_info(ti); 1659 1660 /* Copy registers */ 1661 sp -= sizeof(struct pt_regs); 1662 childregs = (struct pt_regs *) sp; 1663 if (unlikely(p->flags & PF_KTHREAD)) { 1664 /* kernel thread */ 1665 memset(childregs, 0, sizeof(struct pt_regs)); 1666 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1667 /* function */ 1668 if (usp) 1669 childregs->gpr[14] = ppc_function_entry((void *)usp); 1670 #ifdef CONFIG_PPC64 1671 clear_tsk_thread_flag(p, TIF_32BIT); 1672 childregs->softe = 1; 1673 #endif 1674 childregs->gpr[15] = kthread_arg; 1675 p->thread.regs = NULL; /* no user register state */ 1676 ti->flags |= _TIF_RESTOREALL; 1677 f = ret_from_kernel_thread; 1678 } else { 1679 /* user thread */ 1680 struct pt_regs *regs = current_pt_regs(); 1681 CHECK_FULL_REGS(regs); 1682 *childregs = *regs; 1683 if (usp) 1684 childregs->gpr[1] = usp; 1685 p->thread.regs = childregs; 1686 childregs->gpr[3] = 0; /* Result from fork() */ 1687 if (clone_flags & CLONE_SETTLS) { 1688 #ifdef CONFIG_PPC64 1689 if (!is_32bit_task()) 1690 childregs->gpr[13] = childregs->gpr[6]; 1691 else 1692 #endif 1693 childregs->gpr[2] = childregs->gpr[6]; 1694 } 1695 1696 f = ret_from_fork; 1697 } 1698 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1699 sp -= STACK_FRAME_OVERHEAD; 1700 1701 /* 1702 * The way this works is that at some point in the future 1703 * some task will call _switch to switch to the new task. 1704 * That will pop off the stack frame created below and start 1705 * the new task running at ret_from_fork. The new task will 1706 * do some house keeping and then return from the fork or clone 1707 * system call, using the stack frame created above. 1708 */ 1709 ((unsigned long *)sp)[0] = 0; 1710 sp -= sizeof(struct pt_regs); 1711 kregs = (struct pt_regs *) sp; 1712 sp -= STACK_FRAME_OVERHEAD; 1713 p->thread.ksp = sp; 1714 #ifdef CONFIG_PPC32 1715 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1716 _ALIGN_UP(sizeof(struct thread_info), 16); 1717 #endif 1718 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1719 p->thread.ptrace_bps[0] = NULL; 1720 #endif 1721 1722 p->thread.fp_save_area = NULL; 1723 #ifdef CONFIG_ALTIVEC 1724 p->thread.vr_save_area = NULL; 1725 #endif 1726 1727 setup_ksp_vsid(p, sp); 1728 1729 #ifdef CONFIG_PPC64 1730 if (cpu_has_feature(CPU_FTR_DSCR)) { 1731 p->thread.dscr_inherit = current->thread.dscr_inherit; 1732 p->thread.dscr = mfspr(SPRN_DSCR); 1733 } 1734 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1735 p->thread.ppr = INIT_PPR; 1736 1737 p->thread.tidr = 0; 1738 #endif 1739 kregs->nip = ppc_function_entry(f); 1740 return 0; 1741 } 1742 1743 /* 1744 * Set up a thread for executing a new program 1745 */ 1746 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1747 { 1748 #ifdef CONFIG_PPC64 1749 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1750 #endif 1751 1752 /* 1753 * If we exec out of a kernel thread then thread.regs will not be 1754 * set. Do it now. 1755 */ 1756 if (!current->thread.regs) { 1757 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1758 current->thread.regs = regs - 1; 1759 } 1760 1761 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1762 /* 1763 * Clear any transactional state, we're exec()ing. The cause is 1764 * not important as there will never be a recheckpoint so it's not 1765 * user visible. 1766 */ 1767 if (MSR_TM_SUSPENDED(mfmsr())) 1768 tm_reclaim_current(0); 1769 #endif 1770 1771 memset(regs->gpr, 0, sizeof(regs->gpr)); 1772 regs->ctr = 0; 1773 regs->link = 0; 1774 regs->xer = 0; 1775 regs->ccr = 0; 1776 regs->gpr[1] = sp; 1777 1778 /* 1779 * We have just cleared all the nonvolatile GPRs, so make 1780 * FULL_REGS(regs) return true. This is necessary to allow 1781 * ptrace to examine the thread immediately after exec. 1782 */ 1783 regs->trap &= ~1UL; 1784 1785 #ifdef CONFIG_PPC32 1786 regs->mq = 0; 1787 regs->nip = start; 1788 regs->msr = MSR_USER; 1789 #else 1790 if (!is_32bit_task()) { 1791 unsigned long entry; 1792 1793 if (is_elf2_task()) { 1794 /* Look ma, no function descriptors! */ 1795 entry = start; 1796 1797 /* 1798 * Ulrich says: 1799 * The latest iteration of the ABI requires that when 1800 * calling a function (at its global entry point), 1801 * the caller must ensure r12 holds the entry point 1802 * address (so that the function can quickly 1803 * establish addressability). 1804 */ 1805 regs->gpr[12] = start; 1806 /* Make sure that's restored on entry to userspace. */ 1807 set_thread_flag(TIF_RESTOREALL); 1808 } else { 1809 unsigned long toc; 1810 1811 /* start is a relocated pointer to the function 1812 * descriptor for the elf _start routine. The first 1813 * entry in the function descriptor is the entry 1814 * address of _start and the second entry is the TOC 1815 * value we need to use. 1816 */ 1817 __get_user(entry, (unsigned long __user *)start); 1818 __get_user(toc, (unsigned long __user *)start+1); 1819 1820 /* Check whether the e_entry function descriptor entries 1821 * need to be relocated before we can use them. 1822 */ 1823 if (load_addr != 0) { 1824 entry += load_addr; 1825 toc += load_addr; 1826 } 1827 regs->gpr[2] = toc; 1828 } 1829 regs->nip = entry; 1830 regs->msr = MSR_USER64; 1831 } else { 1832 regs->nip = start; 1833 regs->gpr[2] = 0; 1834 regs->msr = MSR_USER32; 1835 } 1836 #endif 1837 #ifdef CONFIG_VSX 1838 current->thread.used_vsr = 0; 1839 #endif 1840 current->thread.load_fp = 0; 1841 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1842 current->thread.fp_save_area = NULL; 1843 #ifdef CONFIG_ALTIVEC 1844 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1845 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1846 current->thread.vr_save_area = NULL; 1847 current->thread.vrsave = 0; 1848 current->thread.used_vr = 0; 1849 current->thread.load_vec = 0; 1850 #endif /* CONFIG_ALTIVEC */ 1851 #ifdef CONFIG_SPE 1852 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1853 current->thread.acc = 0; 1854 current->thread.spefscr = 0; 1855 current->thread.used_spe = 0; 1856 #endif /* CONFIG_SPE */ 1857 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1858 current->thread.tm_tfhar = 0; 1859 current->thread.tm_texasr = 0; 1860 current->thread.tm_tfiar = 0; 1861 current->thread.load_tm = 0; 1862 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1863 } 1864 EXPORT_SYMBOL(start_thread); 1865 1866 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1867 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1868 1869 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1870 { 1871 struct pt_regs *regs = tsk->thread.regs; 1872 1873 /* This is a bit hairy. If we are an SPE enabled processor 1874 * (have embedded fp) we store the IEEE exception enable flags in 1875 * fpexc_mode. fpexc_mode is also used for setting FP exception 1876 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1877 if (val & PR_FP_EXC_SW_ENABLE) { 1878 #ifdef CONFIG_SPE 1879 if (cpu_has_feature(CPU_FTR_SPE)) { 1880 /* 1881 * When the sticky exception bits are set 1882 * directly by userspace, it must call prctl 1883 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1884 * in the existing prctl settings) or 1885 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1886 * the bits being set). <fenv.h> functions 1887 * saving and restoring the whole 1888 * floating-point environment need to do so 1889 * anyway to restore the prctl settings from 1890 * the saved environment. 1891 */ 1892 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1893 tsk->thread.fpexc_mode = val & 1894 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1895 return 0; 1896 } else { 1897 return -EINVAL; 1898 } 1899 #else 1900 return -EINVAL; 1901 #endif 1902 } 1903 1904 /* on a CONFIG_SPE this does not hurt us. The bits that 1905 * __pack_fe01 use do not overlap with bits used for 1906 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1907 * on CONFIG_SPE implementations are reserved so writing to 1908 * them does not change anything */ 1909 if (val > PR_FP_EXC_PRECISE) 1910 return -EINVAL; 1911 tsk->thread.fpexc_mode = __pack_fe01(val); 1912 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1913 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1914 | tsk->thread.fpexc_mode; 1915 return 0; 1916 } 1917 1918 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1919 { 1920 unsigned int val; 1921 1922 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1923 #ifdef CONFIG_SPE 1924 if (cpu_has_feature(CPU_FTR_SPE)) { 1925 /* 1926 * When the sticky exception bits are set 1927 * directly by userspace, it must call prctl 1928 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1929 * in the existing prctl settings) or 1930 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1931 * the bits being set). <fenv.h> functions 1932 * saving and restoring the whole 1933 * floating-point environment need to do so 1934 * anyway to restore the prctl settings from 1935 * the saved environment. 1936 */ 1937 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1938 val = tsk->thread.fpexc_mode; 1939 } else 1940 return -EINVAL; 1941 #else 1942 return -EINVAL; 1943 #endif 1944 else 1945 val = __unpack_fe01(tsk->thread.fpexc_mode); 1946 return put_user(val, (unsigned int __user *) adr); 1947 } 1948 1949 int set_endian(struct task_struct *tsk, unsigned int val) 1950 { 1951 struct pt_regs *regs = tsk->thread.regs; 1952 1953 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1954 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1955 return -EINVAL; 1956 1957 if (regs == NULL) 1958 return -EINVAL; 1959 1960 if (val == PR_ENDIAN_BIG) 1961 regs->msr &= ~MSR_LE; 1962 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1963 regs->msr |= MSR_LE; 1964 else 1965 return -EINVAL; 1966 1967 return 0; 1968 } 1969 1970 int get_endian(struct task_struct *tsk, unsigned long adr) 1971 { 1972 struct pt_regs *regs = tsk->thread.regs; 1973 unsigned int val; 1974 1975 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1976 !cpu_has_feature(CPU_FTR_REAL_LE)) 1977 return -EINVAL; 1978 1979 if (regs == NULL) 1980 return -EINVAL; 1981 1982 if (regs->msr & MSR_LE) { 1983 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1984 val = PR_ENDIAN_LITTLE; 1985 else 1986 val = PR_ENDIAN_PPC_LITTLE; 1987 } else 1988 val = PR_ENDIAN_BIG; 1989 1990 return put_user(val, (unsigned int __user *)adr); 1991 } 1992 1993 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1994 { 1995 tsk->thread.align_ctl = val; 1996 return 0; 1997 } 1998 1999 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 2000 { 2001 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 2002 } 2003 2004 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 2005 unsigned long nbytes) 2006 { 2007 unsigned long stack_page; 2008 unsigned long cpu = task_cpu(p); 2009 2010 /* 2011 * Avoid crashing if the stack has overflowed and corrupted 2012 * task_cpu(p), which is in the thread_info struct. 2013 */ 2014 if (cpu < NR_CPUS && cpu_possible(cpu)) { 2015 stack_page = (unsigned long) hardirq_ctx[cpu]; 2016 if (sp >= stack_page + sizeof(struct thread_struct) 2017 && sp <= stack_page + THREAD_SIZE - nbytes) 2018 return 1; 2019 2020 stack_page = (unsigned long) softirq_ctx[cpu]; 2021 if (sp >= stack_page + sizeof(struct thread_struct) 2022 && sp <= stack_page + THREAD_SIZE - nbytes) 2023 return 1; 2024 } 2025 return 0; 2026 } 2027 2028 int validate_sp(unsigned long sp, struct task_struct *p, 2029 unsigned long nbytes) 2030 { 2031 unsigned long stack_page = (unsigned long)task_stack_page(p); 2032 2033 if (sp >= stack_page + sizeof(struct thread_struct) 2034 && sp <= stack_page + THREAD_SIZE - nbytes) 2035 return 1; 2036 2037 return valid_irq_stack(sp, p, nbytes); 2038 } 2039 2040 EXPORT_SYMBOL(validate_sp); 2041 2042 unsigned long get_wchan(struct task_struct *p) 2043 { 2044 unsigned long ip, sp; 2045 int count = 0; 2046 2047 if (!p || p == current || p->state == TASK_RUNNING) 2048 return 0; 2049 2050 sp = p->thread.ksp; 2051 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2052 return 0; 2053 2054 do { 2055 sp = *(unsigned long *)sp; 2056 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2057 p->state == TASK_RUNNING) 2058 return 0; 2059 if (count > 0) { 2060 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2061 if (!in_sched_functions(ip)) 2062 return ip; 2063 } 2064 } while (count++ < 16); 2065 return 0; 2066 } 2067 2068 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2069 2070 void show_stack(struct task_struct *tsk, unsigned long *stack) 2071 { 2072 unsigned long sp, ip, lr, newsp; 2073 int count = 0; 2074 int firstframe = 1; 2075 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2076 int curr_frame = current->curr_ret_stack; 2077 extern void return_to_handler(void); 2078 unsigned long rth = (unsigned long)return_to_handler; 2079 #endif 2080 2081 sp = (unsigned long) stack; 2082 if (tsk == NULL) 2083 tsk = current; 2084 if (sp == 0) { 2085 if (tsk == current) 2086 sp = current_stack_pointer(); 2087 else 2088 sp = tsk->thread.ksp; 2089 } 2090 2091 lr = 0; 2092 printk("Call Trace:\n"); 2093 do { 2094 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2095 return; 2096 2097 stack = (unsigned long *) sp; 2098 newsp = stack[0]; 2099 ip = stack[STACK_FRAME_LR_SAVE]; 2100 if (!firstframe || ip != lr) { 2101 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2102 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2103 if ((ip == rth) && curr_frame >= 0) { 2104 pr_cont(" (%pS)", 2105 (void *)current->ret_stack[curr_frame].ret); 2106 curr_frame--; 2107 } 2108 #endif 2109 if (firstframe) 2110 pr_cont(" (unreliable)"); 2111 pr_cont("\n"); 2112 } 2113 firstframe = 0; 2114 2115 /* 2116 * See if this is an exception frame. 2117 * We look for the "regshere" marker in the current frame. 2118 */ 2119 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2120 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2121 struct pt_regs *regs = (struct pt_regs *) 2122 (sp + STACK_FRAME_OVERHEAD); 2123 lr = regs->link; 2124 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2125 regs->trap, (void *)regs->nip, (void *)lr); 2126 firstframe = 1; 2127 } 2128 2129 sp = newsp; 2130 } while (count++ < kstack_depth_to_print); 2131 } 2132 2133 #ifdef CONFIG_PPC64 2134 /* Called with hard IRQs off */ 2135 void notrace __ppc64_runlatch_on(void) 2136 { 2137 struct thread_info *ti = current_thread_info(); 2138 2139 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2140 /* 2141 * Least significant bit (RUN) is the only writable bit of 2142 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2143 * earliest ISA where this is the case, but it's convenient. 2144 */ 2145 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2146 } else { 2147 unsigned long ctrl; 2148 2149 /* 2150 * Some architectures (e.g., Cell) have writable fields other 2151 * than RUN, so do the read-modify-write. 2152 */ 2153 ctrl = mfspr(SPRN_CTRLF); 2154 ctrl |= CTRL_RUNLATCH; 2155 mtspr(SPRN_CTRLT, ctrl); 2156 } 2157 2158 ti->local_flags |= _TLF_RUNLATCH; 2159 } 2160 2161 /* Called with hard IRQs off */ 2162 void notrace __ppc64_runlatch_off(void) 2163 { 2164 struct thread_info *ti = current_thread_info(); 2165 2166 ti->local_flags &= ~_TLF_RUNLATCH; 2167 2168 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2169 mtspr(SPRN_CTRLT, 0); 2170 } else { 2171 unsigned long ctrl; 2172 2173 ctrl = mfspr(SPRN_CTRLF); 2174 ctrl &= ~CTRL_RUNLATCH; 2175 mtspr(SPRN_CTRLT, ctrl); 2176 } 2177 } 2178 #endif /* CONFIG_PPC64 */ 2179 2180 unsigned long arch_align_stack(unsigned long sp) 2181 { 2182 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2183 sp -= get_random_int() & ~PAGE_MASK; 2184 return sp & ~0xf; 2185 } 2186 2187 static inline unsigned long brk_rnd(void) 2188 { 2189 unsigned long rnd = 0; 2190 2191 /* 8MB for 32bit, 1GB for 64bit */ 2192 if (is_32bit_task()) 2193 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2194 else 2195 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2196 2197 return rnd << PAGE_SHIFT; 2198 } 2199 2200 unsigned long arch_randomize_brk(struct mm_struct *mm) 2201 { 2202 unsigned long base = mm->brk; 2203 unsigned long ret; 2204 2205 #ifdef CONFIG_PPC_BOOK3S_64 2206 /* 2207 * If we are using 1TB segments and we are allowed to randomise 2208 * the heap, we can put it above 1TB so it is backed by a 1TB 2209 * segment. Otherwise the heap will be in the bottom 1TB 2210 * which always uses 256MB segments and this may result in a 2211 * performance penalty. We don't need to worry about radix. For 2212 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2213 */ 2214 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2215 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2216 #endif 2217 2218 ret = PAGE_ALIGN(base + brk_rnd()); 2219 2220 if (ret < mm->brk) 2221 return mm->brk; 2222 2223 return ret; 2224 } 2225 2226