xref: /linux-6.15/arch/powerpc/kernel/process.c (revision cec4b7ea)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan ([email protected]) and
6  *  Paul Mackerras ([email protected])
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas ([email protected])
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60 
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67 
68 extern unsigned long _get_SP(void);
69 
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76 
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79 {
80 	/*
81 	 * If we are saving the current thread's registers, and the
82 	 * thread is in a transactional state, set the TIF_RESTORE_TM
83 	 * bit so that we know to restore the registers before
84 	 * returning to userspace.
85 	 */
86 	if (tsk == current && tsk->thread.regs &&
87 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88 	    !test_thread_flag(TIF_RESTORE_TM)) {
89 		tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
90 		set_thread_flag(TIF_RESTORE_TM);
91 	}
92 
93 	giveup_fpu(tsk);
94 }
95 
96 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97 {
98 	/*
99 	 * If we are saving the current thread's registers, and the
100 	 * thread is in a transactional state, set the TIF_RESTORE_TM
101 	 * bit so that we know to restore the registers before
102 	 * returning to userspace.
103 	 */
104 	if (tsk == current && tsk->thread.regs &&
105 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106 	    !test_thread_flag(TIF_RESTORE_TM)) {
107 		tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
108 		set_thread_flag(TIF_RESTORE_TM);
109 	}
110 
111 	giveup_altivec(tsk);
112 }
113 
114 #else
115 #define giveup_fpu_maybe_transactional(tsk)	giveup_fpu(tsk)
116 #define giveup_altivec_maybe_transactional(tsk)	giveup_altivec(tsk)
117 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118 
119 #ifdef CONFIG_PPC_FPU
120 /*
121  * Make sure the floating-point register state in the
122  * the thread_struct is up to date for task tsk.
123  */
124 void flush_fp_to_thread(struct task_struct *tsk)
125 {
126 	if (tsk->thread.regs) {
127 		/*
128 		 * We need to disable preemption here because if we didn't,
129 		 * another process could get scheduled after the regs->msr
130 		 * test but before we have finished saving the FP registers
131 		 * to the thread_struct.  That process could take over the
132 		 * FPU, and then when we get scheduled again we would store
133 		 * bogus values for the remaining FP registers.
134 		 */
135 		preempt_disable();
136 		if (tsk->thread.regs->msr & MSR_FP) {
137 #ifdef CONFIG_SMP
138 			/*
139 			 * This should only ever be called for current or
140 			 * for a stopped child process.  Since we save away
141 			 * the FP register state on context switch on SMP,
142 			 * there is something wrong if a stopped child appears
143 			 * to still have its FP state in the CPU registers.
144 			 */
145 			BUG_ON(tsk != current);
146 #endif
147 			giveup_fpu_maybe_transactional(tsk);
148 		}
149 		preempt_enable();
150 	}
151 }
152 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153 #endif /* CONFIG_PPC_FPU */
154 
155 void enable_kernel_fp(void)
156 {
157 	WARN_ON(preemptible());
158 
159 #ifdef CONFIG_SMP
160 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161 		giveup_fpu_maybe_transactional(current);
162 	else
163 		giveup_fpu(NULL);	/* just enables FP for kernel */
164 #else
165 	giveup_fpu_maybe_transactional(last_task_used_math);
166 #endif /* CONFIG_SMP */
167 }
168 EXPORT_SYMBOL(enable_kernel_fp);
169 
170 #ifdef CONFIG_ALTIVEC
171 void enable_kernel_altivec(void)
172 {
173 	WARN_ON(preemptible());
174 
175 #ifdef CONFIG_SMP
176 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177 		giveup_altivec_maybe_transactional(current);
178 	else
179 		giveup_altivec_notask();
180 #else
181 	giveup_altivec_maybe_transactional(last_task_used_altivec);
182 #endif /* CONFIG_SMP */
183 }
184 EXPORT_SYMBOL(enable_kernel_altivec);
185 
186 /*
187  * Make sure the VMX/Altivec register state in the
188  * the thread_struct is up to date for task tsk.
189  */
190 void flush_altivec_to_thread(struct task_struct *tsk)
191 {
192 	if (tsk->thread.regs) {
193 		preempt_disable();
194 		if (tsk->thread.regs->msr & MSR_VEC) {
195 #ifdef CONFIG_SMP
196 			BUG_ON(tsk != current);
197 #endif
198 			giveup_altivec_maybe_transactional(tsk);
199 		}
200 		preempt_enable();
201 	}
202 }
203 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204 #endif /* CONFIG_ALTIVEC */
205 
206 #ifdef CONFIG_VSX
207 #if 0
208 /* not currently used, but some crazy RAID module might want to later */
209 void enable_kernel_vsx(void)
210 {
211 	WARN_ON(preemptible());
212 
213 #ifdef CONFIG_SMP
214 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
215 		giveup_vsx(current);
216 	else
217 		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
218 #else
219 	giveup_vsx(last_task_used_vsx);
220 #endif /* CONFIG_SMP */
221 }
222 EXPORT_SYMBOL(enable_kernel_vsx);
223 #endif
224 
225 void giveup_vsx(struct task_struct *tsk)
226 {
227 	giveup_fpu_maybe_transactional(tsk);
228 	giveup_altivec_maybe_transactional(tsk);
229 	__giveup_vsx(tsk);
230 }
231 
232 void flush_vsx_to_thread(struct task_struct *tsk)
233 {
234 	if (tsk->thread.regs) {
235 		preempt_disable();
236 		if (tsk->thread.regs->msr & MSR_VSX) {
237 #ifdef CONFIG_SMP
238 			BUG_ON(tsk != current);
239 #endif
240 			giveup_vsx(tsk);
241 		}
242 		preempt_enable();
243 	}
244 }
245 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
246 #endif /* CONFIG_VSX */
247 
248 #ifdef CONFIG_SPE
249 
250 void enable_kernel_spe(void)
251 {
252 	WARN_ON(preemptible());
253 
254 #ifdef CONFIG_SMP
255 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
256 		giveup_spe(current);
257 	else
258 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
259 #else
260 	giveup_spe(last_task_used_spe);
261 #endif /* __SMP __ */
262 }
263 EXPORT_SYMBOL(enable_kernel_spe);
264 
265 void flush_spe_to_thread(struct task_struct *tsk)
266 {
267 	if (tsk->thread.regs) {
268 		preempt_disable();
269 		if (tsk->thread.regs->msr & MSR_SPE) {
270 #ifdef CONFIG_SMP
271 			BUG_ON(tsk != current);
272 #endif
273 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
274 			giveup_spe(tsk);
275 		}
276 		preempt_enable();
277 	}
278 }
279 #endif /* CONFIG_SPE */
280 
281 #ifndef CONFIG_SMP
282 /*
283  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
284  * and the current task has some state, discard it.
285  */
286 void discard_lazy_cpu_state(void)
287 {
288 	preempt_disable();
289 	if (last_task_used_math == current)
290 		last_task_used_math = NULL;
291 #ifdef CONFIG_ALTIVEC
292 	if (last_task_used_altivec == current)
293 		last_task_used_altivec = NULL;
294 #endif /* CONFIG_ALTIVEC */
295 #ifdef CONFIG_VSX
296 	if (last_task_used_vsx == current)
297 		last_task_used_vsx = NULL;
298 #endif /* CONFIG_VSX */
299 #ifdef CONFIG_SPE
300 	if (last_task_used_spe == current)
301 		last_task_used_spe = NULL;
302 #endif
303 	preempt_enable();
304 }
305 #endif /* CONFIG_SMP */
306 
307 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
308 void do_send_trap(struct pt_regs *regs, unsigned long address,
309 		  unsigned long error_code, int signal_code, int breakpt)
310 {
311 	siginfo_t info;
312 
313 	current->thread.trap_nr = signal_code;
314 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
315 			11, SIGSEGV) == NOTIFY_STOP)
316 		return;
317 
318 	/* Deliver the signal to userspace */
319 	info.si_signo = SIGTRAP;
320 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
321 	info.si_code = signal_code;
322 	info.si_addr = (void __user *)address;
323 	force_sig_info(SIGTRAP, &info, current);
324 }
325 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
326 void do_break (struct pt_regs *regs, unsigned long address,
327 		    unsigned long error_code)
328 {
329 	siginfo_t info;
330 
331 	current->thread.trap_nr = TRAP_HWBKPT;
332 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
333 			11, SIGSEGV) == NOTIFY_STOP)
334 		return;
335 
336 	if (debugger_break_match(regs))
337 		return;
338 
339 	/* Clear the breakpoint */
340 	hw_breakpoint_disable();
341 
342 	/* Deliver the signal to userspace */
343 	info.si_signo = SIGTRAP;
344 	info.si_errno = 0;
345 	info.si_code = TRAP_HWBKPT;
346 	info.si_addr = (void __user *)address;
347 	force_sig_info(SIGTRAP, &info, current);
348 }
349 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
350 
351 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
352 
353 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
354 /*
355  * Set the debug registers back to their default "safe" values.
356  */
357 static void set_debug_reg_defaults(struct thread_struct *thread)
358 {
359 	thread->debug.iac1 = thread->debug.iac2 = 0;
360 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
361 	thread->debug.iac3 = thread->debug.iac4 = 0;
362 #endif
363 	thread->debug.dac1 = thread->debug.dac2 = 0;
364 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
365 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
366 #endif
367 	thread->debug.dbcr0 = 0;
368 #ifdef CONFIG_BOOKE
369 	/*
370 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
371 	 */
372 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
373 			DBCR1_IAC3US | DBCR1_IAC4US;
374 	/*
375 	 * Force Data Address Compare User/Supervisor bits to be User-only
376 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
377 	 */
378 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
379 #else
380 	thread->debug.dbcr1 = 0;
381 #endif
382 }
383 
384 static void prime_debug_regs(struct debug_reg *debug)
385 {
386 	/*
387 	 * We could have inherited MSR_DE from userspace, since
388 	 * it doesn't get cleared on exception entry.  Make sure
389 	 * MSR_DE is clear before we enable any debug events.
390 	 */
391 	mtmsr(mfmsr() & ~MSR_DE);
392 
393 	mtspr(SPRN_IAC1, debug->iac1);
394 	mtspr(SPRN_IAC2, debug->iac2);
395 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
396 	mtspr(SPRN_IAC3, debug->iac3);
397 	mtspr(SPRN_IAC4, debug->iac4);
398 #endif
399 	mtspr(SPRN_DAC1, debug->dac1);
400 	mtspr(SPRN_DAC2, debug->dac2);
401 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
402 	mtspr(SPRN_DVC1, debug->dvc1);
403 	mtspr(SPRN_DVC2, debug->dvc2);
404 #endif
405 	mtspr(SPRN_DBCR0, debug->dbcr0);
406 	mtspr(SPRN_DBCR1, debug->dbcr1);
407 #ifdef CONFIG_BOOKE
408 	mtspr(SPRN_DBCR2, debug->dbcr2);
409 #endif
410 }
411 /*
412  * Unless neither the old or new thread are making use of the
413  * debug registers, set the debug registers from the values
414  * stored in the new thread.
415  */
416 void switch_booke_debug_regs(struct debug_reg *new_debug)
417 {
418 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
419 		|| (new_debug->dbcr0 & DBCR0_IDM))
420 			prime_debug_regs(new_debug);
421 }
422 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
423 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
424 #ifndef CONFIG_HAVE_HW_BREAKPOINT
425 static void set_debug_reg_defaults(struct thread_struct *thread)
426 {
427 	thread->hw_brk.address = 0;
428 	thread->hw_brk.type = 0;
429 	set_breakpoint(&thread->hw_brk);
430 }
431 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
432 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
433 
434 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
435 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
436 {
437 	mtspr(SPRN_DAC1, dabr);
438 #ifdef CONFIG_PPC_47x
439 	isync();
440 #endif
441 	return 0;
442 }
443 #elif defined(CONFIG_PPC_BOOK3S)
444 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
445 {
446 	mtspr(SPRN_DABR, dabr);
447 	if (cpu_has_feature(CPU_FTR_DABRX))
448 		mtspr(SPRN_DABRX, dabrx);
449 	return 0;
450 }
451 #else
452 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
453 {
454 	return -EINVAL;
455 }
456 #endif
457 
458 static inline int set_dabr(struct arch_hw_breakpoint *brk)
459 {
460 	unsigned long dabr, dabrx;
461 
462 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
463 	dabrx = ((brk->type >> 3) & 0x7);
464 
465 	if (ppc_md.set_dabr)
466 		return ppc_md.set_dabr(dabr, dabrx);
467 
468 	return __set_dabr(dabr, dabrx);
469 }
470 
471 static inline int set_dawr(struct arch_hw_breakpoint *brk)
472 {
473 	unsigned long dawr, dawrx, mrd;
474 
475 	dawr = brk->address;
476 
477 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
478 		                   << (63 - 58); //* read/write bits */
479 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
480 		                   << (63 - 59); //* translate */
481 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
482 		                   >> 3; //* PRIM bits */
483 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
484 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
485 	   0b111111=64DW.
486 	   brk->len is in bytes.
487 	   This aligns up to double word size, shifts and does the bias.
488 	*/
489 	mrd = ((brk->len + 7) >> 3) - 1;
490 	dawrx |= (mrd & 0x3f) << (63 - 53);
491 
492 	if (ppc_md.set_dawr)
493 		return ppc_md.set_dawr(dawr, dawrx);
494 	mtspr(SPRN_DAWR, dawr);
495 	mtspr(SPRN_DAWRX, dawrx);
496 	return 0;
497 }
498 
499 int set_breakpoint(struct arch_hw_breakpoint *brk)
500 {
501 	__get_cpu_var(current_brk) = *brk;
502 
503 	if (cpu_has_feature(CPU_FTR_DAWR))
504 		return set_dawr(brk);
505 
506 	return set_dabr(brk);
507 }
508 
509 #ifdef CONFIG_PPC64
510 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
511 #endif
512 
513 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
514 			      struct arch_hw_breakpoint *b)
515 {
516 	if (a->address != b->address)
517 		return false;
518 	if (a->type != b->type)
519 		return false;
520 	if (a->len != b->len)
521 		return false;
522 	return true;
523 }
524 
525 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
526 static void tm_reclaim_thread(struct thread_struct *thr,
527 			      struct thread_info *ti, uint8_t cause)
528 {
529 	unsigned long msr_diff = 0;
530 
531 	/*
532 	 * If FP/VSX registers have been already saved to the
533 	 * thread_struct, move them to the transact_fp array.
534 	 * We clear the TIF_RESTORE_TM bit since after the reclaim
535 	 * the thread will no longer be transactional.
536 	 */
537 	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
538 		msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
539 		if (msr_diff & MSR_FP)
540 			memcpy(&thr->transact_fp, &thr->fp_state,
541 			       sizeof(struct thread_fp_state));
542 		if (msr_diff & MSR_VEC)
543 			memcpy(&thr->transact_vr, &thr->vr_state,
544 			       sizeof(struct thread_vr_state));
545 		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
546 		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
547 	}
548 
549 	tm_reclaim(thr, thr->regs->msr, cause);
550 
551 	/* Having done the reclaim, we now have the checkpointed
552 	 * FP/VSX values in the registers.  These might be valid
553 	 * even if we have previously called enable_kernel_fp() or
554 	 * flush_fp_to_thread(), so update thr->regs->msr to
555 	 * indicate their current validity.
556 	 */
557 	thr->regs->msr |= msr_diff;
558 }
559 
560 void tm_reclaim_current(uint8_t cause)
561 {
562 	tm_enable();
563 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
564 }
565 
566 static inline void tm_reclaim_task(struct task_struct *tsk)
567 {
568 	/* We have to work out if we're switching from/to a task that's in the
569 	 * middle of a transaction.
570 	 *
571 	 * In switching we need to maintain a 2nd register state as
572 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
573 	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
574 	 * (current) FPRs into oldtask->thread.transact_fpr[].
575 	 *
576 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
577 	 */
578 	struct thread_struct *thr = &tsk->thread;
579 
580 	if (!thr->regs)
581 		return;
582 
583 	if (!MSR_TM_ACTIVE(thr->regs->msr))
584 		goto out_and_saveregs;
585 
586 	/* Stash the original thread MSR, as giveup_fpu et al will
587 	 * modify it.  We hold onto it to see whether the task used
588 	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
589 	 * tm_orig_msr is already set.
590 	 */
591 	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
592 		thr->tm_orig_msr = thr->regs->msr;
593 
594 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
595 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
596 		 tsk->pid, thr->regs->nip,
597 		 thr->regs->ccr, thr->regs->msr,
598 		 thr->regs->trap);
599 
600 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
601 
602 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
603 		 tsk->pid);
604 
605 out_and_saveregs:
606 	/* Always save the regs here, even if a transaction's not active.
607 	 * This context-switches a thread's TM info SPRs.  We do it here to
608 	 * be consistent with the restore path (in recheckpoint) which
609 	 * cannot happen later in _switch().
610 	 */
611 	tm_save_sprs(thr);
612 }
613 
614 extern void __tm_recheckpoint(struct thread_struct *thread,
615 			      unsigned long orig_msr);
616 
617 void tm_recheckpoint(struct thread_struct *thread,
618 		     unsigned long orig_msr)
619 {
620 	unsigned long flags;
621 
622 	/* We really can't be interrupted here as the TEXASR registers can't
623 	 * change and later in the trecheckpoint code, we have a userspace R1.
624 	 * So let's hard disable over this region.
625 	 */
626 	local_irq_save(flags);
627 	hard_irq_disable();
628 
629 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
630 	 * before the trecheckpoint and no explosion occurs.
631 	 */
632 	tm_restore_sprs(thread);
633 
634 	__tm_recheckpoint(thread, orig_msr);
635 
636 	local_irq_restore(flags);
637 }
638 
639 static inline void tm_recheckpoint_new_task(struct task_struct *new)
640 {
641 	unsigned long msr;
642 
643 	if (!cpu_has_feature(CPU_FTR_TM))
644 		return;
645 
646 	/* Recheckpoint the registers of the thread we're about to switch to.
647 	 *
648 	 * If the task was using FP, we non-lazily reload both the original and
649 	 * the speculative FP register states.  This is because the kernel
650 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
651 	 * unavoidable later, we are unable to determine which set of FP regs
652 	 * need to be restored.
653 	 */
654 	if (!new->thread.regs)
655 		return;
656 
657 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
658 		tm_restore_sprs(&new->thread);
659 		return;
660 	}
661 	msr = new->thread.tm_orig_msr;
662 	/* Recheckpoint to restore original checkpointed register state. */
663 	TM_DEBUG("*** tm_recheckpoint of pid %d "
664 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
665 		 new->pid, new->thread.regs->msr, msr);
666 
667 	/* This loads the checkpointed FP/VEC state, if used */
668 	tm_recheckpoint(&new->thread, msr);
669 
670 	/* This loads the speculative FP/VEC state, if used */
671 	if (msr & MSR_FP) {
672 		do_load_up_transact_fpu(&new->thread);
673 		new->thread.regs->msr |=
674 			(MSR_FP | new->thread.fpexc_mode);
675 	}
676 #ifdef CONFIG_ALTIVEC
677 	if (msr & MSR_VEC) {
678 		do_load_up_transact_altivec(&new->thread);
679 		new->thread.regs->msr |= MSR_VEC;
680 	}
681 #endif
682 	/* We may as well turn on VSX too since all the state is restored now */
683 	if (msr & MSR_VSX)
684 		new->thread.regs->msr |= MSR_VSX;
685 
686 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
687 		 "(kernel msr 0x%lx)\n",
688 		 new->pid, mfmsr());
689 }
690 
691 static inline void __switch_to_tm(struct task_struct *prev)
692 {
693 	if (cpu_has_feature(CPU_FTR_TM)) {
694 		tm_enable();
695 		tm_reclaim_task(prev);
696 	}
697 }
698 
699 /*
700  * This is called if we are on the way out to userspace and the
701  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
702  * FP and/or vector state and does so if necessary.
703  * If userspace is inside a transaction (whether active or
704  * suspended) and FP/VMX/VSX instructions have ever been enabled
705  * inside that transaction, then we have to keep them enabled
706  * and keep the FP/VMX/VSX state loaded while ever the transaction
707  * continues.  The reason is that if we didn't, and subsequently
708  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
709  * we don't know whether it's the same transaction, and thus we
710  * don't know which of the checkpointed state and the transactional
711  * state to use.
712  */
713 void restore_tm_state(struct pt_regs *regs)
714 {
715 	unsigned long msr_diff;
716 
717 	clear_thread_flag(TIF_RESTORE_TM);
718 	if (!MSR_TM_ACTIVE(regs->msr))
719 		return;
720 
721 	msr_diff = current->thread.tm_orig_msr & ~regs->msr;
722 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
723 	if (msr_diff & MSR_FP) {
724 		fp_enable();
725 		load_fp_state(&current->thread.fp_state);
726 		regs->msr |= current->thread.fpexc_mode;
727 	}
728 	if (msr_diff & MSR_VEC) {
729 		vec_enable();
730 		load_vr_state(&current->thread.vr_state);
731 	}
732 	regs->msr |= msr_diff;
733 }
734 
735 #else
736 #define tm_recheckpoint_new_task(new)
737 #define __switch_to_tm(prev)
738 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
739 
740 struct task_struct *__switch_to(struct task_struct *prev,
741 	struct task_struct *new)
742 {
743 	struct thread_struct *new_thread, *old_thread;
744 	struct task_struct *last;
745 #ifdef CONFIG_PPC_BOOK3S_64
746 	struct ppc64_tlb_batch *batch;
747 #endif
748 
749 	WARN_ON(!irqs_disabled());
750 
751 	/* Back up the TAR across context switches.
752 	 * Note that the TAR is not available for use in the kernel.  (To
753 	 * provide this, the TAR should be backed up/restored on exception
754 	 * entry/exit instead, and be in pt_regs.  FIXME, this should be in
755 	 * pt_regs anyway (for debug).)
756 	 * Save the TAR here before we do treclaim/trecheckpoint as these
757 	 * will change the TAR.
758 	 */
759 	save_tar(&prev->thread);
760 
761 	__switch_to_tm(prev);
762 
763 #ifdef CONFIG_SMP
764 	/* avoid complexity of lazy save/restore of fpu
765 	 * by just saving it every time we switch out if
766 	 * this task used the fpu during the last quantum.
767 	 *
768 	 * If it tries to use the fpu again, it'll trap and
769 	 * reload its fp regs.  So we don't have to do a restore
770 	 * every switch, just a save.
771 	 *  -- Cort
772 	 */
773 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
774 		giveup_fpu(prev);
775 #ifdef CONFIG_ALTIVEC
776 	/*
777 	 * If the previous thread used altivec in the last quantum
778 	 * (thus changing altivec regs) then save them.
779 	 * We used to check the VRSAVE register but not all apps
780 	 * set it, so we don't rely on it now (and in fact we need
781 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
782 	 *
783 	 * On SMP we always save/restore altivec regs just to avoid the
784 	 * complexity of changing processors.
785 	 *  -- Cort
786 	 */
787 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
788 		giveup_altivec(prev);
789 #endif /* CONFIG_ALTIVEC */
790 #ifdef CONFIG_VSX
791 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
792 		/* VMX and FPU registers are already save here */
793 		__giveup_vsx(prev);
794 #endif /* CONFIG_VSX */
795 #ifdef CONFIG_SPE
796 	/*
797 	 * If the previous thread used spe in the last quantum
798 	 * (thus changing spe regs) then save them.
799 	 *
800 	 * On SMP we always save/restore spe regs just to avoid the
801 	 * complexity of changing processors.
802 	 */
803 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
804 		giveup_spe(prev);
805 #endif /* CONFIG_SPE */
806 
807 #else  /* CONFIG_SMP */
808 #ifdef CONFIG_ALTIVEC
809 	/* Avoid the trap.  On smp this this never happens since
810 	 * we don't set last_task_used_altivec -- Cort
811 	 */
812 	if (new->thread.regs && last_task_used_altivec == new)
813 		new->thread.regs->msr |= MSR_VEC;
814 #endif /* CONFIG_ALTIVEC */
815 #ifdef CONFIG_VSX
816 	if (new->thread.regs && last_task_used_vsx == new)
817 		new->thread.regs->msr |= MSR_VSX;
818 #endif /* CONFIG_VSX */
819 #ifdef CONFIG_SPE
820 	/* Avoid the trap.  On smp this this never happens since
821 	 * we don't set last_task_used_spe
822 	 */
823 	if (new->thread.regs && last_task_used_spe == new)
824 		new->thread.regs->msr |= MSR_SPE;
825 #endif /* CONFIG_SPE */
826 
827 #endif /* CONFIG_SMP */
828 
829 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
830 	switch_booke_debug_regs(&new->thread.debug);
831 #else
832 /*
833  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
834  * schedule DABR
835  */
836 #ifndef CONFIG_HAVE_HW_BREAKPOINT
837 	if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
838 		set_breakpoint(&new->thread.hw_brk);
839 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
840 #endif
841 
842 
843 	new_thread = &new->thread;
844 	old_thread = &current->thread;
845 
846 #ifdef CONFIG_PPC64
847 	/*
848 	 * Collect processor utilization data per process
849 	 */
850 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
851 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
852 		long unsigned start_tb, current_tb;
853 		start_tb = old_thread->start_tb;
854 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
855 		old_thread->accum_tb += (current_tb - start_tb);
856 		new_thread->start_tb = current_tb;
857 	}
858 #endif /* CONFIG_PPC64 */
859 
860 #ifdef CONFIG_PPC_BOOK3S_64
861 	batch = &__get_cpu_var(ppc64_tlb_batch);
862 	if (batch->active) {
863 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
864 		if (batch->index)
865 			__flush_tlb_pending(batch);
866 		batch->active = 0;
867 	}
868 #endif /* CONFIG_PPC_BOOK3S_64 */
869 
870 	/*
871 	 * We can't take a PMU exception inside _switch() since there is a
872 	 * window where the kernel stack SLB and the kernel stack are out
873 	 * of sync. Hard disable here.
874 	 */
875 	hard_irq_disable();
876 
877 	tm_recheckpoint_new_task(new);
878 
879 	last = _switch(old_thread, new_thread);
880 
881 #ifdef CONFIG_PPC_BOOK3S_64
882 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
883 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
884 		batch = &__get_cpu_var(ppc64_tlb_batch);
885 		batch->active = 1;
886 	}
887 #endif /* CONFIG_PPC_BOOK3S_64 */
888 
889 	return last;
890 }
891 
892 static int instructions_to_print = 16;
893 
894 static void show_instructions(struct pt_regs *regs)
895 {
896 	int i;
897 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
898 			sizeof(int));
899 
900 	printk("Instruction dump:");
901 
902 	for (i = 0; i < instructions_to_print; i++) {
903 		int instr;
904 
905 		if (!(i % 8))
906 			printk("\n");
907 
908 #if !defined(CONFIG_BOOKE)
909 		/* If executing with the IMMU off, adjust pc rather
910 		 * than print XXXXXXXX.
911 		 */
912 		if (!(regs->msr & MSR_IR))
913 			pc = (unsigned long)phys_to_virt(pc);
914 #endif
915 
916 		/* We use __get_user here *only* to avoid an OOPS on a
917 		 * bad address because the pc *should* only be a
918 		 * kernel address.
919 		 */
920 		if (!__kernel_text_address(pc) ||
921 		     __get_user(instr, (unsigned int __user *)pc)) {
922 			printk(KERN_CONT "XXXXXXXX ");
923 		} else {
924 			if (regs->nip == pc)
925 				printk(KERN_CONT "<%08x> ", instr);
926 			else
927 				printk(KERN_CONT "%08x ", instr);
928 		}
929 
930 		pc += sizeof(int);
931 	}
932 
933 	printk("\n");
934 }
935 
936 static struct regbit {
937 	unsigned long bit;
938 	const char *name;
939 } msr_bits[] = {
940 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
941 	{MSR_SF,	"SF"},
942 	{MSR_HV,	"HV"},
943 #endif
944 	{MSR_VEC,	"VEC"},
945 	{MSR_VSX,	"VSX"},
946 #ifdef CONFIG_BOOKE
947 	{MSR_CE,	"CE"},
948 #endif
949 	{MSR_EE,	"EE"},
950 	{MSR_PR,	"PR"},
951 	{MSR_FP,	"FP"},
952 	{MSR_ME,	"ME"},
953 #ifdef CONFIG_BOOKE
954 	{MSR_DE,	"DE"},
955 #else
956 	{MSR_SE,	"SE"},
957 	{MSR_BE,	"BE"},
958 #endif
959 	{MSR_IR,	"IR"},
960 	{MSR_DR,	"DR"},
961 	{MSR_PMM,	"PMM"},
962 #ifndef CONFIG_BOOKE
963 	{MSR_RI,	"RI"},
964 	{MSR_LE,	"LE"},
965 #endif
966 	{0,		NULL}
967 };
968 
969 static void printbits(unsigned long val, struct regbit *bits)
970 {
971 	const char *sep = "";
972 
973 	printk("<");
974 	for (; bits->bit; ++bits)
975 		if (val & bits->bit) {
976 			printk("%s%s", sep, bits->name);
977 			sep = ",";
978 		}
979 	printk(">");
980 }
981 
982 #ifdef CONFIG_PPC64
983 #define REG		"%016lx"
984 #define REGS_PER_LINE	4
985 #define LAST_VOLATILE	13
986 #else
987 #define REG		"%08lx"
988 #define REGS_PER_LINE	8
989 #define LAST_VOLATILE	12
990 #endif
991 
992 void show_regs(struct pt_regs * regs)
993 {
994 	int i, trap;
995 
996 	show_regs_print_info(KERN_DEFAULT);
997 
998 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
999 	       regs->nip, regs->link, regs->ctr);
1000 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1001 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1002 	printk("MSR: "REG" ", regs->msr);
1003 	printbits(regs->msr, msr_bits);
1004 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1005 	trap = TRAP(regs);
1006 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1007 		printk("CFAR: "REG" ", regs->orig_gpr3);
1008 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1009 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1010 		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1011 #else
1012 		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1013 #endif
1014 #ifdef CONFIG_PPC64
1015 	printk("SOFTE: %ld ", regs->softe);
1016 #endif
1017 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1018 	if (MSR_TM_ACTIVE(regs->msr))
1019 		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1020 #endif
1021 
1022 	for (i = 0;  i < 32;  i++) {
1023 		if ((i % REGS_PER_LINE) == 0)
1024 			printk("\nGPR%02d: ", i);
1025 		printk(REG " ", regs->gpr[i]);
1026 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1027 			break;
1028 	}
1029 	printk("\n");
1030 #ifdef CONFIG_KALLSYMS
1031 	/*
1032 	 * Lookup NIP late so we have the best change of getting the
1033 	 * above info out without failing
1034 	 */
1035 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1036 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1037 #endif
1038 	show_stack(current, (unsigned long *) regs->gpr[1]);
1039 	if (!user_mode(regs))
1040 		show_instructions(regs);
1041 }
1042 
1043 void exit_thread(void)
1044 {
1045 	discard_lazy_cpu_state();
1046 }
1047 
1048 void flush_thread(void)
1049 {
1050 	discard_lazy_cpu_state();
1051 
1052 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1053 	flush_ptrace_hw_breakpoint(current);
1054 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1055 	set_debug_reg_defaults(&current->thread);
1056 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1057 }
1058 
1059 void
1060 release_thread(struct task_struct *t)
1061 {
1062 }
1063 
1064 /*
1065  * this gets called so that we can store coprocessor state into memory and
1066  * copy the current task into the new thread.
1067  */
1068 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1069 {
1070 	flush_fp_to_thread(src);
1071 	flush_altivec_to_thread(src);
1072 	flush_vsx_to_thread(src);
1073 	flush_spe_to_thread(src);
1074 	/*
1075 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1076 	 * flush but it removes the checkpointed state from the current CPU and
1077 	 * transitions the CPU out of TM mode.  Hence we need to call
1078 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1079 	 * checkpointed state back and the TM mode.
1080 	 */
1081 	__switch_to_tm(src);
1082 	tm_recheckpoint_new_task(src);
1083 
1084 	*dst = *src;
1085 
1086 	clear_task_ebb(dst);
1087 
1088 	return 0;
1089 }
1090 
1091 /*
1092  * Copy a thread..
1093  */
1094 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1095 
1096 int copy_thread(unsigned long clone_flags, unsigned long usp,
1097 		unsigned long arg, struct task_struct *p)
1098 {
1099 	struct pt_regs *childregs, *kregs;
1100 	extern void ret_from_fork(void);
1101 	extern void ret_from_kernel_thread(void);
1102 	void (*f)(void);
1103 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1104 
1105 	/* Copy registers */
1106 	sp -= sizeof(struct pt_regs);
1107 	childregs = (struct pt_regs *) sp;
1108 	if (unlikely(p->flags & PF_KTHREAD)) {
1109 		struct thread_info *ti = (void *)task_stack_page(p);
1110 		memset(childregs, 0, sizeof(struct pt_regs));
1111 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1112 		/* function */
1113 		if (usp)
1114 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1115 #ifdef CONFIG_PPC64
1116 		clear_tsk_thread_flag(p, TIF_32BIT);
1117 		childregs->softe = 1;
1118 #endif
1119 		childregs->gpr[15] = arg;
1120 		p->thread.regs = NULL;	/* no user register state */
1121 		ti->flags |= _TIF_RESTOREALL;
1122 		f = ret_from_kernel_thread;
1123 	} else {
1124 		struct pt_regs *regs = current_pt_regs();
1125 		CHECK_FULL_REGS(regs);
1126 		*childregs = *regs;
1127 		if (usp)
1128 			childregs->gpr[1] = usp;
1129 		p->thread.regs = childregs;
1130 		childregs->gpr[3] = 0;  /* Result from fork() */
1131 		if (clone_flags & CLONE_SETTLS) {
1132 #ifdef CONFIG_PPC64
1133 			if (!is_32bit_task())
1134 				childregs->gpr[13] = childregs->gpr[6];
1135 			else
1136 #endif
1137 				childregs->gpr[2] = childregs->gpr[6];
1138 		}
1139 
1140 		f = ret_from_fork;
1141 	}
1142 	sp -= STACK_FRAME_OVERHEAD;
1143 
1144 	/*
1145 	 * The way this works is that at some point in the future
1146 	 * some task will call _switch to switch to the new task.
1147 	 * That will pop off the stack frame created below and start
1148 	 * the new task running at ret_from_fork.  The new task will
1149 	 * do some house keeping and then return from the fork or clone
1150 	 * system call, using the stack frame created above.
1151 	 */
1152 	((unsigned long *)sp)[0] = 0;
1153 	sp -= sizeof(struct pt_regs);
1154 	kregs = (struct pt_regs *) sp;
1155 	sp -= STACK_FRAME_OVERHEAD;
1156 	p->thread.ksp = sp;
1157 #ifdef CONFIG_PPC32
1158 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1159 				_ALIGN_UP(sizeof(struct thread_info), 16);
1160 #endif
1161 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1162 	p->thread.ptrace_bps[0] = NULL;
1163 #endif
1164 
1165 	p->thread.fp_save_area = NULL;
1166 #ifdef CONFIG_ALTIVEC
1167 	p->thread.vr_save_area = NULL;
1168 #endif
1169 
1170 #ifdef CONFIG_PPC_STD_MMU_64
1171 	if (mmu_has_feature(MMU_FTR_SLB)) {
1172 		unsigned long sp_vsid;
1173 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1174 
1175 		if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1176 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1177 				<< SLB_VSID_SHIFT_1T;
1178 		else
1179 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1180 				<< SLB_VSID_SHIFT;
1181 		sp_vsid |= SLB_VSID_KERNEL | llp;
1182 		p->thread.ksp_vsid = sp_vsid;
1183 	}
1184 #endif /* CONFIG_PPC_STD_MMU_64 */
1185 #ifdef CONFIG_PPC64
1186 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1187 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1188 		p->thread.dscr = current->thread.dscr;
1189 	}
1190 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1191 		p->thread.ppr = INIT_PPR;
1192 #endif
1193 	kregs->nip = ppc_function_entry(f);
1194 	return 0;
1195 }
1196 
1197 /*
1198  * Set up a thread for executing a new program
1199  */
1200 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1201 {
1202 #ifdef CONFIG_PPC64
1203 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1204 #endif
1205 
1206 	/*
1207 	 * If we exec out of a kernel thread then thread.regs will not be
1208 	 * set.  Do it now.
1209 	 */
1210 	if (!current->thread.regs) {
1211 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1212 		current->thread.regs = regs - 1;
1213 	}
1214 
1215 	memset(regs->gpr, 0, sizeof(regs->gpr));
1216 	regs->ctr = 0;
1217 	regs->link = 0;
1218 	regs->xer = 0;
1219 	regs->ccr = 0;
1220 	regs->gpr[1] = sp;
1221 
1222 	/*
1223 	 * We have just cleared all the nonvolatile GPRs, so make
1224 	 * FULL_REGS(regs) return true.  This is necessary to allow
1225 	 * ptrace to examine the thread immediately after exec.
1226 	 */
1227 	regs->trap &= ~1UL;
1228 
1229 #ifdef CONFIG_PPC32
1230 	regs->mq = 0;
1231 	regs->nip = start;
1232 	regs->msr = MSR_USER;
1233 #else
1234 	if (!is_32bit_task()) {
1235 		unsigned long entry;
1236 
1237 		if (is_elf2_task()) {
1238 			/* Look ma, no function descriptors! */
1239 			entry = start;
1240 
1241 			/*
1242 			 * Ulrich says:
1243 			 *   The latest iteration of the ABI requires that when
1244 			 *   calling a function (at its global entry point),
1245 			 *   the caller must ensure r12 holds the entry point
1246 			 *   address (so that the function can quickly
1247 			 *   establish addressability).
1248 			 */
1249 			regs->gpr[12] = start;
1250 			/* Make sure that's restored on entry to userspace. */
1251 			set_thread_flag(TIF_RESTOREALL);
1252 		} else {
1253 			unsigned long toc;
1254 
1255 			/* start is a relocated pointer to the function
1256 			 * descriptor for the elf _start routine.  The first
1257 			 * entry in the function descriptor is the entry
1258 			 * address of _start and the second entry is the TOC
1259 			 * value we need to use.
1260 			 */
1261 			__get_user(entry, (unsigned long __user *)start);
1262 			__get_user(toc, (unsigned long __user *)start+1);
1263 
1264 			/* Check whether the e_entry function descriptor entries
1265 			 * need to be relocated before we can use them.
1266 			 */
1267 			if (load_addr != 0) {
1268 				entry += load_addr;
1269 				toc   += load_addr;
1270 			}
1271 			regs->gpr[2] = toc;
1272 		}
1273 		regs->nip = entry;
1274 		regs->msr = MSR_USER64;
1275 	} else {
1276 		regs->nip = start;
1277 		regs->gpr[2] = 0;
1278 		regs->msr = MSR_USER32;
1279 	}
1280 #endif
1281 	discard_lazy_cpu_state();
1282 #ifdef CONFIG_VSX
1283 	current->thread.used_vsr = 0;
1284 #endif
1285 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1286 	current->thread.fp_save_area = NULL;
1287 #ifdef CONFIG_ALTIVEC
1288 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1289 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1290 	current->thread.vr_save_area = NULL;
1291 	current->thread.vrsave = 0;
1292 	current->thread.used_vr = 0;
1293 #endif /* CONFIG_ALTIVEC */
1294 #ifdef CONFIG_SPE
1295 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1296 	current->thread.acc = 0;
1297 	current->thread.spefscr = 0;
1298 	current->thread.used_spe = 0;
1299 #endif /* CONFIG_SPE */
1300 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1301 	if (cpu_has_feature(CPU_FTR_TM))
1302 		regs->msr |= MSR_TM;
1303 	current->thread.tm_tfhar = 0;
1304 	current->thread.tm_texasr = 0;
1305 	current->thread.tm_tfiar = 0;
1306 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1307 }
1308 
1309 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1310 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1311 
1312 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1313 {
1314 	struct pt_regs *regs = tsk->thread.regs;
1315 
1316 	/* This is a bit hairy.  If we are an SPE enabled  processor
1317 	 * (have embedded fp) we store the IEEE exception enable flags in
1318 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1319 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1320 	if (val & PR_FP_EXC_SW_ENABLE) {
1321 #ifdef CONFIG_SPE
1322 		if (cpu_has_feature(CPU_FTR_SPE)) {
1323 			/*
1324 			 * When the sticky exception bits are set
1325 			 * directly by userspace, it must call prctl
1326 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1327 			 * in the existing prctl settings) or
1328 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1329 			 * the bits being set).  <fenv.h> functions
1330 			 * saving and restoring the whole
1331 			 * floating-point environment need to do so
1332 			 * anyway to restore the prctl settings from
1333 			 * the saved environment.
1334 			 */
1335 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1336 			tsk->thread.fpexc_mode = val &
1337 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1338 			return 0;
1339 		} else {
1340 			return -EINVAL;
1341 		}
1342 #else
1343 		return -EINVAL;
1344 #endif
1345 	}
1346 
1347 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1348 	 * __pack_fe01 use do not overlap with bits used for
1349 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1350 	 * on CONFIG_SPE implementations are reserved so writing to
1351 	 * them does not change anything */
1352 	if (val > PR_FP_EXC_PRECISE)
1353 		return -EINVAL;
1354 	tsk->thread.fpexc_mode = __pack_fe01(val);
1355 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1356 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1357 			| tsk->thread.fpexc_mode;
1358 	return 0;
1359 }
1360 
1361 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1362 {
1363 	unsigned int val;
1364 
1365 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1366 #ifdef CONFIG_SPE
1367 		if (cpu_has_feature(CPU_FTR_SPE)) {
1368 			/*
1369 			 * When the sticky exception bits are set
1370 			 * directly by userspace, it must call prctl
1371 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1372 			 * in the existing prctl settings) or
1373 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1374 			 * the bits being set).  <fenv.h> functions
1375 			 * saving and restoring the whole
1376 			 * floating-point environment need to do so
1377 			 * anyway to restore the prctl settings from
1378 			 * the saved environment.
1379 			 */
1380 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1381 			val = tsk->thread.fpexc_mode;
1382 		} else
1383 			return -EINVAL;
1384 #else
1385 		return -EINVAL;
1386 #endif
1387 	else
1388 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1389 	return put_user(val, (unsigned int __user *) adr);
1390 }
1391 
1392 int set_endian(struct task_struct *tsk, unsigned int val)
1393 {
1394 	struct pt_regs *regs = tsk->thread.regs;
1395 
1396 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1397 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1398 		return -EINVAL;
1399 
1400 	if (regs == NULL)
1401 		return -EINVAL;
1402 
1403 	if (val == PR_ENDIAN_BIG)
1404 		regs->msr &= ~MSR_LE;
1405 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1406 		regs->msr |= MSR_LE;
1407 	else
1408 		return -EINVAL;
1409 
1410 	return 0;
1411 }
1412 
1413 int get_endian(struct task_struct *tsk, unsigned long adr)
1414 {
1415 	struct pt_regs *regs = tsk->thread.regs;
1416 	unsigned int val;
1417 
1418 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1419 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1420 		return -EINVAL;
1421 
1422 	if (regs == NULL)
1423 		return -EINVAL;
1424 
1425 	if (regs->msr & MSR_LE) {
1426 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1427 			val = PR_ENDIAN_LITTLE;
1428 		else
1429 			val = PR_ENDIAN_PPC_LITTLE;
1430 	} else
1431 		val = PR_ENDIAN_BIG;
1432 
1433 	return put_user(val, (unsigned int __user *)adr);
1434 }
1435 
1436 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1437 {
1438 	tsk->thread.align_ctl = val;
1439 	return 0;
1440 }
1441 
1442 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1443 {
1444 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1445 }
1446 
1447 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1448 				  unsigned long nbytes)
1449 {
1450 	unsigned long stack_page;
1451 	unsigned long cpu = task_cpu(p);
1452 
1453 	/*
1454 	 * Avoid crashing if the stack has overflowed and corrupted
1455 	 * task_cpu(p), which is in the thread_info struct.
1456 	 */
1457 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1458 		stack_page = (unsigned long) hardirq_ctx[cpu];
1459 		if (sp >= stack_page + sizeof(struct thread_struct)
1460 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1461 			return 1;
1462 
1463 		stack_page = (unsigned long) softirq_ctx[cpu];
1464 		if (sp >= stack_page + sizeof(struct thread_struct)
1465 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1466 			return 1;
1467 	}
1468 	return 0;
1469 }
1470 
1471 int validate_sp(unsigned long sp, struct task_struct *p,
1472 		       unsigned long nbytes)
1473 {
1474 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1475 
1476 	if (sp >= stack_page + sizeof(struct thread_struct)
1477 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1478 		return 1;
1479 
1480 	return valid_irq_stack(sp, p, nbytes);
1481 }
1482 
1483 EXPORT_SYMBOL(validate_sp);
1484 
1485 unsigned long get_wchan(struct task_struct *p)
1486 {
1487 	unsigned long ip, sp;
1488 	int count = 0;
1489 
1490 	if (!p || p == current || p->state == TASK_RUNNING)
1491 		return 0;
1492 
1493 	sp = p->thread.ksp;
1494 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1495 		return 0;
1496 
1497 	do {
1498 		sp = *(unsigned long *)sp;
1499 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1500 			return 0;
1501 		if (count > 0) {
1502 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1503 			if (!in_sched_functions(ip))
1504 				return ip;
1505 		}
1506 	} while (count++ < 16);
1507 	return 0;
1508 }
1509 
1510 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1511 
1512 void show_stack(struct task_struct *tsk, unsigned long *stack)
1513 {
1514 	unsigned long sp, ip, lr, newsp;
1515 	int count = 0;
1516 	int firstframe = 1;
1517 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1518 	int curr_frame = current->curr_ret_stack;
1519 	extern void return_to_handler(void);
1520 	unsigned long rth = (unsigned long)return_to_handler;
1521 	unsigned long mrth = -1;
1522 #ifdef CONFIG_PPC64
1523 	extern void mod_return_to_handler(void);
1524 	rth = *(unsigned long *)rth;
1525 	mrth = (unsigned long)mod_return_to_handler;
1526 	mrth = *(unsigned long *)mrth;
1527 #endif
1528 #endif
1529 
1530 	sp = (unsigned long) stack;
1531 	if (tsk == NULL)
1532 		tsk = current;
1533 	if (sp == 0) {
1534 		if (tsk == current)
1535 			asm("mr %0,1" : "=r" (sp));
1536 		else
1537 			sp = tsk->thread.ksp;
1538 	}
1539 
1540 	lr = 0;
1541 	printk("Call Trace:\n");
1542 	do {
1543 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1544 			return;
1545 
1546 		stack = (unsigned long *) sp;
1547 		newsp = stack[0];
1548 		ip = stack[STACK_FRAME_LR_SAVE];
1549 		if (!firstframe || ip != lr) {
1550 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1551 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1552 			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1553 				printk(" (%pS)",
1554 				       (void *)current->ret_stack[curr_frame].ret);
1555 				curr_frame--;
1556 			}
1557 #endif
1558 			if (firstframe)
1559 				printk(" (unreliable)");
1560 			printk("\n");
1561 		}
1562 		firstframe = 0;
1563 
1564 		/*
1565 		 * See if this is an exception frame.
1566 		 * We look for the "regshere" marker in the current frame.
1567 		 */
1568 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1569 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1570 			struct pt_regs *regs = (struct pt_regs *)
1571 				(sp + STACK_FRAME_OVERHEAD);
1572 			lr = regs->link;
1573 			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1574 			       regs->trap, (void *)regs->nip, (void *)lr);
1575 			firstframe = 1;
1576 		}
1577 
1578 		sp = newsp;
1579 	} while (count++ < kstack_depth_to_print);
1580 }
1581 
1582 #ifdef CONFIG_PPC64
1583 /* Called with hard IRQs off */
1584 void notrace __ppc64_runlatch_on(void)
1585 {
1586 	struct thread_info *ti = current_thread_info();
1587 	unsigned long ctrl;
1588 
1589 	ctrl = mfspr(SPRN_CTRLF);
1590 	ctrl |= CTRL_RUNLATCH;
1591 	mtspr(SPRN_CTRLT, ctrl);
1592 
1593 	ti->local_flags |= _TLF_RUNLATCH;
1594 }
1595 
1596 /* Called with hard IRQs off */
1597 void notrace __ppc64_runlatch_off(void)
1598 {
1599 	struct thread_info *ti = current_thread_info();
1600 	unsigned long ctrl;
1601 
1602 	ti->local_flags &= ~_TLF_RUNLATCH;
1603 
1604 	ctrl = mfspr(SPRN_CTRLF);
1605 	ctrl &= ~CTRL_RUNLATCH;
1606 	mtspr(SPRN_CTRLT, ctrl);
1607 }
1608 #endif /* CONFIG_PPC64 */
1609 
1610 unsigned long arch_align_stack(unsigned long sp)
1611 {
1612 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1613 		sp -= get_random_int() & ~PAGE_MASK;
1614 	return sp & ~0xf;
1615 }
1616 
1617 static inline unsigned long brk_rnd(void)
1618 {
1619         unsigned long rnd = 0;
1620 
1621 	/* 8MB for 32bit, 1GB for 64bit */
1622 	if (is_32bit_task())
1623 		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1624 	else
1625 		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1626 
1627 	return rnd << PAGE_SHIFT;
1628 }
1629 
1630 unsigned long arch_randomize_brk(struct mm_struct *mm)
1631 {
1632 	unsigned long base = mm->brk;
1633 	unsigned long ret;
1634 
1635 #ifdef CONFIG_PPC_STD_MMU_64
1636 	/*
1637 	 * If we are using 1TB segments and we are allowed to randomise
1638 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1639 	 * segment. Otherwise the heap will be in the bottom 1TB
1640 	 * which always uses 256MB segments and this may result in a
1641 	 * performance penalty.
1642 	 */
1643 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1644 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1645 #endif
1646 
1647 	ret = PAGE_ALIGN(base + brk_rnd());
1648 
1649 	if (ret < mm->brk)
1650 		return mm->brk;
1651 
1652 	return ret;
1653 }
1654 
1655 unsigned long randomize_et_dyn(unsigned long base)
1656 {
1657 	unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1658 
1659 	if (ret < base)
1660 		return base;
1661 
1662 	return ret;
1663 }
1664