xref: /linux-6.15/arch/powerpc/kernel/process.c (revision d8a2fe29)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan ([email protected]) and
6  *  Paul Mackerras ([email protected])
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas ([email protected])
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 #include <linux/pkeys.h>
46 #include <linux/seq_buf.h>
47 
48 #include <asm/pgtable.h>
49 #include <asm/io.h>
50 #include <asm/processor.h>
51 #include <asm/mmu.h>
52 #include <asm/prom.h>
53 #include <asm/machdep.h>
54 #include <asm/time.h>
55 #include <asm/runlatch.h>
56 #include <asm/syscalls.h>
57 #include <asm/switch_to.h>
58 #include <asm/tm.h>
59 #include <asm/debug.h>
60 #ifdef CONFIG_PPC64
61 #include <asm/firmware.h>
62 #include <asm/hw_irq.h>
63 #endif
64 #include <asm/code-patching.h>
65 #include <asm/exec.h>
66 #include <asm/livepatch.h>
67 #include <asm/cpu_has_feature.h>
68 #include <asm/asm-prototypes.h>
69 #include <asm/stacktrace.h>
70 
71 #include <linux/kprobes.h>
72 #include <linux/kdebug.h>
73 
74 /* Transactional Memory debug */
75 #ifdef TM_DEBUG_SW
76 #define TM_DEBUG(x...) printk(KERN_INFO x)
77 #else
78 #define TM_DEBUG(x...) do { } while(0)
79 #endif
80 
81 extern unsigned long _get_SP(void);
82 
83 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
84 /*
85  * Are we running in "Suspend disabled" mode? If so we have to block any
86  * sigreturn that would get us into suspended state, and we also warn in some
87  * other paths that we should never reach with suspend disabled.
88  */
89 bool tm_suspend_disabled __ro_after_init = false;
90 
91 static void check_if_tm_restore_required(struct task_struct *tsk)
92 {
93 	/*
94 	 * If we are saving the current thread's registers, and the
95 	 * thread is in a transactional state, set the TIF_RESTORE_TM
96 	 * bit so that we know to restore the registers before
97 	 * returning to userspace.
98 	 */
99 	if (tsk == current && tsk->thread.regs &&
100 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
101 	    !test_thread_flag(TIF_RESTORE_TM)) {
102 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
103 		set_thread_flag(TIF_RESTORE_TM);
104 	}
105 }
106 
107 static bool tm_active_with_fp(struct task_struct *tsk)
108 {
109 	return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
110 		(tsk->thread.ckpt_regs.msr & MSR_FP);
111 }
112 
113 static bool tm_active_with_altivec(struct task_struct *tsk)
114 {
115 	return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
116 		(tsk->thread.ckpt_regs.msr & MSR_VEC);
117 }
118 #else
119 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
120 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
121 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
122 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
123 
124 bool strict_msr_control;
125 EXPORT_SYMBOL(strict_msr_control);
126 
127 static int __init enable_strict_msr_control(char *str)
128 {
129 	strict_msr_control = true;
130 	pr_info("Enabling strict facility control\n");
131 
132 	return 0;
133 }
134 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
135 
136 unsigned long msr_check_and_set(unsigned long bits)
137 {
138 	unsigned long oldmsr = mfmsr();
139 	unsigned long newmsr;
140 
141 	newmsr = oldmsr | bits;
142 
143 #ifdef CONFIG_VSX
144 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
145 		newmsr |= MSR_VSX;
146 #endif
147 
148 	if (oldmsr != newmsr)
149 		mtmsr_isync(newmsr);
150 
151 	return newmsr;
152 }
153 EXPORT_SYMBOL_GPL(msr_check_and_set);
154 
155 void __msr_check_and_clear(unsigned long bits)
156 {
157 	unsigned long oldmsr = mfmsr();
158 	unsigned long newmsr;
159 
160 	newmsr = oldmsr & ~bits;
161 
162 #ifdef CONFIG_VSX
163 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
164 		newmsr &= ~MSR_VSX;
165 #endif
166 
167 	if (oldmsr != newmsr)
168 		mtmsr_isync(newmsr);
169 }
170 EXPORT_SYMBOL(__msr_check_and_clear);
171 
172 #ifdef CONFIG_PPC_FPU
173 static void __giveup_fpu(struct task_struct *tsk)
174 {
175 	unsigned long msr;
176 
177 	save_fpu(tsk);
178 	msr = tsk->thread.regs->msr;
179 	msr &= ~MSR_FP;
180 #ifdef CONFIG_VSX
181 	if (cpu_has_feature(CPU_FTR_VSX))
182 		msr &= ~MSR_VSX;
183 #endif
184 	tsk->thread.regs->msr = msr;
185 }
186 
187 void giveup_fpu(struct task_struct *tsk)
188 {
189 	check_if_tm_restore_required(tsk);
190 
191 	msr_check_and_set(MSR_FP);
192 	__giveup_fpu(tsk);
193 	msr_check_and_clear(MSR_FP);
194 }
195 EXPORT_SYMBOL(giveup_fpu);
196 
197 /*
198  * Make sure the floating-point register state in the
199  * the thread_struct is up to date for task tsk.
200  */
201 void flush_fp_to_thread(struct task_struct *tsk)
202 {
203 	if (tsk->thread.regs) {
204 		/*
205 		 * We need to disable preemption here because if we didn't,
206 		 * another process could get scheduled after the regs->msr
207 		 * test but before we have finished saving the FP registers
208 		 * to the thread_struct.  That process could take over the
209 		 * FPU, and then when we get scheduled again we would store
210 		 * bogus values for the remaining FP registers.
211 		 */
212 		preempt_disable();
213 		if (tsk->thread.regs->msr & MSR_FP) {
214 			/*
215 			 * This should only ever be called for current or
216 			 * for a stopped child process.  Since we save away
217 			 * the FP register state on context switch,
218 			 * there is something wrong if a stopped child appears
219 			 * to still have its FP state in the CPU registers.
220 			 */
221 			BUG_ON(tsk != current);
222 			giveup_fpu(tsk);
223 		}
224 		preempt_enable();
225 	}
226 }
227 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
228 
229 void enable_kernel_fp(void)
230 {
231 	unsigned long cpumsr;
232 
233 	WARN_ON(preemptible());
234 
235 	cpumsr = msr_check_and_set(MSR_FP);
236 
237 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
238 		check_if_tm_restore_required(current);
239 		/*
240 		 * If a thread has already been reclaimed then the
241 		 * checkpointed registers are on the CPU but have definitely
242 		 * been saved by the reclaim code. Don't need to and *cannot*
243 		 * giveup as this would save  to the 'live' structure not the
244 		 * checkpointed structure.
245 		 */
246 		if (!MSR_TM_ACTIVE(cpumsr) &&
247 		     MSR_TM_ACTIVE(current->thread.regs->msr))
248 			return;
249 		__giveup_fpu(current);
250 	}
251 }
252 EXPORT_SYMBOL(enable_kernel_fp);
253 
254 static int restore_fp(struct task_struct *tsk)
255 {
256 	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
257 		load_fp_state(&current->thread.fp_state);
258 		current->thread.load_fp++;
259 		return 1;
260 	}
261 	return 0;
262 }
263 #else
264 static int restore_fp(struct task_struct *tsk) { return 0; }
265 #endif /* CONFIG_PPC_FPU */
266 
267 #ifdef CONFIG_ALTIVEC
268 #define loadvec(thr) ((thr).load_vec)
269 
270 static void __giveup_altivec(struct task_struct *tsk)
271 {
272 	unsigned long msr;
273 
274 	save_altivec(tsk);
275 	msr = tsk->thread.regs->msr;
276 	msr &= ~MSR_VEC;
277 #ifdef CONFIG_VSX
278 	if (cpu_has_feature(CPU_FTR_VSX))
279 		msr &= ~MSR_VSX;
280 #endif
281 	tsk->thread.regs->msr = msr;
282 }
283 
284 void giveup_altivec(struct task_struct *tsk)
285 {
286 	check_if_tm_restore_required(tsk);
287 
288 	msr_check_and_set(MSR_VEC);
289 	__giveup_altivec(tsk);
290 	msr_check_and_clear(MSR_VEC);
291 }
292 EXPORT_SYMBOL(giveup_altivec);
293 
294 void enable_kernel_altivec(void)
295 {
296 	unsigned long cpumsr;
297 
298 	WARN_ON(preemptible());
299 
300 	cpumsr = msr_check_and_set(MSR_VEC);
301 
302 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
303 		check_if_tm_restore_required(current);
304 		/*
305 		 * If a thread has already been reclaimed then the
306 		 * checkpointed registers are on the CPU but have definitely
307 		 * been saved by the reclaim code. Don't need to and *cannot*
308 		 * giveup as this would save  to the 'live' structure not the
309 		 * checkpointed structure.
310 		 */
311 		if (!MSR_TM_ACTIVE(cpumsr) &&
312 		     MSR_TM_ACTIVE(current->thread.regs->msr))
313 			return;
314 		__giveup_altivec(current);
315 	}
316 }
317 EXPORT_SYMBOL(enable_kernel_altivec);
318 
319 /*
320  * Make sure the VMX/Altivec register state in the
321  * the thread_struct is up to date for task tsk.
322  */
323 void flush_altivec_to_thread(struct task_struct *tsk)
324 {
325 	if (tsk->thread.regs) {
326 		preempt_disable();
327 		if (tsk->thread.regs->msr & MSR_VEC) {
328 			BUG_ON(tsk != current);
329 			giveup_altivec(tsk);
330 		}
331 		preempt_enable();
332 	}
333 }
334 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
335 
336 static int restore_altivec(struct task_struct *tsk)
337 {
338 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
339 		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
340 		load_vr_state(&tsk->thread.vr_state);
341 		tsk->thread.used_vr = 1;
342 		tsk->thread.load_vec++;
343 
344 		return 1;
345 	}
346 	return 0;
347 }
348 #else
349 #define loadvec(thr) 0
350 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
351 #endif /* CONFIG_ALTIVEC */
352 
353 #ifdef CONFIG_VSX
354 static void __giveup_vsx(struct task_struct *tsk)
355 {
356 	unsigned long msr = tsk->thread.regs->msr;
357 
358 	/*
359 	 * We should never be ssetting MSR_VSX without also setting
360 	 * MSR_FP and MSR_VEC
361 	 */
362 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
363 
364 	/* __giveup_fpu will clear MSR_VSX */
365 	if (msr & MSR_FP)
366 		__giveup_fpu(tsk);
367 	if (msr & MSR_VEC)
368 		__giveup_altivec(tsk);
369 }
370 
371 static void giveup_vsx(struct task_struct *tsk)
372 {
373 	check_if_tm_restore_required(tsk);
374 
375 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
376 	__giveup_vsx(tsk);
377 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
378 }
379 
380 void enable_kernel_vsx(void)
381 {
382 	unsigned long cpumsr;
383 
384 	WARN_ON(preemptible());
385 
386 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
387 
388 	if (current->thread.regs &&
389 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
390 		check_if_tm_restore_required(current);
391 		/*
392 		 * If a thread has already been reclaimed then the
393 		 * checkpointed registers are on the CPU but have definitely
394 		 * been saved by the reclaim code. Don't need to and *cannot*
395 		 * giveup as this would save  to the 'live' structure not the
396 		 * checkpointed structure.
397 		 */
398 		if (!MSR_TM_ACTIVE(cpumsr) &&
399 		     MSR_TM_ACTIVE(current->thread.regs->msr))
400 			return;
401 		__giveup_vsx(current);
402 	}
403 }
404 EXPORT_SYMBOL(enable_kernel_vsx);
405 
406 void flush_vsx_to_thread(struct task_struct *tsk)
407 {
408 	if (tsk->thread.regs) {
409 		preempt_disable();
410 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
411 			BUG_ON(tsk != current);
412 			giveup_vsx(tsk);
413 		}
414 		preempt_enable();
415 	}
416 }
417 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
418 
419 static int restore_vsx(struct task_struct *tsk)
420 {
421 	if (cpu_has_feature(CPU_FTR_VSX)) {
422 		tsk->thread.used_vsr = 1;
423 		return 1;
424 	}
425 
426 	return 0;
427 }
428 #else
429 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
430 #endif /* CONFIG_VSX */
431 
432 #ifdef CONFIG_SPE
433 void giveup_spe(struct task_struct *tsk)
434 {
435 	check_if_tm_restore_required(tsk);
436 
437 	msr_check_and_set(MSR_SPE);
438 	__giveup_spe(tsk);
439 	msr_check_and_clear(MSR_SPE);
440 }
441 EXPORT_SYMBOL(giveup_spe);
442 
443 void enable_kernel_spe(void)
444 {
445 	WARN_ON(preemptible());
446 
447 	msr_check_and_set(MSR_SPE);
448 
449 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
450 		check_if_tm_restore_required(current);
451 		__giveup_spe(current);
452 	}
453 }
454 EXPORT_SYMBOL(enable_kernel_spe);
455 
456 void flush_spe_to_thread(struct task_struct *tsk)
457 {
458 	if (tsk->thread.regs) {
459 		preempt_disable();
460 		if (tsk->thread.regs->msr & MSR_SPE) {
461 			BUG_ON(tsk != current);
462 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
463 			giveup_spe(tsk);
464 		}
465 		preempt_enable();
466 	}
467 }
468 #endif /* CONFIG_SPE */
469 
470 static unsigned long msr_all_available;
471 
472 static int __init init_msr_all_available(void)
473 {
474 #ifdef CONFIG_PPC_FPU
475 	msr_all_available |= MSR_FP;
476 #endif
477 #ifdef CONFIG_ALTIVEC
478 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
479 		msr_all_available |= MSR_VEC;
480 #endif
481 #ifdef CONFIG_VSX
482 	if (cpu_has_feature(CPU_FTR_VSX))
483 		msr_all_available |= MSR_VSX;
484 #endif
485 #ifdef CONFIG_SPE
486 	if (cpu_has_feature(CPU_FTR_SPE))
487 		msr_all_available |= MSR_SPE;
488 #endif
489 
490 	return 0;
491 }
492 early_initcall(init_msr_all_available);
493 
494 void giveup_all(struct task_struct *tsk)
495 {
496 	unsigned long usermsr;
497 
498 	if (!tsk->thread.regs)
499 		return;
500 
501 	usermsr = tsk->thread.regs->msr;
502 
503 	if ((usermsr & msr_all_available) == 0)
504 		return;
505 
506 	msr_check_and_set(msr_all_available);
507 	check_if_tm_restore_required(tsk);
508 
509 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
510 
511 #ifdef CONFIG_PPC_FPU
512 	if (usermsr & MSR_FP)
513 		__giveup_fpu(tsk);
514 #endif
515 #ifdef CONFIG_ALTIVEC
516 	if (usermsr & MSR_VEC)
517 		__giveup_altivec(tsk);
518 #endif
519 #ifdef CONFIG_SPE
520 	if (usermsr & MSR_SPE)
521 		__giveup_spe(tsk);
522 #endif
523 
524 	msr_check_and_clear(msr_all_available);
525 }
526 EXPORT_SYMBOL(giveup_all);
527 
528 void restore_math(struct pt_regs *regs)
529 {
530 	unsigned long msr;
531 
532 	if (!MSR_TM_ACTIVE(regs->msr) &&
533 		!current->thread.load_fp && !loadvec(current->thread))
534 		return;
535 
536 	msr = regs->msr;
537 	msr_check_and_set(msr_all_available);
538 
539 	/*
540 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
541 	 * indicates that the registers are hot
542 	 */
543 	if ((!(msr & MSR_FP)) && restore_fp(current))
544 		msr |= MSR_FP | current->thread.fpexc_mode;
545 
546 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
547 		msr |= MSR_VEC;
548 
549 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
550 			restore_vsx(current)) {
551 		msr |= MSR_VSX;
552 	}
553 
554 	msr_check_and_clear(msr_all_available);
555 
556 	regs->msr = msr;
557 }
558 
559 static void save_all(struct task_struct *tsk)
560 {
561 	unsigned long usermsr;
562 
563 	if (!tsk->thread.regs)
564 		return;
565 
566 	usermsr = tsk->thread.regs->msr;
567 
568 	if ((usermsr & msr_all_available) == 0)
569 		return;
570 
571 	msr_check_and_set(msr_all_available);
572 
573 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
574 
575 	if (usermsr & MSR_FP)
576 		save_fpu(tsk);
577 
578 	if (usermsr & MSR_VEC)
579 		save_altivec(tsk);
580 
581 	if (usermsr & MSR_SPE)
582 		__giveup_spe(tsk);
583 
584 	msr_check_and_clear(msr_all_available);
585 	thread_pkey_regs_save(&tsk->thread);
586 }
587 
588 void flush_all_to_thread(struct task_struct *tsk)
589 {
590 	if (tsk->thread.regs) {
591 		preempt_disable();
592 		BUG_ON(tsk != current);
593 		save_all(tsk);
594 
595 #ifdef CONFIG_SPE
596 		if (tsk->thread.regs->msr & MSR_SPE)
597 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
598 #endif
599 
600 		preempt_enable();
601 	}
602 }
603 EXPORT_SYMBOL(flush_all_to_thread);
604 
605 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
606 void do_send_trap(struct pt_regs *regs, unsigned long address,
607 		  unsigned long error_code, int breakpt)
608 {
609 	current->thread.trap_nr = TRAP_HWBKPT;
610 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
611 			11, SIGSEGV) == NOTIFY_STOP)
612 		return;
613 
614 	/* Deliver the signal to userspace */
615 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
616 				    (void __user *)address);
617 }
618 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
619 void do_break (struct pt_regs *regs, unsigned long address,
620 		    unsigned long error_code)
621 {
622 	siginfo_t info;
623 
624 	current->thread.trap_nr = TRAP_HWBKPT;
625 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
626 			11, SIGSEGV) == NOTIFY_STOP)
627 		return;
628 
629 	if (debugger_break_match(regs))
630 		return;
631 
632 	/* Clear the breakpoint */
633 	hw_breakpoint_disable();
634 
635 	/* Deliver the signal to userspace */
636 	clear_siginfo(&info);
637 	info.si_signo = SIGTRAP;
638 	info.si_errno = 0;
639 	info.si_code = TRAP_HWBKPT;
640 	info.si_addr = (void __user *)address;
641 	force_sig_info(SIGTRAP, &info, current);
642 }
643 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
644 
645 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
646 
647 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
648 /*
649  * Set the debug registers back to their default "safe" values.
650  */
651 static void set_debug_reg_defaults(struct thread_struct *thread)
652 {
653 	thread->debug.iac1 = thread->debug.iac2 = 0;
654 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
655 	thread->debug.iac3 = thread->debug.iac4 = 0;
656 #endif
657 	thread->debug.dac1 = thread->debug.dac2 = 0;
658 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
659 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
660 #endif
661 	thread->debug.dbcr0 = 0;
662 #ifdef CONFIG_BOOKE
663 	/*
664 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
665 	 */
666 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
667 			DBCR1_IAC3US | DBCR1_IAC4US;
668 	/*
669 	 * Force Data Address Compare User/Supervisor bits to be User-only
670 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
671 	 */
672 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
673 #else
674 	thread->debug.dbcr1 = 0;
675 #endif
676 }
677 
678 static void prime_debug_regs(struct debug_reg *debug)
679 {
680 	/*
681 	 * We could have inherited MSR_DE from userspace, since
682 	 * it doesn't get cleared on exception entry.  Make sure
683 	 * MSR_DE is clear before we enable any debug events.
684 	 */
685 	mtmsr(mfmsr() & ~MSR_DE);
686 
687 	mtspr(SPRN_IAC1, debug->iac1);
688 	mtspr(SPRN_IAC2, debug->iac2);
689 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
690 	mtspr(SPRN_IAC3, debug->iac3);
691 	mtspr(SPRN_IAC4, debug->iac4);
692 #endif
693 	mtspr(SPRN_DAC1, debug->dac1);
694 	mtspr(SPRN_DAC2, debug->dac2);
695 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
696 	mtspr(SPRN_DVC1, debug->dvc1);
697 	mtspr(SPRN_DVC2, debug->dvc2);
698 #endif
699 	mtspr(SPRN_DBCR0, debug->dbcr0);
700 	mtspr(SPRN_DBCR1, debug->dbcr1);
701 #ifdef CONFIG_BOOKE
702 	mtspr(SPRN_DBCR2, debug->dbcr2);
703 #endif
704 }
705 /*
706  * Unless neither the old or new thread are making use of the
707  * debug registers, set the debug registers from the values
708  * stored in the new thread.
709  */
710 void switch_booke_debug_regs(struct debug_reg *new_debug)
711 {
712 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
713 		|| (new_debug->dbcr0 & DBCR0_IDM))
714 			prime_debug_regs(new_debug);
715 }
716 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
717 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
718 #ifndef CONFIG_HAVE_HW_BREAKPOINT
719 static void set_breakpoint(struct arch_hw_breakpoint *brk)
720 {
721 	preempt_disable();
722 	__set_breakpoint(brk);
723 	preempt_enable();
724 }
725 
726 static void set_debug_reg_defaults(struct thread_struct *thread)
727 {
728 	thread->hw_brk.address = 0;
729 	thread->hw_brk.type = 0;
730 	if (ppc_breakpoint_available())
731 		set_breakpoint(&thread->hw_brk);
732 }
733 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
734 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
735 
736 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
737 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
738 {
739 	mtspr(SPRN_DAC1, dabr);
740 #ifdef CONFIG_PPC_47x
741 	isync();
742 #endif
743 	return 0;
744 }
745 #elif defined(CONFIG_PPC_BOOK3S)
746 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
747 {
748 	mtspr(SPRN_DABR, dabr);
749 	if (cpu_has_feature(CPU_FTR_DABRX))
750 		mtspr(SPRN_DABRX, dabrx);
751 	return 0;
752 }
753 #elif defined(CONFIG_PPC_8xx)
754 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
755 {
756 	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
757 	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
758 	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
759 
760 	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
761 		lctrl1 |= 0xa0000;
762 	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
763 		lctrl1 |= 0xf0000;
764 	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
765 		lctrl2 = 0;
766 
767 	mtspr(SPRN_LCTRL2, 0);
768 	mtspr(SPRN_CMPE, addr);
769 	mtspr(SPRN_CMPF, addr + 4);
770 	mtspr(SPRN_LCTRL1, lctrl1);
771 	mtspr(SPRN_LCTRL2, lctrl2);
772 
773 	return 0;
774 }
775 #else
776 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
777 {
778 	return -EINVAL;
779 }
780 #endif
781 
782 static inline int set_dabr(struct arch_hw_breakpoint *brk)
783 {
784 	unsigned long dabr, dabrx;
785 
786 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
787 	dabrx = ((brk->type >> 3) & 0x7);
788 
789 	if (ppc_md.set_dabr)
790 		return ppc_md.set_dabr(dabr, dabrx);
791 
792 	return __set_dabr(dabr, dabrx);
793 }
794 
795 static inline int set_dawr(struct arch_hw_breakpoint *brk)
796 {
797 	unsigned long dawr, dawrx, mrd;
798 
799 	dawr = brk->address;
800 
801 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
802 		                   << (63 - 58); //* read/write bits */
803 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
804 		                   << (63 - 59); //* translate */
805 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
806 		                   >> 3; //* PRIM bits */
807 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
808 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
809 	   0b111111=64DW.
810 	   brk->len is in bytes.
811 	   This aligns up to double word size, shifts and does the bias.
812 	*/
813 	mrd = ((brk->len + 7) >> 3) - 1;
814 	dawrx |= (mrd & 0x3f) << (63 - 53);
815 
816 	if (ppc_md.set_dawr)
817 		return ppc_md.set_dawr(dawr, dawrx);
818 	mtspr(SPRN_DAWR, dawr);
819 	mtspr(SPRN_DAWRX, dawrx);
820 	return 0;
821 }
822 
823 void __set_breakpoint(struct arch_hw_breakpoint *brk)
824 {
825 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
826 
827 	if (cpu_has_feature(CPU_FTR_DAWR))
828 		// Power8 or later
829 		set_dawr(brk);
830 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
831 		// Power7 or earlier
832 		set_dabr(brk);
833 	else
834 		// Shouldn't happen due to higher level checks
835 		WARN_ON_ONCE(1);
836 }
837 
838 /* Check if we have DAWR or DABR hardware */
839 bool ppc_breakpoint_available(void)
840 {
841 	if (cpu_has_feature(CPU_FTR_DAWR))
842 		return true; /* POWER8 DAWR */
843 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
844 		return false; /* POWER9 with DAWR disabled */
845 	/* DABR: Everything but POWER8 and POWER9 */
846 	return true;
847 }
848 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
849 
850 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
851 			      struct arch_hw_breakpoint *b)
852 {
853 	if (a->address != b->address)
854 		return false;
855 	if (a->type != b->type)
856 		return false;
857 	if (a->len != b->len)
858 		return false;
859 	return true;
860 }
861 
862 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
863 
864 static inline bool tm_enabled(struct task_struct *tsk)
865 {
866 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
867 }
868 
869 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
870 {
871 	/*
872 	 * Use the current MSR TM suspended bit to track if we have
873 	 * checkpointed state outstanding.
874 	 * On signal delivery, we'd normally reclaim the checkpointed
875 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
876 	 * This will then directly return to userspace without going
877 	 * through __switch_to(). However, if the stack frame is bad,
878 	 * we need to exit this thread which calls __switch_to() which
879 	 * will again attempt to reclaim the already saved tm state.
880 	 * Hence we need to check that we've not already reclaimed
881 	 * this state.
882 	 * We do this using the current MSR, rather tracking it in
883 	 * some specific thread_struct bit, as it has the additional
884 	 * benefit of checking for a potential TM bad thing exception.
885 	 */
886 	if (!MSR_TM_SUSPENDED(mfmsr()))
887 		return;
888 
889 	giveup_all(container_of(thr, struct task_struct, thread));
890 
891 	tm_reclaim(thr, cause);
892 
893 	/*
894 	 * If we are in a transaction and FP is off then we can't have
895 	 * used FP inside that transaction. Hence the checkpointed
896 	 * state is the same as the live state. We need to copy the
897 	 * live state to the checkpointed state so that when the
898 	 * transaction is restored, the checkpointed state is correct
899 	 * and the aborted transaction sees the correct state. We use
900 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
901 	 * determine if it's going to write the checkpointed state or
902 	 * not. So either this will write the checkpointed registers,
903 	 * or reclaim will. Similarly for VMX.
904 	 */
905 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
906 		memcpy(&thr->ckfp_state, &thr->fp_state,
907 		       sizeof(struct thread_fp_state));
908 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
909 		memcpy(&thr->ckvr_state, &thr->vr_state,
910 		       sizeof(struct thread_vr_state));
911 }
912 
913 void tm_reclaim_current(uint8_t cause)
914 {
915 	tm_enable();
916 	tm_reclaim_thread(&current->thread, cause);
917 }
918 
919 static inline void tm_reclaim_task(struct task_struct *tsk)
920 {
921 	/* We have to work out if we're switching from/to a task that's in the
922 	 * middle of a transaction.
923 	 *
924 	 * In switching we need to maintain a 2nd register state as
925 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
926 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
927 	 * ckvr_state
928 	 *
929 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
930 	 */
931 	struct thread_struct *thr = &tsk->thread;
932 
933 	if (!thr->regs)
934 		return;
935 
936 	if (!MSR_TM_ACTIVE(thr->regs->msr))
937 		goto out_and_saveregs;
938 
939 	WARN_ON(tm_suspend_disabled);
940 
941 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
942 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
943 		 tsk->pid, thr->regs->nip,
944 		 thr->regs->ccr, thr->regs->msr,
945 		 thr->regs->trap);
946 
947 	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
948 
949 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
950 		 tsk->pid);
951 
952 out_and_saveregs:
953 	/* Always save the regs here, even if a transaction's not active.
954 	 * This context-switches a thread's TM info SPRs.  We do it here to
955 	 * be consistent with the restore path (in recheckpoint) which
956 	 * cannot happen later in _switch().
957 	 */
958 	tm_save_sprs(thr);
959 }
960 
961 extern void __tm_recheckpoint(struct thread_struct *thread);
962 
963 void tm_recheckpoint(struct thread_struct *thread)
964 {
965 	unsigned long flags;
966 
967 	if (!(thread->regs->msr & MSR_TM))
968 		return;
969 
970 	/* We really can't be interrupted here as the TEXASR registers can't
971 	 * change and later in the trecheckpoint code, we have a userspace R1.
972 	 * So let's hard disable over this region.
973 	 */
974 	local_irq_save(flags);
975 	hard_irq_disable();
976 
977 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
978 	 * before the trecheckpoint and no explosion occurs.
979 	 */
980 	tm_restore_sprs(thread);
981 
982 	__tm_recheckpoint(thread);
983 
984 	local_irq_restore(flags);
985 }
986 
987 static inline void tm_recheckpoint_new_task(struct task_struct *new)
988 {
989 	if (!cpu_has_feature(CPU_FTR_TM))
990 		return;
991 
992 	/* Recheckpoint the registers of the thread we're about to switch to.
993 	 *
994 	 * If the task was using FP, we non-lazily reload both the original and
995 	 * the speculative FP register states.  This is because the kernel
996 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
997 	 * unavailable later, we are unable to determine which set of FP regs
998 	 * need to be restored.
999 	 */
1000 	if (!tm_enabled(new))
1001 		return;
1002 
1003 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1004 		tm_restore_sprs(&new->thread);
1005 		return;
1006 	}
1007 	/* Recheckpoint to restore original checkpointed register state. */
1008 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1009 		 new->pid, new->thread.regs->msr);
1010 
1011 	tm_recheckpoint(&new->thread);
1012 
1013 	/*
1014 	 * The checkpointed state has been restored but the live state has
1015 	 * not, ensure all the math functionality is turned off to trigger
1016 	 * restore_math() to reload.
1017 	 */
1018 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1019 
1020 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1021 		 "(kernel msr 0x%lx)\n",
1022 		 new->pid, mfmsr());
1023 }
1024 
1025 static inline void __switch_to_tm(struct task_struct *prev,
1026 		struct task_struct *new)
1027 {
1028 	if (cpu_has_feature(CPU_FTR_TM)) {
1029 		if (tm_enabled(prev) || tm_enabled(new))
1030 			tm_enable();
1031 
1032 		if (tm_enabled(prev)) {
1033 			prev->thread.load_tm++;
1034 			tm_reclaim_task(prev);
1035 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1036 				prev->thread.regs->msr &= ~MSR_TM;
1037 		}
1038 
1039 		tm_recheckpoint_new_task(new);
1040 	}
1041 }
1042 
1043 /*
1044  * This is called if we are on the way out to userspace and the
1045  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1046  * FP and/or vector state and does so if necessary.
1047  * If userspace is inside a transaction (whether active or
1048  * suspended) and FP/VMX/VSX instructions have ever been enabled
1049  * inside that transaction, then we have to keep them enabled
1050  * and keep the FP/VMX/VSX state loaded while ever the transaction
1051  * continues.  The reason is that if we didn't, and subsequently
1052  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1053  * we don't know whether it's the same transaction, and thus we
1054  * don't know which of the checkpointed state and the transactional
1055  * state to use.
1056  */
1057 void restore_tm_state(struct pt_regs *regs)
1058 {
1059 	unsigned long msr_diff;
1060 
1061 	/*
1062 	 * This is the only moment we should clear TIF_RESTORE_TM as
1063 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1064 	 * again, anything else could lead to an incorrect ckpt_msr being
1065 	 * saved and therefore incorrect signal contexts.
1066 	 */
1067 	clear_thread_flag(TIF_RESTORE_TM);
1068 	if (!MSR_TM_ACTIVE(regs->msr))
1069 		return;
1070 
1071 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1072 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1073 
1074 	/* Ensure that restore_math() will restore */
1075 	if (msr_diff & MSR_FP)
1076 		current->thread.load_fp = 1;
1077 #ifdef CONFIG_ALTIVEC
1078 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1079 		current->thread.load_vec = 1;
1080 #endif
1081 	restore_math(regs);
1082 
1083 	regs->msr |= msr_diff;
1084 }
1085 
1086 #else
1087 #define tm_recheckpoint_new_task(new)
1088 #define __switch_to_tm(prev, new)
1089 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1090 
1091 static inline void save_sprs(struct thread_struct *t)
1092 {
1093 #ifdef CONFIG_ALTIVEC
1094 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1095 		t->vrsave = mfspr(SPRN_VRSAVE);
1096 #endif
1097 #ifdef CONFIG_PPC_BOOK3S_64
1098 	if (cpu_has_feature(CPU_FTR_DSCR))
1099 		t->dscr = mfspr(SPRN_DSCR);
1100 
1101 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1102 		t->bescr = mfspr(SPRN_BESCR);
1103 		t->ebbhr = mfspr(SPRN_EBBHR);
1104 		t->ebbrr = mfspr(SPRN_EBBRR);
1105 
1106 		t->fscr = mfspr(SPRN_FSCR);
1107 
1108 		/*
1109 		 * Note that the TAR is not available for use in the kernel.
1110 		 * (To provide this, the TAR should be backed up/restored on
1111 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1112 		 * this should be in pt_regs anyway (for debug).)
1113 		 */
1114 		t->tar = mfspr(SPRN_TAR);
1115 	}
1116 #endif
1117 
1118 	thread_pkey_regs_save(t);
1119 }
1120 
1121 static inline void restore_sprs(struct thread_struct *old_thread,
1122 				struct thread_struct *new_thread)
1123 {
1124 #ifdef CONFIG_ALTIVEC
1125 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1126 	    old_thread->vrsave != new_thread->vrsave)
1127 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1128 #endif
1129 #ifdef CONFIG_PPC_BOOK3S_64
1130 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1131 		u64 dscr = get_paca()->dscr_default;
1132 		if (new_thread->dscr_inherit)
1133 			dscr = new_thread->dscr;
1134 
1135 		if (old_thread->dscr != dscr)
1136 			mtspr(SPRN_DSCR, dscr);
1137 	}
1138 
1139 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1140 		if (old_thread->bescr != new_thread->bescr)
1141 			mtspr(SPRN_BESCR, new_thread->bescr);
1142 		if (old_thread->ebbhr != new_thread->ebbhr)
1143 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1144 		if (old_thread->ebbrr != new_thread->ebbrr)
1145 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1146 
1147 		if (old_thread->fscr != new_thread->fscr)
1148 			mtspr(SPRN_FSCR, new_thread->fscr);
1149 
1150 		if (old_thread->tar != new_thread->tar)
1151 			mtspr(SPRN_TAR, new_thread->tar);
1152 	}
1153 
1154 	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1155 	    old_thread->tidr != new_thread->tidr)
1156 		mtspr(SPRN_TIDR, new_thread->tidr);
1157 #endif
1158 
1159 	thread_pkey_regs_restore(new_thread, old_thread);
1160 }
1161 
1162 #ifdef CONFIG_PPC_BOOK3S_64
1163 #define CP_SIZE 128
1164 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1165 #endif
1166 
1167 struct task_struct *__switch_to(struct task_struct *prev,
1168 	struct task_struct *new)
1169 {
1170 	struct thread_struct *new_thread, *old_thread;
1171 	struct task_struct *last;
1172 #ifdef CONFIG_PPC_BOOK3S_64
1173 	struct ppc64_tlb_batch *batch;
1174 #endif
1175 
1176 	new_thread = &new->thread;
1177 	old_thread = &current->thread;
1178 
1179 	WARN_ON(!irqs_disabled());
1180 
1181 #ifdef CONFIG_PPC_BOOK3S_64
1182 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1183 	if (batch->active) {
1184 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1185 		if (batch->index)
1186 			__flush_tlb_pending(batch);
1187 		batch->active = 0;
1188 	}
1189 #endif /* CONFIG_PPC_BOOK3S_64 */
1190 
1191 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1192 	switch_booke_debug_regs(&new->thread.debug);
1193 #else
1194 /*
1195  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1196  * schedule DABR
1197  */
1198 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1199 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1200 		__set_breakpoint(&new->thread.hw_brk);
1201 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1202 #endif
1203 
1204 	/*
1205 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1206 	 * change a number of them.
1207 	 */
1208 	save_sprs(&prev->thread);
1209 
1210 	/* Save FPU, Altivec, VSX and SPE state */
1211 	giveup_all(prev);
1212 
1213 	__switch_to_tm(prev, new);
1214 
1215 	if (!radix_enabled()) {
1216 		/*
1217 		 * We can't take a PMU exception inside _switch() since there
1218 		 * is a window where the kernel stack SLB and the kernel stack
1219 		 * are out of sync. Hard disable here.
1220 		 */
1221 		hard_irq_disable();
1222 	}
1223 
1224 	/*
1225 	 * Call restore_sprs() before calling _switch(). If we move it after
1226 	 * _switch() then we miss out on calling it for new tasks. The reason
1227 	 * for this is we manually create a stack frame for new tasks that
1228 	 * directly returns through ret_from_fork() or
1229 	 * ret_from_kernel_thread(). See copy_thread() for details.
1230 	 */
1231 	restore_sprs(old_thread, new_thread);
1232 
1233 	last = _switch(old_thread, new_thread);
1234 
1235 #ifdef CONFIG_PPC_BOOK3S_64
1236 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1237 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1238 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1239 		batch->active = 1;
1240 	}
1241 
1242 	if (current_thread_info()->task->thread.regs) {
1243 		restore_math(current_thread_info()->task->thread.regs);
1244 
1245 		/*
1246 		 * The copy-paste buffer can only store into foreign real
1247 		 * addresses, so unprivileged processes can not see the
1248 		 * data or use it in any way unless they have foreign real
1249 		 * mappings. If the new process has the foreign real address
1250 		 * mappings, we must issue a cp_abort to clear any state and
1251 		 * prevent snooping, corruption or a covert channel.
1252 		 */
1253 		if (current_thread_info()->task->thread.used_vas)
1254 			asm volatile(PPC_CP_ABORT);
1255 	}
1256 #endif /* CONFIG_PPC_BOOK3S_64 */
1257 
1258 	return last;
1259 }
1260 
1261 #define NR_INSN_TO_PRINT	16
1262 
1263 static void show_instructions(struct pt_regs *regs)
1264 {
1265 	int i;
1266 	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1267 
1268 	printk("Instruction dump:");
1269 
1270 	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1271 		int instr;
1272 
1273 		if (!(i % 8))
1274 			pr_cont("\n");
1275 
1276 #if !defined(CONFIG_BOOKE)
1277 		/* If executing with the IMMU off, adjust pc rather
1278 		 * than print XXXXXXXX.
1279 		 */
1280 		if (!(regs->msr & MSR_IR))
1281 			pc = (unsigned long)phys_to_virt(pc);
1282 #endif
1283 
1284 		if (!__kernel_text_address(pc) ||
1285 		    probe_kernel_address((const void *)pc, instr)) {
1286 			pr_cont("XXXXXXXX ");
1287 		} else {
1288 			if (regs->nip == pc)
1289 				pr_cont("<%08x> ", instr);
1290 			else
1291 				pr_cont("%08x ", instr);
1292 		}
1293 
1294 		pc += sizeof(int);
1295 	}
1296 
1297 	pr_cont("\n");
1298 }
1299 
1300 void show_user_instructions(struct pt_regs *regs)
1301 {
1302 	unsigned long pc;
1303 	int n = NR_INSN_TO_PRINT;
1304 	struct seq_buf s;
1305 	char buf[96]; /* enough for 8 times 9 + 2 chars */
1306 
1307 	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1308 
1309 	/*
1310 	 * Make sure the NIP points at userspace, not kernel text/data or
1311 	 * elsewhere.
1312 	 */
1313 	if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1314 		pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1315 			current->comm, current->pid);
1316 		return;
1317 	}
1318 
1319 	seq_buf_init(&s, buf, sizeof(buf));
1320 
1321 	while (n) {
1322 		int i;
1323 
1324 		seq_buf_clear(&s);
1325 
1326 		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1327 			int instr;
1328 
1329 			if (probe_kernel_address((const void *)pc, instr)) {
1330 				seq_buf_printf(&s, "XXXXXXXX ");
1331 				continue;
1332 			}
1333 			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1334 		}
1335 
1336 		if (!seq_buf_has_overflowed(&s))
1337 			pr_info("%s[%d]: code: %s\n", current->comm,
1338 				current->pid, s.buffer);
1339 	}
1340 }
1341 
1342 struct regbit {
1343 	unsigned long bit;
1344 	const char *name;
1345 };
1346 
1347 static struct regbit msr_bits[] = {
1348 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1349 	{MSR_SF,	"SF"},
1350 	{MSR_HV,	"HV"},
1351 #endif
1352 	{MSR_VEC,	"VEC"},
1353 	{MSR_VSX,	"VSX"},
1354 #ifdef CONFIG_BOOKE
1355 	{MSR_CE,	"CE"},
1356 #endif
1357 	{MSR_EE,	"EE"},
1358 	{MSR_PR,	"PR"},
1359 	{MSR_FP,	"FP"},
1360 	{MSR_ME,	"ME"},
1361 #ifdef CONFIG_BOOKE
1362 	{MSR_DE,	"DE"},
1363 #else
1364 	{MSR_SE,	"SE"},
1365 	{MSR_BE,	"BE"},
1366 #endif
1367 	{MSR_IR,	"IR"},
1368 	{MSR_DR,	"DR"},
1369 	{MSR_PMM,	"PMM"},
1370 #ifndef CONFIG_BOOKE
1371 	{MSR_RI,	"RI"},
1372 	{MSR_LE,	"LE"},
1373 #endif
1374 	{0,		NULL}
1375 };
1376 
1377 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1378 {
1379 	const char *s = "";
1380 
1381 	for (; bits->bit; ++bits)
1382 		if (val & bits->bit) {
1383 			pr_cont("%s%s", s, bits->name);
1384 			s = sep;
1385 		}
1386 }
1387 
1388 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1389 static struct regbit msr_tm_bits[] = {
1390 	{MSR_TS_T,	"T"},
1391 	{MSR_TS_S,	"S"},
1392 	{MSR_TM,	"E"},
1393 	{0,		NULL}
1394 };
1395 
1396 static void print_tm_bits(unsigned long val)
1397 {
1398 /*
1399  * This only prints something if at least one of the TM bit is set.
1400  * Inside the TM[], the output means:
1401  *   E: Enabled		(bit 32)
1402  *   S: Suspended	(bit 33)
1403  *   T: Transactional	(bit 34)
1404  */
1405 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1406 		pr_cont(",TM[");
1407 		print_bits(val, msr_tm_bits, "");
1408 		pr_cont("]");
1409 	}
1410 }
1411 #else
1412 static void print_tm_bits(unsigned long val) {}
1413 #endif
1414 
1415 static void print_msr_bits(unsigned long val)
1416 {
1417 	pr_cont("<");
1418 	print_bits(val, msr_bits, ",");
1419 	print_tm_bits(val);
1420 	pr_cont(">");
1421 }
1422 
1423 #ifdef CONFIG_PPC64
1424 #define REG		"%016lx"
1425 #define REGS_PER_LINE	4
1426 #define LAST_VOLATILE	13
1427 #else
1428 #define REG		"%08lx"
1429 #define REGS_PER_LINE	8
1430 #define LAST_VOLATILE	12
1431 #endif
1432 
1433 void show_regs(struct pt_regs * regs)
1434 {
1435 	int i, trap;
1436 
1437 	show_regs_print_info(KERN_DEFAULT);
1438 
1439 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1440 	       regs->nip, regs->link, regs->ctr);
1441 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1442 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1443 	printk("MSR:  "REG" ", regs->msr);
1444 	print_msr_bits(regs->msr);
1445 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1446 	trap = TRAP(regs);
1447 	if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1448 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1449 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1450 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1451 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1452 #else
1453 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1454 #endif
1455 #ifdef CONFIG_PPC64
1456 	pr_cont("IRQMASK: %lx ", regs->softe);
1457 #endif
1458 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1459 	if (MSR_TM_ACTIVE(regs->msr))
1460 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1461 #endif
1462 
1463 	for (i = 0;  i < 32;  i++) {
1464 		if ((i % REGS_PER_LINE) == 0)
1465 			pr_cont("\nGPR%02d: ", i);
1466 		pr_cont(REG " ", regs->gpr[i]);
1467 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1468 			break;
1469 	}
1470 	pr_cont("\n");
1471 #ifdef CONFIG_KALLSYMS
1472 	/*
1473 	 * Lookup NIP late so we have the best change of getting the
1474 	 * above info out without failing
1475 	 */
1476 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1477 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1478 #endif
1479 	show_stack(current, (unsigned long *) regs->gpr[1]);
1480 	if (!user_mode(regs))
1481 		show_instructions(regs);
1482 }
1483 
1484 void flush_thread(void)
1485 {
1486 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1487 	flush_ptrace_hw_breakpoint(current);
1488 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1489 	set_debug_reg_defaults(&current->thread);
1490 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1491 }
1492 
1493 #ifdef CONFIG_PPC_BOOK3S_64
1494 void arch_setup_new_exec(void)
1495 {
1496 	if (radix_enabled())
1497 		return;
1498 	hash__setup_new_exec();
1499 }
1500 #endif
1501 
1502 int set_thread_uses_vas(void)
1503 {
1504 #ifdef CONFIG_PPC_BOOK3S_64
1505 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1506 		return -EINVAL;
1507 
1508 	current->thread.used_vas = 1;
1509 
1510 	/*
1511 	 * Even a process that has no foreign real address mapping can use
1512 	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1513 	 * to clear any pending COPY and prevent a covert channel.
1514 	 *
1515 	 * __switch_to() will issue CP_ABORT on future context switches.
1516 	 */
1517 	asm volatile(PPC_CP_ABORT);
1518 
1519 #endif /* CONFIG_PPC_BOOK3S_64 */
1520 	return 0;
1521 }
1522 
1523 #ifdef CONFIG_PPC64
1524 /**
1525  * Assign a TIDR (thread ID) for task @t and set it in the thread
1526  * structure. For now, we only support setting TIDR for 'current' task.
1527  *
1528  * Since the TID value is a truncated form of it PID, it is possible
1529  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1530  * that 2 threads share the same TID and are waiting, one of the following
1531  * cases will happen:
1532  *
1533  * 1. The correct thread is running, the wrong thread is not
1534  * In this situation, the correct thread is woken and proceeds to pass it's
1535  * condition check.
1536  *
1537  * 2. Neither threads are running
1538  * In this situation, neither thread will be woken. When scheduled, the waiting
1539  * threads will execute either a wait, which will return immediately, followed
1540  * by a condition check, which will pass for the correct thread and fail
1541  * for the wrong thread, or they will execute the condition check immediately.
1542  *
1543  * 3. The wrong thread is running, the correct thread is not
1544  * The wrong thread will be woken, but will fail it's condition check and
1545  * re-execute wait. The correct thread, when scheduled, will execute either
1546  * it's condition check (which will pass), or wait, which returns immediately
1547  * when called the first time after the thread is scheduled, followed by it's
1548  * condition check (which will pass).
1549  *
1550  * 4. Both threads are running
1551  * Both threads will be woken. The wrong thread will fail it's condition check
1552  * and execute another wait, while the correct thread will pass it's condition
1553  * check.
1554  *
1555  * @t: the task to set the thread ID for
1556  */
1557 int set_thread_tidr(struct task_struct *t)
1558 {
1559 	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1560 		return -EINVAL;
1561 
1562 	if (t != current)
1563 		return -EINVAL;
1564 
1565 	if (t->thread.tidr)
1566 		return 0;
1567 
1568 	t->thread.tidr = (u16)task_pid_nr(t);
1569 	mtspr(SPRN_TIDR, t->thread.tidr);
1570 
1571 	return 0;
1572 }
1573 EXPORT_SYMBOL_GPL(set_thread_tidr);
1574 
1575 #endif /* CONFIG_PPC64 */
1576 
1577 void
1578 release_thread(struct task_struct *t)
1579 {
1580 }
1581 
1582 /*
1583  * this gets called so that we can store coprocessor state into memory and
1584  * copy the current task into the new thread.
1585  */
1586 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1587 {
1588 	flush_all_to_thread(src);
1589 	/*
1590 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1591 	 * flush but it removes the checkpointed state from the current CPU and
1592 	 * transitions the CPU out of TM mode.  Hence we need to call
1593 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1594 	 * checkpointed state back and the TM mode.
1595 	 *
1596 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1597 	 * dst is only important for __switch_to()
1598 	 */
1599 	__switch_to_tm(src, src);
1600 
1601 	*dst = *src;
1602 
1603 	clear_task_ebb(dst);
1604 
1605 	return 0;
1606 }
1607 
1608 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1609 {
1610 #ifdef CONFIG_PPC_BOOK3S_64
1611 	unsigned long sp_vsid;
1612 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1613 
1614 	if (radix_enabled())
1615 		return;
1616 
1617 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1618 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1619 			<< SLB_VSID_SHIFT_1T;
1620 	else
1621 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1622 			<< SLB_VSID_SHIFT;
1623 	sp_vsid |= SLB_VSID_KERNEL | llp;
1624 	p->thread.ksp_vsid = sp_vsid;
1625 #endif
1626 }
1627 
1628 /*
1629  * Copy a thread..
1630  */
1631 
1632 /*
1633  * Copy architecture-specific thread state
1634  */
1635 int copy_thread(unsigned long clone_flags, unsigned long usp,
1636 		unsigned long kthread_arg, struct task_struct *p)
1637 {
1638 	struct pt_regs *childregs, *kregs;
1639 	extern void ret_from_fork(void);
1640 	extern void ret_from_kernel_thread(void);
1641 	void (*f)(void);
1642 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1643 	struct thread_info *ti = task_thread_info(p);
1644 
1645 	klp_init_thread_info(ti);
1646 
1647 	/* Copy registers */
1648 	sp -= sizeof(struct pt_regs);
1649 	childregs = (struct pt_regs *) sp;
1650 	if (unlikely(p->flags & PF_KTHREAD)) {
1651 		/* kernel thread */
1652 		memset(childregs, 0, sizeof(struct pt_regs));
1653 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1654 		/* function */
1655 		if (usp)
1656 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1657 #ifdef CONFIG_PPC64
1658 		clear_tsk_thread_flag(p, TIF_32BIT);
1659 		childregs->softe = IRQS_ENABLED;
1660 #endif
1661 		childregs->gpr[15] = kthread_arg;
1662 		p->thread.regs = NULL;	/* no user register state */
1663 		ti->flags |= _TIF_RESTOREALL;
1664 		f = ret_from_kernel_thread;
1665 	} else {
1666 		/* user thread */
1667 		struct pt_regs *regs = current_pt_regs();
1668 		CHECK_FULL_REGS(regs);
1669 		*childregs = *regs;
1670 		if (usp)
1671 			childregs->gpr[1] = usp;
1672 		p->thread.regs = childregs;
1673 		childregs->gpr[3] = 0;  /* Result from fork() */
1674 		if (clone_flags & CLONE_SETTLS) {
1675 #ifdef CONFIG_PPC64
1676 			if (!is_32bit_task())
1677 				childregs->gpr[13] = childregs->gpr[6];
1678 			else
1679 #endif
1680 				childregs->gpr[2] = childregs->gpr[6];
1681 		}
1682 
1683 		f = ret_from_fork;
1684 	}
1685 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1686 	sp -= STACK_FRAME_OVERHEAD;
1687 
1688 	/*
1689 	 * The way this works is that at some point in the future
1690 	 * some task will call _switch to switch to the new task.
1691 	 * That will pop off the stack frame created below and start
1692 	 * the new task running at ret_from_fork.  The new task will
1693 	 * do some house keeping and then return from the fork or clone
1694 	 * system call, using the stack frame created above.
1695 	 */
1696 	((unsigned long *)sp)[0] = 0;
1697 	sp -= sizeof(struct pt_regs);
1698 	kregs = (struct pt_regs *) sp;
1699 	sp -= STACK_FRAME_OVERHEAD;
1700 	p->thread.ksp = sp;
1701 #ifdef CONFIG_PPC32
1702 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1703 				_ALIGN_UP(sizeof(struct thread_info), 16);
1704 #endif
1705 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1706 	p->thread.ptrace_bps[0] = NULL;
1707 #endif
1708 
1709 	p->thread.fp_save_area = NULL;
1710 #ifdef CONFIG_ALTIVEC
1711 	p->thread.vr_save_area = NULL;
1712 #endif
1713 
1714 	setup_ksp_vsid(p, sp);
1715 
1716 #ifdef CONFIG_PPC64
1717 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1718 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1719 		p->thread.dscr = mfspr(SPRN_DSCR);
1720 	}
1721 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1722 		childregs->ppr = DEFAULT_PPR;
1723 
1724 	p->thread.tidr = 0;
1725 #endif
1726 	kregs->nip = ppc_function_entry(f);
1727 	return 0;
1728 }
1729 
1730 void preload_new_slb_context(unsigned long start, unsigned long sp);
1731 
1732 /*
1733  * Set up a thread for executing a new program
1734  */
1735 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1736 {
1737 #ifdef CONFIG_PPC64
1738 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1739 
1740 #ifdef CONFIG_PPC_BOOK3S_64
1741 	preload_new_slb_context(start, sp);
1742 #endif
1743 #endif
1744 
1745 	/*
1746 	 * If we exec out of a kernel thread then thread.regs will not be
1747 	 * set.  Do it now.
1748 	 */
1749 	if (!current->thread.regs) {
1750 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1751 		current->thread.regs = regs - 1;
1752 	}
1753 
1754 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1755 	/*
1756 	 * Clear any transactional state, we're exec()ing. The cause is
1757 	 * not important as there will never be a recheckpoint so it's not
1758 	 * user visible.
1759 	 */
1760 	if (MSR_TM_SUSPENDED(mfmsr()))
1761 		tm_reclaim_current(0);
1762 #endif
1763 
1764 	memset(regs->gpr, 0, sizeof(regs->gpr));
1765 	regs->ctr = 0;
1766 	regs->link = 0;
1767 	regs->xer = 0;
1768 	regs->ccr = 0;
1769 	regs->gpr[1] = sp;
1770 
1771 	/*
1772 	 * We have just cleared all the nonvolatile GPRs, so make
1773 	 * FULL_REGS(regs) return true.  This is necessary to allow
1774 	 * ptrace to examine the thread immediately after exec.
1775 	 */
1776 	regs->trap &= ~1UL;
1777 
1778 #ifdef CONFIG_PPC32
1779 	regs->mq = 0;
1780 	regs->nip = start;
1781 	regs->msr = MSR_USER;
1782 #else
1783 	if (!is_32bit_task()) {
1784 		unsigned long entry;
1785 
1786 		if (is_elf2_task()) {
1787 			/* Look ma, no function descriptors! */
1788 			entry = start;
1789 
1790 			/*
1791 			 * Ulrich says:
1792 			 *   The latest iteration of the ABI requires that when
1793 			 *   calling a function (at its global entry point),
1794 			 *   the caller must ensure r12 holds the entry point
1795 			 *   address (so that the function can quickly
1796 			 *   establish addressability).
1797 			 */
1798 			regs->gpr[12] = start;
1799 			/* Make sure that's restored on entry to userspace. */
1800 			set_thread_flag(TIF_RESTOREALL);
1801 		} else {
1802 			unsigned long toc;
1803 
1804 			/* start is a relocated pointer to the function
1805 			 * descriptor for the elf _start routine.  The first
1806 			 * entry in the function descriptor is the entry
1807 			 * address of _start and the second entry is the TOC
1808 			 * value we need to use.
1809 			 */
1810 			__get_user(entry, (unsigned long __user *)start);
1811 			__get_user(toc, (unsigned long __user *)start+1);
1812 
1813 			/* Check whether the e_entry function descriptor entries
1814 			 * need to be relocated before we can use them.
1815 			 */
1816 			if (load_addr != 0) {
1817 				entry += load_addr;
1818 				toc   += load_addr;
1819 			}
1820 			regs->gpr[2] = toc;
1821 		}
1822 		regs->nip = entry;
1823 		regs->msr = MSR_USER64;
1824 	} else {
1825 		regs->nip = start;
1826 		regs->gpr[2] = 0;
1827 		regs->msr = MSR_USER32;
1828 	}
1829 #endif
1830 #ifdef CONFIG_VSX
1831 	current->thread.used_vsr = 0;
1832 #endif
1833 	current->thread.load_slb = 0;
1834 	current->thread.load_fp = 0;
1835 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1836 	current->thread.fp_save_area = NULL;
1837 #ifdef CONFIG_ALTIVEC
1838 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1839 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1840 	current->thread.vr_save_area = NULL;
1841 	current->thread.vrsave = 0;
1842 	current->thread.used_vr = 0;
1843 	current->thread.load_vec = 0;
1844 #endif /* CONFIG_ALTIVEC */
1845 #ifdef CONFIG_SPE
1846 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1847 	current->thread.acc = 0;
1848 	current->thread.spefscr = 0;
1849 	current->thread.used_spe = 0;
1850 #endif /* CONFIG_SPE */
1851 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1852 	current->thread.tm_tfhar = 0;
1853 	current->thread.tm_texasr = 0;
1854 	current->thread.tm_tfiar = 0;
1855 	current->thread.load_tm = 0;
1856 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1857 
1858 	thread_pkey_regs_init(&current->thread);
1859 }
1860 EXPORT_SYMBOL(start_thread);
1861 
1862 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1863 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1864 
1865 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1866 {
1867 	struct pt_regs *regs = tsk->thread.regs;
1868 
1869 	/* This is a bit hairy.  If we are an SPE enabled  processor
1870 	 * (have embedded fp) we store the IEEE exception enable flags in
1871 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1872 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1873 	if (val & PR_FP_EXC_SW_ENABLE) {
1874 #ifdef CONFIG_SPE
1875 		if (cpu_has_feature(CPU_FTR_SPE)) {
1876 			/*
1877 			 * When the sticky exception bits are set
1878 			 * directly by userspace, it must call prctl
1879 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1880 			 * in the existing prctl settings) or
1881 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1882 			 * the bits being set).  <fenv.h> functions
1883 			 * saving and restoring the whole
1884 			 * floating-point environment need to do so
1885 			 * anyway to restore the prctl settings from
1886 			 * the saved environment.
1887 			 */
1888 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1889 			tsk->thread.fpexc_mode = val &
1890 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1891 			return 0;
1892 		} else {
1893 			return -EINVAL;
1894 		}
1895 #else
1896 		return -EINVAL;
1897 #endif
1898 	}
1899 
1900 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1901 	 * __pack_fe01 use do not overlap with bits used for
1902 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1903 	 * on CONFIG_SPE implementations are reserved so writing to
1904 	 * them does not change anything */
1905 	if (val > PR_FP_EXC_PRECISE)
1906 		return -EINVAL;
1907 	tsk->thread.fpexc_mode = __pack_fe01(val);
1908 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1909 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1910 			| tsk->thread.fpexc_mode;
1911 	return 0;
1912 }
1913 
1914 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1915 {
1916 	unsigned int val;
1917 
1918 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1919 #ifdef CONFIG_SPE
1920 		if (cpu_has_feature(CPU_FTR_SPE)) {
1921 			/*
1922 			 * When the sticky exception bits are set
1923 			 * directly by userspace, it must call prctl
1924 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1925 			 * in the existing prctl settings) or
1926 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1927 			 * the bits being set).  <fenv.h> functions
1928 			 * saving and restoring the whole
1929 			 * floating-point environment need to do so
1930 			 * anyway to restore the prctl settings from
1931 			 * the saved environment.
1932 			 */
1933 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1934 			val = tsk->thread.fpexc_mode;
1935 		} else
1936 			return -EINVAL;
1937 #else
1938 		return -EINVAL;
1939 #endif
1940 	else
1941 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1942 	return put_user(val, (unsigned int __user *) adr);
1943 }
1944 
1945 int set_endian(struct task_struct *tsk, unsigned int val)
1946 {
1947 	struct pt_regs *regs = tsk->thread.regs;
1948 
1949 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1950 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1951 		return -EINVAL;
1952 
1953 	if (regs == NULL)
1954 		return -EINVAL;
1955 
1956 	if (val == PR_ENDIAN_BIG)
1957 		regs->msr &= ~MSR_LE;
1958 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1959 		regs->msr |= MSR_LE;
1960 	else
1961 		return -EINVAL;
1962 
1963 	return 0;
1964 }
1965 
1966 int get_endian(struct task_struct *tsk, unsigned long adr)
1967 {
1968 	struct pt_regs *regs = tsk->thread.regs;
1969 	unsigned int val;
1970 
1971 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1972 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1973 		return -EINVAL;
1974 
1975 	if (regs == NULL)
1976 		return -EINVAL;
1977 
1978 	if (regs->msr & MSR_LE) {
1979 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1980 			val = PR_ENDIAN_LITTLE;
1981 		else
1982 			val = PR_ENDIAN_PPC_LITTLE;
1983 	} else
1984 		val = PR_ENDIAN_BIG;
1985 
1986 	return put_user(val, (unsigned int __user *)adr);
1987 }
1988 
1989 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1990 {
1991 	tsk->thread.align_ctl = val;
1992 	return 0;
1993 }
1994 
1995 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1996 {
1997 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1998 }
1999 
2000 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2001 				  unsigned long nbytes)
2002 {
2003 	unsigned long stack_page;
2004 	unsigned long cpu = task_cpu(p);
2005 
2006 	/*
2007 	 * Avoid crashing if the stack has overflowed and corrupted
2008 	 * task_cpu(p), which is in the thread_info struct.
2009 	 */
2010 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
2011 		stack_page = (unsigned long) hardirq_ctx[cpu];
2012 		if (sp >= stack_page + sizeof(struct thread_struct)
2013 		    && sp <= stack_page + THREAD_SIZE - nbytes)
2014 			return 1;
2015 
2016 		stack_page = (unsigned long) softirq_ctx[cpu];
2017 		if (sp >= stack_page + sizeof(struct thread_struct)
2018 		    && sp <= stack_page + THREAD_SIZE - nbytes)
2019 			return 1;
2020 	}
2021 	return 0;
2022 }
2023 
2024 int validate_sp(unsigned long sp, struct task_struct *p,
2025 		       unsigned long nbytes)
2026 {
2027 	unsigned long stack_page = (unsigned long)task_stack_page(p);
2028 
2029 	if (sp >= stack_page + sizeof(struct thread_struct)
2030 	    && sp <= stack_page + THREAD_SIZE - nbytes)
2031 		return 1;
2032 
2033 	return valid_irq_stack(sp, p, nbytes);
2034 }
2035 
2036 EXPORT_SYMBOL(validate_sp);
2037 
2038 unsigned long get_wchan(struct task_struct *p)
2039 {
2040 	unsigned long ip, sp;
2041 	int count = 0;
2042 
2043 	if (!p || p == current || p->state == TASK_RUNNING)
2044 		return 0;
2045 
2046 	sp = p->thread.ksp;
2047 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2048 		return 0;
2049 
2050 	do {
2051 		sp = *(unsigned long *)sp;
2052 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2053 		    p->state == TASK_RUNNING)
2054 			return 0;
2055 		if (count > 0) {
2056 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2057 			if (!in_sched_functions(ip))
2058 				return ip;
2059 		}
2060 	} while (count++ < 16);
2061 	return 0;
2062 }
2063 
2064 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2065 
2066 void show_stack(struct task_struct *tsk, unsigned long *stack)
2067 {
2068 	unsigned long sp, ip, lr, newsp;
2069 	int count = 0;
2070 	int firstframe = 1;
2071 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2072 	int curr_frame = current->curr_ret_stack;
2073 	extern void return_to_handler(void);
2074 	unsigned long rth = (unsigned long)return_to_handler;
2075 #endif
2076 
2077 	sp = (unsigned long) stack;
2078 	if (tsk == NULL)
2079 		tsk = current;
2080 	if (sp == 0) {
2081 		if (tsk == current)
2082 			sp = current_stack_pointer();
2083 		else
2084 			sp = tsk->thread.ksp;
2085 	}
2086 
2087 	lr = 0;
2088 	printk("Call Trace:\n");
2089 	do {
2090 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2091 			return;
2092 
2093 		stack = (unsigned long *) sp;
2094 		newsp = stack[0];
2095 		ip = stack[STACK_FRAME_LR_SAVE];
2096 		if (!firstframe || ip != lr) {
2097 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2098 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2099 			if ((ip == rth) && curr_frame >= 0) {
2100 				pr_cont(" (%pS)",
2101 				       (void *)current->ret_stack[curr_frame].ret);
2102 				curr_frame--;
2103 			}
2104 #endif
2105 			if (firstframe)
2106 				pr_cont(" (unreliable)");
2107 			pr_cont("\n");
2108 		}
2109 		firstframe = 0;
2110 
2111 		/*
2112 		 * See if this is an exception frame.
2113 		 * We look for the "regshere" marker in the current frame.
2114 		 */
2115 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2116 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2117 			struct pt_regs *regs = (struct pt_regs *)
2118 				(sp + STACK_FRAME_OVERHEAD);
2119 			lr = regs->link;
2120 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2121 			       regs->trap, (void *)regs->nip, (void *)lr);
2122 			firstframe = 1;
2123 		}
2124 
2125 		sp = newsp;
2126 	} while (count++ < kstack_depth_to_print);
2127 }
2128 
2129 #ifdef CONFIG_PPC64
2130 /* Called with hard IRQs off */
2131 void notrace __ppc64_runlatch_on(void)
2132 {
2133 	struct thread_info *ti = current_thread_info();
2134 
2135 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2136 		/*
2137 		 * Least significant bit (RUN) is the only writable bit of
2138 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2139 		 * earliest ISA where this is the case, but it's convenient.
2140 		 */
2141 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2142 	} else {
2143 		unsigned long ctrl;
2144 
2145 		/*
2146 		 * Some architectures (e.g., Cell) have writable fields other
2147 		 * than RUN, so do the read-modify-write.
2148 		 */
2149 		ctrl = mfspr(SPRN_CTRLF);
2150 		ctrl |= CTRL_RUNLATCH;
2151 		mtspr(SPRN_CTRLT, ctrl);
2152 	}
2153 
2154 	ti->local_flags |= _TLF_RUNLATCH;
2155 }
2156 
2157 /* Called with hard IRQs off */
2158 void notrace __ppc64_runlatch_off(void)
2159 {
2160 	struct thread_info *ti = current_thread_info();
2161 
2162 	ti->local_flags &= ~_TLF_RUNLATCH;
2163 
2164 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2165 		mtspr(SPRN_CTRLT, 0);
2166 	} else {
2167 		unsigned long ctrl;
2168 
2169 		ctrl = mfspr(SPRN_CTRLF);
2170 		ctrl &= ~CTRL_RUNLATCH;
2171 		mtspr(SPRN_CTRLT, ctrl);
2172 	}
2173 }
2174 #endif /* CONFIG_PPC64 */
2175 
2176 unsigned long arch_align_stack(unsigned long sp)
2177 {
2178 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2179 		sp -= get_random_int() & ~PAGE_MASK;
2180 	return sp & ~0xf;
2181 }
2182 
2183 static inline unsigned long brk_rnd(void)
2184 {
2185         unsigned long rnd = 0;
2186 
2187 	/* 8MB for 32bit, 1GB for 64bit */
2188 	if (is_32bit_task())
2189 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2190 	else
2191 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2192 
2193 	return rnd << PAGE_SHIFT;
2194 }
2195 
2196 unsigned long arch_randomize_brk(struct mm_struct *mm)
2197 {
2198 	unsigned long base = mm->brk;
2199 	unsigned long ret;
2200 
2201 #ifdef CONFIG_PPC_BOOK3S_64
2202 	/*
2203 	 * If we are using 1TB segments and we are allowed to randomise
2204 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2205 	 * segment. Otherwise the heap will be in the bottom 1TB
2206 	 * which always uses 256MB segments and this may result in a
2207 	 * performance penalty. We don't need to worry about radix. For
2208 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2209 	 */
2210 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2211 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2212 #endif
2213 
2214 	ret = PAGE_ALIGN(base + brk_rnd());
2215 
2216 	if (ret < mm->brk)
2217 		return mm->brk;
2218 
2219 	return ret;
2220 }
2221 
2222