1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan ([email protected]) and 6 * Paul Mackerras ([email protected]) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas ([email protected]) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/stddef.h> 26 #include <linux/unistd.h> 27 #include <linux/ptrace.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/elf.h> 31 #include <linux/prctl.h> 32 #include <linux/init_task.h> 33 #include <linux/export.h> 34 #include <linux/kallsyms.h> 35 #include <linux/mqueue.h> 36 #include <linux/hardirq.h> 37 #include <linux/utsname.h> 38 #include <linux/ftrace.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/personality.h> 41 #include <linux/random.h> 42 #include <linux/hw_breakpoint.h> 43 #include <linux/uaccess.h> 44 #include <linux/elf-randomize.h> 45 #include <linux/pkeys.h> 46 #include <linux/seq_buf.h> 47 48 #include <asm/pgtable.h> 49 #include <asm/io.h> 50 #include <asm/processor.h> 51 #include <asm/mmu.h> 52 #include <asm/prom.h> 53 #include <asm/machdep.h> 54 #include <asm/time.h> 55 #include <asm/runlatch.h> 56 #include <asm/syscalls.h> 57 #include <asm/switch_to.h> 58 #include <asm/tm.h> 59 #include <asm/debug.h> 60 #ifdef CONFIG_PPC64 61 #include <asm/firmware.h> 62 #include <asm/hw_irq.h> 63 #endif 64 #include <asm/code-patching.h> 65 #include <asm/exec.h> 66 #include <asm/livepatch.h> 67 #include <asm/cpu_has_feature.h> 68 #include <asm/asm-prototypes.h> 69 #include <asm/stacktrace.h> 70 #include <asm/hw_breakpoint.h> 71 72 #include <linux/kprobes.h> 73 #include <linux/kdebug.h> 74 75 /* Transactional Memory debug */ 76 #ifdef TM_DEBUG_SW 77 #define TM_DEBUG(x...) printk(KERN_INFO x) 78 #else 79 #define TM_DEBUG(x...) do { } while(0) 80 #endif 81 82 extern unsigned long _get_SP(void); 83 84 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 85 /* 86 * Are we running in "Suspend disabled" mode? If so we have to block any 87 * sigreturn that would get us into suspended state, and we also warn in some 88 * other paths that we should never reach with suspend disabled. 89 */ 90 bool tm_suspend_disabled __ro_after_init = false; 91 92 static void check_if_tm_restore_required(struct task_struct *tsk) 93 { 94 /* 95 * If we are saving the current thread's registers, and the 96 * thread is in a transactional state, set the TIF_RESTORE_TM 97 * bit so that we know to restore the registers before 98 * returning to userspace. 99 */ 100 if (tsk == current && tsk->thread.regs && 101 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 102 !test_thread_flag(TIF_RESTORE_TM)) { 103 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 104 set_thread_flag(TIF_RESTORE_TM); 105 } 106 } 107 108 static bool tm_active_with_fp(struct task_struct *tsk) 109 { 110 return MSR_TM_ACTIVE(tsk->thread.regs->msr) && 111 (tsk->thread.ckpt_regs.msr & MSR_FP); 112 } 113 114 static bool tm_active_with_altivec(struct task_struct *tsk) 115 { 116 return MSR_TM_ACTIVE(tsk->thread.regs->msr) && 117 (tsk->thread.ckpt_regs.msr & MSR_VEC); 118 } 119 #else 120 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 121 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; } 122 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; } 123 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 124 125 bool strict_msr_control; 126 EXPORT_SYMBOL(strict_msr_control); 127 128 static int __init enable_strict_msr_control(char *str) 129 { 130 strict_msr_control = true; 131 pr_info("Enabling strict facility control\n"); 132 133 return 0; 134 } 135 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 136 137 /* notrace because it's called by restore_math */ 138 unsigned long notrace msr_check_and_set(unsigned long bits) 139 { 140 unsigned long oldmsr = mfmsr(); 141 unsigned long newmsr; 142 143 newmsr = oldmsr | bits; 144 145 #ifdef CONFIG_VSX 146 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 147 newmsr |= MSR_VSX; 148 #endif 149 150 if (oldmsr != newmsr) 151 mtmsr_isync(newmsr); 152 153 return newmsr; 154 } 155 EXPORT_SYMBOL_GPL(msr_check_and_set); 156 157 /* notrace because it's called by restore_math */ 158 void notrace __msr_check_and_clear(unsigned long bits) 159 { 160 unsigned long oldmsr = mfmsr(); 161 unsigned long newmsr; 162 163 newmsr = oldmsr & ~bits; 164 165 #ifdef CONFIG_VSX 166 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 167 newmsr &= ~MSR_VSX; 168 #endif 169 170 if (oldmsr != newmsr) 171 mtmsr_isync(newmsr); 172 } 173 EXPORT_SYMBOL(__msr_check_and_clear); 174 175 #ifdef CONFIG_PPC_FPU 176 static void __giveup_fpu(struct task_struct *tsk) 177 { 178 unsigned long msr; 179 180 save_fpu(tsk); 181 msr = tsk->thread.regs->msr; 182 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 183 #ifdef CONFIG_VSX 184 if (cpu_has_feature(CPU_FTR_VSX)) 185 msr &= ~MSR_VSX; 186 #endif 187 tsk->thread.regs->msr = msr; 188 } 189 190 void giveup_fpu(struct task_struct *tsk) 191 { 192 check_if_tm_restore_required(tsk); 193 194 msr_check_and_set(MSR_FP); 195 __giveup_fpu(tsk); 196 msr_check_and_clear(MSR_FP); 197 } 198 EXPORT_SYMBOL(giveup_fpu); 199 200 /* 201 * Make sure the floating-point register state in the 202 * the thread_struct is up to date for task tsk. 203 */ 204 void flush_fp_to_thread(struct task_struct *tsk) 205 { 206 if (tsk->thread.regs) { 207 /* 208 * We need to disable preemption here because if we didn't, 209 * another process could get scheduled after the regs->msr 210 * test but before we have finished saving the FP registers 211 * to the thread_struct. That process could take over the 212 * FPU, and then when we get scheduled again we would store 213 * bogus values for the remaining FP registers. 214 */ 215 preempt_disable(); 216 if (tsk->thread.regs->msr & MSR_FP) { 217 /* 218 * This should only ever be called for current or 219 * for a stopped child process. Since we save away 220 * the FP register state on context switch, 221 * there is something wrong if a stopped child appears 222 * to still have its FP state in the CPU registers. 223 */ 224 BUG_ON(tsk != current); 225 giveup_fpu(tsk); 226 } 227 preempt_enable(); 228 } 229 } 230 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 231 232 void enable_kernel_fp(void) 233 { 234 unsigned long cpumsr; 235 236 WARN_ON(preemptible()); 237 238 cpumsr = msr_check_and_set(MSR_FP); 239 240 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 241 check_if_tm_restore_required(current); 242 /* 243 * If a thread has already been reclaimed then the 244 * checkpointed registers are on the CPU but have definitely 245 * been saved by the reclaim code. Don't need to and *cannot* 246 * giveup as this would save to the 'live' structure not the 247 * checkpointed structure. 248 */ 249 if (!MSR_TM_ACTIVE(cpumsr) && 250 MSR_TM_ACTIVE(current->thread.regs->msr)) 251 return; 252 __giveup_fpu(current); 253 } 254 } 255 EXPORT_SYMBOL(enable_kernel_fp); 256 257 static int restore_fp(struct task_struct *tsk) 258 { 259 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) { 260 load_fp_state(¤t->thread.fp_state); 261 current->thread.load_fp++; 262 return 1; 263 } 264 return 0; 265 } 266 #else 267 static int restore_fp(struct task_struct *tsk) { return 0; } 268 #endif /* CONFIG_PPC_FPU */ 269 270 #ifdef CONFIG_ALTIVEC 271 #define loadvec(thr) ((thr).load_vec) 272 273 static void __giveup_altivec(struct task_struct *tsk) 274 { 275 unsigned long msr; 276 277 save_altivec(tsk); 278 msr = tsk->thread.regs->msr; 279 msr &= ~MSR_VEC; 280 #ifdef CONFIG_VSX 281 if (cpu_has_feature(CPU_FTR_VSX)) 282 msr &= ~MSR_VSX; 283 #endif 284 tsk->thread.regs->msr = msr; 285 } 286 287 void giveup_altivec(struct task_struct *tsk) 288 { 289 check_if_tm_restore_required(tsk); 290 291 msr_check_and_set(MSR_VEC); 292 __giveup_altivec(tsk); 293 msr_check_and_clear(MSR_VEC); 294 } 295 EXPORT_SYMBOL(giveup_altivec); 296 297 void enable_kernel_altivec(void) 298 { 299 unsigned long cpumsr; 300 301 WARN_ON(preemptible()); 302 303 cpumsr = msr_check_and_set(MSR_VEC); 304 305 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 306 check_if_tm_restore_required(current); 307 /* 308 * If a thread has already been reclaimed then the 309 * checkpointed registers are on the CPU but have definitely 310 * been saved by the reclaim code. Don't need to and *cannot* 311 * giveup as this would save to the 'live' structure not the 312 * checkpointed structure. 313 */ 314 if (!MSR_TM_ACTIVE(cpumsr) && 315 MSR_TM_ACTIVE(current->thread.regs->msr)) 316 return; 317 __giveup_altivec(current); 318 } 319 } 320 EXPORT_SYMBOL(enable_kernel_altivec); 321 322 /* 323 * Make sure the VMX/Altivec register state in the 324 * the thread_struct is up to date for task tsk. 325 */ 326 void flush_altivec_to_thread(struct task_struct *tsk) 327 { 328 if (tsk->thread.regs) { 329 preempt_disable(); 330 if (tsk->thread.regs->msr & MSR_VEC) { 331 BUG_ON(tsk != current); 332 giveup_altivec(tsk); 333 } 334 preempt_enable(); 335 } 336 } 337 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 338 339 static int restore_altivec(struct task_struct *tsk) 340 { 341 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 342 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) { 343 load_vr_state(&tsk->thread.vr_state); 344 tsk->thread.used_vr = 1; 345 tsk->thread.load_vec++; 346 347 return 1; 348 } 349 return 0; 350 } 351 #else 352 #define loadvec(thr) 0 353 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 354 #endif /* CONFIG_ALTIVEC */ 355 356 #ifdef CONFIG_VSX 357 static void __giveup_vsx(struct task_struct *tsk) 358 { 359 unsigned long msr = tsk->thread.regs->msr; 360 361 /* 362 * We should never be ssetting MSR_VSX without also setting 363 * MSR_FP and MSR_VEC 364 */ 365 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 366 367 /* __giveup_fpu will clear MSR_VSX */ 368 if (msr & MSR_FP) 369 __giveup_fpu(tsk); 370 if (msr & MSR_VEC) 371 __giveup_altivec(tsk); 372 } 373 374 static void giveup_vsx(struct task_struct *tsk) 375 { 376 check_if_tm_restore_required(tsk); 377 378 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 379 __giveup_vsx(tsk); 380 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 381 } 382 383 void enable_kernel_vsx(void) 384 { 385 unsigned long cpumsr; 386 387 WARN_ON(preemptible()); 388 389 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 390 391 if (current->thread.regs && 392 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 393 check_if_tm_restore_required(current); 394 /* 395 * If a thread has already been reclaimed then the 396 * checkpointed registers are on the CPU but have definitely 397 * been saved by the reclaim code. Don't need to and *cannot* 398 * giveup as this would save to the 'live' structure not the 399 * checkpointed structure. 400 */ 401 if (!MSR_TM_ACTIVE(cpumsr) && 402 MSR_TM_ACTIVE(current->thread.regs->msr)) 403 return; 404 __giveup_vsx(current); 405 } 406 } 407 EXPORT_SYMBOL(enable_kernel_vsx); 408 409 void flush_vsx_to_thread(struct task_struct *tsk) 410 { 411 if (tsk->thread.regs) { 412 preempt_disable(); 413 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 414 BUG_ON(tsk != current); 415 giveup_vsx(tsk); 416 } 417 preempt_enable(); 418 } 419 } 420 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 421 422 static int restore_vsx(struct task_struct *tsk) 423 { 424 if (cpu_has_feature(CPU_FTR_VSX)) { 425 tsk->thread.used_vsr = 1; 426 return 1; 427 } 428 429 return 0; 430 } 431 #else 432 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 433 #endif /* CONFIG_VSX */ 434 435 #ifdef CONFIG_SPE 436 void giveup_spe(struct task_struct *tsk) 437 { 438 check_if_tm_restore_required(tsk); 439 440 msr_check_and_set(MSR_SPE); 441 __giveup_spe(tsk); 442 msr_check_and_clear(MSR_SPE); 443 } 444 EXPORT_SYMBOL(giveup_spe); 445 446 void enable_kernel_spe(void) 447 { 448 WARN_ON(preemptible()); 449 450 msr_check_and_set(MSR_SPE); 451 452 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 453 check_if_tm_restore_required(current); 454 __giveup_spe(current); 455 } 456 } 457 EXPORT_SYMBOL(enable_kernel_spe); 458 459 void flush_spe_to_thread(struct task_struct *tsk) 460 { 461 if (tsk->thread.regs) { 462 preempt_disable(); 463 if (tsk->thread.regs->msr & MSR_SPE) { 464 BUG_ON(tsk != current); 465 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 466 giveup_spe(tsk); 467 } 468 preempt_enable(); 469 } 470 } 471 #endif /* CONFIG_SPE */ 472 473 static unsigned long msr_all_available; 474 475 static int __init init_msr_all_available(void) 476 { 477 #ifdef CONFIG_PPC_FPU 478 msr_all_available |= MSR_FP; 479 #endif 480 #ifdef CONFIG_ALTIVEC 481 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 482 msr_all_available |= MSR_VEC; 483 #endif 484 #ifdef CONFIG_VSX 485 if (cpu_has_feature(CPU_FTR_VSX)) 486 msr_all_available |= MSR_VSX; 487 #endif 488 #ifdef CONFIG_SPE 489 if (cpu_has_feature(CPU_FTR_SPE)) 490 msr_all_available |= MSR_SPE; 491 #endif 492 493 return 0; 494 } 495 early_initcall(init_msr_all_available); 496 497 void giveup_all(struct task_struct *tsk) 498 { 499 unsigned long usermsr; 500 501 if (!tsk->thread.regs) 502 return; 503 504 usermsr = tsk->thread.regs->msr; 505 506 if ((usermsr & msr_all_available) == 0) 507 return; 508 509 msr_check_and_set(msr_all_available); 510 check_if_tm_restore_required(tsk); 511 512 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 513 514 #ifdef CONFIG_PPC_FPU 515 if (usermsr & MSR_FP) 516 __giveup_fpu(tsk); 517 #endif 518 #ifdef CONFIG_ALTIVEC 519 if (usermsr & MSR_VEC) 520 __giveup_altivec(tsk); 521 #endif 522 #ifdef CONFIG_SPE 523 if (usermsr & MSR_SPE) 524 __giveup_spe(tsk); 525 #endif 526 527 msr_check_and_clear(msr_all_available); 528 } 529 EXPORT_SYMBOL(giveup_all); 530 531 /* 532 * The exception exit path calls restore_math() with interrupts hard disabled 533 * but the soft irq state not "reconciled". ftrace code that calls 534 * local_irq_save/restore causes warnings. 535 * 536 * Rather than complicate the exit path, just don't trace restore_math. This 537 * could be done by having ftrace entry code check for this un-reconciled 538 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 539 * temporarily fix it up for the duration of the ftrace call. 540 */ 541 void notrace restore_math(struct pt_regs *regs) 542 { 543 unsigned long msr; 544 545 if (!MSR_TM_ACTIVE(regs->msr) && 546 !current->thread.load_fp && !loadvec(current->thread)) 547 return; 548 549 msr = regs->msr; 550 msr_check_and_set(msr_all_available); 551 552 /* 553 * Only reload if the bit is not set in the user MSR, the bit BEING set 554 * indicates that the registers are hot 555 */ 556 if ((!(msr & MSR_FP)) && restore_fp(current)) 557 msr |= MSR_FP | current->thread.fpexc_mode; 558 559 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 560 msr |= MSR_VEC; 561 562 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 563 restore_vsx(current)) { 564 msr |= MSR_VSX; 565 } 566 567 msr_check_and_clear(msr_all_available); 568 569 regs->msr = msr; 570 } 571 572 static void save_all(struct task_struct *tsk) 573 { 574 unsigned long usermsr; 575 576 if (!tsk->thread.regs) 577 return; 578 579 usermsr = tsk->thread.regs->msr; 580 581 if ((usermsr & msr_all_available) == 0) 582 return; 583 584 msr_check_and_set(msr_all_available); 585 586 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 587 588 if (usermsr & MSR_FP) 589 save_fpu(tsk); 590 591 if (usermsr & MSR_VEC) 592 save_altivec(tsk); 593 594 if (usermsr & MSR_SPE) 595 __giveup_spe(tsk); 596 597 msr_check_and_clear(msr_all_available); 598 thread_pkey_regs_save(&tsk->thread); 599 } 600 601 void flush_all_to_thread(struct task_struct *tsk) 602 { 603 if (tsk->thread.regs) { 604 preempt_disable(); 605 BUG_ON(tsk != current); 606 #ifdef CONFIG_SPE 607 if (tsk->thread.regs->msr & MSR_SPE) 608 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 609 #endif 610 save_all(tsk); 611 612 preempt_enable(); 613 } 614 } 615 EXPORT_SYMBOL(flush_all_to_thread); 616 617 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 618 void do_send_trap(struct pt_regs *regs, unsigned long address, 619 unsigned long error_code, int breakpt) 620 { 621 current->thread.trap_nr = TRAP_HWBKPT; 622 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 623 11, SIGSEGV) == NOTIFY_STOP) 624 return; 625 626 /* Deliver the signal to userspace */ 627 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 628 (void __user *)address); 629 } 630 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 631 void do_break (struct pt_regs *regs, unsigned long address, 632 unsigned long error_code) 633 { 634 current->thread.trap_nr = TRAP_HWBKPT; 635 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 636 11, SIGSEGV) == NOTIFY_STOP) 637 return; 638 639 if (debugger_break_match(regs)) 640 return; 641 642 /* Clear the breakpoint */ 643 hw_breakpoint_disable(); 644 645 /* Deliver the signal to userspace */ 646 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current); 647 } 648 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 649 650 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 651 652 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 653 /* 654 * Set the debug registers back to their default "safe" values. 655 */ 656 static void set_debug_reg_defaults(struct thread_struct *thread) 657 { 658 thread->debug.iac1 = thread->debug.iac2 = 0; 659 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 660 thread->debug.iac3 = thread->debug.iac4 = 0; 661 #endif 662 thread->debug.dac1 = thread->debug.dac2 = 0; 663 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 664 thread->debug.dvc1 = thread->debug.dvc2 = 0; 665 #endif 666 thread->debug.dbcr0 = 0; 667 #ifdef CONFIG_BOOKE 668 /* 669 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 670 */ 671 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 672 DBCR1_IAC3US | DBCR1_IAC4US; 673 /* 674 * Force Data Address Compare User/Supervisor bits to be User-only 675 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 676 */ 677 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 678 #else 679 thread->debug.dbcr1 = 0; 680 #endif 681 } 682 683 static void prime_debug_regs(struct debug_reg *debug) 684 { 685 /* 686 * We could have inherited MSR_DE from userspace, since 687 * it doesn't get cleared on exception entry. Make sure 688 * MSR_DE is clear before we enable any debug events. 689 */ 690 mtmsr(mfmsr() & ~MSR_DE); 691 692 mtspr(SPRN_IAC1, debug->iac1); 693 mtspr(SPRN_IAC2, debug->iac2); 694 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 695 mtspr(SPRN_IAC3, debug->iac3); 696 mtspr(SPRN_IAC4, debug->iac4); 697 #endif 698 mtspr(SPRN_DAC1, debug->dac1); 699 mtspr(SPRN_DAC2, debug->dac2); 700 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 701 mtspr(SPRN_DVC1, debug->dvc1); 702 mtspr(SPRN_DVC2, debug->dvc2); 703 #endif 704 mtspr(SPRN_DBCR0, debug->dbcr0); 705 mtspr(SPRN_DBCR1, debug->dbcr1); 706 #ifdef CONFIG_BOOKE 707 mtspr(SPRN_DBCR2, debug->dbcr2); 708 #endif 709 } 710 /* 711 * Unless neither the old or new thread are making use of the 712 * debug registers, set the debug registers from the values 713 * stored in the new thread. 714 */ 715 void switch_booke_debug_regs(struct debug_reg *new_debug) 716 { 717 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 718 || (new_debug->dbcr0 & DBCR0_IDM)) 719 prime_debug_regs(new_debug); 720 } 721 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 722 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 723 #ifndef CONFIG_HAVE_HW_BREAKPOINT 724 static void set_breakpoint(struct arch_hw_breakpoint *brk) 725 { 726 preempt_disable(); 727 __set_breakpoint(brk); 728 preempt_enable(); 729 } 730 731 static void set_debug_reg_defaults(struct thread_struct *thread) 732 { 733 thread->hw_brk.address = 0; 734 thread->hw_brk.type = 0; 735 if (ppc_breakpoint_available()) 736 set_breakpoint(&thread->hw_brk); 737 } 738 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 739 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 740 741 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 742 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 743 { 744 mtspr(SPRN_DAC1, dabr); 745 #ifdef CONFIG_PPC_47x 746 isync(); 747 #endif 748 return 0; 749 } 750 #elif defined(CONFIG_PPC_BOOK3S) 751 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 752 { 753 mtspr(SPRN_DABR, dabr); 754 if (cpu_has_feature(CPU_FTR_DABRX)) 755 mtspr(SPRN_DABRX, dabrx); 756 return 0; 757 } 758 #elif defined(CONFIG_PPC_8xx) 759 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 760 { 761 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 762 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 763 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 764 765 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 766 lctrl1 |= 0xa0000; 767 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 768 lctrl1 |= 0xf0000; 769 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 770 lctrl2 = 0; 771 772 mtspr(SPRN_LCTRL2, 0); 773 mtspr(SPRN_CMPE, addr); 774 mtspr(SPRN_CMPF, addr + 4); 775 mtspr(SPRN_LCTRL1, lctrl1); 776 mtspr(SPRN_LCTRL2, lctrl2); 777 778 return 0; 779 } 780 #else 781 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 782 { 783 return -EINVAL; 784 } 785 #endif 786 787 static inline int set_dabr(struct arch_hw_breakpoint *brk) 788 { 789 unsigned long dabr, dabrx; 790 791 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 792 dabrx = ((brk->type >> 3) & 0x7); 793 794 if (ppc_md.set_dabr) 795 return ppc_md.set_dabr(dabr, dabrx); 796 797 return __set_dabr(dabr, dabrx); 798 } 799 800 void __set_breakpoint(struct arch_hw_breakpoint *brk) 801 { 802 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 803 804 if (dawr_enabled()) 805 // Power8 or later 806 set_dawr(brk); 807 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 808 // Power7 or earlier 809 set_dabr(brk); 810 else 811 // Shouldn't happen due to higher level checks 812 WARN_ON_ONCE(1); 813 } 814 815 /* Check if we have DAWR or DABR hardware */ 816 bool ppc_breakpoint_available(void) 817 { 818 if (dawr_enabled()) 819 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 820 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 821 return false; /* POWER9 with DAWR disabled */ 822 /* DABR: Everything but POWER8 and POWER9 */ 823 return true; 824 } 825 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 826 827 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 828 struct arch_hw_breakpoint *b) 829 { 830 if (a->address != b->address) 831 return false; 832 if (a->type != b->type) 833 return false; 834 if (a->len != b->len) 835 return false; 836 return true; 837 } 838 839 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 840 841 static inline bool tm_enabled(struct task_struct *tsk) 842 { 843 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 844 } 845 846 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 847 { 848 /* 849 * Use the current MSR TM suspended bit to track if we have 850 * checkpointed state outstanding. 851 * On signal delivery, we'd normally reclaim the checkpointed 852 * state to obtain stack pointer (see:get_tm_stackpointer()). 853 * This will then directly return to userspace without going 854 * through __switch_to(). However, if the stack frame is bad, 855 * we need to exit this thread which calls __switch_to() which 856 * will again attempt to reclaim the already saved tm state. 857 * Hence we need to check that we've not already reclaimed 858 * this state. 859 * We do this using the current MSR, rather tracking it in 860 * some specific thread_struct bit, as it has the additional 861 * benefit of checking for a potential TM bad thing exception. 862 */ 863 if (!MSR_TM_SUSPENDED(mfmsr())) 864 return; 865 866 giveup_all(container_of(thr, struct task_struct, thread)); 867 868 tm_reclaim(thr, cause); 869 870 /* 871 * If we are in a transaction and FP is off then we can't have 872 * used FP inside that transaction. Hence the checkpointed 873 * state is the same as the live state. We need to copy the 874 * live state to the checkpointed state so that when the 875 * transaction is restored, the checkpointed state is correct 876 * and the aborted transaction sees the correct state. We use 877 * ckpt_regs.msr here as that's what tm_reclaim will use to 878 * determine if it's going to write the checkpointed state or 879 * not. So either this will write the checkpointed registers, 880 * or reclaim will. Similarly for VMX. 881 */ 882 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 883 memcpy(&thr->ckfp_state, &thr->fp_state, 884 sizeof(struct thread_fp_state)); 885 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 886 memcpy(&thr->ckvr_state, &thr->vr_state, 887 sizeof(struct thread_vr_state)); 888 } 889 890 void tm_reclaim_current(uint8_t cause) 891 { 892 tm_enable(); 893 tm_reclaim_thread(¤t->thread, cause); 894 } 895 896 static inline void tm_reclaim_task(struct task_struct *tsk) 897 { 898 /* We have to work out if we're switching from/to a task that's in the 899 * middle of a transaction. 900 * 901 * In switching we need to maintain a 2nd register state as 902 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 903 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 904 * ckvr_state 905 * 906 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 907 */ 908 struct thread_struct *thr = &tsk->thread; 909 910 if (!thr->regs) 911 return; 912 913 if (!MSR_TM_ACTIVE(thr->regs->msr)) 914 goto out_and_saveregs; 915 916 WARN_ON(tm_suspend_disabled); 917 918 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 919 "ccr=%lx, msr=%lx, trap=%lx)\n", 920 tsk->pid, thr->regs->nip, 921 thr->regs->ccr, thr->regs->msr, 922 thr->regs->trap); 923 924 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 925 926 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 927 tsk->pid); 928 929 out_and_saveregs: 930 /* Always save the regs here, even if a transaction's not active. 931 * This context-switches a thread's TM info SPRs. We do it here to 932 * be consistent with the restore path (in recheckpoint) which 933 * cannot happen later in _switch(). 934 */ 935 tm_save_sprs(thr); 936 } 937 938 extern void __tm_recheckpoint(struct thread_struct *thread); 939 940 void tm_recheckpoint(struct thread_struct *thread) 941 { 942 unsigned long flags; 943 944 if (!(thread->regs->msr & MSR_TM)) 945 return; 946 947 /* We really can't be interrupted here as the TEXASR registers can't 948 * change and later in the trecheckpoint code, we have a userspace R1. 949 * So let's hard disable over this region. 950 */ 951 local_irq_save(flags); 952 hard_irq_disable(); 953 954 /* The TM SPRs are restored here, so that TEXASR.FS can be set 955 * before the trecheckpoint and no explosion occurs. 956 */ 957 tm_restore_sprs(thread); 958 959 __tm_recheckpoint(thread); 960 961 local_irq_restore(flags); 962 } 963 964 static inline void tm_recheckpoint_new_task(struct task_struct *new) 965 { 966 if (!cpu_has_feature(CPU_FTR_TM)) 967 return; 968 969 /* Recheckpoint the registers of the thread we're about to switch to. 970 * 971 * If the task was using FP, we non-lazily reload both the original and 972 * the speculative FP register states. This is because the kernel 973 * doesn't see if/when a TM rollback occurs, so if we take an FP 974 * unavailable later, we are unable to determine which set of FP regs 975 * need to be restored. 976 */ 977 if (!tm_enabled(new)) 978 return; 979 980 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 981 tm_restore_sprs(&new->thread); 982 return; 983 } 984 /* Recheckpoint to restore original checkpointed register state. */ 985 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 986 new->pid, new->thread.regs->msr); 987 988 tm_recheckpoint(&new->thread); 989 990 /* 991 * The checkpointed state has been restored but the live state has 992 * not, ensure all the math functionality is turned off to trigger 993 * restore_math() to reload. 994 */ 995 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 996 997 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 998 "(kernel msr 0x%lx)\n", 999 new->pid, mfmsr()); 1000 } 1001 1002 static inline void __switch_to_tm(struct task_struct *prev, 1003 struct task_struct *new) 1004 { 1005 if (cpu_has_feature(CPU_FTR_TM)) { 1006 if (tm_enabled(prev) || tm_enabled(new)) 1007 tm_enable(); 1008 1009 if (tm_enabled(prev)) { 1010 prev->thread.load_tm++; 1011 tm_reclaim_task(prev); 1012 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1013 prev->thread.regs->msr &= ~MSR_TM; 1014 } 1015 1016 tm_recheckpoint_new_task(new); 1017 } 1018 } 1019 1020 /* 1021 * This is called if we are on the way out to userspace and the 1022 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1023 * FP and/or vector state and does so if necessary. 1024 * If userspace is inside a transaction (whether active or 1025 * suspended) and FP/VMX/VSX instructions have ever been enabled 1026 * inside that transaction, then we have to keep them enabled 1027 * and keep the FP/VMX/VSX state loaded while ever the transaction 1028 * continues. The reason is that if we didn't, and subsequently 1029 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1030 * we don't know whether it's the same transaction, and thus we 1031 * don't know which of the checkpointed state and the transactional 1032 * state to use. 1033 */ 1034 void restore_tm_state(struct pt_regs *regs) 1035 { 1036 unsigned long msr_diff; 1037 1038 /* 1039 * This is the only moment we should clear TIF_RESTORE_TM as 1040 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1041 * again, anything else could lead to an incorrect ckpt_msr being 1042 * saved and therefore incorrect signal contexts. 1043 */ 1044 clear_thread_flag(TIF_RESTORE_TM); 1045 if (!MSR_TM_ACTIVE(regs->msr)) 1046 return; 1047 1048 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1049 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1050 1051 /* Ensure that restore_math() will restore */ 1052 if (msr_diff & MSR_FP) 1053 current->thread.load_fp = 1; 1054 #ifdef CONFIG_ALTIVEC 1055 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1056 current->thread.load_vec = 1; 1057 #endif 1058 restore_math(regs); 1059 1060 regs->msr |= msr_diff; 1061 } 1062 1063 #else 1064 #define tm_recheckpoint_new_task(new) 1065 #define __switch_to_tm(prev, new) 1066 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1067 1068 static inline void save_sprs(struct thread_struct *t) 1069 { 1070 #ifdef CONFIG_ALTIVEC 1071 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1072 t->vrsave = mfspr(SPRN_VRSAVE); 1073 #endif 1074 #ifdef CONFIG_PPC_BOOK3S_64 1075 if (cpu_has_feature(CPU_FTR_DSCR)) 1076 t->dscr = mfspr(SPRN_DSCR); 1077 1078 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1079 t->bescr = mfspr(SPRN_BESCR); 1080 t->ebbhr = mfspr(SPRN_EBBHR); 1081 t->ebbrr = mfspr(SPRN_EBBRR); 1082 1083 t->fscr = mfspr(SPRN_FSCR); 1084 1085 /* 1086 * Note that the TAR is not available for use in the kernel. 1087 * (To provide this, the TAR should be backed up/restored on 1088 * exception entry/exit instead, and be in pt_regs. FIXME, 1089 * this should be in pt_regs anyway (for debug).) 1090 */ 1091 t->tar = mfspr(SPRN_TAR); 1092 } 1093 #endif 1094 1095 thread_pkey_regs_save(t); 1096 } 1097 1098 static inline void restore_sprs(struct thread_struct *old_thread, 1099 struct thread_struct *new_thread) 1100 { 1101 #ifdef CONFIG_ALTIVEC 1102 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1103 old_thread->vrsave != new_thread->vrsave) 1104 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1105 #endif 1106 #ifdef CONFIG_PPC_BOOK3S_64 1107 if (cpu_has_feature(CPU_FTR_DSCR)) { 1108 u64 dscr = get_paca()->dscr_default; 1109 if (new_thread->dscr_inherit) 1110 dscr = new_thread->dscr; 1111 1112 if (old_thread->dscr != dscr) 1113 mtspr(SPRN_DSCR, dscr); 1114 } 1115 1116 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1117 if (old_thread->bescr != new_thread->bescr) 1118 mtspr(SPRN_BESCR, new_thread->bescr); 1119 if (old_thread->ebbhr != new_thread->ebbhr) 1120 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1121 if (old_thread->ebbrr != new_thread->ebbrr) 1122 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1123 1124 if (old_thread->fscr != new_thread->fscr) 1125 mtspr(SPRN_FSCR, new_thread->fscr); 1126 1127 if (old_thread->tar != new_thread->tar) 1128 mtspr(SPRN_TAR, new_thread->tar); 1129 } 1130 1131 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1132 old_thread->tidr != new_thread->tidr) 1133 mtspr(SPRN_TIDR, new_thread->tidr); 1134 #endif 1135 1136 thread_pkey_regs_restore(new_thread, old_thread); 1137 } 1138 1139 struct task_struct *__switch_to(struct task_struct *prev, 1140 struct task_struct *new) 1141 { 1142 struct thread_struct *new_thread, *old_thread; 1143 struct task_struct *last; 1144 #ifdef CONFIG_PPC_BOOK3S_64 1145 struct ppc64_tlb_batch *batch; 1146 #endif 1147 1148 new_thread = &new->thread; 1149 old_thread = ¤t->thread; 1150 1151 WARN_ON(!irqs_disabled()); 1152 1153 #ifdef CONFIG_PPC_BOOK3S_64 1154 batch = this_cpu_ptr(&ppc64_tlb_batch); 1155 if (batch->active) { 1156 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1157 if (batch->index) 1158 __flush_tlb_pending(batch); 1159 batch->active = 0; 1160 } 1161 #endif /* CONFIG_PPC_BOOK3S_64 */ 1162 1163 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1164 switch_booke_debug_regs(&new->thread.debug); 1165 #else 1166 /* 1167 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1168 * schedule DABR 1169 */ 1170 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1171 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1172 __set_breakpoint(&new->thread.hw_brk); 1173 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1174 #endif 1175 1176 /* 1177 * We need to save SPRs before treclaim/trecheckpoint as these will 1178 * change a number of them. 1179 */ 1180 save_sprs(&prev->thread); 1181 1182 /* Save FPU, Altivec, VSX and SPE state */ 1183 giveup_all(prev); 1184 1185 __switch_to_tm(prev, new); 1186 1187 if (!radix_enabled()) { 1188 /* 1189 * We can't take a PMU exception inside _switch() since there 1190 * is a window where the kernel stack SLB and the kernel stack 1191 * are out of sync. Hard disable here. 1192 */ 1193 hard_irq_disable(); 1194 } 1195 1196 /* 1197 * Call restore_sprs() before calling _switch(). If we move it after 1198 * _switch() then we miss out on calling it for new tasks. The reason 1199 * for this is we manually create a stack frame for new tasks that 1200 * directly returns through ret_from_fork() or 1201 * ret_from_kernel_thread(). See copy_thread() for details. 1202 */ 1203 restore_sprs(old_thread, new_thread); 1204 1205 last = _switch(old_thread, new_thread); 1206 1207 #ifdef CONFIG_PPC_BOOK3S_64 1208 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1209 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1210 batch = this_cpu_ptr(&ppc64_tlb_batch); 1211 batch->active = 1; 1212 } 1213 1214 if (current->thread.regs) { 1215 restore_math(current->thread.regs); 1216 1217 /* 1218 * The copy-paste buffer can only store into foreign real 1219 * addresses, so unprivileged processes can not see the 1220 * data or use it in any way unless they have foreign real 1221 * mappings. If the new process has the foreign real address 1222 * mappings, we must issue a cp_abort to clear any state and 1223 * prevent snooping, corruption or a covert channel. 1224 */ 1225 if (current->thread.used_vas) 1226 asm volatile(PPC_CP_ABORT); 1227 } 1228 #endif /* CONFIG_PPC_BOOK3S_64 */ 1229 1230 return last; 1231 } 1232 1233 #define NR_INSN_TO_PRINT 16 1234 1235 static void show_instructions(struct pt_regs *regs) 1236 { 1237 int i; 1238 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1239 1240 printk("Instruction dump:"); 1241 1242 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1243 int instr; 1244 1245 if (!(i % 8)) 1246 pr_cont("\n"); 1247 1248 #if !defined(CONFIG_BOOKE) 1249 /* If executing with the IMMU off, adjust pc rather 1250 * than print XXXXXXXX. 1251 */ 1252 if (!(regs->msr & MSR_IR)) 1253 pc = (unsigned long)phys_to_virt(pc); 1254 #endif 1255 1256 if (!__kernel_text_address(pc) || 1257 probe_kernel_address((const void *)pc, instr)) { 1258 pr_cont("XXXXXXXX "); 1259 } else { 1260 if (regs->nip == pc) 1261 pr_cont("<%08x> ", instr); 1262 else 1263 pr_cont("%08x ", instr); 1264 } 1265 1266 pc += sizeof(int); 1267 } 1268 1269 pr_cont("\n"); 1270 } 1271 1272 void show_user_instructions(struct pt_regs *regs) 1273 { 1274 unsigned long pc; 1275 int n = NR_INSN_TO_PRINT; 1276 struct seq_buf s; 1277 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1278 1279 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1280 1281 /* 1282 * Make sure the NIP points at userspace, not kernel text/data or 1283 * elsewhere. 1284 */ 1285 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) { 1286 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n", 1287 current->comm, current->pid); 1288 return; 1289 } 1290 1291 seq_buf_init(&s, buf, sizeof(buf)); 1292 1293 while (n) { 1294 int i; 1295 1296 seq_buf_clear(&s); 1297 1298 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1299 int instr; 1300 1301 if (probe_kernel_address((const void *)pc, instr)) { 1302 seq_buf_printf(&s, "XXXXXXXX "); 1303 continue; 1304 } 1305 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1306 } 1307 1308 if (!seq_buf_has_overflowed(&s)) 1309 pr_info("%s[%d]: code: %s\n", current->comm, 1310 current->pid, s.buffer); 1311 } 1312 } 1313 1314 struct regbit { 1315 unsigned long bit; 1316 const char *name; 1317 }; 1318 1319 static struct regbit msr_bits[] = { 1320 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1321 {MSR_SF, "SF"}, 1322 {MSR_HV, "HV"}, 1323 #endif 1324 {MSR_VEC, "VEC"}, 1325 {MSR_VSX, "VSX"}, 1326 #ifdef CONFIG_BOOKE 1327 {MSR_CE, "CE"}, 1328 #endif 1329 {MSR_EE, "EE"}, 1330 {MSR_PR, "PR"}, 1331 {MSR_FP, "FP"}, 1332 {MSR_ME, "ME"}, 1333 #ifdef CONFIG_BOOKE 1334 {MSR_DE, "DE"}, 1335 #else 1336 {MSR_SE, "SE"}, 1337 {MSR_BE, "BE"}, 1338 #endif 1339 {MSR_IR, "IR"}, 1340 {MSR_DR, "DR"}, 1341 {MSR_PMM, "PMM"}, 1342 #ifndef CONFIG_BOOKE 1343 {MSR_RI, "RI"}, 1344 {MSR_LE, "LE"}, 1345 #endif 1346 {0, NULL} 1347 }; 1348 1349 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1350 { 1351 const char *s = ""; 1352 1353 for (; bits->bit; ++bits) 1354 if (val & bits->bit) { 1355 pr_cont("%s%s", s, bits->name); 1356 s = sep; 1357 } 1358 } 1359 1360 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1361 static struct regbit msr_tm_bits[] = { 1362 {MSR_TS_T, "T"}, 1363 {MSR_TS_S, "S"}, 1364 {MSR_TM, "E"}, 1365 {0, NULL} 1366 }; 1367 1368 static void print_tm_bits(unsigned long val) 1369 { 1370 /* 1371 * This only prints something if at least one of the TM bit is set. 1372 * Inside the TM[], the output means: 1373 * E: Enabled (bit 32) 1374 * S: Suspended (bit 33) 1375 * T: Transactional (bit 34) 1376 */ 1377 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1378 pr_cont(",TM["); 1379 print_bits(val, msr_tm_bits, ""); 1380 pr_cont("]"); 1381 } 1382 } 1383 #else 1384 static void print_tm_bits(unsigned long val) {} 1385 #endif 1386 1387 static void print_msr_bits(unsigned long val) 1388 { 1389 pr_cont("<"); 1390 print_bits(val, msr_bits, ","); 1391 print_tm_bits(val); 1392 pr_cont(">"); 1393 } 1394 1395 #ifdef CONFIG_PPC64 1396 #define REG "%016lx" 1397 #define REGS_PER_LINE 4 1398 #define LAST_VOLATILE 13 1399 #else 1400 #define REG "%08lx" 1401 #define REGS_PER_LINE 8 1402 #define LAST_VOLATILE 12 1403 #endif 1404 1405 void show_regs(struct pt_regs * regs) 1406 { 1407 int i, trap; 1408 1409 show_regs_print_info(KERN_DEFAULT); 1410 1411 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1412 regs->nip, regs->link, regs->ctr); 1413 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1414 regs, regs->trap, print_tainted(), init_utsname()->release); 1415 printk("MSR: "REG" ", regs->msr); 1416 print_msr_bits(regs->msr); 1417 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1418 trap = TRAP(regs); 1419 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1420 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1421 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1422 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1423 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1424 #else 1425 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1426 #endif 1427 #ifdef CONFIG_PPC64 1428 pr_cont("IRQMASK: %lx ", regs->softe); 1429 #endif 1430 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1431 if (MSR_TM_ACTIVE(regs->msr)) 1432 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1433 #endif 1434 1435 for (i = 0; i < 32; i++) { 1436 if ((i % REGS_PER_LINE) == 0) 1437 pr_cont("\nGPR%02d: ", i); 1438 pr_cont(REG " ", regs->gpr[i]); 1439 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1440 break; 1441 } 1442 pr_cont("\n"); 1443 #ifdef CONFIG_KALLSYMS 1444 /* 1445 * Lookup NIP late so we have the best change of getting the 1446 * above info out without failing 1447 */ 1448 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1449 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1450 #endif 1451 show_stack(current, (unsigned long *) regs->gpr[1]); 1452 if (!user_mode(regs)) 1453 show_instructions(regs); 1454 } 1455 1456 void flush_thread(void) 1457 { 1458 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1459 flush_ptrace_hw_breakpoint(current); 1460 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1461 set_debug_reg_defaults(¤t->thread); 1462 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1463 } 1464 1465 #ifdef CONFIG_PPC_BOOK3S_64 1466 void arch_setup_new_exec(void) 1467 { 1468 if (radix_enabled()) 1469 return; 1470 hash__setup_new_exec(); 1471 } 1472 #endif 1473 1474 int set_thread_uses_vas(void) 1475 { 1476 #ifdef CONFIG_PPC_BOOK3S_64 1477 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1478 return -EINVAL; 1479 1480 current->thread.used_vas = 1; 1481 1482 /* 1483 * Even a process that has no foreign real address mapping can use 1484 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1485 * to clear any pending COPY and prevent a covert channel. 1486 * 1487 * __switch_to() will issue CP_ABORT on future context switches. 1488 */ 1489 asm volatile(PPC_CP_ABORT); 1490 1491 #endif /* CONFIG_PPC_BOOK3S_64 */ 1492 return 0; 1493 } 1494 1495 #ifdef CONFIG_PPC64 1496 /** 1497 * Assign a TIDR (thread ID) for task @t and set it in the thread 1498 * structure. For now, we only support setting TIDR for 'current' task. 1499 * 1500 * Since the TID value is a truncated form of it PID, it is possible 1501 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1502 * that 2 threads share the same TID and are waiting, one of the following 1503 * cases will happen: 1504 * 1505 * 1. The correct thread is running, the wrong thread is not 1506 * In this situation, the correct thread is woken and proceeds to pass it's 1507 * condition check. 1508 * 1509 * 2. Neither threads are running 1510 * In this situation, neither thread will be woken. When scheduled, the waiting 1511 * threads will execute either a wait, which will return immediately, followed 1512 * by a condition check, which will pass for the correct thread and fail 1513 * for the wrong thread, or they will execute the condition check immediately. 1514 * 1515 * 3. The wrong thread is running, the correct thread is not 1516 * The wrong thread will be woken, but will fail it's condition check and 1517 * re-execute wait. The correct thread, when scheduled, will execute either 1518 * it's condition check (which will pass), or wait, which returns immediately 1519 * when called the first time after the thread is scheduled, followed by it's 1520 * condition check (which will pass). 1521 * 1522 * 4. Both threads are running 1523 * Both threads will be woken. The wrong thread will fail it's condition check 1524 * and execute another wait, while the correct thread will pass it's condition 1525 * check. 1526 * 1527 * @t: the task to set the thread ID for 1528 */ 1529 int set_thread_tidr(struct task_struct *t) 1530 { 1531 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1532 return -EINVAL; 1533 1534 if (t != current) 1535 return -EINVAL; 1536 1537 if (t->thread.tidr) 1538 return 0; 1539 1540 t->thread.tidr = (u16)task_pid_nr(t); 1541 mtspr(SPRN_TIDR, t->thread.tidr); 1542 1543 return 0; 1544 } 1545 EXPORT_SYMBOL_GPL(set_thread_tidr); 1546 1547 #endif /* CONFIG_PPC64 */ 1548 1549 void 1550 release_thread(struct task_struct *t) 1551 { 1552 } 1553 1554 /* 1555 * this gets called so that we can store coprocessor state into memory and 1556 * copy the current task into the new thread. 1557 */ 1558 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1559 { 1560 flush_all_to_thread(src); 1561 /* 1562 * Flush TM state out so we can copy it. __switch_to_tm() does this 1563 * flush but it removes the checkpointed state from the current CPU and 1564 * transitions the CPU out of TM mode. Hence we need to call 1565 * tm_recheckpoint_new_task() (on the same task) to restore the 1566 * checkpointed state back and the TM mode. 1567 * 1568 * Can't pass dst because it isn't ready. Doesn't matter, passing 1569 * dst is only important for __switch_to() 1570 */ 1571 __switch_to_tm(src, src); 1572 1573 *dst = *src; 1574 1575 clear_task_ebb(dst); 1576 1577 return 0; 1578 } 1579 1580 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1581 { 1582 #ifdef CONFIG_PPC_BOOK3S_64 1583 unsigned long sp_vsid; 1584 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1585 1586 if (radix_enabled()) 1587 return; 1588 1589 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1590 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1591 << SLB_VSID_SHIFT_1T; 1592 else 1593 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1594 << SLB_VSID_SHIFT; 1595 sp_vsid |= SLB_VSID_KERNEL | llp; 1596 p->thread.ksp_vsid = sp_vsid; 1597 #endif 1598 } 1599 1600 /* 1601 * Copy a thread.. 1602 */ 1603 1604 /* 1605 * Copy architecture-specific thread state 1606 */ 1607 int copy_thread(unsigned long clone_flags, unsigned long usp, 1608 unsigned long kthread_arg, struct task_struct *p) 1609 { 1610 struct pt_regs *childregs, *kregs; 1611 extern void ret_from_fork(void); 1612 extern void ret_from_kernel_thread(void); 1613 void (*f)(void); 1614 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1615 struct thread_info *ti = task_thread_info(p); 1616 1617 klp_init_thread_info(p); 1618 1619 /* Copy registers */ 1620 sp -= sizeof(struct pt_regs); 1621 childregs = (struct pt_regs *) sp; 1622 if (unlikely(p->flags & PF_KTHREAD)) { 1623 /* kernel thread */ 1624 memset(childregs, 0, sizeof(struct pt_regs)); 1625 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1626 /* function */ 1627 if (usp) 1628 childregs->gpr[14] = ppc_function_entry((void *)usp); 1629 #ifdef CONFIG_PPC64 1630 clear_tsk_thread_flag(p, TIF_32BIT); 1631 childregs->softe = IRQS_ENABLED; 1632 #endif 1633 childregs->gpr[15] = kthread_arg; 1634 p->thread.regs = NULL; /* no user register state */ 1635 ti->flags |= _TIF_RESTOREALL; 1636 f = ret_from_kernel_thread; 1637 } else { 1638 /* user thread */ 1639 struct pt_regs *regs = current_pt_regs(); 1640 CHECK_FULL_REGS(regs); 1641 *childregs = *regs; 1642 if (usp) 1643 childregs->gpr[1] = usp; 1644 p->thread.regs = childregs; 1645 childregs->gpr[3] = 0; /* Result from fork() */ 1646 if (clone_flags & CLONE_SETTLS) { 1647 #ifdef CONFIG_PPC64 1648 if (!is_32bit_task()) 1649 childregs->gpr[13] = childregs->gpr[6]; 1650 else 1651 #endif 1652 childregs->gpr[2] = childregs->gpr[6]; 1653 } 1654 1655 f = ret_from_fork; 1656 } 1657 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1658 sp -= STACK_FRAME_OVERHEAD; 1659 1660 /* 1661 * The way this works is that at some point in the future 1662 * some task will call _switch to switch to the new task. 1663 * That will pop off the stack frame created below and start 1664 * the new task running at ret_from_fork. The new task will 1665 * do some house keeping and then return from the fork or clone 1666 * system call, using the stack frame created above. 1667 */ 1668 ((unsigned long *)sp)[0] = 0; 1669 sp -= sizeof(struct pt_regs); 1670 kregs = (struct pt_regs *) sp; 1671 sp -= STACK_FRAME_OVERHEAD; 1672 p->thread.ksp = sp; 1673 #ifdef CONFIG_PPC32 1674 p->thread.ksp_limit = (unsigned long)end_of_stack(p); 1675 #endif 1676 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1677 p->thread.ptrace_bps[0] = NULL; 1678 #endif 1679 1680 p->thread.fp_save_area = NULL; 1681 #ifdef CONFIG_ALTIVEC 1682 p->thread.vr_save_area = NULL; 1683 #endif 1684 1685 setup_ksp_vsid(p, sp); 1686 1687 #ifdef CONFIG_PPC64 1688 if (cpu_has_feature(CPU_FTR_DSCR)) { 1689 p->thread.dscr_inherit = current->thread.dscr_inherit; 1690 p->thread.dscr = mfspr(SPRN_DSCR); 1691 } 1692 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1693 childregs->ppr = DEFAULT_PPR; 1694 1695 p->thread.tidr = 0; 1696 #endif 1697 kregs->nip = ppc_function_entry(f); 1698 return 0; 1699 } 1700 1701 void preload_new_slb_context(unsigned long start, unsigned long sp); 1702 1703 /* 1704 * Set up a thread for executing a new program 1705 */ 1706 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1707 { 1708 #ifdef CONFIG_PPC64 1709 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1710 1711 #ifdef CONFIG_PPC_BOOK3S_64 1712 if (!radix_enabled()) 1713 preload_new_slb_context(start, sp); 1714 #endif 1715 #endif 1716 1717 /* 1718 * If we exec out of a kernel thread then thread.regs will not be 1719 * set. Do it now. 1720 */ 1721 if (!current->thread.regs) { 1722 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1723 current->thread.regs = regs - 1; 1724 } 1725 1726 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1727 /* 1728 * Clear any transactional state, we're exec()ing. The cause is 1729 * not important as there will never be a recheckpoint so it's not 1730 * user visible. 1731 */ 1732 if (MSR_TM_SUSPENDED(mfmsr())) 1733 tm_reclaim_current(0); 1734 #endif 1735 1736 memset(regs->gpr, 0, sizeof(regs->gpr)); 1737 regs->ctr = 0; 1738 regs->link = 0; 1739 regs->xer = 0; 1740 regs->ccr = 0; 1741 regs->gpr[1] = sp; 1742 1743 /* 1744 * We have just cleared all the nonvolatile GPRs, so make 1745 * FULL_REGS(regs) return true. This is necessary to allow 1746 * ptrace to examine the thread immediately after exec. 1747 */ 1748 regs->trap &= ~1UL; 1749 1750 #ifdef CONFIG_PPC32 1751 regs->mq = 0; 1752 regs->nip = start; 1753 regs->msr = MSR_USER; 1754 #else 1755 if (!is_32bit_task()) { 1756 unsigned long entry; 1757 1758 if (is_elf2_task()) { 1759 /* Look ma, no function descriptors! */ 1760 entry = start; 1761 1762 /* 1763 * Ulrich says: 1764 * The latest iteration of the ABI requires that when 1765 * calling a function (at its global entry point), 1766 * the caller must ensure r12 holds the entry point 1767 * address (so that the function can quickly 1768 * establish addressability). 1769 */ 1770 regs->gpr[12] = start; 1771 /* Make sure that's restored on entry to userspace. */ 1772 set_thread_flag(TIF_RESTOREALL); 1773 } else { 1774 unsigned long toc; 1775 1776 /* start is a relocated pointer to the function 1777 * descriptor for the elf _start routine. The first 1778 * entry in the function descriptor is the entry 1779 * address of _start and the second entry is the TOC 1780 * value we need to use. 1781 */ 1782 __get_user(entry, (unsigned long __user *)start); 1783 __get_user(toc, (unsigned long __user *)start+1); 1784 1785 /* Check whether the e_entry function descriptor entries 1786 * need to be relocated before we can use them. 1787 */ 1788 if (load_addr != 0) { 1789 entry += load_addr; 1790 toc += load_addr; 1791 } 1792 regs->gpr[2] = toc; 1793 } 1794 regs->nip = entry; 1795 regs->msr = MSR_USER64; 1796 } else { 1797 regs->nip = start; 1798 regs->gpr[2] = 0; 1799 regs->msr = MSR_USER32; 1800 } 1801 #endif 1802 #ifdef CONFIG_VSX 1803 current->thread.used_vsr = 0; 1804 #endif 1805 current->thread.load_slb = 0; 1806 current->thread.load_fp = 0; 1807 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1808 current->thread.fp_save_area = NULL; 1809 #ifdef CONFIG_ALTIVEC 1810 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1811 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1812 current->thread.vr_save_area = NULL; 1813 current->thread.vrsave = 0; 1814 current->thread.used_vr = 0; 1815 current->thread.load_vec = 0; 1816 #endif /* CONFIG_ALTIVEC */ 1817 #ifdef CONFIG_SPE 1818 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1819 current->thread.acc = 0; 1820 current->thread.spefscr = 0; 1821 current->thread.used_spe = 0; 1822 #endif /* CONFIG_SPE */ 1823 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1824 current->thread.tm_tfhar = 0; 1825 current->thread.tm_texasr = 0; 1826 current->thread.tm_tfiar = 0; 1827 current->thread.load_tm = 0; 1828 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1829 1830 thread_pkey_regs_init(¤t->thread); 1831 } 1832 EXPORT_SYMBOL(start_thread); 1833 1834 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1835 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1836 1837 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1838 { 1839 struct pt_regs *regs = tsk->thread.regs; 1840 1841 /* This is a bit hairy. If we are an SPE enabled processor 1842 * (have embedded fp) we store the IEEE exception enable flags in 1843 * fpexc_mode. fpexc_mode is also used for setting FP exception 1844 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1845 if (val & PR_FP_EXC_SW_ENABLE) { 1846 #ifdef CONFIG_SPE 1847 if (cpu_has_feature(CPU_FTR_SPE)) { 1848 /* 1849 * When the sticky exception bits are set 1850 * directly by userspace, it must call prctl 1851 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1852 * in the existing prctl settings) or 1853 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1854 * the bits being set). <fenv.h> functions 1855 * saving and restoring the whole 1856 * floating-point environment need to do so 1857 * anyway to restore the prctl settings from 1858 * the saved environment. 1859 */ 1860 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1861 tsk->thread.fpexc_mode = val & 1862 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1863 return 0; 1864 } else { 1865 return -EINVAL; 1866 } 1867 #else 1868 return -EINVAL; 1869 #endif 1870 } 1871 1872 /* on a CONFIG_SPE this does not hurt us. The bits that 1873 * __pack_fe01 use do not overlap with bits used for 1874 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1875 * on CONFIG_SPE implementations are reserved so writing to 1876 * them does not change anything */ 1877 if (val > PR_FP_EXC_PRECISE) 1878 return -EINVAL; 1879 tsk->thread.fpexc_mode = __pack_fe01(val); 1880 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1881 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1882 | tsk->thread.fpexc_mode; 1883 return 0; 1884 } 1885 1886 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1887 { 1888 unsigned int val; 1889 1890 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1891 #ifdef CONFIG_SPE 1892 if (cpu_has_feature(CPU_FTR_SPE)) { 1893 /* 1894 * When the sticky exception bits are set 1895 * directly by userspace, it must call prctl 1896 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1897 * in the existing prctl settings) or 1898 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1899 * the bits being set). <fenv.h> functions 1900 * saving and restoring the whole 1901 * floating-point environment need to do so 1902 * anyway to restore the prctl settings from 1903 * the saved environment. 1904 */ 1905 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1906 val = tsk->thread.fpexc_mode; 1907 } else 1908 return -EINVAL; 1909 #else 1910 return -EINVAL; 1911 #endif 1912 else 1913 val = __unpack_fe01(tsk->thread.fpexc_mode); 1914 return put_user(val, (unsigned int __user *) adr); 1915 } 1916 1917 int set_endian(struct task_struct *tsk, unsigned int val) 1918 { 1919 struct pt_regs *regs = tsk->thread.regs; 1920 1921 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1922 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1923 return -EINVAL; 1924 1925 if (regs == NULL) 1926 return -EINVAL; 1927 1928 if (val == PR_ENDIAN_BIG) 1929 regs->msr &= ~MSR_LE; 1930 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1931 regs->msr |= MSR_LE; 1932 else 1933 return -EINVAL; 1934 1935 return 0; 1936 } 1937 1938 int get_endian(struct task_struct *tsk, unsigned long adr) 1939 { 1940 struct pt_regs *regs = tsk->thread.regs; 1941 unsigned int val; 1942 1943 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1944 !cpu_has_feature(CPU_FTR_REAL_LE)) 1945 return -EINVAL; 1946 1947 if (regs == NULL) 1948 return -EINVAL; 1949 1950 if (regs->msr & MSR_LE) { 1951 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1952 val = PR_ENDIAN_LITTLE; 1953 else 1954 val = PR_ENDIAN_PPC_LITTLE; 1955 } else 1956 val = PR_ENDIAN_BIG; 1957 1958 return put_user(val, (unsigned int __user *)adr); 1959 } 1960 1961 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1962 { 1963 tsk->thread.align_ctl = val; 1964 return 0; 1965 } 1966 1967 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1968 { 1969 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1970 } 1971 1972 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1973 unsigned long nbytes) 1974 { 1975 unsigned long stack_page; 1976 unsigned long cpu = task_cpu(p); 1977 1978 stack_page = (unsigned long)hardirq_ctx[cpu]; 1979 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1980 return 1; 1981 1982 stack_page = (unsigned long)softirq_ctx[cpu]; 1983 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1984 return 1; 1985 1986 return 0; 1987 } 1988 1989 int validate_sp(unsigned long sp, struct task_struct *p, 1990 unsigned long nbytes) 1991 { 1992 unsigned long stack_page = (unsigned long)task_stack_page(p); 1993 1994 if (sp < THREAD_SIZE) 1995 return 0; 1996 1997 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1998 return 1; 1999 2000 return valid_irq_stack(sp, p, nbytes); 2001 } 2002 2003 EXPORT_SYMBOL(validate_sp); 2004 2005 static unsigned long __get_wchan(struct task_struct *p) 2006 { 2007 unsigned long ip, sp; 2008 int count = 0; 2009 2010 if (!p || p == current || p->state == TASK_RUNNING) 2011 return 0; 2012 2013 sp = p->thread.ksp; 2014 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2015 return 0; 2016 2017 do { 2018 sp = *(unsigned long *)sp; 2019 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2020 p->state == TASK_RUNNING) 2021 return 0; 2022 if (count > 0) { 2023 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2024 if (!in_sched_functions(ip)) 2025 return ip; 2026 } 2027 } while (count++ < 16); 2028 return 0; 2029 } 2030 2031 unsigned long get_wchan(struct task_struct *p) 2032 { 2033 unsigned long ret; 2034 2035 if (!try_get_task_stack(p)) 2036 return 0; 2037 2038 ret = __get_wchan(p); 2039 2040 put_task_stack(p); 2041 2042 return ret; 2043 } 2044 2045 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2046 2047 void show_stack(struct task_struct *tsk, unsigned long *stack) 2048 { 2049 unsigned long sp, ip, lr, newsp; 2050 int count = 0; 2051 int firstframe = 1; 2052 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2053 struct ftrace_ret_stack *ret_stack; 2054 extern void return_to_handler(void); 2055 unsigned long rth = (unsigned long)return_to_handler; 2056 int curr_frame = 0; 2057 #endif 2058 2059 if (tsk == NULL) 2060 tsk = current; 2061 2062 if (!try_get_task_stack(tsk)) 2063 return; 2064 2065 sp = (unsigned long) stack; 2066 if (sp == 0) { 2067 if (tsk == current) 2068 sp = current_stack_pointer(); 2069 else 2070 sp = tsk->thread.ksp; 2071 } 2072 2073 lr = 0; 2074 printk("Call Trace:\n"); 2075 do { 2076 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2077 break; 2078 2079 stack = (unsigned long *) sp; 2080 newsp = stack[0]; 2081 ip = stack[STACK_FRAME_LR_SAVE]; 2082 if (!firstframe || ip != lr) { 2083 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2084 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2085 if ((ip == rth) && curr_frame >= 0) { 2086 ret_stack = ftrace_graph_get_ret_stack(current, 2087 curr_frame++); 2088 if (ret_stack) 2089 pr_cont(" (%pS)", 2090 (void *)ret_stack->ret); 2091 else 2092 curr_frame = -1; 2093 } 2094 #endif 2095 if (firstframe) 2096 pr_cont(" (unreliable)"); 2097 pr_cont("\n"); 2098 } 2099 firstframe = 0; 2100 2101 /* 2102 * See if this is an exception frame. 2103 * We look for the "regshere" marker in the current frame. 2104 */ 2105 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2106 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2107 struct pt_regs *regs = (struct pt_regs *) 2108 (sp + STACK_FRAME_OVERHEAD); 2109 lr = regs->link; 2110 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2111 regs->trap, (void *)regs->nip, (void *)lr); 2112 firstframe = 1; 2113 } 2114 2115 sp = newsp; 2116 } while (count++ < kstack_depth_to_print); 2117 2118 put_task_stack(tsk); 2119 } 2120 2121 #ifdef CONFIG_PPC64 2122 /* Called with hard IRQs off */ 2123 void notrace __ppc64_runlatch_on(void) 2124 { 2125 struct thread_info *ti = current_thread_info(); 2126 2127 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2128 /* 2129 * Least significant bit (RUN) is the only writable bit of 2130 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2131 * earliest ISA where this is the case, but it's convenient. 2132 */ 2133 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2134 } else { 2135 unsigned long ctrl; 2136 2137 /* 2138 * Some architectures (e.g., Cell) have writable fields other 2139 * than RUN, so do the read-modify-write. 2140 */ 2141 ctrl = mfspr(SPRN_CTRLF); 2142 ctrl |= CTRL_RUNLATCH; 2143 mtspr(SPRN_CTRLT, ctrl); 2144 } 2145 2146 ti->local_flags |= _TLF_RUNLATCH; 2147 } 2148 2149 /* Called with hard IRQs off */ 2150 void notrace __ppc64_runlatch_off(void) 2151 { 2152 struct thread_info *ti = current_thread_info(); 2153 2154 ti->local_flags &= ~_TLF_RUNLATCH; 2155 2156 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2157 mtspr(SPRN_CTRLT, 0); 2158 } else { 2159 unsigned long ctrl; 2160 2161 ctrl = mfspr(SPRN_CTRLF); 2162 ctrl &= ~CTRL_RUNLATCH; 2163 mtspr(SPRN_CTRLT, ctrl); 2164 } 2165 } 2166 #endif /* CONFIG_PPC64 */ 2167 2168 unsigned long arch_align_stack(unsigned long sp) 2169 { 2170 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2171 sp -= get_random_int() & ~PAGE_MASK; 2172 return sp & ~0xf; 2173 } 2174 2175 static inline unsigned long brk_rnd(void) 2176 { 2177 unsigned long rnd = 0; 2178 2179 /* 8MB for 32bit, 1GB for 64bit */ 2180 if (is_32bit_task()) 2181 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2182 else 2183 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2184 2185 return rnd << PAGE_SHIFT; 2186 } 2187 2188 unsigned long arch_randomize_brk(struct mm_struct *mm) 2189 { 2190 unsigned long base = mm->brk; 2191 unsigned long ret; 2192 2193 #ifdef CONFIG_PPC_BOOK3S_64 2194 /* 2195 * If we are using 1TB segments and we are allowed to randomise 2196 * the heap, we can put it above 1TB so it is backed by a 1TB 2197 * segment. Otherwise the heap will be in the bottom 1TB 2198 * which always uses 256MB segments and this may result in a 2199 * performance penalty. We don't need to worry about radix. For 2200 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2201 */ 2202 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2203 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2204 #endif 2205 2206 ret = PAGE_ALIGN(base + brk_rnd()); 2207 2208 if (ret < mm->brk) 2209 return mm->brk; 2210 2211 return ret; 2212 } 2213 2214