xref: /linux-6.15/arch/powerpc/kernel/process.c (revision 73a2b047)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan ([email protected]) and
6  *  Paul Mackerras ([email protected])
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas ([email protected])
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 #include <linux/pkeys.h>
46 #include <linux/seq_buf.h>
47 
48 #include <asm/pgtable.h>
49 #include <asm/io.h>
50 #include <asm/processor.h>
51 #include <asm/mmu.h>
52 #include <asm/prom.h>
53 #include <asm/machdep.h>
54 #include <asm/time.h>
55 #include <asm/runlatch.h>
56 #include <asm/syscalls.h>
57 #include <asm/switch_to.h>
58 #include <asm/tm.h>
59 #include <asm/debug.h>
60 #ifdef CONFIG_PPC64
61 #include <asm/firmware.h>
62 #include <asm/hw_irq.h>
63 #endif
64 #include <asm/code-patching.h>
65 #include <asm/exec.h>
66 #include <asm/livepatch.h>
67 #include <asm/cpu_has_feature.h>
68 #include <asm/asm-prototypes.h>
69 #include <asm/stacktrace.h>
70 #include <asm/hw_breakpoint.h>
71 
72 #include <linux/kprobes.h>
73 #include <linux/kdebug.h>
74 
75 /* Transactional Memory debug */
76 #ifdef TM_DEBUG_SW
77 #define TM_DEBUG(x...) printk(KERN_INFO x)
78 #else
79 #define TM_DEBUG(x...) do { } while(0)
80 #endif
81 
82 extern unsigned long _get_SP(void);
83 
84 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
85 /*
86  * Are we running in "Suspend disabled" mode? If so we have to block any
87  * sigreturn that would get us into suspended state, and we also warn in some
88  * other paths that we should never reach with suspend disabled.
89  */
90 bool tm_suspend_disabled __ro_after_init = false;
91 
92 static void check_if_tm_restore_required(struct task_struct *tsk)
93 {
94 	/*
95 	 * If we are saving the current thread's registers, and the
96 	 * thread is in a transactional state, set the TIF_RESTORE_TM
97 	 * bit so that we know to restore the registers before
98 	 * returning to userspace.
99 	 */
100 	if (tsk == current && tsk->thread.regs &&
101 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
102 	    !test_thread_flag(TIF_RESTORE_TM)) {
103 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
104 		set_thread_flag(TIF_RESTORE_TM);
105 	}
106 }
107 
108 static bool tm_active_with_fp(struct task_struct *tsk)
109 {
110 	return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
111 		(tsk->thread.ckpt_regs.msr & MSR_FP);
112 }
113 
114 static bool tm_active_with_altivec(struct task_struct *tsk)
115 {
116 	return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
117 		(tsk->thread.ckpt_regs.msr & MSR_VEC);
118 }
119 #else
120 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
121 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
122 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
123 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
124 
125 bool strict_msr_control;
126 EXPORT_SYMBOL(strict_msr_control);
127 
128 static int __init enable_strict_msr_control(char *str)
129 {
130 	strict_msr_control = true;
131 	pr_info("Enabling strict facility control\n");
132 
133 	return 0;
134 }
135 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
136 
137 /* notrace because it's called by restore_math */
138 unsigned long notrace msr_check_and_set(unsigned long bits)
139 {
140 	unsigned long oldmsr = mfmsr();
141 	unsigned long newmsr;
142 
143 	newmsr = oldmsr | bits;
144 
145 #ifdef CONFIG_VSX
146 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
147 		newmsr |= MSR_VSX;
148 #endif
149 
150 	if (oldmsr != newmsr)
151 		mtmsr_isync(newmsr);
152 
153 	return newmsr;
154 }
155 EXPORT_SYMBOL_GPL(msr_check_and_set);
156 
157 /* notrace because it's called by restore_math */
158 void notrace __msr_check_and_clear(unsigned long bits)
159 {
160 	unsigned long oldmsr = mfmsr();
161 	unsigned long newmsr;
162 
163 	newmsr = oldmsr & ~bits;
164 
165 #ifdef CONFIG_VSX
166 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
167 		newmsr &= ~MSR_VSX;
168 #endif
169 
170 	if (oldmsr != newmsr)
171 		mtmsr_isync(newmsr);
172 }
173 EXPORT_SYMBOL(__msr_check_and_clear);
174 
175 #ifdef CONFIG_PPC_FPU
176 static void __giveup_fpu(struct task_struct *tsk)
177 {
178 	unsigned long msr;
179 
180 	save_fpu(tsk);
181 	msr = tsk->thread.regs->msr;
182 	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
183 #ifdef CONFIG_VSX
184 	if (cpu_has_feature(CPU_FTR_VSX))
185 		msr &= ~MSR_VSX;
186 #endif
187 	tsk->thread.regs->msr = msr;
188 }
189 
190 void giveup_fpu(struct task_struct *tsk)
191 {
192 	check_if_tm_restore_required(tsk);
193 
194 	msr_check_and_set(MSR_FP);
195 	__giveup_fpu(tsk);
196 	msr_check_and_clear(MSR_FP);
197 }
198 EXPORT_SYMBOL(giveup_fpu);
199 
200 /*
201  * Make sure the floating-point register state in the
202  * the thread_struct is up to date for task tsk.
203  */
204 void flush_fp_to_thread(struct task_struct *tsk)
205 {
206 	if (tsk->thread.regs) {
207 		/*
208 		 * We need to disable preemption here because if we didn't,
209 		 * another process could get scheduled after the regs->msr
210 		 * test but before we have finished saving the FP registers
211 		 * to the thread_struct.  That process could take over the
212 		 * FPU, and then when we get scheduled again we would store
213 		 * bogus values for the remaining FP registers.
214 		 */
215 		preempt_disable();
216 		if (tsk->thread.regs->msr & MSR_FP) {
217 			/*
218 			 * This should only ever be called for current or
219 			 * for a stopped child process.  Since we save away
220 			 * the FP register state on context switch,
221 			 * there is something wrong if a stopped child appears
222 			 * to still have its FP state in the CPU registers.
223 			 */
224 			BUG_ON(tsk != current);
225 			giveup_fpu(tsk);
226 		}
227 		preempt_enable();
228 	}
229 }
230 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
231 
232 void enable_kernel_fp(void)
233 {
234 	unsigned long cpumsr;
235 
236 	WARN_ON(preemptible());
237 
238 	cpumsr = msr_check_and_set(MSR_FP);
239 
240 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
241 		check_if_tm_restore_required(current);
242 		/*
243 		 * If a thread has already been reclaimed then the
244 		 * checkpointed registers are on the CPU but have definitely
245 		 * been saved by the reclaim code. Don't need to and *cannot*
246 		 * giveup as this would save  to the 'live' structure not the
247 		 * checkpointed structure.
248 		 */
249 		if (!MSR_TM_ACTIVE(cpumsr) &&
250 		     MSR_TM_ACTIVE(current->thread.regs->msr))
251 			return;
252 		__giveup_fpu(current);
253 	}
254 }
255 EXPORT_SYMBOL(enable_kernel_fp);
256 
257 static int restore_fp(struct task_struct *tsk)
258 {
259 	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
260 		load_fp_state(&current->thread.fp_state);
261 		current->thread.load_fp++;
262 		return 1;
263 	}
264 	return 0;
265 }
266 #else
267 static int restore_fp(struct task_struct *tsk) { return 0; }
268 #endif /* CONFIG_PPC_FPU */
269 
270 #ifdef CONFIG_ALTIVEC
271 #define loadvec(thr) ((thr).load_vec)
272 
273 static void __giveup_altivec(struct task_struct *tsk)
274 {
275 	unsigned long msr;
276 
277 	save_altivec(tsk);
278 	msr = tsk->thread.regs->msr;
279 	msr &= ~MSR_VEC;
280 #ifdef CONFIG_VSX
281 	if (cpu_has_feature(CPU_FTR_VSX))
282 		msr &= ~MSR_VSX;
283 #endif
284 	tsk->thread.regs->msr = msr;
285 }
286 
287 void giveup_altivec(struct task_struct *tsk)
288 {
289 	check_if_tm_restore_required(tsk);
290 
291 	msr_check_and_set(MSR_VEC);
292 	__giveup_altivec(tsk);
293 	msr_check_and_clear(MSR_VEC);
294 }
295 EXPORT_SYMBOL(giveup_altivec);
296 
297 void enable_kernel_altivec(void)
298 {
299 	unsigned long cpumsr;
300 
301 	WARN_ON(preemptible());
302 
303 	cpumsr = msr_check_and_set(MSR_VEC);
304 
305 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
306 		check_if_tm_restore_required(current);
307 		/*
308 		 * If a thread has already been reclaimed then the
309 		 * checkpointed registers are on the CPU but have definitely
310 		 * been saved by the reclaim code. Don't need to and *cannot*
311 		 * giveup as this would save  to the 'live' structure not the
312 		 * checkpointed structure.
313 		 */
314 		if (!MSR_TM_ACTIVE(cpumsr) &&
315 		     MSR_TM_ACTIVE(current->thread.regs->msr))
316 			return;
317 		__giveup_altivec(current);
318 	}
319 }
320 EXPORT_SYMBOL(enable_kernel_altivec);
321 
322 /*
323  * Make sure the VMX/Altivec register state in the
324  * the thread_struct is up to date for task tsk.
325  */
326 void flush_altivec_to_thread(struct task_struct *tsk)
327 {
328 	if (tsk->thread.regs) {
329 		preempt_disable();
330 		if (tsk->thread.regs->msr & MSR_VEC) {
331 			BUG_ON(tsk != current);
332 			giveup_altivec(tsk);
333 		}
334 		preempt_enable();
335 	}
336 }
337 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
338 
339 static int restore_altivec(struct task_struct *tsk)
340 {
341 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
342 		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
343 		load_vr_state(&tsk->thread.vr_state);
344 		tsk->thread.used_vr = 1;
345 		tsk->thread.load_vec++;
346 
347 		return 1;
348 	}
349 	return 0;
350 }
351 #else
352 #define loadvec(thr) 0
353 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
354 #endif /* CONFIG_ALTIVEC */
355 
356 #ifdef CONFIG_VSX
357 static void __giveup_vsx(struct task_struct *tsk)
358 {
359 	unsigned long msr = tsk->thread.regs->msr;
360 
361 	/*
362 	 * We should never be ssetting MSR_VSX without also setting
363 	 * MSR_FP and MSR_VEC
364 	 */
365 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
366 
367 	/* __giveup_fpu will clear MSR_VSX */
368 	if (msr & MSR_FP)
369 		__giveup_fpu(tsk);
370 	if (msr & MSR_VEC)
371 		__giveup_altivec(tsk);
372 }
373 
374 static void giveup_vsx(struct task_struct *tsk)
375 {
376 	check_if_tm_restore_required(tsk);
377 
378 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
379 	__giveup_vsx(tsk);
380 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
381 }
382 
383 void enable_kernel_vsx(void)
384 {
385 	unsigned long cpumsr;
386 
387 	WARN_ON(preemptible());
388 
389 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
390 
391 	if (current->thread.regs &&
392 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
393 		check_if_tm_restore_required(current);
394 		/*
395 		 * If a thread has already been reclaimed then the
396 		 * checkpointed registers are on the CPU but have definitely
397 		 * been saved by the reclaim code. Don't need to and *cannot*
398 		 * giveup as this would save  to the 'live' structure not the
399 		 * checkpointed structure.
400 		 */
401 		if (!MSR_TM_ACTIVE(cpumsr) &&
402 		     MSR_TM_ACTIVE(current->thread.regs->msr))
403 			return;
404 		__giveup_vsx(current);
405 	}
406 }
407 EXPORT_SYMBOL(enable_kernel_vsx);
408 
409 void flush_vsx_to_thread(struct task_struct *tsk)
410 {
411 	if (tsk->thread.regs) {
412 		preempt_disable();
413 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
414 			BUG_ON(tsk != current);
415 			giveup_vsx(tsk);
416 		}
417 		preempt_enable();
418 	}
419 }
420 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
421 
422 static int restore_vsx(struct task_struct *tsk)
423 {
424 	if (cpu_has_feature(CPU_FTR_VSX)) {
425 		tsk->thread.used_vsr = 1;
426 		return 1;
427 	}
428 
429 	return 0;
430 }
431 #else
432 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
433 #endif /* CONFIG_VSX */
434 
435 #ifdef CONFIG_SPE
436 void giveup_spe(struct task_struct *tsk)
437 {
438 	check_if_tm_restore_required(tsk);
439 
440 	msr_check_and_set(MSR_SPE);
441 	__giveup_spe(tsk);
442 	msr_check_and_clear(MSR_SPE);
443 }
444 EXPORT_SYMBOL(giveup_spe);
445 
446 void enable_kernel_spe(void)
447 {
448 	WARN_ON(preemptible());
449 
450 	msr_check_and_set(MSR_SPE);
451 
452 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
453 		check_if_tm_restore_required(current);
454 		__giveup_spe(current);
455 	}
456 }
457 EXPORT_SYMBOL(enable_kernel_spe);
458 
459 void flush_spe_to_thread(struct task_struct *tsk)
460 {
461 	if (tsk->thread.regs) {
462 		preempt_disable();
463 		if (tsk->thread.regs->msr & MSR_SPE) {
464 			BUG_ON(tsk != current);
465 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
466 			giveup_spe(tsk);
467 		}
468 		preempt_enable();
469 	}
470 }
471 #endif /* CONFIG_SPE */
472 
473 static unsigned long msr_all_available;
474 
475 static int __init init_msr_all_available(void)
476 {
477 #ifdef CONFIG_PPC_FPU
478 	msr_all_available |= MSR_FP;
479 #endif
480 #ifdef CONFIG_ALTIVEC
481 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
482 		msr_all_available |= MSR_VEC;
483 #endif
484 #ifdef CONFIG_VSX
485 	if (cpu_has_feature(CPU_FTR_VSX))
486 		msr_all_available |= MSR_VSX;
487 #endif
488 #ifdef CONFIG_SPE
489 	if (cpu_has_feature(CPU_FTR_SPE))
490 		msr_all_available |= MSR_SPE;
491 #endif
492 
493 	return 0;
494 }
495 early_initcall(init_msr_all_available);
496 
497 void giveup_all(struct task_struct *tsk)
498 {
499 	unsigned long usermsr;
500 
501 	if (!tsk->thread.regs)
502 		return;
503 
504 	usermsr = tsk->thread.regs->msr;
505 
506 	if ((usermsr & msr_all_available) == 0)
507 		return;
508 
509 	msr_check_and_set(msr_all_available);
510 	check_if_tm_restore_required(tsk);
511 
512 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
513 
514 #ifdef CONFIG_PPC_FPU
515 	if (usermsr & MSR_FP)
516 		__giveup_fpu(tsk);
517 #endif
518 #ifdef CONFIG_ALTIVEC
519 	if (usermsr & MSR_VEC)
520 		__giveup_altivec(tsk);
521 #endif
522 #ifdef CONFIG_SPE
523 	if (usermsr & MSR_SPE)
524 		__giveup_spe(tsk);
525 #endif
526 
527 	msr_check_and_clear(msr_all_available);
528 }
529 EXPORT_SYMBOL(giveup_all);
530 
531 /*
532  * The exception exit path calls restore_math() with interrupts hard disabled
533  * but the soft irq state not "reconciled". ftrace code that calls
534  * local_irq_save/restore causes warnings.
535  *
536  * Rather than complicate the exit path, just don't trace restore_math. This
537  * could be done by having ftrace entry code check for this un-reconciled
538  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
539  * temporarily fix it up for the duration of the ftrace call.
540  */
541 void notrace restore_math(struct pt_regs *regs)
542 {
543 	unsigned long msr;
544 
545 	if (!MSR_TM_ACTIVE(regs->msr) &&
546 		!current->thread.load_fp && !loadvec(current->thread))
547 		return;
548 
549 	msr = regs->msr;
550 	msr_check_and_set(msr_all_available);
551 
552 	/*
553 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
554 	 * indicates that the registers are hot
555 	 */
556 	if ((!(msr & MSR_FP)) && restore_fp(current))
557 		msr |= MSR_FP | current->thread.fpexc_mode;
558 
559 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
560 		msr |= MSR_VEC;
561 
562 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
563 			restore_vsx(current)) {
564 		msr |= MSR_VSX;
565 	}
566 
567 	msr_check_and_clear(msr_all_available);
568 
569 	regs->msr = msr;
570 }
571 
572 static void save_all(struct task_struct *tsk)
573 {
574 	unsigned long usermsr;
575 
576 	if (!tsk->thread.regs)
577 		return;
578 
579 	usermsr = tsk->thread.regs->msr;
580 
581 	if ((usermsr & msr_all_available) == 0)
582 		return;
583 
584 	msr_check_and_set(msr_all_available);
585 
586 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
587 
588 	if (usermsr & MSR_FP)
589 		save_fpu(tsk);
590 
591 	if (usermsr & MSR_VEC)
592 		save_altivec(tsk);
593 
594 	if (usermsr & MSR_SPE)
595 		__giveup_spe(tsk);
596 
597 	msr_check_and_clear(msr_all_available);
598 	thread_pkey_regs_save(&tsk->thread);
599 }
600 
601 void flush_all_to_thread(struct task_struct *tsk)
602 {
603 	if (tsk->thread.regs) {
604 		preempt_disable();
605 		BUG_ON(tsk != current);
606 #ifdef CONFIG_SPE
607 		if (tsk->thread.regs->msr & MSR_SPE)
608 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
609 #endif
610 		save_all(tsk);
611 
612 		preempt_enable();
613 	}
614 }
615 EXPORT_SYMBOL(flush_all_to_thread);
616 
617 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
618 void do_send_trap(struct pt_regs *regs, unsigned long address,
619 		  unsigned long error_code, int breakpt)
620 {
621 	current->thread.trap_nr = TRAP_HWBKPT;
622 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
623 			11, SIGSEGV) == NOTIFY_STOP)
624 		return;
625 
626 	/* Deliver the signal to userspace */
627 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
628 				    (void __user *)address);
629 }
630 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
631 void do_break (struct pt_regs *regs, unsigned long address,
632 		    unsigned long error_code)
633 {
634 	current->thread.trap_nr = TRAP_HWBKPT;
635 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
636 			11, SIGSEGV) == NOTIFY_STOP)
637 		return;
638 
639 	if (debugger_break_match(regs))
640 		return;
641 
642 	/* Clear the breakpoint */
643 	hw_breakpoint_disable();
644 
645 	/* Deliver the signal to userspace */
646 	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current);
647 }
648 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
649 
650 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
651 
652 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
653 /*
654  * Set the debug registers back to their default "safe" values.
655  */
656 static void set_debug_reg_defaults(struct thread_struct *thread)
657 {
658 	thread->debug.iac1 = thread->debug.iac2 = 0;
659 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
660 	thread->debug.iac3 = thread->debug.iac4 = 0;
661 #endif
662 	thread->debug.dac1 = thread->debug.dac2 = 0;
663 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
664 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
665 #endif
666 	thread->debug.dbcr0 = 0;
667 #ifdef CONFIG_BOOKE
668 	/*
669 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
670 	 */
671 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
672 			DBCR1_IAC3US | DBCR1_IAC4US;
673 	/*
674 	 * Force Data Address Compare User/Supervisor bits to be User-only
675 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
676 	 */
677 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
678 #else
679 	thread->debug.dbcr1 = 0;
680 #endif
681 }
682 
683 static void prime_debug_regs(struct debug_reg *debug)
684 {
685 	/*
686 	 * We could have inherited MSR_DE from userspace, since
687 	 * it doesn't get cleared on exception entry.  Make sure
688 	 * MSR_DE is clear before we enable any debug events.
689 	 */
690 	mtmsr(mfmsr() & ~MSR_DE);
691 
692 	mtspr(SPRN_IAC1, debug->iac1);
693 	mtspr(SPRN_IAC2, debug->iac2);
694 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
695 	mtspr(SPRN_IAC3, debug->iac3);
696 	mtspr(SPRN_IAC4, debug->iac4);
697 #endif
698 	mtspr(SPRN_DAC1, debug->dac1);
699 	mtspr(SPRN_DAC2, debug->dac2);
700 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
701 	mtspr(SPRN_DVC1, debug->dvc1);
702 	mtspr(SPRN_DVC2, debug->dvc2);
703 #endif
704 	mtspr(SPRN_DBCR0, debug->dbcr0);
705 	mtspr(SPRN_DBCR1, debug->dbcr1);
706 #ifdef CONFIG_BOOKE
707 	mtspr(SPRN_DBCR2, debug->dbcr2);
708 #endif
709 }
710 /*
711  * Unless neither the old or new thread are making use of the
712  * debug registers, set the debug registers from the values
713  * stored in the new thread.
714  */
715 void switch_booke_debug_regs(struct debug_reg *new_debug)
716 {
717 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
718 		|| (new_debug->dbcr0 & DBCR0_IDM))
719 			prime_debug_regs(new_debug);
720 }
721 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
722 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
723 #ifndef CONFIG_HAVE_HW_BREAKPOINT
724 static void set_breakpoint(struct arch_hw_breakpoint *brk)
725 {
726 	preempt_disable();
727 	__set_breakpoint(brk);
728 	preempt_enable();
729 }
730 
731 static void set_debug_reg_defaults(struct thread_struct *thread)
732 {
733 	thread->hw_brk.address = 0;
734 	thread->hw_brk.type = 0;
735 	if (ppc_breakpoint_available())
736 		set_breakpoint(&thread->hw_brk);
737 }
738 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
739 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
740 
741 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
742 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
743 {
744 	mtspr(SPRN_DAC1, dabr);
745 #ifdef CONFIG_PPC_47x
746 	isync();
747 #endif
748 	return 0;
749 }
750 #elif defined(CONFIG_PPC_BOOK3S)
751 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
752 {
753 	mtspr(SPRN_DABR, dabr);
754 	if (cpu_has_feature(CPU_FTR_DABRX))
755 		mtspr(SPRN_DABRX, dabrx);
756 	return 0;
757 }
758 #elif defined(CONFIG_PPC_8xx)
759 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
760 {
761 	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
762 	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
763 	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
764 
765 	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
766 		lctrl1 |= 0xa0000;
767 	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
768 		lctrl1 |= 0xf0000;
769 	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
770 		lctrl2 = 0;
771 
772 	mtspr(SPRN_LCTRL2, 0);
773 	mtspr(SPRN_CMPE, addr);
774 	mtspr(SPRN_CMPF, addr + 4);
775 	mtspr(SPRN_LCTRL1, lctrl1);
776 	mtspr(SPRN_LCTRL2, lctrl2);
777 
778 	return 0;
779 }
780 #else
781 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
782 {
783 	return -EINVAL;
784 }
785 #endif
786 
787 static inline int set_dabr(struct arch_hw_breakpoint *brk)
788 {
789 	unsigned long dabr, dabrx;
790 
791 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
792 	dabrx = ((brk->type >> 3) & 0x7);
793 
794 	if (ppc_md.set_dabr)
795 		return ppc_md.set_dabr(dabr, dabrx);
796 
797 	return __set_dabr(dabr, dabrx);
798 }
799 
800 void __set_breakpoint(struct arch_hw_breakpoint *brk)
801 {
802 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
803 
804 	if (dawr_enabled())
805 		// Power8 or later
806 		set_dawr(brk);
807 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
808 		// Power7 or earlier
809 		set_dabr(brk);
810 	else
811 		// Shouldn't happen due to higher level checks
812 		WARN_ON_ONCE(1);
813 }
814 
815 /* Check if we have DAWR or DABR hardware */
816 bool ppc_breakpoint_available(void)
817 {
818 	if (dawr_enabled())
819 		return true; /* POWER8 DAWR or POWER9 forced DAWR */
820 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
821 		return false; /* POWER9 with DAWR disabled */
822 	/* DABR: Everything but POWER8 and POWER9 */
823 	return true;
824 }
825 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
826 
827 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
828 			      struct arch_hw_breakpoint *b)
829 {
830 	if (a->address != b->address)
831 		return false;
832 	if (a->type != b->type)
833 		return false;
834 	if (a->len != b->len)
835 		return false;
836 	return true;
837 }
838 
839 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
840 
841 static inline bool tm_enabled(struct task_struct *tsk)
842 {
843 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
844 }
845 
846 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
847 {
848 	/*
849 	 * Use the current MSR TM suspended bit to track if we have
850 	 * checkpointed state outstanding.
851 	 * On signal delivery, we'd normally reclaim the checkpointed
852 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
853 	 * This will then directly return to userspace without going
854 	 * through __switch_to(). However, if the stack frame is bad,
855 	 * we need to exit this thread which calls __switch_to() which
856 	 * will again attempt to reclaim the already saved tm state.
857 	 * Hence we need to check that we've not already reclaimed
858 	 * this state.
859 	 * We do this using the current MSR, rather tracking it in
860 	 * some specific thread_struct bit, as it has the additional
861 	 * benefit of checking for a potential TM bad thing exception.
862 	 */
863 	if (!MSR_TM_SUSPENDED(mfmsr()))
864 		return;
865 
866 	giveup_all(container_of(thr, struct task_struct, thread));
867 
868 	tm_reclaim(thr, cause);
869 
870 	/*
871 	 * If we are in a transaction and FP is off then we can't have
872 	 * used FP inside that transaction. Hence the checkpointed
873 	 * state is the same as the live state. We need to copy the
874 	 * live state to the checkpointed state so that when the
875 	 * transaction is restored, the checkpointed state is correct
876 	 * and the aborted transaction sees the correct state. We use
877 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
878 	 * determine if it's going to write the checkpointed state or
879 	 * not. So either this will write the checkpointed registers,
880 	 * or reclaim will. Similarly for VMX.
881 	 */
882 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
883 		memcpy(&thr->ckfp_state, &thr->fp_state,
884 		       sizeof(struct thread_fp_state));
885 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
886 		memcpy(&thr->ckvr_state, &thr->vr_state,
887 		       sizeof(struct thread_vr_state));
888 }
889 
890 void tm_reclaim_current(uint8_t cause)
891 {
892 	tm_enable();
893 	tm_reclaim_thread(&current->thread, cause);
894 }
895 
896 static inline void tm_reclaim_task(struct task_struct *tsk)
897 {
898 	/* We have to work out if we're switching from/to a task that's in the
899 	 * middle of a transaction.
900 	 *
901 	 * In switching we need to maintain a 2nd register state as
902 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
903 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
904 	 * ckvr_state
905 	 *
906 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
907 	 */
908 	struct thread_struct *thr = &tsk->thread;
909 
910 	if (!thr->regs)
911 		return;
912 
913 	if (!MSR_TM_ACTIVE(thr->regs->msr))
914 		goto out_and_saveregs;
915 
916 	WARN_ON(tm_suspend_disabled);
917 
918 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
919 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
920 		 tsk->pid, thr->regs->nip,
921 		 thr->regs->ccr, thr->regs->msr,
922 		 thr->regs->trap);
923 
924 	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
925 
926 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
927 		 tsk->pid);
928 
929 out_and_saveregs:
930 	/* Always save the regs here, even if a transaction's not active.
931 	 * This context-switches a thread's TM info SPRs.  We do it here to
932 	 * be consistent with the restore path (in recheckpoint) which
933 	 * cannot happen later in _switch().
934 	 */
935 	tm_save_sprs(thr);
936 }
937 
938 extern void __tm_recheckpoint(struct thread_struct *thread);
939 
940 void tm_recheckpoint(struct thread_struct *thread)
941 {
942 	unsigned long flags;
943 
944 	if (!(thread->regs->msr & MSR_TM))
945 		return;
946 
947 	/* We really can't be interrupted here as the TEXASR registers can't
948 	 * change and later in the trecheckpoint code, we have a userspace R1.
949 	 * So let's hard disable over this region.
950 	 */
951 	local_irq_save(flags);
952 	hard_irq_disable();
953 
954 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
955 	 * before the trecheckpoint and no explosion occurs.
956 	 */
957 	tm_restore_sprs(thread);
958 
959 	__tm_recheckpoint(thread);
960 
961 	local_irq_restore(flags);
962 }
963 
964 static inline void tm_recheckpoint_new_task(struct task_struct *new)
965 {
966 	if (!cpu_has_feature(CPU_FTR_TM))
967 		return;
968 
969 	/* Recheckpoint the registers of the thread we're about to switch to.
970 	 *
971 	 * If the task was using FP, we non-lazily reload both the original and
972 	 * the speculative FP register states.  This is because the kernel
973 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
974 	 * unavailable later, we are unable to determine which set of FP regs
975 	 * need to be restored.
976 	 */
977 	if (!tm_enabled(new))
978 		return;
979 
980 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
981 		tm_restore_sprs(&new->thread);
982 		return;
983 	}
984 	/* Recheckpoint to restore original checkpointed register state. */
985 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
986 		 new->pid, new->thread.regs->msr);
987 
988 	tm_recheckpoint(&new->thread);
989 
990 	/*
991 	 * The checkpointed state has been restored but the live state has
992 	 * not, ensure all the math functionality is turned off to trigger
993 	 * restore_math() to reload.
994 	 */
995 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
996 
997 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
998 		 "(kernel msr 0x%lx)\n",
999 		 new->pid, mfmsr());
1000 }
1001 
1002 static inline void __switch_to_tm(struct task_struct *prev,
1003 		struct task_struct *new)
1004 {
1005 	if (cpu_has_feature(CPU_FTR_TM)) {
1006 		if (tm_enabled(prev) || tm_enabled(new))
1007 			tm_enable();
1008 
1009 		if (tm_enabled(prev)) {
1010 			prev->thread.load_tm++;
1011 			tm_reclaim_task(prev);
1012 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1013 				prev->thread.regs->msr &= ~MSR_TM;
1014 		}
1015 
1016 		tm_recheckpoint_new_task(new);
1017 	}
1018 }
1019 
1020 /*
1021  * This is called if we are on the way out to userspace and the
1022  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1023  * FP and/or vector state and does so if necessary.
1024  * If userspace is inside a transaction (whether active or
1025  * suspended) and FP/VMX/VSX instructions have ever been enabled
1026  * inside that transaction, then we have to keep them enabled
1027  * and keep the FP/VMX/VSX state loaded while ever the transaction
1028  * continues.  The reason is that if we didn't, and subsequently
1029  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1030  * we don't know whether it's the same transaction, and thus we
1031  * don't know which of the checkpointed state and the transactional
1032  * state to use.
1033  */
1034 void restore_tm_state(struct pt_regs *regs)
1035 {
1036 	unsigned long msr_diff;
1037 
1038 	/*
1039 	 * This is the only moment we should clear TIF_RESTORE_TM as
1040 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1041 	 * again, anything else could lead to an incorrect ckpt_msr being
1042 	 * saved and therefore incorrect signal contexts.
1043 	 */
1044 	clear_thread_flag(TIF_RESTORE_TM);
1045 	if (!MSR_TM_ACTIVE(regs->msr))
1046 		return;
1047 
1048 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1049 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1050 
1051 	/* Ensure that restore_math() will restore */
1052 	if (msr_diff & MSR_FP)
1053 		current->thread.load_fp = 1;
1054 #ifdef CONFIG_ALTIVEC
1055 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1056 		current->thread.load_vec = 1;
1057 #endif
1058 	restore_math(regs);
1059 
1060 	regs->msr |= msr_diff;
1061 }
1062 
1063 #else
1064 #define tm_recheckpoint_new_task(new)
1065 #define __switch_to_tm(prev, new)
1066 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1067 
1068 static inline void save_sprs(struct thread_struct *t)
1069 {
1070 #ifdef CONFIG_ALTIVEC
1071 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1072 		t->vrsave = mfspr(SPRN_VRSAVE);
1073 #endif
1074 #ifdef CONFIG_PPC_BOOK3S_64
1075 	if (cpu_has_feature(CPU_FTR_DSCR))
1076 		t->dscr = mfspr(SPRN_DSCR);
1077 
1078 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1079 		t->bescr = mfspr(SPRN_BESCR);
1080 		t->ebbhr = mfspr(SPRN_EBBHR);
1081 		t->ebbrr = mfspr(SPRN_EBBRR);
1082 
1083 		t->fscr = mfspr(SPRN_FSCR);
1084 
1085 		/*
1086 		 * Note that the TAR is not available for use in the kernel.
1087 		 * (To provide this, the TAR should be backed up/restored on
1088 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1089 		 * this should be in pt_regs anyway (for debug).)
1090 		 */
1091 		t->tar = mfspr(SPRN_TAR);
1092 	}
1093 #endif
1094 
1095 	thread_pkey_regs_save(t);
1096 }
1097 
1098 static inline void restore_sprs(struct thread_struct *old_thread,
1099 				struct thread_struct *new_thread)
1100 {
1101 #ifdef CONFIG_ALTIVEC
1102 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1103 	    old_thread->vrsave != new_thread->vrsave)
1104 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1105 #endif
1106 #ifdef CONFIG_PPC_BOOK3S_64
1107 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1108 		u64 dscr = get_paca()->dscr_default;
1109 		if (new_thread->dscr_inherit)
1110 			dscr = new_thread->dscr;
1111 
1112 		if (old_thread->dscr != dscr)
1113 			mtspr(SPRN_DSCR, dscr);
1114 	}
1115 
1116 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1117 		if (old_thread->bescr != new_thread->bescr)
1118 			mtspr(SPRN_BESCR, new_thread->bescr);
1119 		if (old_thread->ebbhr != new_thread->ebbhr)
1120 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1121 		if (old_thread->ebbrr != new_thread->ebbrr)
1122 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1123 
1124 		if (old_thread->fscr != new_thread->fscr)
1125 			mtspr(SPRN_FSCR, new_thread->fscr);
1126 
1127 		if (old_thread->tar != new_thread->tar)
1128 			mtspr(SPRN_TAR, new_thread->tar);
1129 	}
1130 
1131 	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1132 	    old_thread->tidr != new_thread->tidr)
1133 		mtspr(SPRN_TIDR, new_thread->tidr);
1134 #endif
1135 
1136 	thread_pkey_regs_restore(new_thread, old_thread);
1137 }
1138 
1139 struct task_struct *__switch_to(struct task_struct *prev,
1140 	struct task_struct *new)
1141 {
1142 	struct thread_struct *new_thread, *old_thread;
1143 	struct task_struct *last;
1144 #ifdef CONFIG_PPC_BOOK3S_64
1145 	struct ppc64_tlb_batch *batch;
1146 #endif
1147 
1148 	new_thread = &new->thread;
1149 	old_thread = &current->thread;
1150 
1151 	WARN_ON(!irqs_disabled());
1152 
1153 #ifdef CONFIG_PPC_BOOK3S_64
1154 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1155 	if (batch->active) {
1156 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1157 		if (batch->index)
1158 			__flush_tlb_pending(batch);
1159 		batch->active = 0;
1160 	}
1161 #endif /* CONFIG_PPC_BOOK3S_64 */
1162 
1163 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1164 	switch_booke_debug_regs(&new->thread.debug);
1165 #else
1166 /*
1167  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1168  * schedule DABR
1169  */
1170 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1171 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1172 		__set_breakpoint(&new->thread.hw_brk);
1173 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1174 #endif
1175 
1176 	/*
1177 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1178 	 * change a number of them.
1179 	 */
1180 	save_sprs(&prev->thread);
1181 
1182 	/* Save FPU, Altivec, VSX and SPE state */
1183 	giveup_all(prev);
1184 
1185 	__switch_to_tm(prev, new);
1186 
1187 	if (!radix_enabled()) {
1188 		/*
1189 		 * We can't take a PMU exception inside _switch() since there
1190 		 * is a window where the kernel stack SLB and the kernel stack
1191 		 * are out of sync. Hard disable here.
1192 		 */
1193 		hard_irq_disable();
1194 	}
1195 
1196 	/*
1197 	 * Call restore_sprs() before calling _switch(). If we move it after
1198 	 * _switch() then we miss out on calling it for new tasks. The reason
1199 	 * for this is we manually create a stack frame for new tasks that
1200 	 * directly returns through ret_from_fork() or
1201 	 * ret_from_kernel_thread(). See copy_thread() for details.
1202 	 */
1203 	restore_sprs(old_thread, new_thread);
1204 
1205 	last = _switch(old_thread, new_thread);
1206 
1207 #ifdef CONFIG_PPC_BOOK3S_64
1208 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1209 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1210 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1211 		batch->active = 1;
1212 	}
1213 
1214 	if (current->thread.regs) {
1215 		restore_math(current->thread.regs);
1216 
1217 		/*
1218 		 * The copy-paste buffer can only store into foreign real
1219 		 * addresses, so unprivileged processes can not see the
1220 		 * data or use it in any way unless they have foreign real
1221 		 * mappings. If the new process has the foreign real address
1222 		 * mappings, we must issue a cp_abort to clear any state and
1223 		 * prevent snooping, corruption or a covert channel.
1224 		 */
1225 		if (current->thread.used_vas)
1226 			asm volatile(PPC_CP_ABORT);
1227 	}
1228 #endif /* CONFIG_PPC_BOOK3S_64 */
1229 
1230 	return last;
1231 }
1232 
1233 #define NR_INSN_TO_PRINT	16
1234 
1235 static void show_instructions(struct pt_regs *regs)
1236 {
1237 	int i;
1238 	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1239 
1240 	printk("Instruction dump:");
1241 
1242 	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1243 		int instr;
1244 
1245 		if (!(i % 8))
1246 			pr_cont("\n");
1247 
1248 #if !defined(CONFIG_BOOKE)
1249 		/* If executing with the IMMU off, adjust pc rather
1250 		 * than print XXXXXXXX.
1251 		 */
1252 		if (!(regs->msr & MSR_IR))
1253 			pc = (unsigned long)phys_to_virt(pc);
1254 #endif
1255 
1256 		if (!__kernel_text_address(pc) ||
1257 		    probe_kernel_address((const void *)pc, instr)) {
1258 			pr_cont("XXXXXXXX ");
1259 		} else {
1260 			if (regs->nip == pc)
1261 				pr_cont("<%08x> ", instr);
1262 			else
1263 				pr_cont("%08x ", instr);
1264 		}
1265 
1266 		pc += sizeof(int);
1267 	}
1268 
1269 	pr_cont("\n");
1270 }
1271 
1272 void show_user_instructions(struct pt_regs *regs)
1273 {
1274 	unsigned long pc;
1275 	int n = NR_INSN_TO_PRINT;
1276 	struct seq_buf s;
1277 	char buf[96]; /* enough for 8 times 9 + 2 chars */
1278 
1279 	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1280 
1281 	/*
1282 	 * Make sure the NIP points at userspace, not kernel text/data or
1283 	 * elsewhere.
1284 	 */
1285 	if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1286 		pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1287 			current->comm, current->pid);
1288 		return;
1289 	}
1290 
1291 	seq_buf_init(&s, buf, sizeof(buf));
1292 
1293 	while (n) {
1294 		int i;
1295 
1296 		seq_buf_clear(&s);
1297 
1298 		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1299 			int instr;
1300 
1301 			if (probe_kernel_address((const void *)pc, instr)) {
1302 				seq_buf_printf(&s, "XXXXXXXX ");
1303 				continue;
1304 			}
1305 			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1306 		}
1307 
1308 		if (!seq_buf_has_overflowed(&s))
1309 			pr_info("%s[%d]: code: %s\n", current->comm,
1310 				current->pid, s.buffer);
1311 	}
1312 }
1313 
1314 struct regbit {
1315 	unsigned long bit;
1316 	const char *name;
1317 };
1318 
1319 static struct regbit msr_bits[] = {
1320 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1321 	{MSR_SF,	"SF"},
1322 	{MSR_HV,	"HV"},
1323 #endif
1324 	{MSR_VEC,	"VEC"},
1325 	{MSR_VSX,	"VSX"},
1326 #ifdef CONFIG_BOOKE
1327 	{MSR_CE,	"CE"},
1328 #endif
1329 	{MSR_EE,	"EE"},
1330 	{MSR_PR,	"PR"},
1331 	{MSR_FP,	"FP"},
1332 	{MSR_ME,	"ME"},
1333 #ifdef CONFIG_BOOKE
1334 	{MSR_DE,	"DE"},
1335 #else
1336 	{MSR_SE,	"SE"},
1337 	{MSR_BE,	"BE"},
1338 #endif
1339 	{MSR_IR,	"IR"},
1340 	{MSR_DR,	"DR"},
1341 	{MSR_PMM,	"PMM"},
1342 #ifndef CONFIG_BOOKE
1343 	{MSR_RI,	"RI"},
1344 	{MSR_LE,	"LE"},
1345 #endif
1346 	{0,		NULL}
1347 };
1348 
1349 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1350 {
1351 	const char *s = "";
1352 
1353 	for (; bits->bit; ++bits)
1354 		if (val & bits->bit) {
1355 			pr_cont("%s%s", s, bits->name);
1356 			s = sep;
1357 		}
1358 }
1359 
1360 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1361 static struct regbit msr_tm_bits[] = {
1362 	{MSR_TS_T,	"T"},
1363 	{MSR_TS_S,	"S"},
1364 	{MSR_TM,	"E"},
1365 	{0,		NULL}
1366 };
1367 
1368 static void print_tm_bits(unsigned long val)
1369 {
1370 /*
1371  * This only prints something if at least one of the TM bit is set.
1372  * Inside the TM[], the output means:
1373  *   E: Enabled		(bit 32)
1374  *   S: Suspended	(bit 33)
1375  *   T: Transactional	(bit 34)
1376  */
1377 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1378 		pr_cont(",TM[");
1379 		print_bits(val, msr_tm_bits, "");
1380 		pr_cont("]");
1381 	}
1382 }
1383 #else
1384 static void print_tm_bits(unsigned long val) {}
1385 #endif
1386 
1387 static void print_msr_bits(unsigned long val)
1388 {
1389 	pr_cont("<");
1390 	print_bits(val, msr_bits, ",");
1391 	print_tm_bits(val);
1392 	pr_cont(">");
1393 }
1394 
1395 #ifdef CONFIG_PPC64
1396 #define REG		"%016lx"
1397 #define REGS_PER_LINE	4
1398 #define LAST_VOLATILE	13
1399 #else
1400 #define REG		"%08lx"
1401 #define REGS_PER_LINE	8
1402 #define LAST_VOLATILE	12
1403 #endif
1404 
1405 void show_regs(struct pt_regs * regs)
1406 {
1407 	int i, trap;
1408 
1409 	show_regs_print_info(KERN_DEFAULT);
1410 
1411 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1412 	       regs->nip, regs->link, regs->ctr);
1413 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1414 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1415 	printk("MSR:  "REG" ", regs->msr);
1416 	print_msr_bits(regs->msr);
1417 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1418 	trap = TRAP(regs);
1419 	if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1420 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1421 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1422 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1423 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1424 #else
1425 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1426 #endif
1427 #ifdef CONFIG_PPC64
1428 	pr_cont("IRQMASK: %lx ", regs->softe);
1429 #endif
1430 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1431 	if (MSR_TM_ACTIVE(regs->msr))
1432 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1433 #endif
1434 
1435 	for (i = 0;  i < 32;  i++) {
1436 		if ((i % REGS_PER_LINE) == 0)
1437 			pr_cont("\nGPR%02d: ", i);
1438 		pr_cont(REG " ", regs->gpr[i]);
1439 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1440 			break;
1441 	}
1442 	pr_cont("\n");
1443 #ifdef CONFIG_KALLSYMS
1444 	/*
1445 	 * Lookup NIP late so we have the best change of getting the
1446 	 * above info out without failing
1447 	 */
1448 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1449 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1450 #endif
1451 	show_stack(current, (unsigned long *) regs->gpr[1]);
1452 	if (!user_mode(regs))
1453 		show_instructions(regs);
1454 }
1455 
1456 void flush_thread(void)
1457 {
1458 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1459 	flush_ptrace_hw_breakpoint(current);
1460 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1461 	set_debug_reg_defaults(&current->thread);
1462 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1463 }
1464 
1465 #ifdef CONFIG_PPC_BOOK3S_64
1466 void arch_setup_new_exec(void)
1467 {
1468 	if (radix_enabled())
1469 		return;
1470 	hash__setup_new_exec();
1471 }
1472 #endif
1473 
1474 int set_thread_uses_vas(void)
1475 {
1476 #ifdef CONFIG_PPC_BOOK3S_64
1477 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1478 		return -EINVAL;
1479 
1480 	current->thread.used_vas = 1;
1481 
1482 	/*
1483 	 * Even a process that has no foreign real address mapping can use
1484 	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1485 	 * to clear any pending COPY and prevent a covert channel.
1486 	 *
1487 	 * __switch_to() will issue CP_ABORT on future context switches.
1488 	 */
1489 	asm volatile(PPC_CP_ABORT);
1490 
1491 #endif /* CONFIG_PPC_BOOK3S_64 */
1492 	return 0;
1493 }
1494 
1495 #ifdef CONFIG_PPC64
1496 /**
1497  * Assign a TIDR (thread ID) for task @t and set it in the thread
1498  * structure. For now, we only support setting TIDR for 'current' task.
1499  *
1500  * Since the TID value is a truncated form of it PID, it is possible
1501  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1502  * that 2 threads share the same TID and are waiting, one of the following
1503  * cases will happen:
1504  *
1505  * 1. The correct thread is running, the wrong thread is not
1506  * In this situation, the correct thread is woken and proceeds to pass it's
1507  * condition check.
1508  *
1509  * 2. Neither threads are running
1510  * In this situation, neither thread will be woken. When scheduled, the waiting
1511  * threads will execute either a wait, which will return immediately, followed
1512  * by a condition check, which will pass for the correct thread and fail
1513  * for the wrong thread, or they will execute the condition check immediately.
1514  *
1515  * 3. The wrong thread is running, the correct thread is not
1516  * The wrong thread will be woken, but will fail it's condition check and
1517  * re-execute wait. The correct thread, when scheduled, will execute either
1518  * it's condition check (which will pass), or wait, which returns immediately
1519  * when called the first time after the thread is scheduled, followed by it's
1520  * condition check (which will pass).
1521  *
1522  * 4. Both threads are running
1523  * Both threads will be woken. The wrong thread will fail it's condition check
1524  * and execute another wait, while the correct thread will pass it's condition
1525  * check.
1526  *
1527  * @t: the task to set the thread ID for
1528  */
1529 int set_thread_tidr(struct task_struct *t)
1530 {
1531 	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1532 		return -EINVAL;
1533 
1534 	if (t != current)
1535 		return -EINVAL;
1536 
1537 	if (t->thread.tidr)
1538 		return 0;
1539 
1540 	t->thread.tidr = (u16)task_pid_nr(t);
1541 	mtspr(SPRN_TIDR, t->thread.tidr);
1542 
1543 	return 0;
1544 }
1545 EXPORT_SYMBOL_GPL(set_thread_tidr);
1546 
1547 #endif /* CONFIG_PPC64 */
1548 
1549 void
1550 release_thread(struct task_struct *t)
1551 {
1552 }
1553 
1554 /*
1555  * this gets called so that we can store coprocessor state into memory and
1556  * copy the current task into the new thread.
1557  */
1558 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1559 {
1560 	flush_all_to_thread(src);
1561 	/*
1562 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1563 	 * flush but it removes the checkpointed state from the current CPU and
1564 	 * transitions the CPU out of TM mode.  Hence we need to call
1565 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1566 	 * checkpointed state back and the TM mode.
1567 	 *
1568 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1569 	 * dst is only important for __switch_to()
1570 	 */
1571 	__switch_to_tm(src, src);
1572 
1573 	*dst = *src;
1574 
1575 	clear_task_ebb(dst);
1576 
1577 	return 0;
1578 }
1579 
1580 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1581 {
1582 #ifdef CONFIG_PPC_BOOK3S_64
1583 	unsigned long sp_vsid;
1584 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1585 
1586 	if (radix_enabled())
1587 		return;
1588 
1589 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1590 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1591 			<< SLB_VSID_SHIFT_1T;
1592 	else
1593 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1594 			<< SLB_VSID_SHIFT;
1595 	sp_vsid |= SLB_VSID_KERNEL | llp;
1596 	p->thread.ksp_vsid = sp_vsid;
1597 #endif
1598 }
1599 
1600 /*
1601  * Copy a thread..
1602  */
1603 
1604 /*
1605  * Copy architecture-specific thread state
1606  */
1607 int copy_thread(unsigned long clone_flags, unsigned long usp,
1608 		unsigned long kthread_arg, struct task_struct *p)
1609 {
1610 	struct pt_regs *childregs, *kregs;
1611 	extern void ret_from_fork(void);
1612 	extern void ret_from_kernel_thread(void);
1613 	void (*f)(void);
1614 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1615 	struct thread_info *ti = task_thread_info(p);
1616 
1617 	klp_init_thread_info(p);
1618 
1619 	/* Copy registers */
1620 	sp -= sizeof(struct pt_regs);
1621 	childregs = (struct pt_regs *) sp;
1622 	if (unlikely(p->flags & PF_KTHREAD)) {
1623 		/* kernel thread */
1624 		memset(childregs, 0, sizeof(struct pt_regs));
1625 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1626 		/* function */
1627 		if (usp)
1628 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1629 #ifdef CONFIG_PPC64
1630 		clear_tsk_thread_flag(p, TIF_32BIT);
1631 		childregs->softe = IRQS_ENABLED;
1632 #endif
1633 		childregs->gpr[15] = kthread_arg;
1634 		p->thread.regs = NULL;	/* no user register state */
1635 		ti->flags |= _TIF_RESTOREALL;
1636 		f = ret_from_kernel_thread;
1637 	} else {
1638 		/* user thread */
1639 		struct pt_regs *regs = current_pt_regs();
1640 		CHECK_FULL_REGS(regs);
1641 		*childregs = *regs;
1642 		if (usp)
1643 			childregs->gpr[1] = usp;
1644 		p->thread.regs = childregs;
1645 		childregs->gpr[3] = 0;  /* Result from fork() */
1646 		if (clone_flags & CLONE_SETTLS) {
1647 #ifdef CONFIG_PPC64
1648 			if (!is_32bit_task())
1649 				childregs->gpr[13] = childregs->gpr[6];
1650 			else
1651 #endif
1652 				childregs->gpr[2] = childregs->gpr[6];
1653 		}
1654 
1655 		f = ret_from_fork;
1656 	}
1657 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1658 	sp -= STACK_FRAME_OVERHEAD;
1659 
1660 	/*
1661 	 * The way this works is that at some point in the future
1662 	 * some task will call _switch to switch to the new task.
1663 	 * That will pop off the stack frame created below and start
1664 	 * the new task running at ret_from_fork.  The new task will
1665 	 * do some house keeping and then return from the fork or clone
1666 	 * system call, using the stack frame created above.
1667 	 */
1668 	((unsigned long *)sp)[0] = 0;
1669 	sp -= sizeof(struct pt_regs);
1670 	kregs = (struct pt_regs *) sp;
1671 	sp -= STACK_FRAME_OVERHEAD;
1672 	p->thread.ksp = sp;
1673 #ifdef CONFIG_PPC32
1674 	p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1675 #endif
1676 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1677 	p->thread.ptrace_bps[0] = NULL;
1678 #endif
1679 
1680 	p->thread.fp_save_area = NULL;
1681 #ifdef CONFIG_ALTIVEC
1682 	p->thread.vr_save_area = NULL;
1683 #endif
1684 
1685 	setup_ksp_vsid(p, sp);
1686 
1687 #ifdef CONFIG_PPC64
1688 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1689 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1690 		p->thread.dscr = mfspr(SPRN_DSCR);
1691 	}
1692 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1693 		childregs->ppr = DEFAULT_PPR;
1694 
1695 	p->thread.tidr = 0;
1696 #endif
1697 	kregs->nip = ppc_function_entry(f);
1698 	return 0;
1699 }
1700 
1701 void preload_new_slb_context(unsigned long start, unsigned long sp);
1702 
1703 /*
1704  * Set up a thread for executing a new program
1705  */
1706 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1707 {
1708 #ifdef CONFIG_PPC64
1709 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1710 
1711 #ifdef CONFIG_PPC_BOOK3S_64
1712 	if (!radix_enabled())
1713 		preload_new_slb_context(start, sp);
1714 #endif
1715 #endif
1716 
1717 	/*
1718 	 * If we exec out of a kernel thread then thread.regs will not be
1719 	 * set.  Do it now.
1720 	 */
1721 	if (!current->thread.regs) {
1722 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1723 		current->thread.regs = regs - 1;
1724 	}
1725 
1726 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1727 	/*
1728 	 * Clear any transactional state, we're exec()ing. The cause is
1729 	 * not important as there will never be a recheckpoint so it's not
1730 	 * user visible.
1731 	 */
1732 	if (MSR_TM_SUSPENDED(mfmsr()))
1733 		tm_reclaim_current(0);
1734 #endif
1735 
1736 	memset(regs->gpr, 0, sizeof(regs->gpr));
1737 	regs->ctr = 0;
1738 	regs->link = 0;
1739 	regs->xer = 0;
1740 	regs->ccr = 0;
1741 	regs->gpr[1] = sp;
1742 
1743 	/*
1744 	 * We have just cleared all the nonvolatile GPRs, so make
1745 	 * FULL_REGS(regs) return true.  This is necessary to allow
1746 	 * ptrace to examine the thread immediately after exec.
1747 	 */
1748 	regs->trap &= ~1UL;
1749 
1750 #ifdef CONFIG_PPC32
1751 	regs->mq = 0;
1752 	regs->nip = start;
1753 	regs->msr = MSR_USER;
1754 #else
1755 	if (!is_32bit_task()) {
1756 		unsigned long entry;
1757 
1758 		if (is_elf2_task()) {
1759 			/* Look ma, no function descriptors! */
1760 			entry = start;
1761 
1762 			/*
1763 			 * Ulrich says:
1764 			 *   The latest iteration of the ABI requires that when
1765 			 *   calling a function (at its global entry point),
1766 			 *   the caller must ensure r12 holds the entry point
1767 			 *   address (so that the function can quickly
1768 			 *   establish addressability).
1769 			 */
1770 			regs->gpr[12] = start;
1771 			/* Make sure that's restored on entry to userspace. */
1772 			set_thread_flag(TIF_RESTOREALL);
1773 		} else {
1774 			unsigned long toc;
1775 
1776 			/* start is a relocated pointer to the function
1777 			 * descriptor for the elf _start routine.  The first
1778 			 * entry in the function descriptor is the entry
1779 			 * address of _start and the second entry is the TOC
1780 			 * value we need to use.
1781 			 */
1782 			__get_user(entry, (unsigned long __user *)start);
1783 			__get_user(toc, (unsigned long __user *)start+1);
1784 
1785 			/* Check whether the e_entry function descriptor entries
1786 			 * need to be relocated before we can use them.
1787 			 */
1788 			if (load_addr != 0) {
1789 				entry += load_addr;
1790 				toc   += load_addr;
1791 			}
1792 			regs->gpr[2] = toc;
1793 		}
1794 		regs->nip = entry;
1795 		regs->msr = MSR_USER64;
1796 	} else {
1797 		regs->nip = start;
1798 		regs->gpr[2] = 0;
1799 		regs->msr = MSR_USER32;
1800 	}
1801 #endif
1802 #ifdef CONFIG_VSX
1803 	current->thread.used_vsr = 0;
1804 #endif
1805 	current->thread.load_slb = 0;
1806 	current->thread.load_fp = 0;
1807 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1808 	current->thread.fp_save_area = NULL;
1809 #ifdef CONFIG_ALTIVEC
1810 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1811 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1812 	current->thread.vr_save_area = NULL;
1813 	current->thread.vrsave = 0;
1814 	current->thread.used_vr = 0;
1815 	current->thread.load_vec = 0;
1816 #endif /* CONFIG_ALTIVEC */
1817 #ifdef CONFIG_SPE
1818 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1819 	current->thread.acc = 0;
1820 	current->thread.spefscr = 0;
1821 	current->thread.used_spe = 0;
1822 #endif /* CONFIG_SPE */
1823 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1824 	current->thread.tm_tfhar = 0;
1825 	current->thread.tm_texasr = 0;
1826 	current->thread.tm_tfiar = 0;
1827 	current->thread.load_tm = 0;
1828 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1829 
1830 	thread_pkey_regs_init(&current->thread);
1831 }
1832 EXPORT_SYMBOL(start_thread);
1833 
1834 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1835 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1836 
1837 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1838 {
1839 	struct pt_regs *regs = tsk->thread.regs;
1840 
1841 	/* This is a bit hairy.  If we are an SPE enabled  processor
1842 	 * (have embedded fp) we store the IEEE exception enable flags in
1843 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1844 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1845 	if (val & PR_FP_EXC_SW_ENABLE) {
1846 #ifdef CONFIG_SPE
1847 		if (cpu_has_feature(CPU_FTR_SPE)) {
1848 			/*
1849 			 * When the sticky exception bits are set
1850 			 * directly by userspace, it must call prctl
1851 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1852 			 * in the existing prctl settings) or
1853 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1854 			 * the bits being set).  <fenv.h> functions
1855 			 * saving and restoring the whole
1856 			 * floating-point environment need to do so
1857 			 * anyway to restore the prctl settings from
1858 			 * the saved environment.
1859 			 */
1860 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1861 			tsk->thread.fpexc_mode = val &
1862 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1863 			return 0;
1864 		} else {
1865 			return -EINVAL;
1866 		}
1867 #else
1868 		return -EINVAL;
1869 #endif
1870 	}
1871 
1872 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1873 	 * __pack_fe01 use do not overlap with bits used for
1874 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1875 	 * on CONFIG_SPE implementations are reserved so writing to
1876 	 * them does not change anything */
1877 	if (val > PR_FP_EXC_PRECISE)
1878 		return -EINVAL;
1879 	tsk->thread.fpexc_mode = __pack_fe01(val);
1880 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1881 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1882 			| tsk->thread.fpexc_mode;
1883 	return 0;
1884 }
1885 
1886 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1887 {
1888 	unsigned int val;
1889 
1890 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1891 #ifdef CONFIG_SPE
1892 		if (cpu_has_feature(CPU_FTR_SPE)) {
1893 			/*
1894 			 * When the sticky exception bits are set
1895 			 * directly by userspace, it must call prctl
1896 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1897 			 * in the existing prctl settings) or
1898 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1899 			 * the bits being set).  <fenv.h> functions
1900 			 * saving and restoring the whole
1901 			 * floating-point environment need to do so
1902 			 * anyway to restore the prctl settings from
1903 			 * the saved environment.
1904 			 */
1905 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1906 			val = tsk->thread.fpexc_mode;
1907 		} else
1908 			return -EINVAL;
1909 #else
1910 		return -EINVAL;
1911 #endif
1912 	else
1913 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1914 	return put_user(val, (unsigned int __user *) adr);
1915 }
1916 
1917 int set_endian(struct task_struct *tsk, unsigned int val)
1918 {
1919 	struct pt_regs *regs = tsk->thread.regs;
1920 
1921 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1922 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1923 		return -EINVAL;
1924 
1925 	if (regs == NULL)
1926 		return -EINVAL;
1927 
1928 	if (val == PR_ENDIAN_BIG)
1929 		regs->msr &= ~MSR_LE;
1930 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1931 		regs->msr |= MSR_LE;
1932 	else
1933 		return -EINVAL;
1934 
1935 	return 0;
1936 }
1937 
1938 int get_endian(struct task_struct *tsk, unsigned long adr)
1939 {
1940 	struct pt_regs *regs = tsk->thread.regs;
1941 	unsigned int val;
1942 
1943 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1944 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1945 		return -EINVAL;
1946 
1947 	if (regs == NULL)
1948 		return -EINVAL;
1949 
1950 	if (regs->msr & MSR_LE) {
1951 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1952 			val = PR_ENDIAN_LITTLE;
1953 		else
1954 			val = PR_ENDIAN_PPC_LITTLE;
1955 	} else
1956 		val = PR_ENDIAN_BIG;
1957 
1958 	return put_user(val, (unsigned int __user *)adr);
1959 }
1960 
1961 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1962 {
1963 	tsk->thread.align_ctl = val;
1964 	return 0;
1965 }
1966 
1967 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1968 {
1969 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1970 }
1971 
1972 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1973 				  unsigned long nbytes)
1974 {
1975 	unsigned long stack_page;
1976 	unsigned long cpu = task_cpu(p);
1977 
1978 	stack_page = (unsigned long)hardirq_ctx[cpu];
1979 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1980 		return 1;
1981 
1982 	stack_page = (unsigned long)softirq_ctx[cpu];
1983 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1984 		return 1;
1985 
1986 	return 0;
1987 }
1988 
1989 int validate_sp(unsigned long sp, struct task_struct *p,
1990 		       unsigned long nbytes)
1991 {
1992 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1993 
1994 	if (sp < THREAD_SIZE)
1995 		return 0;
1996 
1997 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1998 		return 1;
1999 
2000 	return valid_irq_stack(sp, p, nbytes);
2001 }
2002 
2003 EXPORT_SYMBOL(validate_sp);
2004 
2005 static unsigned long __get_wchan(struct task_struct *p)
2006 {
2007 	unsigned long ip, sp;
2008 	int count = 0;
2009 
2010 	if (!p || p == current || p->state == TASK_RUNNING)
2011 		return 0;
2012 
2013 	sp = p->thread.ksp;
2014 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2015 		return 0;
2016 
2017 	do {
2018 		sp = *(unsigned long *)sp;
2019 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2020 		    p->state == TASK_RUNNING)
2021 			return 0;
2022 		if (count > 0) {
2023 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2024 			if (!in_sched_functions(ip))
2025 				return ip;
2026 		}
2027 	} while (count++ < 16);
2028 	return 0;
2029 }
2030 
2031 unsigned long get_wchan(struct task_struct *p)
2032 {
2033 	unsigned long ret;
2034 
2035 	if (!try_get_task_stack(p))
2036 		return 0;
2037 
2038 	ret = __get_wchan(p);
2039 
2040 	put_task_stack(p);
2041 
2042 	return ret;
2043 }
2044 
2045 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2046 
2047 void show_stack(struct task_struct *tsk, unsigned long *stack)
2048 {
2049 	unsigned long sp, ip, lr, newsp;
2050 	int count = 0;
2051 	int firstframe = 1;
2052 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2053 	struct ftrace_ret_stack *ret_stack;
2054 	extern void return_to_handler(void);
2055 	unsigned long rth = (unsigned long)return_to_handler;
2056 	int curr_frame = 0;
2057 #endif
2058 
2059 	if (tsk == NULL)
2060 		tsk = current;
2061 
2062 	if (!try_get_task_stack(tsk))
2063 		return;
2064 
2065 	sp = (unsigned long) stack;
2066 	if (sp == 0) {
2067 		if (tsk == current)
2068 			sp = current_stack_pointer();
2069 		else
2070 			sp = tsk->thread.ksp;
2071 	}
2072 
2073 	lr = 0;
2074 	printk("Call Trace:\n");
2075 	do {
2076 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2077 			break;
2078 
2079 		stack = (unsigned long *) sp;
2080 		newsp = stack[0];
2081 		ip = stack[STACK_FRAME_LR_SAVE];
2082 		if (!firstframe || ip != lr) {
2083 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2084 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2085 			if ((ip == rth) && curr_frame >= 0) {
2086 				ret_stack = ftrace_graph_get_ret_stack(current,
2087 								  curr_frame++);
2088 				if (ret_stack)
2089 					pr_cont(" (%pS)",
2090 						(void *)ret_stack->ret);
2091 				else
2092 					curr_frame = -1;
2093 			}
2094 #endif
2095 			if (firstframe)
2096 				pr_cont(" (unreliable)");
2097 			pr_cont("\n");
2098 		}
2099 		firstframe = 0;
2100 
2101 		/*
2102 		 * See if this is an exception frame.
2103 		 * We look for the "regshere" marker in the current frame.
2104 		 */
2105 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2106 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2107 			struct pt_regs *regs = (struct pt_regs *)
2108 				(sp + STACK_FRAME_OVERHEAD);
2109 			lr = regs->link;
2110 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2111 			       regs->trap, (void *)regs->nip, (void *)lr);
2112 			firstframe = 1;
2113 		}
2114 
2115 		sp = newsp;
2116 	} while (count++ < kstack_depth_to_print);
2117 
2118 	put_task_stack(tsk);
2119 }
2120 
2121 #ifdef CONFIG_PPC64
2122 /* Called with hard IRQs off */
2123 void notrace __ppc64_runlatch_on(void)
2124 {
2125 	struct thread_info *ti = current_thread_info();
2126 
2127 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2128 		/*
2129 		 * Least significant bit (RUN) is the only writable bit of
2130 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2131 		 * earliest ISA where this is the case, but it's convenient.
2132 		 */
2133 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2134 	} else {
2135 		unsigned long ctrl;
2136 
2137 		/*
2138 		 * Some architectures (e.g., Cell) have writable fields other
2139 		 * than RUN, so do the read-modify-write.
2140 		 */
2141 		ctrl = mfspr(SPRN_CTRLF);
2142 		ctrl |= CTRL_RUNLATCH;
2143 		mtspr(SPRN_CTRLT, ctrl);
2144 	}
2145 
2146 	ti->local_flags |= _TLF_RUNLATCH;
2147 }
2148 
2149 /* Called with hard IRQs off */
2150 void notrace __ppc64_runlatch_off(void)
2151 {
2152 	struct thread_info *ti = current_thread_info();
2153 
2154 	ti->local_flags &= ~_TLF_RUNLATCH;
2155 
2156 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2157 		mtspr(SPRN_CTRLT, 0);
2158 	} else {
2159 		unsigned long ctrl;
2160 
2161 		ctrl = mfspr(SPRN_CTRLF);
2162 		ctrl &= ~CTRL_RUNLATCH;
2163 		mtspr(SPRN_CTRLT, ctrl);
2164 	}
2165 }
2166 #endif /* CONFIG_PPC64 */
2167 
2168 unsigned long arch_align_stack(unsigned long sp)
2169 {
2170 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2171 		sp -= get_random_int() & ~PAGE_MASK;
2172 	return sp & ~0xf;
2173 }
2174 
2175 static inline unsigned long brk_rnd(void)
2176 {
2177         unsigned long rnd = 0;
2178 
2179 	/* 8MB for 32bit, 1GB for 64bit */
2180 	if (is_32bit_task())
2181 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2182 	else
2183 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2184 
2185 	return rnd << PAGE_SHIFT;
2186 }
2187 
2188 unsigned long arch_randomize_brk(struct mm_struct *mm)
2189 {
2190 	unsigned long base = mm->brk;
2191 	unsigned long ret;
2192 
2193 #ifdef CONFIG_PPC_BOOK3S_64
2194 	/*
2195 	 * If we are using 1TB segments and we are allowed to randomise
2196 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2197 	 * segment. Otherwise the heap will be in the bottom 1TB
2198 	 * which always uses 256MB segments and this may result in a
2199 	 * performance penalty. We don't need to worry about radix. For
2200 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2201 	 */
2202 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2203 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2204 #endif
2205 
2206 	ret = PAGE_ALIGN(base + brk_rnd());
2207 
2208 	if (ret < mm->brk)
2209 		return mm->brk;
2210 
2211 	return ret;
2212 }
2213 
2214