1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan ([email protected]) and 6 * Paul Mackerras ([email protected]) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas ([email protected]) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/stddef.h> 26 #include <linux/unistd.h> 27 #include <linux/ptrace.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/elf.h> 31 #include <linux/prctl.h> 32 #include <linux/init_task.h> 33 #include <linux/export.h> 34 #include <linux/kallsyms.h> 35 #include <linux/mqueue.h> 36 #include <linux/hardirq.h> 37 #include <linux/utsname.h> 38 #include <linux/ftrace.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/personality.h> 41 #include <linux/random.h> 42 #include <linux/hw_breakpoint.h> 43 #include <linux/uaccess.h> 44 #include <linux/elf-randomize.h> 45 #include <linux/pkeys.h> 46 #include <linux/seq_buf.h> 47 48 #include <asm/pgtable.h> 49 #include <asm/io.h> 50 #include <asm/processor.h> 51 #include <asm/mmu.h> 52 #include <asm/prom.h> 53 #include <asm/machdep.h> 54 #include <asm/time.h> 55 #include <asm/runlatch.h> 56 #include <asm/syscalls.h> 57 #include <asm/switch_to.h> 58 #include <asm/tm.h> 59 #include <asm/debug.h> 60 #ifdef CONFIG_PPC64 61 #include <asm/firmware.h> 62 #include <asm/hw_irq.h> 63 #endif 64 #include <asm/code-patching.h> 65 #include <asm/exec.h> 66 #include <asm/livepatch.h> 67 #include <asm/cpu_has_feature.h> 68 #include <asm/asm-prototypes.h> 69 #include <asm/stacktrace.h> 70 71 #include <linux/kprobes.h> 72 #include <linux/kdebug.h> 73 74 /* Transactional Memory debug */ 75 #ifdef TM_DEBUG_SW 76 #define TM_DEBUG(x...) printk(KERN_INFO x) 77 #else 78 #define TM_DEBUG(x...) do { } while(0) 79 #endif 80 81 extern unsigned long _get_SP(void); 82 83 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 84 /* 85 * Are we running in "Suspend disabled" mode? If so we have to block any 86 * sigreturn that would get us into suspended state, and we also warn in some 87 * other paths that we should never reach with suspend disabled. 88 */ 89 bool tm_suspend_disabled __ro_after_init = false; 90 91 static void check_if_tm_restore_required(struct task_struct *tsk) 92 { 93 /* 94 * If we are saving the current thread's registers, and the 95 * thread is in a transactional state, set the TIF_RESTORE_TM 96 * bit so that we know to restore the registers before 97 * returning to userspace. 98 */ 99 if (tsk == current && tsk->thread.regs && 100 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 101 !test_thread_flag(TIF_RESTORE_TM)) { 102 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 103 set_thread_flag(TIF_RESTORE_TM); 104 } 105 } 106 107 static bool tm_active_with_fp(struct task_struct *tsk) 108 { 109 return MSR_TM_ACTIVE(tsk->thread.regs->msr) && 110 (tsk->thread.ckpt_regs.msr & MSR_FP); 111 } 112 113 static bool tm_active_with_altivec(struct task_struct *tsk) 114 { 115 return MSR_TM_ACTIVE(tsk->thread.regs->msr) && 116 (tsk->thread.ckpt_regs.msr & MSR_VEC); 117 } 118 #else 119 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 120 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; } 121 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; } 122 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 123 124 bool strict_msr_control; 125 EXPORT_SYMBOL(strict_msr_control); 126 127 static int __init enable_strict_msr_control(char *str) 128 { 129 strict_msr_control = true; 130 pr_info("Enabling strict facility control\n"); 131 132 return 0; 133 } 134 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 135 136 unsigned long msr_check_and_set(unsigned long bits) 137 { 138 unsigned long oldmsr = mfmsr(); 139 unsigned long newmsr; 140 141 newmsr = oldmsr | bits; 142 143 #ifdef CONFIG_VSX 144 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 145 newmsr |= MSR_VSX; 146 #endif 147 148 if (oldmsr != newmsr) 149 mtmsr_isync(newmsr); 150 151 return newmsr; 152 } 153 EXPORT_SYMBOL_GPL(msr_check_and_set); 154 155 void __msr_check_and_clear(unsigned long bits) 156 { 157 unsigned long oldmsr = mfmsr(); 158 unsigned long newmsr; 159 160 newmsr = oldmsr & ~bits; 161 162 #ifdef CONFIG_VSX 163 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 164 newmsr &= ~MSR_VSX; 165 #endif 166 167 if (oldmsr != newmsr) 168 mtmsr_isync(newmsr); 169 } 170 EXPORT_SYMBOL(__msr_check_and_clear); 171 172 #ifdef CONFIG_PPC_FPU 173 static void __giveup_fpu(struct task_struct *tsk) 174 { 175 unsigned long msr; 176 177 save_fpu(tsk); 178 msr = tsk->thread.regs->msr; 179 msr &= ~MSR_FP; 180 #ifdef CONFIG_VSX 181 if (cpu_has_feature(CPU_FTR_VSX)) 182 msr &= ~MSR_VSX; 183 #endif 184 tsk->thread.regs->msr = msr; 185 } 186 187 void giveup_fpu(struct task_struct *tsk) 188 { 189 check_if_tm_restore_required(tsk); 190 191 msr_check_and_set(MSR_FP); 192 __giveup_fpu(tsk); 193 msr_check_and_clear(MSR_FP); 194 } 195 EXPORT_SYMBOL(giveup_fpu); 196 197 /* 198 * Make sure the floating-point register state in the 199 * the thread_struct is up to date for task tsk. 200 */ 201 void flush_fp_to_thread(struct task_struct *tsk) 202 { 203 if (tsk->thread.regs) { 204 /* 205 * We need to disable preemption here because if we didn't, 206 * another process could get scheduled after the regs->msr 207 * test but before we have finished saving the FP registers 208 * to the thread_struct. That process could take over the 209 * FPU, and then when we get scheduled again we would store 210 * bogus values for the remaining FP registers. 211 */ 212 preempt_disable(); 213 if (tsk->thread.regs->msr & MSR_FP) { 214 /* 215 * This should only ever be called for current or 216 * for a stopped child process. Since we save away 217 * the FP register state on context switch, 218 * there is something wrong if a stopped child appears 219 * to still have its FP state in the CPU registers. 220 */ 221 BUG_ON(tsk != current); 222 giveup_fpu(tsk); 223 } 224 preempt_enable(); 225 } 226 } 227 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 228 229 void enable_kernel_fp(void) 230 { 231 unsigned long cpumsr; 232 233 WARN_ON(preemptible()); 234 235 cpumsr = msr_check_and_set(MSR_FP); 236 237 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 238 check_if_tm_restore_required(current); 239 /* 240 * If a thread has already been reclaimed then the 241 * checkpointed registers are on the CPU but have definitely 242 * been saved by the reclaim code. Don't need to and *cannot* 243 * giveup as this would save to the 'live' structure not the 244 * checkpointed structure. 245 */ 246 if (!MSR_TM_ACTIVE(cpumsr) && 247 MSR_TM_ACTIVE(current->thread.regs->msr)) 248 return; 249 __giveup_fpu(current); 250 } 251 } 252 EXPORT_SYMBOL(enable_kernel_fp); 253 254 static int restore_fp(struct task_struct *tsk) 255 { 256 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) { 257 load_fp_state(¤t->thread.fp_state); 258 current->thread.load_fp++; 259 return 1; 260 } 261 return 0; 262 } 263 #else 264 static int restore_fp(struct task_struct *tsk) { return 0; } 265 #endif /* CONFIG_PPC_FPU */ 266 267 #ifdef CONFIG_ALTIVEC 268 #define loadvec(thr) ((thr).load_vec) 269 270 static void __giveup_altivec(struct task_struct *tsk) 271 { 272 unsigned long msr; 273 274 save_altivec(tsk); 275 msr = tsk->thread.regs->msr; 276 msr &= ~MSR_VEC; 277 #ifdef CONFIG_VSX 278 if (cpu_has_feature(CPU_FTR_VSX)) 279 msr &= ~MSR_VSX; 280 #endif 281 tsk->thread.regs->msr = msr; 282 } 283 284 void giveup_altivec(struct task_struct *tsk) 285 { 286 check_if_tm_restore_required(tsk); 287 288 msr_check_and_set(MSR_VEC); 289 __giveup_altivec(tsk); 290 msr_check_and_clear(MSR_VEC); 291 } 292 EXPORT_SYMBOL(giveup_altivec); 293 294 void enable_kernel_altivec(void) 295 { 296 unsigned long cpumsr; 297 298 WARN_ON(preemptible()); 299 300 cpumsr = msr_check_and_set(MSR_VEC); 301 302 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 303 check_if_tm_restore_required(current); 304 /* 305 * If a thread has already been reclaimed then the 306 * checkpointed registers are on the CPU but have definitely 307 * been saved by the reclaim code. Don't need to and *cannot* 308 * giveup as this would save to the 'live' structure not the 309 * checkpointed structure. 310 */ 311 if (!MSR_TM_ACTIVE(cpumsr) && 312 MSR_TM_ACTIVE(current->thread.regs->msr)) 313 return; 314 __giveup_altivec(current); 315 } 316 } 317 EXPORT_SYMBOL(enable_kernel_altivec); 318 319 /* 320 * Make sure the VMX/Altivec register state in the 321 * the thread_struct is up to date for task tsk. 322 */ 323 void flush_altivec_to_thread(struct task_struct *tsk) 324 { 325 if (tsk->thread.regs) { 326 preempt_disable(); 327 if (tsk->thread.regs->msr & MSR_VEC) { 328 BUG_ON(tsk != current); 329 giveup_altivec(tsk); 330 } 331 preempt_enable(); 332 } 333 } 334 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 335 336 static int restore_altivec(struct task_struct *tsk) 337 { 338 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 339 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) { 340 load_vr_state(&tsk->thread.vr_state); 341 tsk->thread.used_vr = 1; 342 tsk->thread.load_vec++; 343 344 return 1; 345 } 346 return 0; 347 } 348 #else 349 #define loadvec(thr) 0 350 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 351 #endif /* CONFIG_ALTIVEC */ 352 353 #ifdef CONFIG_VSX 354 static void __giveup_vsx(struct task_struct *tsk) 355 { 356 unsigned long msr = tsk->thread.regs->msr; 357 358 /* 359 * We should never be ssetting MSR_VSX without also setting 360 * MSR_FP and MSR_VEC 361 */ 362 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 363 364 /* __giveup_fpu will clear MSR_VSX */ 365 if (msr & MSR_FP) 366 __giveup_fpu(tsk); 367 if (msr & MSR_VEC) 368 __giveup_altivec(tsk); 369 } 370 371 static void giveup_vsx(struct task_struct *tsk) 372 { 373 check_if_tm_restore_required(tsk); 374 375 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 376 __giveup_vsx(tsk); 377 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 378 } 379 380 void enable_kernel_vsx(void) 381 { 382 unsigned long cpumsr; 383 384 WARN_ON(preemptible()); 385 386 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 387 388 if (current->thread.regs && 389 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 390 check_if_tm_restore_required(current); 391 /* 392 * If a thread has already been reclaimed then the 393 * checkpointed registers are on the CPU but have definitely 394 * been saved by the reclaim code. Don't need to and *cannot* 395 * giveup as this would save to the 'live' structure not the 396 * checkpointed structure. 397 */ 398 if (!MSR_TM_ACTIVE(cpumsr) && 399 MSR_TM_ACTIVE(current->thread.regs->msr)) 400 return; 401 __giveup_vsx(current); 402 } 403 } 404 EXPORT_SYMBOL(enable_kernel_vsx); 405 406 void flush_vsx_to_thread(struct task_struct *tsk) 407 { 408 if (tsk->thread.regs) { 409 preempt_disable(); 410 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 411 BUG_ON(tsk != current); 412 giveup_vsx(tsk); 413 } 414 preempt_enable(); 415 } 416 } 417 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 418 419 static int restore_vsx(struct task_struct *tsk) 420 { 421 if (cpu_has_feature(CPU_FTR_VSX)) { 422 tsk->thread.used_vsr = 1; 423 return 1; 424 } 425 426 return 0; 427 } 428 #else 429 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 430 #endif /* CONFIG_VSX */ 431 432 #ifdef CONFIG_SPE 433 void giveup_spe(struct task_struct *tsk) 434 { 435 check_if_tm_restore_required(tsk); 436 437 msr_check_and_set(MSR_SPE); 438 __giveup_spe(tsk); 439 msr_check_and_clear(MSR_SPE); 440 } 441 EXPORT_SYMBOL(giveup_spe); 442 443 void enable_kernel_spe(void) 444 { 445 WARN_ON(preemptible()); 446 447 msr_check_and_set(MSR_SPE); 448 449 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 450 check_if_tm_restore_required(current); 451 __giveup_spe(current); 452 } 453 } 454 EXPORT_SYMBOL(enable_kernel_spe); 455 456 void flush_spe_to_thread(struct task_struct *tsk) 457 { 458 if (tsk->thread.regs) { 459 preempt_disable(); 460 if (tsk->thread.regs->msr & MSR_SPE) { 461 BUG_ON(tsk != current); 462 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 463 giveup_spe(tsk); 464 } 465 preempt_enable(); 466 } 467 } 468 #endif /* CONFIG_SPE */ 469 470 static unsigned long msr_all_available; 471 472 static int __init init_msr_all_available(void) 473 { 474 #ifdef CONFIG_PPC_FPU 475 msr_all_available |= MSR_FP; 476 #endif 477 #ifdef CONFIG_ALTIVEC 478 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 479 msr_all_available |= MSR_VEC; 480 #endif 481 #ifdef CONFIG_VSX 482 if (cpu_has_feature(CPU_FTR_VSX)) 483 msr_all_available |= MSR_VSX; 484 #endif 485 #ifdef CONFIG_SPE 486 if (cpu_has_feature(CPU_FTR_SPE)) 487 msr_all_available |= MSR_SPE; 488 #endif 489 490 return 0; 491 } 492 early_initcall(init_msr_all_available); 493 494 void giveup_all(struct task_struct *tsk) 495 { 496 unsigned long usermsr; 497 498 if (!tsk->thread.regs) 499 return; 500 501 usermsr = tsk->thread.regs->msr; 502 503 if ((usermsr & msr_all_available) == 0) 504 return; 505 506 msr_check_and_set(msr_all_available); 507 check_if_tm_restore_required(tsk); 508 509 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 510 511 #ifdef CONFIG_PPC_FPU 512 if (usermsr & MSR_FP) 513 __giveup_fpu(tsk); 514 #endif 515 #ifdef CONFIG_ALTIVEC 516 if (usermsr & MSR_VEC) 517 __giveup_altivec(tsk); 518 #endif 519 #ifdef CONFIG_SPE 520 if (usermsr & MSR_SPE) 521 __giveup_spe(tsk); 522 #endif 523 524 msr_check_and_clear(msr_all_available); 525 } 526 EXPORT_SYMBOL(giveup_all); 527 528 void restore_math(struct pt_regs *regs) 529 { 530 unsigned long msr; 531 532 if (!MSR_TM_ACTIVE(regs->msr) && 533 !current->thread.load_fp && !loadvec(current->thread)) 534 return; 535 536 msr = regs->msr; 537 msr_check_and_set(msr_all_available); 538 539 /* 540 * Only reload if the bit is not set in the user MSR, the bit BEING set 541 * indicates that the registers are hot 542 */ 543 if ((!(msr & MSR_FP)) && restore_fp(current)) 544 msr |= MSR_FP | current->thread.fpexc_mode; 545 546 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 547 msr |= MSR_VEC; 548 549 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 550 restore_vsx(current)) { 551 msr |= MSR_VSX; 552 } 553 554 msr_check_and_clear(msr_all_available); 555 556 regs->msr = msr; 557 } 558 559 static void save_all(struct task_struct *tsk) 560 { 561 unsigned long usermsr; 562 563 if (!tsk->thread.regs) 564 return; 565 566 usermsr = tsk->thread.regs->msr; 567 568 if ((usermsr & msr_all_available) == 0) 569 return; 570 571 msr_check_and_set(msr_all_available); 572 573 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 574 575 if (usermsr & MSR_FP) 576 save_fpu(tsk); 577 578 if (usermsr & MSR_VEC) 579 save_altivec(tsk); 580 581 if (usermsr & MSR_SPE) 582 __giveup_spe(tsk); 583 584 msr_check_and_clear(msr_all_available); 585 thread_pkey_regs_save(&tsk->thread); 586 } 587 588 void flush_all_to_thread(struct task_struct *tsk) 589 { 590 if (tsk->thread.regs) { 591 preempt_disable(); 592 BUG_ON(tsk != current); 593 save_all(tsk); 594 595 #ifdef CONFIG_SPE 596 if (tsk->thread.regs->msr & MSR_SPE) 597 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 598 #endif 599 600 preempt_enable(); 601 } 602 } 603 EXPORT_SYMBOL(flush_all_to_thread); 604 605 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 606 void do_send_trap(struct pt_regs *regs, unsigned long address, 607 unsigned long error_code, int breakpt) 608 { 609 current->thread.trap_nr = TRAP_HWBKPT; 610 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 611 11, SIGSEGV) == NOTIFY_STOP) 612 return; 613 614 /* Deliver the signal to userspace */ 615 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 616 (void __user *)address); 617 } 618 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 619 void do_break (struct pt_regs *regs, unsigned long address, 620 unsigned long error_code) 621 { 622 siginfo_t info; 623 624 current->thread.trap_nr = TRAP_HWBKPT; 625 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 626 11, SIGSEGV) == NOTIFY_STOP) 627 return; 628 629 if (debugger_break_match(regs)) 630 return; 631 632 /* Clear the breakpoint */ 633 hw_breakpoint_disable(); 634 635 /* Deliver the signal to userspace */ 636 clear_siginfo(&info); 637 info.si_signo = SIGTRAP; 638 info.si_errno = 0; 639 info.si_code = TRAP_HWBKPT; 640 info.si_addr = (void __user *)address; 641 force_sig_info(SIGTRAP, &info, current); 642 } 643 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 644 645 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 646 647 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 648 /* 649 * Set the debug registers back to their default "safe" values. 650 */ 651 static void set_debug_reg_defaults(struct thread_struct *thread) 652 { 653 thread->debug.iac1 = thread->debug.iac2 = 0; 654 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 655 thread->debug.iac3 = thread->debug.iac4 = 0; 656 #endif 657 thread->debug.dac1 = thread->debug.dac2 = 0; 658 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 659 thread->debug.dvc1 = thread->debug.dvc2 = 0; 660 #endif 661 thread->debug.dbcr0 = 0; 662 #ifdef CONFIG_BOOKE 663 /* 664 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 665 */ 666 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 667 DBCR1_IAC3US | DBCR1_IAC4US; 668 /* 669 * Force Data Address Compare User/Supervisor bits to be User-only 670 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 671 */ 672 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 673 #else 674 thread->debug.dbcr1 = 0; 675 #endif 676 } 677 678 static void prime_debug_regs(struct debug_reg *debug) 679 { 680 /* 681 * We could have inherited MSR_DE from userspace, since 682 * it doesn't get cleared on exception entry. Make sure 683 * MSR_DE is clear before we enable any debug events. 684 */ 685 mtmsr(mfmsr() & ~MSR_DE); 686 687 mtspr(SPRN_IAC1, debug->iac1); 688 mtspr(SPRN_IAC2, debug->iac2); 689 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 690 mtspr(SPRN_IAC3, debug->iac3); 691 mtspr(SPRN_IAC4, debug->iac4); 692 #endif 693 mtspr(SPRN_DAC1, debug->dac1); 694 mtspr(SPRN_DAC2, debug->dac2); 695 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 696 mtspr(SPRN_DVC1, debug->dvc1); 697 mtspr(SPRN_DVC2, debug->dvc2); 698 #endif 699 mtspr(SPRN_DBCR0, debug->dbcr0); 700 mtspr(SPRN_DBCR1, debug->dbcr1); 701 #ifdef CONFIG_BOOKE 702 mtspr(SPRN_DBCR2, debug->dbcr2); 703 #endif 704 } 705 /* 706 * Unless neither the old or new thread are making use of the 707 * debug registers, set the debug registers from the values 708 * stored in the new thread. 709 */ 710 void switch_booke_debug_regs(struct debug_reg *new_debug) 711 { 712 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 713 || (new_debug->dbcr0 & DBCR0_IDM)) 714 prime_debug_regs(new_debug); 715 } 716 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 717 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 718 #ifndef CONFIG_HAVE_HW_BREAKPOINT 719 static void set_breakpoint(struct arch_hw_breakpoint *brk) 720 { 721 preempt_disable(); 722 __set_breakpoint(brk); 723 preempt_enable(); 724 } 725 726 static void set_debug_reg_defaults(struct thread_struct *thread) 727 { 728 thread->hw_brk.address = 0; 729 thread->hw_brk.type = 0; 730 if (ppc_breakpoint_available()) 731 set_breakpoint(&thread->hw_brk); 732 } 733 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 734 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 735 736 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 737 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 738 { 739 mtspr(SPRN_DAC1, dabr); 740 #ifdef CONFIG_PPC_47x 741 isync(); 742 #endif 743 return 0; 744 } 745 #elif defined(CONFIG_PPC_BOOK3S) 746 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 747 { 748 mtspr(SPRN_DABR, dabr); 749 if (cpu_has_feature(CPU_FTR_DABRX)) 750 mtspr(SPRN_DABRX, dabrx); 751 return 0; 752 } 753 #elif defined(CONFIG_PPC_8xx) 754 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 755 { 756 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 757 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 758 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 759 760 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 761 lctrl1 |= 0xa0000; 762 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 763 lctrl1 |= 0xf0000; 764 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 765 lctrl2 = 0; 766 767 mtspr(SPRN_LCTRL2, 0); 768 mtspr(SPRN_CMPE, addr); 769 mtspr(SPRN_CMPF, addr + 4); 770 mtspr(SPRN_LCTRL1, lctrl1); 771 mtspr(SPRN_LCTRL2, lctrl2); 772 773 return 0; 774 } 775 #else 776 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 777 { 778 return -EINVAL; 779 } 780 #endif 781 782 static inline int set_dabr(struct arch_hw_breakpoint *brk) 783 { 784 unsigned long dabr, dabrx; 785 786 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 787 dabrx = ((brk->type >> 3) & 0x7); 788 789 if (ppc_md.set_dabr) 790 return ppc_md.set_dabr(dabr, dabrx); 791 792 return __set_dabr(dabr, dabrx); 793 } 794 795 static inline int set_dawr(struct arch_hw_breakpoint *brk) 796 { 797 unsigned long dawr, dawrx, mrd; 798 799 dawr = brk->address; 800 801 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 802 << (63 - 58); //* read/write bits */ 803 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 804 << (63 - 59); //* translate */ 805 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 806 >> 3; //* PRIM bits */ 807 /* dawr length is stored in field MDR bits 48:53. Matches range in 808 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 809 0b111111=64DW. 810 brk->len is in bytes. 811 This aligns up to double word size, shifts and does the bias. 812 */ 813 mrd = ((brk->len + 7) >> 3) - 1; 814 dawrx |= (mrd & 0x3f) << (63 - 53); 815 816 if (ppc_md.set_dawr) 817 return ppc_md.set_dawr(dawr, dawrx); 818 mtspr(SPRN_DAWR, dawr); 819 mtspr(SPRN_DAWRX, dawrx); 820 return 0; 821 } 822 823 void __set_breakpoint(struct arch_hw_breakpoint *brk) 824 { 825 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 826 827 if (cpu_has_feature(CPU_FTR_DAWR)) 828 // Power8 or later 829 set_dawr(brk); 830 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 831 // Power7 or earlier 832 set_dabr(brk); 833 else 834 // Shouldn't happen due to higher level checks 835 WARN_ON_ONCE(1); 836 } 837 838 /* Check if we have DAWR or DABR hardware */ 839 bool ppc_breakpoint_available(void) 840 { 841 if (cpu_has_feature(CPU_FTR_DAWR)) 842 return true; /* POWER8 DAWR */ 843 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 844 return false; /* POWER9 with DAWR disabled */ 845 /* DABR: Everything but POWER8 and POWER9 */ 846 return true; 847 } 848 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 849 850 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 851 struct arch_hw_breakpoint *b) 852 { 853 if (a->address != b->address) 854 return false; 855 if (a->type != b->type) 856 return false; 857 if (a->len != b->len) 858 return false; 859 return true; 860 } 861 862 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 863 864 static inline bool tm_enabled(struct task_struct *tsk) 865 { 866 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 867 } 868 869 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 870 { 871 /* 872 * Use the current MSR TM suspended bit to track if we have 873 * checkpointed state outstanding. 874 * On signal delivery, we'd normally reclaim the checkpointed 875 * state to obtain stack pointer (see:get_tm_stackpointer()). 876 * This will then directly return to userspace without going 877 * through __switch_to(). However, if the stack frame is bad, 878 * we need to exit this thread which calls __switch_to() which 879 * will again attempt to reclaim the already saved tm state. 880 * Hence we need to check that we've not already reclaimed 881 * this state. 882 * We do this using the current MSR, rather tracking it in 883 * some specific thread_struct bit, as it has the additional 884 * benefit of checking for a potential TM bad thing exception. 885 */ 886 if (!MSR_TM_SUSPENDED(mfmsr())) 887 return; 888 889 giveup_all(container_of(thr, struct task_struct, thread)); 890 891 tm_reclaim(thr, cause); 892 893 /* 894 * If we are in a transaction and FP is off then we can't have 895 * used FP inside that transaction. Hence the checkpointed 896 * state is the same as the live state. We need to copy the 897 * live state to the checkpointed state so that when the 898 * transaction is restored, the checkpointed state is correct 899 * and the aborted transaction sees the correct state. We use 900 * ckpt_regs.msr here as that's what tm_reclaim will use to 901 * determine if it's going to write the checkpointed state or 902 * not. So either this will write the checkpointed registers, 903 * or reclaim will. Similarly for VMX. 904 */ 905 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 906 memcpy(&thr->ckfp_state, &thr->fp_state, 907 sizeof(struct thread_fp_state)); 908 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 909 memcpy(&thr->ckvr_state, &thr->vr_state, 910 sizeof(struct thread_vr_state)); 911 } 912 913 void tm_reclaim_current(uint8_t cause) 914 { 915 tm_enable(); 916 tm_reclaim_thread(¤t->thread, cause); 917 } 918 919 static inline void tm_reclaim_task(struct task_struct *tsk) 920 { 921 /* We have to work out if we're switching from/to a task that's in the 922 * middle of a transaction. 923 * 924 * In switching we need to maintain a 2nd register state as 925 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 926 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 927 * ckvr_state 928 * 929 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 930 */ 931 struct thread_struct *thr = &tsk->thread; 932 933 if (!thr->regs) 934 return; 935 936 if (!MSR_TM_ACTIVE(thr->regs->msr)) 937 goto out_and_saveregs; 938 939 WARN_ON(tm_suspend_disabled); 940 941 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 942 "ccr=%lx, msr=%lx, trap=%lx)\n", 943 tsk->pid, thr->regs->nip, 944 thr->regs->ccr, thr->regs->msr, 945 thr->regs->trap); 946 947 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 948 949 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 950 tsk->pid); 951 952 out_and_saveregs: 953 /* Always save the regs here, even if a transaction's not active. 954 * This context-switches a thread's TM info SPRs. We do it here to 955 * be consistent with the restore path (in recheckpoint) which 956 * cannot happen later in _switch(). 957 */ 958 tm_save_sprs(thr); 959 } 960 961 extern void __tm_recheckpoint(struct thread_struct *thread); 962 963 void tm_recheckpoint(struct thread_struct *thread) 964 { 965 unsigned long flags; 966 967 if (!(thread->regs->msr & MSR_TM)) 968 return; 969 970 /* We really can't be interrupted here as the TEXASR registers can't 971 * change and later in the trecheckpoint code, we have a userspace R1. 972 * So let's hard disable over this region. 973 */ 974 local_irq_save(flags); 975 hard_irq_disable(); 976 977 /* The TM SPRs are restored here, so that TEXASR.FS can be set 978 * before the trecheckpoint and no explosion occurs. 979 */ 980 tm_restore_sprs(thread); 981 982 __tm_recheckpoint(thread); 983 984 local_irq_restore(flags); 985 } 986 987 static inline void tm_recheckpoint_new_task(struct task_struct *new) 988 { 989 if (!cpu_has_feature(CPU_FTR_TM)) 990 return; 991 992 /* Recheckpoint the registers of the thread we're about to switch to. 993 * 994 * If the task was using FP, we non-lazily reload both the original and 995 * the speculative FP register states. This is because the kernel 996 * doesn't see if/when a TM rollback occurs, so if we take an FP 997 * unavailable later, we are unable to determine which set of FP regs 998 * need to be restored. 999 */ 1000 if (!tm_enabled(new)) 1001 return; 1002 1003 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 1004 tm_restore_sprs(&new->thread); 1005 return; 1006 } 1007 /* Recheckpoint to restore original checkpointed register state. */ 1008 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1009 new->pid, new->thread.regs->msr); 1010 1011 tm_recheckpoint(&new->thread); 1012 1013 /* 1014 * The checkpointed state has been restored but the live state has 1015 * not, ensure all the math functionality is turned off to trigger 1016 * restore_math() to reload. 1017 */ 1018 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1019 1020 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1021 "(kernel msr 0x%lx)\n", 1022 new->pid, mfmsr()); 1023 } 1024 1025 static inline void __switch_to_tm(struct task_struct *prev, 1026 struct task_struct *new) 1027 { 1028 if (cpu_has_feature(CPU_FTR_TM)) { 1029 if (tm_enabled(prev) || tm_enabled(new)) 1030 tm_enable(); 1031 1032 if (tm_enabled(prev)) { 1033 prev->thread.load_tm++; 1034 tm_reclaim_task(prev); 1035 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1036 prev->thread.regs->msr &= ~MSR_TM; 1037 } 1038 1039 tm_recheckpoint_new_task(new); 1040 } 1041 } 1042 1043 /* 1044 * This is called if we are on the way out to userspace and the 1045 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1046 * FP and/or vector state and does so if necessary. 1047 * If userspace is inside a transaction (whether active or 1048 * suspended) and FP/VMX/VSX instructions have ever been enabled 1049 * inside that transaction, then we have to keep them enabled 1050 * and keep the FP/VMX/VSX state loaded while ever the transaction 1051 * continues. The reason is that if we didn't, and subsequently 1052 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1053 * we don't know whether it's the same transaction, and thus we 1054 * don't know which of the checkpointed state and the transactional 1055 * state to use. 1056 */ 1057 void restore_tm_state(struct pt_regs *regs) 1058 { 1059 unsigned long msr_diff; 1060 1061 /* 1062 * This is the only moment we should clear TIF_RESTORE_TM as 1063 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1064 * again, anything else could lead to an incorrect ckpt_msr being 1065 * saved and therefore incorrect signal contexts. 1066 */ 1067 clear_thread_flag(TIF_RESTORE_TM); 1068 if (!MSR_TM_ACTIVE(regs->msr)) 1069 return; 1070 1071 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1072 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1073 1074 /* Ensure that restore_math() will restore */ 1075 if (msr_diff & MSR_FP) 1076 current->thread.load_fp = 1; 1077 #ifdef CONFIG_ALTIVEC 1078 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1079 current->thread.load_vec = 1; 1080 #endif 1081 restore_math(regs); 1082 1083 regs->msr |= msr_diff; 1084 } 1085 1086 #else 1087 #define tm_recheckpoint_new_task(new) 1088 #define __switch_to_tm(prev, new) 1089 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1090 1091 static inline void save_sprs(struct thread_struct *t) 1092 { 1093 #ifdef CONFIG_ALTIVEC 1094 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1095 t->vrsave = mfspr(SPRN_VRSAVE); 1096 #endif 1097 #ifdef CONFIG_PPC_BOOK3S_64 1098 if (cpu_has_feature(CPU_FTR_DSCR)) 1099 t->dscr = mfspr(SPRN_DSCR); 1100 1101 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1102 t->bescr = mfspr(SPRN_BESCR); 1103 t->ebbhr = mfspr(SPRN_EBBHR); 1104 t->ebbrr = mfspr(SPRN_EBBRR); 1105 1106 t->fscr = mfspr(SPRN_FSCR); 1107 1108 /* 1109 * Note that the TAR is not available for use in the kernel. 1110 * (To provide this, the TAR should be backed up/restored on 1111 * exception entry/exit instead, and be in pt_regs. FIXME, 1112 * this should be in pt_regs anyway (for debug).) 1113 */ 1114 t->tar = mfspr(SPRN_TAR); 1115 } 1116 #endif 1117 1118 thread_pkey_regs_save(t); 1119 } 1120 1121 static inline void restore_sprs(struct thread_struct *old_thread, 1122 struct thread_struct *new_thread) 1123 { 1124 #ifdef CONFIG_ALTIVEC 1125 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1126 old_thread->vrsave != new_thread->vrsave) 1127 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1128 #endif 1129 #ifdef CONFIG_PPC_BOOK3S_64 1130 if (cpu_has_feature(CPU_FTR_DSCR)) { 1131 u64 dscr = get_paca()->dscr_default; 1132 if (new_thread->dscr_inherit) 1133 dscr = new_thread->dscr; 1134 1135 if (old_thread->dscr != dscr) 1136 mtspr(SPRN_DSCR, dscr); 1137 } 1138 1139 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1140 if (old_thread->bescr != new_thread->bescr) 1141 mtspr(SPRN_BESCR, new_thread->bescr); 1142 if (old_thread->ebbhr != new_thread->ebbhr) 1143 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1144 if (old_thread->ebbrr != new_thread->ebbrr) 1145 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1146 1147 if (old_thread->fscr != new_thread->fscr) 1148 mtspr(SPRN_FSCR, new_thread->fscr); 1149 1150 if (old_thread->tar != new_thread->tar) 1151 mtspr(SPRN_TAR, new_thread->tar); 1152 } 1153 1154 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1155 old_thread->tidr != new_thread->tidr) 1156 mtspr(SPRN_TIDR, new_thread->tidr); 1157 #endif 1158 1159 thread_pkey_regs_restore(new_thread, old_thread); 1160 } 1161 1162 #ifdef CONFIG_PPC_BOOK3S_64 1163 #define CP_SIZE 128 1164 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE))); 1165 #endif 1166 1167 struct task_struct *__switch_to(struct task_struct *prev, 1168 struct task_struct *new) 1169 { 1170 struct thread_struct *new_thread, *old_thread; 1171 struct task_struct *last; 1172 #ifdef CONFIG_PPC_BOOK3S_64 1173 struct ppc64_tlb_batch *batch; 1174 #endif 1175 1176 new_thread = &new->thread; 1177 old_thread = ¤t->thread; 1178 1179 WARN_ON(!irqs_disabled()); 1180 1181 #ifdef CONFIG_PPC_BOOK3S_64 1182 batch = this_cpu_ptr(&ppc64_tlb_batch); 1183 if (batch->active) { 1184 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1185 if (batch->index) 1186 __flush_tlb_pending(batch); 1187 batch->active = 0; 1188 } 1189 #endif /* CONFIG_PPC_BOOK3S_64 */ 1190 1191 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1192 switch_booke_debug_regs(&new->thread.debug); 1193 #else 1194 /* 1195 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1196 * schedule DABR 1197 */ 1198 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1199 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1200 __set_breakpoint(&new->thread.hw_brk); 1201 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1202 #endif 1203 1204 /* 1205 * We need to save SPRs before treclaim/trecheckpoint as these will 1206 * change a number of them. 1207 */ 1208 save_sprs(&prev->thread); 1209 1210 /* Save FPU, Altivec, VSX and SPE state */ 1211 giveup_all(prev); 1212 1213 __switch_to_tm(prev, new); 1214 1215 if (!radix_enabled()) { 1216 /* 1217 * We can't take a PMU exception inside _switch() since there 1218 * is a window where the kernel stack SLB and the kernel stack 1219 * are out of sync. Hard disable here. 1220 */ 1221 hard_irq_disable(); 1222 } 1223 1224 /* 1225 * Call restore_sprs() before calling _switch(). If we move it after 1226 * _switch() then we miss out on calling it for new tasks. The reason 1227 * for this is we manually create a stack frame for new tasks that 1228 * directly returns through ret_from_fork() or 1229 * ret_from_kernel_thread(). See copy_thread() for details. 1230 */ 1231 restore_sprs(old_thread, new_thread); 1232 1233 last = _switch(old_thread, new_thread); 1234 1235 #ifdef CONFIG_PPC_BOOK3S_64 1236 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1237 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1238 batch = this_cpu_ptr(&ppc64_tlb_batch); 1239 batch->active = 1; 1240 } 1241 1242 if (current_thread_info()->task->thread.regs) { 1243 restore_math(current_thread_info()->task->thread.regs); 1244 1245 /* 1246 * The copy-paste buffer can only store into foreign real 1247 * addresses, so unprivileged processes can not see the 1248 * data or use it in any way unless they have foreign real 1249 * mappings. If the new process has the foreign real address 1250 * mappings, we must issue a cp_abort to clear any state and 1251 * prevent snooping, corruption or a covert channel. 1252 */ 1253 if (current_thread_info()->task->thread.used_vas) 1254 asm volatile(PPC_CP_ABORT); 1255 } 1256 #endif /* CONFIG_PPC_BOOK3S_64 */ 1257 1258 return last; 1259 } 1260 1261 #define NR_INSN_TO_PRINT 16 1262 1263 static void show_instructions(struct pt_regs *regs) 1264 { 1265 int i; 1266 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1267 1268 printk("Instruction dump:"); 1269 1270 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1271 int instr; 1272 1273 if (!(i % 8)) 1274 pr_cont("\n"); 1275 1276 #if !defined(CONFIG_BOOKE) 1277 /* If executing with the IMMU off, adjust pc rather 1278 * than print XXXXXXXX. 1279 */ 1280 if (!(regs->msr & MSR_IR)) 1281 pc = (unsigned long)phys_to_virt(pc); 1282 #endif 1283 1284 if (!__kernel_text_address(pc) || 1285 probe_kernel_address((const void *)pc, instr)) { 1286 pr_cont("XXXXXXXX "); 1287 } else { 1288 if (regs->nip == pc) 1289 pr_cont("<%08x> ", instr); 1290 else 1291 pr_cont("%08x ", instr); 1292 } 1293 1294 pc += sizeof(int); 1295 } 1296 1297 pr_cont("\n"); 1298 } 1299 1300 void show_user_instructions(struct pt_regs *regs) 1301 { 1302 unsigned long pc; 1303 int n = NR_INSN_TO_PRINT; 1304 struct seq_buf s; 1305 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1306 1307 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1308 1309 /* 1310 * Make sure the NIP points at userspace, not kernel text/data or 1311 * elsewhere. 1312 */ 1313 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) { 1314 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n", 1315 current->comm, current->pid); 1316 return; 1317 } 1318 1319 seq_buf_init(&s, buf, sizeof(buf)); 1320 1321 while (n) { 1322 int i; 1323 1324 seq_buf_clear(&s); 1325 1326 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1327 int instr; 1328 1329 if (probe_kernel_address((const void *)pc, instr)) { 1330 seq_buf_printf(&s, "XXXXXXXX "); 1331 continue; 1332 } 1333 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1334 } 1335 1336 if (!seq_buf_has_overflowed(&s)) 1337 pr_info("%s[%d]: code: %s\n", current->comm, 1338 current->pid, s.buffer); 1339 } 1340 } 1341 1342 struct regbit { 1343 unsigned long bit; 1344 const char *name; 1345 }; 1346 1347 static struct regbit msr_bits[] = { 1348 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1349 {MSR_SF, "SF"}, 1350 {MSR_HV, "HV"}, 1351 #endif 1352 {MSR_VEC, "VEC"}, 1353 {MSR_VSX, "VSX"}, 1354 #ifdef CONFIG_BOOKE 1355 {MSR_CE, "CE"}, 1356 #endif 1357 {MSR_EE, "EE"}, 1358 {MSR_PR, "PR"}, 1359 {MSR_FP, "FP"}, 1360 {MSR_ME, "ME"}, 1361 #ifdef CONFIG_BOOKE 1362 {MSR_DE, "DE"}, 1363 #else 1364 {MSR_SE, "SE"}, 1365 {MSR_BE, "BE"}, 1366 #endif 1367 {MSR_IR, "IR"}, 1368 {MSR_DR, "DR"}, 1369 {MSR_PMM, "PMM"}, 1370 #ifndef CONFIG_BOOKE 1371 {MSR_RI, "RI"}, 1372 {MSR_LE, "LE"}, 1373 #endif 1374 {0, NULL} 1375 }; 1376 1377 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1378 { 1379 const char *s = ""; 1380 1381 for (; bits->bit; ++bits) 1382 if (val & bits->bit) { 1383 pr_cont("%s%s", s, bits->name); 1384 s = sep; 1385 } 1386 } 1387 1388 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1389 static struct regbit msr_tm_bits[] = { 1390 {MSR_TS_T, "T"}, 1391 {MSR_TS_S, "S"}, 1392 {MSR_TM, "E"}, 1393 {0, NULL} 1394 }; 1395 1396 static void print_tm_bits(unsigned long val) 1397 { 1398 /* 1399 * This only prints something if at least one of the TM bit is set. 1400 * Inside the TM[], the output means: 1401 * E: Enabled (bit 32) 1402 * S: Suspended (bit 33) 1403 * T: Transactional (bit 34) 1404 */ 1405 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1406 pr_cont(",TM["); 1407 print_bits(val, msr_tm_bits, ""); 1408 pr_cont("]"); 1409 } 1410 } 1411 #else 1412 static void print_tm_bits(unsigned long val) {} 1413 #endif 1414 1415 static void print_msr_bits(unsigned long val) 1416 { 1417 pr_cont("<"); 1418 print_bits(val, msr_bits, ","); 1419 print_tm_bits(val); 1420 pr_cont(">"); 1421 } 1422 1423 #ifdef CONFIG_PPC64 1424 #define REG "%016lx" 1425 #define REGS_PER_LINE 4 1426 #define LAST_VOLATILE 13 1427 #else 1428 #define REG "%08lx" 1429 #define REGS_PER_LINE 8 1430 #define LAST_VOLATILE 12 1431 #endif 1432 1433 void show_regs(struct pt_regs * regs) 1434 { 1435 int i, trap; 1436 1437 show_regs_print_info(KERN_DEFAULT); 1438 1439 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1440 regs->nip, regs->link, regs->ctr); 1441 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1442 regs, regs->trap, print_tainted(), init_utsname()->release); 1443 printk("MSR: "REG" ", regs->msr); 1444 print_msr_bits(regs->msr); 1445 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1446 trap = TRAP(regs); 1447 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1448 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1449 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1450 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1451 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1452 #else 1453 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1454 #endif 1455 #ifdef CONFIG_PPC64 1456 pr_cont("IRQMASK: %lx ", regs->softe); 1457 #endif 1458 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1459 if (MSR_TM_ACTIVE(regs->msr)) 1460 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1461 #endif 1462 1463 for (i = 0; i < 32; i++) { 1464 if ((i % REGS_PER_LINE) == 0) 1465 pr_cont("\nGPR%02d: ", i); 1466 pr_cont(REG " ", regs->gpr[i]); 1467 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1468 break; 1469 } 1470 pr_cont("\n"); 1471 #ifdef CONFIG_KALLSYMS 1472 /* 1473 * Lookup NIP late so we have the best change of getting the 1474 * above info out without failing 1475 */ 1476 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1477 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1478 #endif 1479 show_stack(current, (unsigned long *) regs->gpr[1]); 1480 if (!user_mode(regs)) 1481 show_instructions(regs); 1482 } 1483 1484 void flush_thread(void) 1485 { 1486 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1487 flush_ptrace_hw_breakpoint(current); 1488 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1489 set_debug_reg_defaults(¤t->thread); 1490 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1491 } 1492 1493 #ifdef CONFIG_PPC_BOOK3S_64 1494 void arch_setup_new_exec(void) 1495 { 1496 if (radix_enabled()) 1497 return; 1498 hash__setup_new_exec(); 1499 } 1500 #endif 1501 1502 int set_thread_uses_vas(void) 1503 { 1504 #ifdef CONFIG_PPC_BOOK3S_64 1505 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1506 return -EINVAL; 1507 1508 current->thread.used_vas = 1; 1509 1510 /* 1511 * Even a process that has no foreign real address mapping can use 1512 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1513 * to clear any pending COPY and prevent a covert channel. 1514 * 1515 * __switch_to() will issue CP_ABORT on future context switches. 1516 */ 1517 asm volatile(PPC_CP_ABORT); 1518 1519 #endif /* CONFIG_PPC_BOOK3S_64 */ 1520 return 0; 1521 } 1522 1523 #ifdef CONFIG_PPC64 1524 /** 1525 * Assign a TIDR (thread ID) for task @t and set it in the thread 1526 * structure. For now, we only support setting TIDR for 'current' task. 1527 * 1528 * Since the TID value is a truncated form of it PID, it is possible 1529 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1530 * that 2 threads share the same TID and are waiting, one of the following 1531 * cases will happen: 1532 * 1533 * 1. The correct thread is running, the wrong thread is not 1534 * In this situation, the correct thread is woken and proceeds to pass it's 1535 * condition check. 1536 * 1537 * 2. Neither threads are running 1538 * In this situation, neither thread will be woken. When scheduled, the waiting 1539 * threads will execute either a wait, which will return immediately, followed 1540 * by a condition check, which will pass for the correct thread and fail 1541 * for the wrong thread, or they will execute the condition check immediately. 1542 * 1543 * 3. The wrong thread is running, the correct thread is not 1544 * The wrong thread will be woken, but will fail it's condition check and 1545 * re-execute wait. The correct thread, when scheduled, will execute either 1546 * it's condition check (which will pass), or wait, which returns immediately 1547 * when called the first time after the thread is scheduled, followed by it's 1548 * condition check (which will pass). 1549 * 1550 * 4. Both threads are running 1551 * Both threads will be woken. The wrong thread will fail it's condition check 1552 * and execute another wait, while the correct thread will pass it's condition 1553 * check. 1554 * 1555 * @t: the task to set the thread ID for 1556 */ 1557 int set_thread_tidr(struct task_struct *t) 1558 { 1559 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1560 return -EINVAL; 1561 1562 if (t != current) 1563 return -EINVAL; 1564 1565 if (t->thread.tidr) 1566 return 0; 1567 1568 t->thread.tidr = (u16)task_pid_nr(t); 1569 mtspr(SPRN_TIDR, t->thread.tidr); 1570 1571 return 0; 1572 } 1573 EXPORT_SYMBOL_GPL(set_thread_tidr); 1574 1575 #endif /* CONFIG_PPC64 */ 1576 1577 void 1578 release_thread(struct task_struct *t) 1579 { 1580 } 1581 1582 /* 1583 * this gets called so that we can store coprocessor state into memory and 1584 * copy the current task into the new thread. 1585 */ 1586 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1587 { 1588 flush_all_to_thread(src); 1589 /* 1590 * Flush TM state out so we can copy it. __switch_to_tm() does this 1591 * flush but it removes the checkpointed state from the current CPU and 1592 * transitions the CPU out of TM mode. Hence we need to call 1593 * tm_recheckpoint_new_task() (on the same task) to restore the 1594 * checkpointed state back and the TM mode. 1595 * 1596 * Can't pass dst because it isn't ready. Doesn't matter, passing 1597 * dst is only important for __switch_to() 1598 */ 1599 __switch_to_tm(src, src); 1600 1601 *dst = *src; 1602 1603 clear_task_ebb(dst); 1604 1605 return 0; 1606 } 1607 1608 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1609 { 1610 #ifdef CONFIG_PPC_BOOK3S_64 1611 unsigned long sp_vsid; 1612 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1613 1614 if (radix_enabled()) 1615 return; 1616 1617 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1618 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1619 << SLB_VSID_SHIFT_1T; 1620 else 1621 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1622 << SLB_VSID_SHIFT; 1623 sp_vsid |= SLB_VSID_KERNEL | llp; 1624 p->thread.ksp_vsid = sp_vsid; 1625 #endif 1626 } 1627 1628 /* 1629 * Copy a thread.. 1630 */ 1631 1632 /* 1633 * Copy architecture-specific thread state 1634 */ 1635 int copy_thread(unsigned long clone_flags, unsigned long usp, 1636 unsigned long kthread_arg, struct task_struct *p) 1637 { 1638 struct pt_regs *childregs, *kregs; 1639 extern void ret_from_fork(void); 1640 extern void ret_from_kernel_thread(void); 1641 void (*f)(void); 1642 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1643 struct thread_info *ti = task_thread_info(p); 1644 1645 klp_init_thread_info(ti); 1646 1647 /* Copy registers */ 1648 sp -= sizeof(struct pt_regs); 1649 childregs = (struct pt_regs *) sp; 1650 if (unlikely(p->flags & PF_KTHREAD)) { 1651 /* kernel thread */ 1652 memset(childregs, 0, sizeof(struct pt_regs)); 1653 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1654 /* function */ 1655 if (usp) 1656 childregs->gpr[14] = ppc_function_entry((void *)usp); 1657 #ifdef CONFIG_PPC64 1658 clear_tsk_thread_flag(p, TIF_32BIT); 1659 childregs->softe = IRQS_ENABLED; 1660 #endif 1661 childregs->gpr[15] = kthread_arg; 1662 p->thread.regs = NULL; /* no user register state */ 1663 ti->flags |= _TIF_RESTOREALL; 1664 f = ret_from_kernel_thread; 1665 } else { 1666 /* user thread */ 1667 struct pt_regs *regs = current_pt_regs(); 1668 CHECK_FULL_REGS(regs); 1669 *childregs = *regs; 1670 if (usp) 1671 childregs->gpr[1] = usp; 1672 p->thread.regs = childregs; 1673 childregs->gpr[3] = 0; /* Result from fork() */ 1674 if (clone_flags & CLONE_SETTLS) { 1675 #ifdef CONFIG_PPC64 1676 if (!is_32bit_task()) 1677 childregs->gpr[13] = childregs->gpr[6]; 1678 else 1679 #endif 1680 childregs->gpr[2] = childregs->gpr[6]; 1681 } 1682 1683 f = ret_from_fork; 1684 } 1685 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1686 sp -= STACK_FRAME_OVERHEAD; 1687 1688 /* 1689 * The way this works is that at some point in the future 1690 * some task will call _switch to switch to the new task. 1691 * That will pop off the stack frame created below and start 1692 * the new task running at ret_from_fork. The new task will 1693 * do some house keeping and then return from the fork or clone 1694 * system call, using the stack frame created above. 1695 */ 1696 ((unsigned long *)sp)[0] = 0; 1697 sp -= sizeof(struct pt_regs); 1698 kregs = (struct pt_regs *) sp; 1699 sp -= STACK_FRAME_OVERHEAD; 1700 p->thread.ksp = sp; 1701 #ifdef CONFIG_PPC32 1702 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1703 _ALIGN_UP(sizeof(struct thread_info), 16); 1704 #endif 1705 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1706 p->thread.ptrace_bps[0] = NULL; 1707 #endif 1708 1709 p->thread.fp_save_area = NULL; 1710 #ifdef CONFIG_ALTIVEC 1711 p->thread.vr_save_area = NULL; 1712 #endif 1713 1714 setup_ksp_vsid(p, sp); 1715 1716 #ifdef CONFIG_PPC64 1717 if (cpu_has_feature(CPU_FTR_DSCR)) { 1718 p->thread.dscr_inherit = current->thread.dscr_inherit; 1719 p->thread.dscr = mfspr(SPRN_DSCR); 1720 } 1721 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1722 childregs->ppr = DEFAULT_PPR; 1723 1724 p->thread.tidr = 0; 1725 #endif 1726 kregs->nip = ppc_function_entry(f); 1727 return 0; 1728 } 1729 1730 void preload_new_slb_context(unsigned long start, unsigned long sp); 1731 1732 /* 1733 * Set up a thread for executing a new program 1734 */ 1735 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1736 { 1737 #ifdef CONFIG_PPC64 1738 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1739 1740 #ifdef CONFIG_PPC_BOOK3S_64 1741 preload_new_slb_context(start, sp); 1742 #endif 1743 #endif 1744 1745 /* 1746 * If we exec out of a kernel thread then thread.regs will not be 1747 * set. Do it now. 1748 */ 1749 if (!current->thread.regs) { 1750 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1751 current->thread.regs = regs - 1; 1752 } 1753 1754 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1755 /* 1756 * Clear any transactional state, we're exec()ing. The cause is 1757 * not important as there will never be a recheckpoint so it's not 1758 * user visible. 1759 */ 1760 if (MSR_TM_SUSPENDED(mfmsr())) 1761 tm_reclaim_current(0); 1762 #endif 1763 1764 memset(regs->gpr, 0, sizeof(regs->gpr)); 1765 regs->ctr = 0; 1766 regs->link = 0; 1767 regs->xer = 0; 1768 regs->ccr = 0; 1769 regs->gpr[1] = sp; 1770 1771 /* 1772 * We have just cleared all the nonvolatile GPRs, so make 1773 * FULL_REGS(regs) return true. This is necessary to allow 1774 * ptrace to examine the thread immediately after exec. 1775 */ 1776 regs->trap &= ~1UL; 1777 1778 #ifdef CONFIG_PPC32 1779 regs->mq = 0; 1780 regs->nip = start; 1781 regs->msr = MSR_USER; 1782 #else 1783 if (!is_32bit_task()) { 1784 unsigned long entry; 1785 1786 if (is_elf2_task()) { 1787 /* Look ma, no function descriptors! */ 1788 entry = start; 1789 1790 /* 1791 * Ulrich says: 1792 * The latest iteration of the ABI requires that when 1793 * calling a function (at its global entry point), 1794 * the caller must ensure r12 holds the entry point 1795 * address (so that the function can quickly 1796 * establish addressability). 1797 */ 1798 regs->gpr[12] = start; 1799 /* Make sure that's restored on entry to userspace. */ 1800 set_thread_flag(TIF_RESTOREALL); 1801 } else { 1802 unsigned long toc; 1803 1804 /* start is a relocated pointer to the function 1805 * descriptor for the elf _start routine. The first 1806 * entry in the function descriptor is the entry 1807 * address of _start and the second entry is the TOC 1808 * value we need to use. 1809 */ 1810 __get_user(entry, (unsigned long __user *)start); 1811 __get_user(toc, (unsigned long __user *)start+1); 1812 1813 /* Check whether the e_entry function descriptor entries 1814 * need to be relocated before we can use them. 1815 */ 1816 if (load_addr != 0) { 1817 entry += load_addr; 1818 toc += load_addr; 1819 } 1820 regs->gpr[2] = toc; 1821 } 1822 regs->nip = entry; 1823 regs->msr = MSR_USER64; 1824 } else { 1825 regs->nip = start; 1826 regs->gpr[2] = 0; 1827 regs->msr = MSR_USER32; 1828 } 1829 #endif 1830 #ifdef CONFIG_VSX 1831 current->thread.used_vsr = 0; 1832 #endif 1833 current->thread.load_slb = 0; 1834 current->thread.load_fp = 0; 1835 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1836 current->thread.fp_save_area = NULL; 1837 #ifdef CONFIG_ALTIVEC 1838 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1839 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1840 current->thread.vr_save_area = NULL; 1841 current->thread.vrsave = 0; 1842 current->thread.used_vr = 0; 1843 current->thread.load_vec = 0; 1844 #endif /* CONFIG_ALTIVEC */ 1845 #ifdef CONFIG_SPE 1846 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1847 current->thread.acc = 0; 1848 current->thread.spefscr = 0; 1849 current->thread.used_spe = 0; 1850 #endif /* CONFIG_SPE */ 1851 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1852 current->thread.tm_tfhar = 0; 1853 current->thread.tm_texasr = 0; 1854 current->thread.tm_tfiar = 0; 1855 current->thread.load_tm = 0; 1856 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1857 1858 thread_pkey_regs_init(¤t->thread); 1859 } 1860 EXPORT_SYMBOL(start_thread); 1861 1862 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1863 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1864 1865 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1866 { 1867 struct pt_regs *regs = tsk->thread.regs; 1868 1869 /* This is a bit hairy. If we are an SPE enabled processor 1870 * (have embedded fp) we store the IEEE exception enable flags in 1871 * fpexc_mode. fpexc_mode is also used for setting FP exception 1872 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1873 if (val & PR_FP_EXC_SW_ENABLE) { 1874 #ifdef CONFIG_SPE 1875 if (cpu_has_feature(CPU_FTR_SPE)) { 1876 /* 1877 * When the sticky exception bits are set 1878 * directly by userspace, it must call prctl 1879 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1880 * in the existing prctl settings) or 1881 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1882 * the bits being set). <fenv.h> functions 1883 * saving and restoring the whole 1884 * floating-point environment need to do so 1885 * anyway to restore the prctl settings from 1886 * the saved environment. 1887 */ 1888 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1889 tsk->thread.fpexc_mode = val & 1890 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1891 return 0; 1892 } else { 1893 return -EINVAL; 1894 } 1895 #else 1896 return -EINVAL; 1897 #endif 1898 } 1899 1900 /* on a CONFIG_SPE this does not hurt us. The bits that 1901 * __pack_fe01 use do not overlap with bits used for 1902 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1903 * on CONFIG_SPE implementations are reserved so writing to 1904 * them does not change anything */ 1905 if (val > PR_FP_EXC_PRECISE) 1906 return -EINVAL; 1907 tsk->thread.fpexc_mode = __pack_fe01(val); 1908 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1909 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1910 | tsk->thread.fpexc_mode; 1911 return 0; 1912 } 1913 1914 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1915 { 1916 unsigned int val; 1917 1918 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1919 #ifdef CONFIG_SPE 1920 if (cpu_has_feature(CPU_FTR_SPE)) { 1921 /* 1922 * When the sticky exception bits are set 1923 * directly by userspace, it must call prctl 1924 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1925 * in the existing prctl settings) or 1926 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1927 * the bits being set). <fenv.h> functions 1928 * saving and restoring the whole 1929 * floating-point environment need to do so 1930 * anyway to restore the prctl settings from 1931 * the saved environment. 1932 */ 1933 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1934 val = tsk->thread.fpexc_mode; 1935 } else 1936 return -EINVAL; 1937 #else 1938 return -EINVAL; 1939 #endif 1940 else 1941 val = __unpack_fe01(tsk->thread.fpexc_mode); 1942 return put_user(val, (unsigned int __user *) adr); 1943 } 1944 1945 int set_endian(struct task_struct *tsk, unsigned int val) 1946 { 1947 struct pt_regs *regs = tsk->thread.regs; 1948 1949 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1950 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1951 return -EINVAL; 1952 1953 if (regs == NULL) 1954 return -EINVAL; 1955 1956 if (val == PR_ENDIAN_BIG) 1957 regs->msr &= ~MSR_LE; 1958 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1959 regs->msr |= MSR_LE; 1960 else 1961 return -EINVAL; 1962 1963 return 0; 1964 } 1965 1966 int get_endian(struct task_struct *tsk, unsigned long adr) 1967 { 1968 struct pt_regs *regs = tsk->thread.regs; 1969 unsigned int val; 1970 1971 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1972 !cpu_has_feature(CPU_FTR_REAL_LE)) 1973 return -EINVAL; 1974 1975 if (regs == NULL) 1976 return -EINVAL; 1977 1978 if (regs->msr & MSR_LE) { 1979 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1980 val = PR_ENDIAN_LITTLE; 1981 else 1982 val = PR_ENDIAN_PPC_LITTLE; 1983 } else 1984 val = PR_ENDIAN_BIG; 1985 1986 return put_user(val, (unsigned int __user *)adr); 1987 } 1988 1989 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1990 { 1991 tsk->thread.align_ctl = val; 1992 return 0; 1993 } 1994 1995 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1996 { 1997 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1998 } 1999 2000 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 2001 unsigned long nbytes) 2002 { 2003 unsigned long stack_page; 2004 unsigned long cpu = task_cpu(p); 2005 2006 /* 2007 * Avoid crashing if the stack has overflowed and corrupted 2008 * task_cpu(p), which is in the thread_info struct. 2009 */ 2010 if (cpu < NR_CPUS && cpu_possible(cpu)) { 2011 stack_page = (unsigned long) hardirq_ctx[cpu]; 2012 if (sp >= stack_page + sizeof(struct thread_struct) 2013 && sp <= stack_page + THREAD_SIZE - nbytes) 2014 return 1; 2015 2016 stack_page = (unsigned long) softirq_ctx[cpu]; 2017 if (sp >= stack_page + sizeof(struct thread_struct) 2018 && sp <= stack_page + THREAD_SIZE - nbytes) 2019 return 1; 2020 } 2021 return 0; 2022 } 2023 2024 int validate_sp(unsigned long sp, struct task_struct *p, 2025 unsigned long nbytes) 2026 { 2027 unsigned long stack_page = (unsigned long)task_stack_page(p); 2028 2029 if (sp >= stack_page + sizeof(struct thread_struct) 2030 && sp <= stack_page + THREAD_SIZE - nbytes) 2031 return 1; 2032 2033 return valid_irq_stack(sp, p, nbytes); 2034 } 2035 2036 EXPORT_SYMBOL(validate_sp); 2037 2038 unsigned long get_wchan(struct task_struct *p) 2039 { 2040 unsigned long ip, sp; 2041 int count = 0; 2042 2043 if (!p || p == current || p->state == TASK_RUNNING) 2044 return 0; 2045 2046 sp = p->thread.ksp; 2047 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2048 return 0; 2049 2050 do { 2051 sp = *(unsigned long *)sp; 2052 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2053 p->state == TASK_RUNNING) 2054 return 0; 2055 if (count > 0) { 2056 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2057 if (!in_sched_functions(ip)) 2058 return ip; 2059 } 2060 } while (count++ < 16); 2061 return 0; 2062 } 2063 2064 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2065 2066 void show_stack(struct task_struct *tsk, unsigned long *stack) 2067 { 2068 unsigned long sp, ip, lr, newsp; 2069 int count = 0; 2070 int firstframe = 1; 2071 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2072 int curr_frame = current->curr_ret_stack; 2073 extern void return_to_handler(void); 2074 unsigned long rth = (unsigned long)return_to_handler; 2075 #endif 2076 2077 sp = (unsigned long) stack; 2078 if (tsk == NULL) 2079 tsk = current; 2080 if (sp == 0) { 2081 if (tsk == current) 2082 sp = current_stack_pointer(); 2083 else 2084 sp = tsk->thread.ksp; 2085 } 2086 2087 lr = 0; 2088 printk("Call Trace:\n"); 2089 do { 2090 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2091 return; 2092 2093 stack = (unsigned long *) sp; 2094 newsp = stack[0]; 2095 ip = stack[STACK_FRAME_LR_SAVE]; 2096 if (!firstframe || ip != lr) { 2097 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2098 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2099 if ((ip == rth) && curr_frame >= 0) { 2100 pr_cont(" (%pS)", 2101 (void *)current->ret_stack[curr_frame].ret); 2102 curr_frame--; 2103 } 2104 #endif 2105 if (firstframe) 2106 pr_cont(" (unreliable)"); 2107 pr_cont("\n"); 2108 } 2109 firstframe = 0; 2110 2111 /* 2112 * See if this is an exception frame. 2113 * We look for the "regshere" marker in the current frame. 2114 */ 2115 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2116 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2117 struct pt_regs *regs = (struct pt_regs *) 2118 (sp + STACK_FRAME_OVERHEAD); 2119 lr = regs->link; 2120 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2121 regs->trap, (void *)regs->nip, (void *)lr); 2122 firstframe = 1; 2123 } 2124 2125 sp = newsp; 2126 } while (count++ < kstack_depth_to_print); 2127 } 2128 2129 #ifdef CONFIG_PPC64 2130 /* Called with hard IRQs off */ 2131 void notrace __ppc64_runlatch_on(void) 2132 { 2133 struct thread_info *ti = current_thread_info(); 2134 2135 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2136 /* 2137 * Least significant bit (RUN) is the only writable bit of 2138 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2139 * earliest ISA where this is the case, but it's convenient. 2140 */ 2141 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2142 } else { 2143 unsigned long ctrl; 2144 2145 /* 2146 * Some architectures (e.g., Cell) have writable fields other 2147 * than RUN, so do the read-modify-write. 2148 */ 2149 ctrl = mfspr(SPRN_CTRLF); 2150 ctrl |= CTRL_RUNLATCH; 2151 mtspr(SPRN_CTRLT, ctrl); 2152 } 2153 2154 ti->local_flags |= _TLF_RUNLATCH; 2155 } 2156 2157 /* Called with hard IRQs off */ 2158 void notrace __ppc64_runlatch_off(void) 2159 { 2160 struct thread_info *ti = current_thread_info(); 2161 2162 ti->local_flags &= ~_TLF_RUNLATCH; 2163 2164 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2165 mtspr(SPRN_CTRLT, 0); 2166 } else { 2167 unsigned long ctrl; 2168 2169 ctrl = mfspr(SPRN_CTRLF); 2170 ctrl &= ~CTRL_RUNLATCH; 2171 mtspr(SPRN_CTRLT, ctrl); 2172 } 2173 } 2174 #endif /* CONFIG_PPC64 */ 2175 2176 unsigned long arch_align_stack(unsigned long sp) 2177 { 2178 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2179 sp -= get_random_int() & ~PAGE_MASK; 2180 return sp & ~0xf; 2181 } 2182 2183 static inline unsigned long brk_rnd(void) 2184 { 2185 unsigned long rnd = 0; 2186 2187 /* 8MB for 32bit, 1GB for 64bit */ 2188 if (is_32bit_task()) 2189 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2190 else 2191 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2192 2193 return rnd << PAGE_SHIFT; 2194 } 2195 2196 unsigned long arch_randomize_brk(struct mm_struct *mm) 2197 { 2198 unsigned long base = mm->brk; 2199 unsigned long ret; 2200 2201 #ifdef CONFIG_PPC_BOOK3S_64 2202 /* 2203 * If we are using 1TB segments and we are allowed to randomise 2204 * the heap, we can put it above 1TB so it is backed by a 1TB 2205 * segment. Otherwise the heap will be in the bottom 1TB 2206 * which always uses 256MB segments and this may result in a 2207 * performance penalty. We don't need to worry about radix. For 2208 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2209 */ 2210 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2211 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2212 #endif 2213 2214 ret = PAGE_ALIGN(base + brk_rnd()); 2215 2216 if (ret < mm->brk) 2217 return mm->brk; 2218 2219 return ret; 2220 } 2221 2222