xref: /linux-6.15/arch/powerpc/kernel/process.c (revision 3e4cd073)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan ([email protected]) and
6  *  Paul Mackerras ([email protected])
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas ([email protected])
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/syscalls.h>
52 #ifdef CONFIG_PPC64
53 #include <asm/firmware.h>
54 #endif
55 #include <linux/kprobes.h>
56 #include <linux/kdebug.h>
57 
58 extern unsigned long _get_SP(void);
59 
60 #ifndef CONFIG_SMP
61 struct task_struct *last_task_used_math = NULL;
62 struct task_struct *last_task_used_altivec = NULL;
63 struct task_struct *last_task_used_vsx = NULL;
64 struct task_struct *last_task_used_spe = NULL;
65 #endif
66 
67 /*
68  * Make sure the floating-point register state in the
69  * the thread_struct is up to date for task tsk.
70  */
71 void flush_fp_to_thread(struct task_struct *tsk)
72 {
73 	if (tsk->thread.regs) {
74 		/*
75 		 * We need to disable preemption here because if we didn't,
76 		 * another process could get scheduled after the regs->msr
77 		 * test but before we have finished saving the FP registers
78 		 * to the thread_struct.  That process could take over the
79 		 * FPU, and then when we get scheduled again we would store
80 		 * bogus values for the remaining FP registers.
81 		 */
82 		preempt_disable();
83 		if (tsk->thread.regs->msr & MSR_FP) {
84 #ifdef CONFIG_SMP
85 			/*
86 			 * This should only ever be called for current or
87 			 * for a stopped child process.  Since we save away
88 			 * the FP register state on context switch on SMP,
89 			 * there is something wrong if a stopped child appears
90 			 * to still have its FP state in the CPU registers.
91 			 */
92 			BUG_ON(tsk != current);
93 #endif
94 			giveup_fpu(tsk);
95 		}
96 		preempt_enable();
97 	}
98 }
99 
100 void enable_kernel_fp(void)
101 {
102 	WARN_ON(preemptible());
103 
104 #ifdef CONFIG_SMP
105 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
106 		giveup_fpu(current);
107 	else
108 		giveup_fpu(NULL);	/* just enables FP for kernel */
109 #else
110 	giveup_fpu(last_task_used_math);
111 #endif /* CONFIG_SMP */
112 }
113 EXPORT_SYMBOL(enable_kernel_fp);
114 
115 #ifdef CONFIG_ALTIVEC
116 void enable_kernel_altivec(void)
117 {
118 	WARN_ON(preemptible());
119 
120 #ifdef CONFIG_SMP
121 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
122 		giveup_altivec(current);
123 	else
124 		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
125 #else
126 	giveup_altivec(last_task_used_altivec);
127 #endif /* CONFIG_SMP */
128 }
129 EXPORT_SYMBOL(enable_kernel_altivec);
130 
131 /*
132  * Make sure the VMX/Altivec register state in the
133  * the thread_struct is up to date for task tsk.
134  */
135 void flush_altivec_to_thread(struct task_struct *tsk)
136 {
137 	if (tsk->thread.regs) {
138 		preempt_disable();
139 		if (tsk->thread.regs->msr & MSR_VEC) {
140 #ifdef CONFIG_SMP
141 			BUG_ON(tsk != current);
142 #endif
143 			giveup_altivec(tsk);
144 		}
145 		preempt_enable();
146 	}
147 }
148 #endif /* CONFIG_ALTIVEC */
149 
150 #ifdef CONFIG_VSX
151 #if 0
152 /* not currently used, but some crazy RAID module might want to later */
153 void enable_kernel_vsx(void)
154 {
155 	WARN_ON(preemptible());
156 
157 #ifdef CONFIG_SMP
158 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
159 		giveup_vsx(current);
160 	else
161 		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
162 #else
163 	giveup_vsx(last_task_used_vsx);
164 #endif /* CONFIG_SMP */
165 }
166 EXPORT_SYMBOL(enable_kernel_vsx);
167 #endif
168 
169 void giveup_vsx(struct task_struct *tsk)
170 {
171 	giveup_fpu(tsk);
172 	giveup_altivec(tsk);
173 	__giveup_vsx(tsk);
174 }
175 
176 void flush_vsx_to_thread(struct task_struct *tsk)
177 {
178 	if (tsk->thread.regs) {
179 		preempt_disable();
180 		if (tsk->thread.regs->msr & MSR_VSX) {
181 #ifdef CONFIG_SMP
182 			BUG_ON(tsk != current);
183 #endif
184 			giveup_vsx(tsk);
185 		}
186 		preempt_enable();
187 	}
188 }
189 #endif /* CONFIG_VSX */
190 
191 #ifdef CONFIG_SPE
192 
193 void enable_kernel_spe(void)
194 {
195 	WARN_ON(preemptible());
196 
197 #ifdef CONFIG_SMP
198 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
199 		giveup_spe(current);
200 	else
201 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
202 #else
203 	giveup_spe(last_task_used_spe);
204 #endif /* __SMP __ */
205 }
206 EXPORT_SYMBOL(enable_kernel_spe);
207 
208 void flush_spe_to_thread(struct task_struct *tsk)
209 {
210 	if (tsk->thread.regs) {
211 		preempt_disable();
212 		if (tsk->thread.regs->msr & MSR_SPE) {
213 #ifdef CONFIG_SMP
214 			BUG_ON(tsk != current);
215 #endif
216 			giveup_spe(tsk);
217 		}
218 		preempt_enable();
219 	}
220 }
221 #endif /* CONFIG_SPE */
222 
223 #ifndef CONFIG_SMP
224 /*
225  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
226  * and the current task has some state, discard it.
227  */
228 void discard_lazy_cpu_state(void)
229 {
230 	preempt_disable();
231 	if (last_task_used_math == current)
232 		last_task_used_math = NULL;
233 #ifdef CONFIG_ALTIVEC
234 	if (last_task_used_altivec == current)
235 		last_task_used_altivec = NULL;
236 #endif /* CONFIG_ALTIVEC */
237 #ifdef CONFIG_VSX
238 	if (last_task_used_vsx == current)
239 		last_task_used_vsx = NULL;
240 #endif /* CONFIG_VSX */
241 #ifdef CONFIG_SPE
242 	if (last_task_used_spe == current)
243 		last_task_used_spe = NULL;
244 #endif
245 	preempt_enable();
246 }
247 #endif /* CONFIG_SMP */
248 
249 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
250 void do_send_trap(struct pt_regs *regs, unsigned long address,
251 		  unsigned long error_code, int signal_code, int breakpt)
252 {
253 	siginfo_t info;
254 
255 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
256 			11, SIGSEGV) == NOTIFY_STOP)
257 		return;
258 
259 	/* Deliver the signal to userspace */
260 	info.si_signo = SIGTRAP;
261 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
262 	info.si_code = signal_code;
263 	info.si_addr = (void __user *)address;
264 	force_sig_info(SIGTRAP, &info, current);
265 }
266 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
267 void do_dabr(struct pt_regs *regs, unsigned long address,
268 		    unsigned long error_code)
269 {
270 	siginfo_t info;
271 
272 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
273 			11, SIGSEGV) == NOTIFY_STOP)
274 		return;
275 
276 	if (debugger_dabr_match(regs))
277 		return;
278 
279 	/* Clear the DABR */
280 	set_dabr(0);
281 
282 	/* Deliver the signal to userspace */
283 	info.si_signo = SIGTRAP;
284 	info.si_errno = 0;
285 	info.si_code = TRAP_HWBKPT;
286 	info.si_addr = (void __user *)address;
287 	force_sig_info(SIGTRAP, &info, current);
288 }
289 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
290 
291 static DEFINE_PER_CPU(unsigned long, current_dabr);
292 
293 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
294 /*
295  * Set the debug registers back to their default "safe" values.
296  */
297 static void set_debug_reg_defaults(struct thread_struct *thread)
298 {
299 	thread->iac1 = thread->iac2 = 0;
300 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
301 	thread->iac3 = thread->iac4 = 0;
302 #endif
303 	thread->dac1 = thread->dac2 = 0;
304 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
305 	thread->dvc1 = thread->dvc2 = 0;
306 #endif
307 	thread->dbcr0 = 0;
308 #ifdef CONFIG_BOOKE
309 	/*
310 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
311 	 */
312 	thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |	\
313 			DBCR1_IAC3US | DBCR1_IAC4US;
314 	/*
315 	 * Force Data Address Compare User/Supervisor bits to be User-only
316 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
317 	 */
318 	thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
319 #else
320 	thread->dbcr1 = 0;
321 #endif
322 }
323 
324 static void prime_debug_regs(struct thread_struct *thread)
325 {
326 	mtspr(SPRN_IAC1, thread->iac1);
327 	mtspr(SPRN_IAC2, thread->iac2);
328 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
329 	mtspr(SPRN_IAC3, thread->iac3);
330 	mtspr(SPRN_IAC4, thread->iac4);
331 #endif
332 	mtspr(SPRN_DAC1, thread->dac1);
333 	mtspr(SPRN_DAC2, thread->dac2);
334 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
335 	mtspr(SPRN_DVC1, thread->dvc1);
336 	mtspr(SPRN_DVC2, thread->dvc2);
337 #endif
338 	mtspr(SPRN_DBCR0, thread->dbcr0);
339 	mtspr(SPRN_DBCR1, thread->dbcr1);
340 #ifdef CONFIG_BOOKE
341 	mtspr(SPRN_DBCR2, thread->dbcr2);
342 #endif
343 }
344 /*
345  * Unless neither the old or new thread are making use of the
346  * debug registers, set the debug registers from the values
347  * stored in the new thread.
348  */
349 static void switch_booke_debug_regs(struct thread_struct *new_thread)
350 {
351 	if ((current->thread.dbcr0 & DBCR0_IDM)
352 		|| (new_thread->dbcr0 & DBCR0_IDM))
353 			prime_debug_regs(new_thread);
354 }
355 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
356 #ifndef CONFIG_HAVE_HW_BREAKPOINT
357 static void set_debug_reg_defaults(struct thread_struct *thread)
358 {
359 	if (thread->dabr) {
360 		thread->dabr = 0;
361 		set_dabr(0);
362 	}
363 }
364 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
365 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
366 
367 int set_dabr(unsigned long dabr)
368 {
369 	__get_cpu_var(current_dabr) = dabr;
370 
371 	if (ppc_md.set_dabr)
372 		return ppc_md.set_dabr(dabr);
373 
374 	/* XXX should we have a CPU_FTR_HAS_DABR ? */
375 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
376 	mtspr(SPRN_DAC1, dabr);
377 #ifdef CONFIG_PPC_47x
378 	isync();
379 #endif
380 #elif defined(CONFIG_PPC_BOOK3S)
381 	mtspr(SPRN_DABR, dabr);
382 #endif
383 
384 
385 	return 0;
386 }
387 
388 #ifdef CONFIG_PPC64
389 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
390 #endif
391 
392 struct task_struct *__switch_to(struct task_struct *prev,
393 	struct task_struct *new)
394 {
395 	struct thread_struct *new_thread, *old_thread;
396 	unsigned long flags;
397 	struct task_struct *last;
398 
399 #ifdef CONFIG_SMP
400 	/* avoid complexity of lazy save/restore of fpu
401 	 * by just saving it every time we switch out if
402 	 * this task used the fpu during the last quantum.
403 	 *
404 	 * If it tries to use the fpu again, it'll trap and
405 	 * reload its fp regs.  So we don't have to do a restore
406 	 * every switch, just a save.
407 	 *  -- Cort
408 	 */
409 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
410 		giveup_fpu(prev);
411 #ifdef CONFIG_ALTIVEC
412 	/*
413 	 * If the previous thread used altivec in the last quantum
414 	 * (thus changing altivec regs) then save them.
415 	 * We used to check the VRSAVE register but not all apps
416 	 * set it, so we don't rely on it now (and in fact we need
417 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
418 	 *
419 	 * On SMP we always save/restore altivec regs just to avoid the
420 	 * complexity of changing processors.
421 	 *  -- Cort
422 	 */
423 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
424 		giveup_altivec(prev);
425 #endif /* CONFIG_ALTIVEC */
426 #ifdef CONFIG_VSX
427 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
428 		/* VMX and FPU registers are already save here */
429 		__giveup_vsx(prev);
430 #endif /* CONFIG_VSX */
431 #ifdef CONFIG_SPE
432 	/*
433 	 * If the previous thread used spe in the last quantum
434 	 * (thus changing spe regs) then save them.
435 	 *
436 	 * On SMP we always save/restore spe regs just to avoid the
437 	 * complexity of changing processors.
438 	 */
439 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
440 		giveup_spe(prev);
441 #endif /* CONFIG_SPE */
442 
443 #else  /* CONFIG_SMP */
444 #ifdef CONFIG_ALTIVEC
445 	/* Avoid the trap.  On smp this this never happens since
446 	 * we don't set last_task_used_altivec -- Cort
447 	 */
448 	if (new->thread.regs && last_task_used_altivec == new)
449 		new->thread.regs->msr |= MSR_VEC;
450 #endif /* CONFIG_ALTIVEC */
451 #ifdef CONFIG_VSX
452 	if (new->thread.regs && last_task_used_vsx == new)
453 		new->thread.regs->msr |= MSR_VSX;
454 #endif /* CONFIG_VSX */
455 #ifdef CONFIG_SPE
456 	/* Avoid the trap.  On smp this this never happens since
457 	 * we don't set last_task_used_spe
458 	 */
459 	if (new->thread.regs && last_task_used_spe == new)
460 		new->thread.regs->msr |= MSR_SPE;
461 #endif /* CONFIG_SPE */
462 
463 #endif /* CONFIG_SMP */
464 
465 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
466 	switch_booke_debug_regs(&new->thread);
467 #else
468 /*
469  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
470  * schedule DABR
471  */
472 #ifndef CONFIG_HAVE_HW_BREAKPOINT
473 	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
474 		set_dabr(new->thread.dabr);
475 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
476 #endif
477 
478 
479 	new_thread = &new->thread;
480 	old_thread = &current->thread;
481 
482 #if defined(CONFIG_PPC_BOOK3E_64)
483 	/* XXX Current Book3E code doesn't deal with kernel side DBCR0,
484 	 * we always hold the user values, so we set it now.
485 	 *
486 	 * However, we ensure the kernel MSR:DE is appropriately cleared too
487 	 * to avoid spurrious single step exceptions in the kernel.
488 	 *
489 	 * This will have to change to merge with the ppc32 code at some point,
490 	 * but I don't like much what ppc32 is doing today so there's some
491 	 * thinking needed there
492 	 */
493 	if ((new_thread->dbcr0 | old_thread->dbcr0) & DBCR0_IDM) {
494 		u32 dbcr0;
495 
496 		mtmsr(mfmsr() & ~MSR_DE);
497 		isync();
498 		dbcr0 = mfspr(SPRN_DBCR0);
499 		dbcr0 = (dbcr0 & DBCR0_EDM) | new_thread->dbcr0;
500 		mtspr(SPRN_DBCR0, dbcr0);
501 	}
502 #endif /* CONFIG_PPC64_BOOK3E */
503 
504 #ifdef CONFIG_PPC64
505 	/*
506 	 * Collect processor utilization data per process
507 	 */
508 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
509 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
510 		long unsigned start_tb, current_tb;
511 		start_tb = old_thread->start_tb;
512 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
513 		old_thread->accum_tb += (current_tb - start_tb);
514 		new_thread->start_tb = current_tb;
515 	}
516 #endif
517 
518 	local_irq_save(flags);
519 
520 	account_system_vtime(current);
521 	account_process_vtime(current);
522 
523 	/*
524 	 * We can't take a PMU exception inside _switch() since there is a
525 	 * window where the kernel stack SLB and the kernel stack are out
526 	 * of sync. Hard disable here.
527 	 */
528 	hard_irq_disable();
529 	last = _switch(old_thread, new_thread);
530 
531 	local_irq_restore(flags);
532 
533 	return last;
534 }
535 
536 static int instructions_to_print = 16;
537 
538 static void show_instructions(struct pt_regs *regs)
539 {
540 	int i;
541 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
542 			sizeof(int));
543 
544 	printk("Instruction dump:");
545 
546 	for (i = 0; i < instructions_to_print; i++) {
547 		int instr;
548 
549 		if (!(i % 8))
550 			printk("\n");
551 
552 #if !defined(CONFIG_BOOKE)
553 		/* If executing with the IMMU off, adjust pc rather
554 		 * than print XXXXXXXX.
555 		 */
556 		if (!(regs->msr & MSR_IR))
557 			pc = (unsigned long)phys_to_virt(pc);
558 #endif
559 
560 		/* We use __get_user here *only* to avoid an OOPS on a
561 		 * bad address because the pc *should* only be a
562 		 * kernel address.
563 		 */
564 		if (!__kernel_text_address(pc) ||
565 		     __get_user(instr, (unsigned int __user *)pc)) {
566 			printk("XXXXXXXX ");
567 		} else {
568 			if (regs->nip == pc)
569 				printk("<%08x> ", instr);
570 			else
571 				printk("%08x ", instr);
572 		}
573 
574 		pc += sizeof(int);
575 	}
576 
577 	printk("\n");
578 }
579 
580 static struct regbit {
581 	unsigned long bit;
582 	const char *name;
583 } msr_bits[] = {
584 	{MSR_EE,	"EE"},
585 	{MSR_PR,	"PR"},
586 	{MSR_FP,	"FP"},
587 	{MSR_VEC,	"VEC"},
588 	{MSR_VSX,	"VSX"},
589 	{MSR_ME,	"ME"},
590 	{MSR_CE,	"CE"},
591 	{MSR_DE,	"DE"},
592 	{MSR_IR,	"IR"},
593 	{MSR_DR,	"DR"},
594 	{0,		NULL}
595 };
596 
597 static void printbits(unsigned long val, struct regbit *bits)
598 {
599 	const char *sep = "";
600 
601 	printk("<");
602 	for (; bits->bit; ++bits)
603 		if (val & bits->bit) {
604 			printk("%s%s", sep, bits->name);
605 			sep = ",";
606 		}
607 	printk(">");
608 }
609 
610 #ifdef CONFIG_PPC64
611 #define REG		"%016lx"
612 #define REGS_PER_LINE	4
613 #define LAST_VOLATILE	13
614 #else
615 #define REG		"%08lx"
616 #define REGS_PER_LINE	8
617 #define LAST_VOLATILE	12
618 #endif
619 
620 void show_regs(struct pt_regs * regs)
621 {
622 	int i, trap;
623 
624 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
625 	       regs->nip, regs->link, regs->ctr);
626 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
627 	       regs, regs->trap, print_tainted(), init_utsname()->release);
628 	printk("MSR: "REG" ", regs->msr);
629 	printbits(regs->msr, msr_bits);
630 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
631 	trap = TRAP(regs);
632 	if (trap == 0x300 || trap == 0x600)
633 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
634 		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
635 #else
636 		printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
637 #endif
638 	printk("TASK = %p[%d] '%s' THREAD: %p",
639 	       current, task_pid_nr(current), current->comm, task_thread_info(current));
640 
641 #ifdef CONFIG_SMP
642 	printk(" CPU: %d", raw_smp_processor_id());
643 #endif /* CONFIG_SMP */
644 
645 	for (i = 0;  i < 32;  i++) {
646 		if ((i % REGS_PER_LINE) == 0)
647 			printk("\nGPR%02d: ", i);
648 		printk(REG " ", regs->gpr[i]);
649 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
650 			break;
651 	}
652 	printk("\n");
653 #ifdef CONFIG_KALLSYMS
654 	/*
655 	 * Lookup NIP late so we have the best change of getting the
656 	 * above info out without failing
657 	 */
658 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
659 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
660 #endif
661 	show_stack(current, (unsigned long *) regs->gpr[1]);
662 	if (!user_mode(regs))
663 		show_instructions(regs);
664 }
665 
666 void exit_thread(void)
667 {
668 	discard_lazy_cpu_state();
669 }
670 
671 void flush_thread(void)
672 {
673 	discard_lazy_cpu_state();
674 
675 #ifdef CONFIG_HAVE_HW_BREAKPOINT
676 	flush_ptrace_hw_breakpoint(current);
677 #else /* CONFIG_HAVE_HW_BREAKPOINT */
678 	set_debug_reg_defaults(&current->thread);
679 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
680 }
681 
682 void
683 release_thread(struct task_struct *t)
684 {
685 }
686 
687 /*
688  * This gets called before we allocate a new thread and copy
689  * the current task into it.
690  */
691 void prepare_to_copy(struct task_struct *tsk)
692 {
693 	flush_fp_to_thread(current);
694 	flush_altivec_to_thread(current);
695 	flush_vsx_to_thread(current);
696 	flush_spe_to_thread(current);
697 #ifdef CONFIG_HAVE_HW_BREAKPOINT
698 	flush_ptrace_hw_breakpoint(tsk);
699 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
700 }
701 
702 /*
703  * Copy a thread..
704  */
705 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
706 
707 int copy_thread(unsigned long clone_flags, unsigned long usp,
708 		unsigned long unused, struct task_struct *p,
709 		struct pt_regs *regs)
710 {
711 	struct pt_regs *childregs, *kregs;
712 	extern void ret_from_fork(void);
713 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
714 
715 	CHECK_FULL_REGS(regs);
716 	/* Copy registers */
717 	sp -= sizeof(struct pt_regs);
718 	childregs = (struct pt_regs *) sp;
719 	*childregs = *regs;
720 	if ((childregs->msr & MSR_PR) == 0) {
721 		/* for kernel thread, set `current' and stackptr in new task */
722 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
723 #ifdef CONFIG_PPC32
724 		childregs->gpr[2] = (unsigned long) p;
725 #else
726 		clear_tsk_thread_flag(p, TIF_32BIT);
727 #endif
728 		p->thread.regs = NULL;	/* no user register state */
729 	} else {
730 		childregs->gpr[1] = usp;
731 		p->thread.regs = childregs;
732 		if (clone_flags & CLONE_SETTLS) {
733 #ifdef CONFIG_PPC64
734 			if (!is_32bit_task())
735 				childregs->gpr[13] = childregs->gpr[6];
736 			else
737 #endif
738 				childregs->gpr[2] = childregs->gpr[6];
739 		}
740 	}
741 	childregs->gpr[3] = 0;  /* Result from fork() */
742 	sp -= STACK_FRAME_OVERHEAD;
743 
744 	/*
745 	 * The way this works is that at some point in the future
746 	 * some task will call _switch to switch to the new task.
747 	 * That will pop off the stack frame created below and start
748 	 * the new task running at ret_from_fork.  The new task will
749 	 * do some house keeping and then return from the fork or clone
750 	 * system call, using the stack frame created above.
751 	 */
752 	sp -= sizeof(struct pt_regs);
753 	kregs = (struct pt_regs *) sp;
754 	sp -= STACK_FRAME_OVERHEAD;
755 	p->thread.ksp = sp;
756 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
757 				_ALIGN_UP(sizeof(struct thread_info), 16);
758 
759 #ifdef CONFIG_PPC_STD_MMU_64
760 	if (mmu_has_feature(MMU_FTR_SLB)) {
761 		unsigned long sp_vsid;
762 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
763 
764 		if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
765 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
766 				<< SLB_VSID_SHIFT_1T;
767 		else
768 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
769 				<< SLB_VSID_SHIFT;
770 		sp_vsid |= SLB_VSID_KERNEL | llp;
771 		p->thread.ksp_vsid = sp_vsid;
772 	}
773 #endif /* CONFIG_PPC_STD_MMU_64 */
774 #ifdef CONFIG_PPC64
775 	if (cpu_has_feature(CPU_FTR_DSCR)) {
776 		if (current->thread.dscr_inherit) {
777 			p->thread.dscr_inherit = 1;
778 			p->thread.dscr = current->thread.dscr;
779 		} else if (0 != dscr_default) {
780 			p->thread.dscr_inherit = 1;
781 			p->thread.dscr = dscr_default;
782 		} else {
783 			p->thread.dscr_inherit = 0;
784 			p->thread.dscr = 0;
785 		}
786 	}
787 #endif
788 
789 	/*
790 	 * The PPC64 ABI makes use of a TOC to contain function
791 	 * pointers.  The function (ret_from_except) is actually a pointer
792 	 * to the TOC entry.  The first entry is a pointer to the actual
793 	 * function.
794  	 */
795 #ifdef CONFIG_PPC64
796 	kregs->nip = *((unsigned long *)ret_from_fork);
797 #else
798 	kregs->nip = (unsigned long)ret_from_fork;
799 #endif
800 
801 	return 0;
802 }
803 
804 /*
805  * Set up a thread for executing a new program
806  */
807 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
808 {
809 #ifdef CONFIG_PPC64
810 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
811 #endif
812 
813 	set_fs(USER_DS);
814 
815 	/*
816 	 * If we exec out of a kernel thread then thread.regs will not be
817 	 * set.  Do it now.
818 	 */
819 	if (!current->thread.regs) {
820 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
821 		current->thread.regs = regs - 1;
822 	}
823 
824 	memset(regs->gpr, 0, sizeof(regs->gpr));
825 	regs->ctr = 0;
826 	regs->link = 0;
827 	regs->xer = 0;
828 	regs->ccr = 0;
829 	regs->gpr[1] = sp;
830 
831 	/*
832 	 * We have just cleared all the nonvolatile GPRs, so make
833 	 * FULL_REGS(regs) return true.  This is necessary to allow
834 	 * ptrace to examine the thread immediately after exec.
835 	 */
836 	regs->trap &= ~1UL;
837 
838 #ifdef CONFIG_PPC32
839 	regs->mq = 0;
840 	regs->nip = start;
841 	regs->msr = MSR_USER;
842 #else
843 	if (!is_32bit_task()) {
844 		unsigned long entry, toc;
845 
846 		/* start is a relocated pointer to the function descriptor for
847 		 * the elf _start routine.  The first entry in the function
848 		 * descriptor is the entry address of _start and the second
849 		 * entry is the TOC value we need to use.
850 		 */
851 		__get_user(entry, (unsigned long __user *)start);
852 		__get_user(toc, (unsigned long __user *)start+1);
853 
854 		/* Check whether the e_entry function descriptor entries
855 		 * need to be relocated before we can use them.
856 		 */
857 		if (load_addr != 0) {
858 			entry += load_addr;
859 			toc   += load_addr;
860 		}
861 		regs->nip = entry;
862 		regs->gpr[2] = toc;
863 		regs->msr = MSR_USER64;
864 	} else {
865 		regs->nip = start;
866 		regs->gpr[2] = 0;
867 		regs->msr = MSR_USER32;
868 	}
869 #endif
870 
871 	discard_lazy_cpu_state();
872 #ifdef CONFIG_VSX
873 	current->thread.used_vsr = 0;
874 #endif
875 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
876 	current->thread.fpscr.val = 0;
877 #ifdef CONFIG_ALTIVEC
878 	memset(current->thread.vr, 0, sizeof(current->thread.vr));
879 	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
880 	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
881 	current->thread.vrsave = 0;
882 	current->thread.used_vr = 0;
883 #endif /* CONFIG_ALTIVEC */
884 #ifdef CONFIG_SPE
885 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
886 	current->thread.acc = 0;
887 	current->thread.spefscr = 0;
888 	current->thread.used_spe = 0;
889 #endif /* CONFIG_SPE */
890 }
891 
892 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
893 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
894 
895 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
896 {
897 	struct pt_regs *regs = tsk->thread.regs;
898 
899 	/* This is a bit hairy.  If we are an SPE enabled  processor
900 	 * (have embedded fp) we store the IEEE exception enable flags in
901 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
902 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
903 	if (val & PR_FP_EXC_SW_ENABLE) {
904 #ifdef CONFIG_SPE
905 		if (cpu_has_feature(CPU_FTR_SPE)) {
906 			tsk->thread.fpexc_mode = val &
907 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
908 			return 0;
909 		} else {
910 			return -EINVAL;
911 		}
912 #else
913 		return -EINVAL;
914 #endif
915 	}
916 
917 	/* on a CONFIG_SPE this does not hurt us.  The bits that
918 	 * __pack_fe01 use do not overlap with bits used for
919 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
920 	 * on CONFIG_SPE implementations are reserved so writing to
921 	 * them does not change anything */
922 	if (val > PR_FP_EXC_PRECISE)
923 		return -EINVAL;
924 	tsk->thread.fpexc_mode = __pack_fe01(val);
925 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
926 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
927 			| tsk->thread.fpexc_mode;
928 	return 0;
929 }
930 
931 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
932 {
933 	unsigned int val;
934 
935 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
936 #ifdef CONFIG_SPE
937 		if (cpu_has_feature(CPU_FTR_SPE))
938 			val = tsk->thread.fpexc_mode;
939 		else
940 			return -EINVAL;
941 #else
942 		return -EINVAL;
943 #endif
944 	else
945 		val = __unpack_fe01(tsk->thread.fpexc_mode);
946 	return put_user(val, (unsigned int __user *) adr);
947 }
948 
949 int set_endian(struct task_struct *tsk, unsigned int val)
950 {
951 	struct pt_regs *regs = tsk->thread.regs;
952 
953 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
954 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
955 		return -EINVAL;
956 
957 	if (regs == NULL)
958 		return -EINVAL;
959 
960 	if (val == PR_ENDIAN_BIG)
961 		regs->msr &= ~MSR_LE;
962 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
963 		regs->msr |= MSR_LE;
964 	else
965 		return -EINVAL;
966 
967 	return 0;
968 }
969 
970 int get_endian(struct task_struct *tsk, unsigned long adr)
971 {
972 	struct pt_regs *regs = tsk->thread.regs;
973 	unsigned int val;
974 
975 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
976 	    !cpu_has_feature(CPU_FTR_REAL_LE))
977 		return -EINVAL;
978 
979 	if (regs == NULL)
980 		return -EINVAL;
981 
982 	if (regs->msr & MSR_LE) {
983 		if (cpu_has_feature(CPU_FTR_REAL_LE))
984 			val = PR_ENDIAN_LITTLE;
985 		else
986 			val = PR_ENDIAN_PPC_LITTLE;
987 	} else
988 		val = PR_ENDIAN_BIG;
989 
990 	return put_user(val, (unsigned int __user *)adr);
991 }
992 
993 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
994 {
995 	tsk->thread.align_ctl = val;
996 	return 0;
997 }
998 
999 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1000 {
1001 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1002 }
1003 
1004 #define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))
1005 
1006 int sys_clone(unsigned long clone_flags, unsigned long usp,
1007 	      int __user *parent_tidp, void __user *child_threadptr,
1008 	      int __user *child_tidp, int p6,
1009 	      struct pt_regs *regs)
1010 {
1011 	CHECK_FULL_REGS(regs);
1012 	if (usp == 0)
1013 		usp = regs->gpr[1];	/* stack pointer for child */
1014 #ifdef CONFIG_PPC64
1015 	if (is_32bit_task()) {
1016 		parent_tidp = TRUNC_PTR(parent_tidp);
1017 		child_tidp = TRUNC_PTR(child_tidp);
1018 	}
1019 #endif
1020  	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
1021 }
1022 
1023 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
1024 	     unsigned long p4, unsigned long p5, unsigned long p6,
1025 	     struct pt_regs *regs)
1026 {
1027 	CHECK_FULL_REGS(regs);
1028 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
1029 }
1030 
1031 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
1032 	      unsigned long p4, unsigned long p5, unsigned long p6,
1033 	      struct pt_regs *regs)
1034 {
1035 	CHECK_FULL_REGS(regs);
1036 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
1037 			regs, 0, NULL, NULL);
1038 }
1039 
1040 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
1041 	       unsigned long a3, unsigned long a4, unsigned long a5,
1042 	       struct pt_regs *regs)
1043 {
1044 	int error;
1045 	char *filename;
1046 
1047 	filename = getname((const char __user *) a0);
1048 	error = PTR_ERR(filename);
1049 	if (IS_ERR(filename))
1050 		goto out;
1051 	flush_fp_to_thread(current);
1052 	flush_altivec_to_thread(current);
1053 	flush_spe_to_thread(current);
1054 	error = do_execve(filename,
1055 			  (const char __user *const __user *) a1,
1056 			  (const char __user *const __user *) a2, regs);
1057 	putname(filename);
1058 out:
1059 	return error;
1060 }
1061 
1062 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1063 				  unsigned long nbytes)
1064 {
1065 	unsigned long stack_page;
1066 	unsigned long cpu = task_cpu(p);
1067 
1068 	/*
1069 	 * Avoid crashing if the stack has overflowed and corrupted
1070 	 * task_cpu(p), which is in the thread_info struct.
1071 	 */
1072 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1073 		stack_page = (unsigned long) hardirq_ctx[cpu];
1074 		if (sp >= stack_page + sizeof(struct thread_struct)
1075 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1076 			return 1;
1077 
1078 		stack_page = (unsigned long) softirq_ctx[cpu];
1079 		if (sp >= stack_page + sizeof(struct thread_struct)
1080 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1081 			return 1;
1082 	}
1083 	return 0;
1084 }
1085 
1086 int validate_sp(unsigned long sp, struct task_struct *p,
1087 		       unsigned long nbytes)
1088 {
1089 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1090 
1091 	if (sp >= stack_page + sizeof(struct thread_struct)
1092 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1093 		return 1;
1094 
1095 	return valid_irq_stack(sp, p, nbytes);
1096 }
1097 
1098 EXPORT_SYMBOL(validate_sp);
1099 
1100 unsigned long get_wchan(struct task_struct *p)
1101 {
1102 	unsigned long ip, sp;
1103 	int count = 0;
1104 
1105 	if (!p || p == current || p->state == TASK_RUNNING)
1106 		return 0;
1107 
1108 	sp = p->thread.ksp;
1109 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1110 		return 0;
1111 
1112 	do {
1113 		sp = *(unsigned long *)sp;
1114 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1115 			return 0;
1116 		if (count > 0) {
1117 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1118 			if (!in_sched_functions(ip))
1119 				return ip;
1120 		}
1121 	} while (count++ < 16);
1122 	return 0;
1123 }
1124 
1125 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1126 
1127 void show_stack(struct task_struct *tsk, unsigned long *stack)
1128 {
1129 	unsigned long sp, ip, lr, newsp;
1130 	int count = 0;
1131 	int firstframe = 1;
1132 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1133 	int curr_frame = current->curr_ret_stack;
1134 	extern void return_to_handler(void);
1135 	unsigned long rth = (unsigned long)return_to_handler;
1136 	unsigned long mrth = -1;
1137 #ifdef CONFIG_PPC64
1138 	extern void mod_return_to_handler(void);
1139 	rth = *(unsigned long *)rth;
1140 	mrth = (unsigned long)mod_return_to_handler;
1141 	mrth = *(unsigned long *)mrth;
1142 #endif
1143 #endif
1144 
1145 	sp = (unsigned long) stack;
1146 	if (tsk == NULL)
1147 		tsk = current;
1148 	if (sp == 0) {
1149 		if (tsk == current)
1150 			asm("mr %0,1" : "=r" (sp));
1151 		else
1152 			sp = tsk->thread.ksp;
1153 	}
1154 
1155 	lr = 0;
1156 	printk("Call Trace:\n");
1157 	do {
1158 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1159 			return;
1160 
1161 		stack = (unsigned long *) sp;
1162 		newsp = stack[0];
1163 		ip = stack[STACK_FRAME_LR_SAVE];
1164 		if (!firstframe || ip != lr) {
1165 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1166 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1167 			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1168 				printk(" (%pS)",
1169 				       (void *)current->ret_stack[curr_frame].ret);
1170 				curr_frame--;
1171 			}
1172 #endif
1173 			if (firstframe)
1174 				printk(" (unreliable)");
1175 			printk("\n");
1176 		}
1177 		firstframe = 0;
1178 
1179 		/*
1180 		 * See if this is an exception frame.
1181 		 * We look for the "regshere" marker in the current frame.
1182 		 */
1183 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1184 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1185 			struct pt_regs *regs = (struct pt_regs *)
1186 				(sp + STACK_FRAME_OVERHEAD);
1187 			lr = regs->link;
1188 			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1189 			       regs->trap, (void *)regs->nip, (void *)lr);
1190 			firstframe = 1;
1191 		}
1192 
1193 		sp = newsp;
1194 	} while (count++ < kstack_depth_to_print);
1195 }
1196 
1197 void dump_stack(void)
1198 {
1199 	show_stack(current, NULL);
1200 }
1201 EXPORT_SYMBOL(dump_stack);
1202 
1203 #ifdef CONFIG_PPC64
1204 void ppc64_runlatch_on(void)
1205 {
1206 	unsigned long ctrl;
1207 
1208 	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1209 		HMT_medium();
1210 
1211 		ctrl = mfspr(SPRN_CTRLF);
1212 		ctrl |= CTRL_RUNLATCH;
1213 		mtspr(SPRN_CTRLT, ctrl);
1214 
1215 		set_thread_flag(TIF_RUNLATCH);
1216 	}
1217 }
1218 
1219 void __ppc64_runlatch_off(void)
1220 {
1221 	unsigned long ctrl;
1222 
1223 	HMT_medium();
1224 
1225 	clear_thread_flag(TIF_RUNLATCH);
1226 
1227 	ctrl = mfspr(SPRN_CTRLF);
1228 	ctrl &= ~CTRL_RUNLATCH;
1229 	mtspr(SPRN_CTRLT, ctrl);
1230 }
1231 #endif
1232 
1233 #if THREAD_SHIFT < PAGE_SHIFT
1234 
1235 static struct kmem_cache *thread_info_cache;
1236 
1237 struct thread_info *alloc_thread_info_node(struct task_struct *tsk, int node)
1238 {
1239 	struct thread_info *ti;
1240 
1241 	ti = kmem_cache_alloc_node(thread_info_cache, GFP_KERNEL, node);
1242 	if (unlikely(ti == NULL))
1243 		return NULL;
1244 #ifdef CONFIG_DEBUG_STACK_USAGE
1245 	memset(ti, 0, THREAD_SIZE);
1246 #endif
1247 	return ti;
1248 }
1249 
1250 void free_thread_info(struct thread_info *ti)
1251 {
1252 	kmem_cache_free(thread_info_cache, ti);
1253 }
1254 
1255 void thread_info_cache_init(void)
1256 {
1257 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1258 					      THREAD_SIZE, 0, NULL);
1259 	BUG_ON(thread_info_cache == NULL);
1260 }
1261 
1262 #endif /* THREAD_SHIFT < PAGE_SHIFT */
1263 
1264 unsigned long arch_align_stack(unsigned long sp)
1265 {
1266 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1267 		sp -= get_random_int() & ~PAGE_MASK;
1268 	return sp & ~0xf;
1269 }
1270 
1271 static inline unsigned long brk_rnd(void)
1272 {
1273         unsigned long rnd = 0;
1274 
1275 	/* 8MB for 32bit, 1GB for 64bit */
1276 	if (is_32bit_task())
1277 		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1278 	else
1279 		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1280 
1281 	return rnd << PAGE_SHIFT;
1282 }
1283 
1284 unsigned long arch_randomize_brk(struct mm_struct *mm)
1285 {
1286 	unsigned long base = mm->brk;
1287 	unsigned long ret;
1288 
1289 #ifdef CONFIG_PPC_STD_MMU_64
1290 	/*
1291 	 * If we are using 1TB segments and we are allowed to randomise
1292 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1293 	 * segment. Otherwise the heap will be in the bottom 1TB
1294 	 * which always uses 256MB segments and this may result in a
1295 	 * performance penalty.
1296 	 */
1297 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1298 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1299 #endif
1300 
1301 	ret = PAGE_ALIGN(base + brk_rnd());
1302 
1303 	if (ret < mm->brk)
1304 		return mm->brk;
1305 
1306 	return ret;
1307 }
1308 
1309 unsigned long randomize_et_dyn(unsigned long base)
1310 {
1311 	unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1312 
1313 	if (ret < base)
1314 		return base;
1315 
1316 	return ret;
1317 }
1318