1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan ([email protected]) and 6 * Paul Mackerras ([email protected]) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas ([email protected]) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/ptrace.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/elf.h> 28 #include <linux/init.h> 29 #include <linux/prctl.h> 30 #include <linux/init_task.h> 31 #include <linux/module.h> 32 #include <linux/kallsyms.h> 33 #include <linux/mqueue.h> 34 #include <linux/hardirq.h> 35 #include <linux/utsname.h> 36 #include <linux/ftrace.h> 37 #include <linux/kernel_stat.h> 38 #include <linux/personality.h> 39 #include <linux/random.h> 40 #include <linux/hw_breakpoint.h> 41 42 #include <asm/pgtable.h> 43 #include <asm/uaccess.h> 44 #include <asm/system.h> 45 #include <asm/io.h> 46 #include <asm/processor.h> 47 #include <asm/mmu.h> 48 #include <asm/prom.h> 49 #include <asm/machdep.h> 50 #include <asm/time.h> 51 #include <asm/syscalls.h> 52 #ifdef CONFIG_PPC64 53 #include <asm/firmware.h> 54 #endif 55 #include <linux/kprobes.h> 56 #include <linux/kdebug.h> 57 58 extern unsigned long _get_SP(void); 59 60 #ifndef CONFIG_SMP 61 struct task_struct *last_task_used_math = NULL; 62 struct task_struct *last_task_used_altivec = NULL; 63 struct task_struct *last_task_used_vsx = NULL; 64 struct task_struct *last_task_used_spe = NULL; 65 #endif 66 67 /* 68 * Make sure the floating-point register state in the 69 * the thread_struct is up to date for task tsk. 70 */ 71 void flush_fp_to_thread(struct task_struct *tsk) 72 { 73 if (tsk->thread.regs) { 74 /* 75 * We need to disable preemption here because if we didn't, 76 * another process could get scheduled after the regs->msr 77 * test but before we have finished saving the FP registers 78 * to the thread_struct. That process could take over the 79 * FPU, and then when we get scheduled again we would store 80 * bogus values for the remaining FP registers. 81 */ 82 preempt_disable(); 83 if (tsk->thread.regs->msr & MSR_FP) { 84 #ifdef CONFIG_SMP 85 /* 86 * This should only ever be called for current or 87 * for a stopped child process. Since we save away 88 * the FP register state on context switch on SMP, 89 * there is something wrong if a stopped child appears 90 * to still have its FP state in the CPU registers. 91 */ 92 BUG_ON(tsk != current); 93 #endif 94 giveup_fpu(tsk); 95 } 96 preempt_enable(); 97 } 98 } 99 100 void enable_kernel_fp(void) 101 { 102 WARN_ON(preemptible()); 103 104 #ifdef CONFIG_SMP 105 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) 106 giveup_fpu(current); 107 else 108 giveup_fpu(NULL); /* just enables FP for kernel */ 109 #else 110 giveup_fpu(last_task_used_math); 111 #endif /* CONFIG_SMP */ 112 } 113 EXPORT_SYMBOL(enable_kernel_fp); 114 115 #ifdef CONFIG_ALTIVEC 116 void enable_kernel_altivec(void) 117 { 118 WARN_ON(preemptible()); 119 120 #ifdef CONFIG_SMP 121 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) 122 giveup_altivec(current); 123 else 124 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */ 125 #else 126 giveup_altivec(last_task_used_altivec); 127 #endif /* CONFIG_SMP */ 128 } 129 EXPORT_SYMBOL(enable_kernel_altivec); 130 131 /* 132 * Make sure the VMX/Altivec register state in the 133 * the thread_struct is up to date for task tsk. 134 */ 135 void flush_altivec_to_thread(struct task_struct *tsk) 136 { 137 if (tsk->thread.regs) { 138 preempt_disable(); 139 if (tsk->thread.regs->msr & MSR_VEC) { 140 #ifdef CONFIG_SMP 141 BUG_ON(tsk != current); 142 #endif 143 giveup_altivec(tsk); 144 } 145 preempt_enable(); 146 } 147 } 148 #endif /* CONFIG_ALTIVEC */ 149 150 #ifdef CONFIG_VSX 151 #if 0 152 /* not currently used, but some crazy RAID module might want to later */ 153 void enable_kernel_vsx(void) 154 { 155 WARN_ON(preemptible()); 156 157 #ifdef CONFIG_SMP 158 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) 159 giveup_vsx(current); 160 else 161 giveup_vsx(NULL); /* just enable vsx for kernel - force */ 162 #else 163 giveup_vsx(last_task_used_vsx); 164 #endif /* CONFIG_SMP */ 165 } 166 EXPORT_SYMBOL(enable_kernel_vsx); 167 #endif 168 169 void giveup_vsx(struct task_struct *tsk) 170 { 171 giveup_fpu(tsk); 172 giveup_altivec(tsk); 173 __giveup_vsx(tsk); 174 } 175 176 void flush_vsx_to_thread(struct task_struct *tsk) 177 { 178 if (tsk->thread.regs) { 179 preempt_disable(); 180 if (tsk->thread.regs->msr & MSR_VSX) { 181 #ifdef CONFIG_SMP 182 BUG_ON(tsk != current); 183 #endif 184 giveup_vsx(tsk); 185 } 186 preempt_enable(); 187 } 188 } 189 #endif /* CONFIG_VSX */ 190 191 #ifdef CONFIG_SPE 192 193 void enable_kernel_spe(void) 194 { 195 WARN_ON(preemptible()); 196 197 #ifdef CONFIG_SMP 198 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) 199 giveup_spe(current); 200 else 201 giveup_spe(NULL); /* just enable SPE for kernel - force */ 202 #else 203 giveup_spe(last_task_used_spe); 204 #endif /* __SMP __ */ 205 } 206 EXPORT_SYMBOL(enable_kernel_spe); 207 208 void flush_spe_to_thread(struct task_struct *tsk) 209 { 210 if (tsk->thread.regs) { 211 preempt_disable(); 212 if (tsk->thread.regs->msr & MSR_SPE) { 213 #ifdef CONFIG_SMP 214 BUG_ON(tsk != current); 215 #endif 216 giveup_spe(tsk); 217 } 218 preempt_enable(); 219 } 220 } 221 #endif /* CONFIG_SPE */ 222 223 #ifndef CONFIG_SMP 224 /* 225 * If we are doing lazy switching of CPU state (FP, altivec or SPE), 226 * and the current task has some state, discard it. 227 */ 228 void discard_lazy_cpu_state(void) 229 { 230 preempt_disable(); 231 if (last_task_used_math == current) 232 last_task_used_math = NULL; 233 #ifdef CONFIG_ALTIVEC 234 if (last_task_used_altivec == current) 235 last_task_used_altivec = NULL; 236 #endif /* CONFIG_ALTIVEC */ 237 #ifdef CONFIG_VSX 238 if (last_task_used_vsx == current) 239 last_task_used_vsx = NULL; 240 #endif /* CONFIG_VSX */ 241 #ifdef CONFIG_SPE 242 if (last_task_used_spe == current) 243 last_task_used_spe = NULL; 244 #endif 245 preempt_enable(); 246 } 247 #endif /* CONFIG_SMP */ 248 249 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 250 void do_send_trap(struct pt_regs *regs, unsigned long address, 251 unsigned long error_code, int signal_code, int breakpt) 252 { 253 siginfo_t info; 254 255 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 256 11, SIGSEGV) == NOTIFY_STOP) 257 return; 258 259 /* Deliver the signal to userspace */ 260 info.si_signo = SIGTRAP; 261 info.si_errno = breakpt; /* breakpoint or watchpoint id */ 262 info.si_code = signal_code; 263 info.si_addr = (void __user *)address; 264 force_sig_info(SIGTRAP, &info, current); 265 } 266 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 267 void do_dabr(struct pt_regs *regs, unsigned long address, 268 unsigned long error_code) 269 { 270 siginfo_t info; 271 272 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 273 11, SIGSEGV) == NOTIFY_STOP) 274 return; 275 276 if (debugger_dabr_match(regs)) 277 return; 278 279 /* Clear the DABR */ 280 set_dabr(0); 281 282 /* Deliver the signal to userspace */ 283 info.si_signo = SIGTRAP; 284 info.si_errno = 0; 285 info.si_code = TRAP_HWBKPT; 286 info.si_addr = (void __user *)address; 287 force_sig_info(SIGTRAP, &info, current); 288 } 289 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 290 291 static DEFINE_PER_CPU(unsigned long, current_dabr); 292 293 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 294 /* 295 * Set the debug registers back to their default "safe" values. 296 */ 297 static void set_debug_reg_defaults(struct thread_struct *thread) 298 { 299 thread->iac1 = thread->iac2 = 0; 300 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 301 thread->iac3 = thread->iac4 = 0; 302 #endif 303 thread->dac1 = thread->dac2 = 0; 304 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 305 thread->dvc1 = thread->dvc2 = 0; 306 #endif 307 thread->dbcr0 = 0; 308 #ifdef CONFIG_BOOKE 309 /* 310 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 311 */ 312 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \ 313 DBCR1_IAC3US | DBCR1_IAC4US; 314 /* 315 * Force Data Address Compare User/Supervisor bits to be User-only 316 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 317 */ 318 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 319 #else 320 thread->dbcr1 = 0; 321 #endif 322 } 323 324 static void prime_debug_regs(struct thread_struct *thread) 325 { 326 mtspr(SPRN_IAC1, thread->iac1); 327 mtspr(SPRN_IAC2, thread->iac2); 328 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 329 mtspr(SPRN_IAC3, thread->iac3); 330 mtspr(SPRN_IAC4, thread->iac4); 331 #endif 332 mtspr(SPRN_DAC1, thread->dac1); 333 mtspr(SPRN_DAC2, thread->dac2); 334 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 335 mtspr(SPRN_DVC1, thread->dvc1); 336 mtspr(SPRN_DVC2, thread->dvc2); 337 #endif 338 mtspr(SPRN_DBCR0, thread->dbcr0); 339 mtspr(SPRN_DBCR1, thread->dbcr1); 340 #ifdef CONFIG_BOOKE 341 mtspr(SPRN_DBCR2, thread->dbcr2); 342 #endif 343 } 344 /* 345 * Unless neither the old or new thread are making use of the 346 * debug registers, set the debug registers from the values 347 * stored in the new thread. 348 */ 349 static void switch_booke_debug_regs(struct thread_struct *new_thread) 350 { 351 if ((current->thread.dbcr0 & DBCR0_IDM) 352 || (new_thread->dbcr0 & DBCR0_IDM)) 353 prime_debug_regs(new_thread); 354 } 355 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 356 #ifndef CONFIG_HAVE_HW_BREAKPOINT 357 static void set_debug_reg_defaults(struct thread_struct *thread) 358 { 359 if (thread->dabr) { 360 thread->dabr = 0; 361 set_dabr(0); 362 } 363 } 364 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 365 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 366 367 int set_dabr(unsigned long dabr) 368 { 369 __get_cpu_var(current_dabr) = dabr; 370 371 if (ppc_md.set_dabr) 372 return ppc_md.set_dabr(dabr); 373 374 /* XXX should we have a CPU_FTR_HAS_DABR ? */ 375 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 376 mtspr(SPRN_DAC1, dabr); 377 #ifdef CONFIG_PPC_47x 378 isync(); 379 #endif 380 #elif defined(CONFIG_PPC_BOOK3S) 381 mtspr(SPRN_DABR, dabr); 382 #endif 383 384 385 return 0; 386 } 387 388 #ifdef CONFIG_PPC64 389 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 390 #endif 391 392 struct task_struct *__switch_to(struct task_struct *prev, 393 struct task_struct *new) 394 { 395 struct thread_struct *new_thread, *old_thread; 396 unsigned long flags; 397 struct task_struct *last; 398 #ifdef CONFIG_PPC_BOOK3S_64 399 struct ppc64_tlb_batch *batch; 400 #endif 401 402 #ifdef CONFIG_SMP 403 /* avoid complexity of lazy save/restore of fpu 404 * by just saving it every time we switch out if 405 * this task used the fpu during the last quantum. 406 * 407 * If it tries to use the fpu again, it'll trap and 408 * reload its fp regs. So we don't have to do a restore 409 * every switch, just a save. 410 * -- Cort 411 */ 412 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) 413 giveup_fpu(prev); 414 #ifdef CONFIG_ALTIVEC 415 /* 416 * If the previous thread used altivec in the last quantum 417 * (thus changing altivec regs) then save them. 418 * We used to check the VRSAVE register but not all apps 419 * set it, so we don't rely on it now (and in fact we need 420 * to save & restore VSCR even if VRSAVE == 0). -- paulus 421 * 422 * On SMP we always save/restore altivec regs just to avoid the 423 * complexity of changing processors. 424 * -- Cort 425 */ 426 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) 427 giveup_altivec(prev); 428 #endif /* CONFIG_ALTIVEC */ 429 #ifdef CONFIG_VSX 430 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX)) 431 /* VMX and FPU registers are already save here */ 432 __giveup_vsx(prev); 433 #endif /* CONFIG_VSX */ 434 #ifdef CONFIG_SPE 435 /* 436 * If the previous thread used spe in the last quantum 437 * (thus changing spe regs) then save them. 438 * 439 * On SMP we always save/restore spe regs just to avoid the 440 * complexity of changing processors. 441 */ 442 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) 443 giveup_spe(prev); 444 #endif /* CONFIG_SPE */ 445 446 #else /* CONFIG_SMP */ 447 #ifdef CONFIG_ALTIVEC 448 /* Avoid the trap. On smp this this never happens since 449 * we don't set last_task_used_altivec -- Cort 450 */ 451 if (new->thread.regs && last_task_used_altivec == new) 452 new->thread.regs->msr |= MSR_VEC; 453 #endif /* CONFIG_ALTIVEC */ 454 #ifdef CONFIG_VSX 455 if (new->thread.regs && last_task_used_vsx == new) 456 new->thread.regs->msr |= MSR_VSX; 457 #endif /* CONFIG_VSX */ 458 #ifdef CONFIG_SPE 459 /* Avoid the trap. On smp this this never happens since 460 * we don't set last_task_used_spe 461 */ 462 if (new->thread.regs && last_task_used_spe == new) 463 new->thread.regs->msr |= MSR_SPE; 464 #endif /* CONFIG_SPE */ 465 466 #endif /* CONFIG_SMP */ 467 468 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 469 switch_booke_debug_regs(&new->thread); 470 #else 471 /* 472 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 473 * schedule DABR 474 */ 475 #ifndef CONFIG_HAVE_HW_BREAKPOINT 476 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) 477 set_dabr(new->thread.dabr); 478 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 479 #endif 480 481 482 new_thread = &new->thread; 483 old_thread = ¤t->thread; 484 485 #if defined(CONFIG_PPC_BOOK3E_64) 486 /* XXX Current Book3E code doesn't deal with kernel side DBCR0, 487 * we always hold the user values, so we set it now. 488 * 489 * However, we ensure the kernel MSR:DE is appropriately cleared too 490 * to avoid spurrious single step exceptions in the kernel. 491 * 492 * This will have to change to merge with the ppc32 code at some point, 493 * but I don't like much what ppc32 is doing today so there's some 494 * thinking needed there 495 */ 496 if ((new_thread->dbcr0 | old_thread->dbcr0) & DBCR0_IDM) { 497 u32 dbcr0; 498 499 mtmsr(mfmsr() & ~MSR_DE); 500 isync(); 501 dbcr0 = mfspr(SPRN_DBCR0); 502 dbcr0 = (dbcr0 & DBCR0_EDM) | new_thread->dbcr0; 503 mtspr(SPRN_DBCR0, dbcr0); 504 } 505 #endif /* CONFIG_PPC64_BOOK3E */ 506 507 #ifdef CONFIG_PPC64 508 /* 509 * Collect processor utilization data per process 510 */ 511 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 512 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 513 long unsigned start_tb, current_tb; 514 start_tb = old_thread->start_tb; 515 cu->current_tb = current_tb = mfspr(SPRN_PURR); 516 old_thread->accum_tb += (current_tb - start_tb); 517 new_thread->start_tb = current_tb; 518 } 519 #endif /* CONFIG_PPC64 */ 520 521 #ifdef CONFIG_PPC_BOOK3S_64 522 batch = &__get_cpu_var(ppc64_tlb_batch); 523 if (batch->active) { 524 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 525 if (batch->index) 526 __flush_tlb_pending(batch); 527 batch->active = 0; 528 } 529 #endif /* CONFIG_PPC_BOOK3S_64 */ 530 531 local_irq_save(flags); 532 533 account_system_vtime(current); 534 account_process_vtime(current); 535 536 /* 537 * We can't take a PMU exception inside _switch() since there is a 538 * window where the kernel stack SLB and the kernel stack are out 539 * of sync. Hard disable here. 540 */ 541 hard_irq_disable(); 542 last = _switch(old_thread, new_thread); 543 544 #ifdef CONFIG_PPC_BOOK3S_64 545 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 546 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 547 batch = &__get_cpu_var(ppc64_tlb_batch); 548 batch->active = 1; 549 } 550 #endif /* CONFIG_PPC_BOOK3S_64 */ 551 552 local_irq_restore(flags); 553 554 return last; 555 } 556 557 static int instructions_to_print = 16; 558 559 static void show_instructions(struct pt_regs *regs) 560 { 561 int i; 562 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 563 sizeof(int)); 564 565 printk("Instruction dump:"); 566 567 for (i = 0; i < instructions_to_print; i++) { 568 int instr; 569 570 if (!(i % 8)) 571 printk("\n"); 572 573 #if !defined(CONFIG_BOOKE) 574 /* If executing with the IMMU off, adjust pc rather 575 * than print XXXXXXXX. 576 */ 577 if (!(regs->msr & MSR_IR)) 578 pc = (unsigned long)phys_to_virt(pc); 579 #endif 580 581 /* We use __get_user here *only* to avoid an OOPS on a 582 * bad address because the pc *should* only be a 583 * kernel address. 584 */ 585 if (!__kernel_text_address(pc) || 586 __get_user(instr, (unsigned int __user *)pc)) { 587 printk("XXXXXXXX "); 588 } else { 589 if (regs->nip == pc) 590 printk("<%08x> ", instr); 591 else 592 printk("%08x ", instr); 593 } 594 595 pc += sizeof(int); 596 } 597 598 printk("\n"); 599 } 600 601 static struct regbit { 602 unsigned long bit; 603 const char *name; 604 } msr_bits[] = { 605 {MSR_EE, "EE"}, 606 {MSR_PR, "PR"}, 607 {MSR_FP, "FP"}, 608 {MSR_VEC, "VEC"}, 609 {MSR_VSX, "VSX"}, 610 {MSR_ME, "ME"}, 611 {MSR_CE, "CE"}, 612 {MSR_DE, "DE"}, 613 {MSR_IR, "IR"}, 614 {MSR_DR, "DR"}, 615 {0, NULL} 616 }; 617 618 static void printbits(unsigned long val, struct regbit *bits) 619 { 620 const char *sep = ""; 621 622 printk("<"); 623 for (; bits->bit; ++bits) 624 if (val & bits->bit) { 625 printk("%s%s", sep, bits->name); 626 sep = ","; 627 } 628 printk(">"); 629 } 630 631 #ifdef CONFIG_PPC64 632 #define REG "%016lx" 633 #define REGS_PER_LINE 4 634 #define LAST_VOLATILE 13 635 #else 636 #define REG "%08lx" 637 #define REGS_PER_LINE 8 638 #define LAST_VOLATILE 12 639 #endif 640 641 void show_regs(struct pt_regs * regs) 642 { 643 int i, trap; 644 645 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 646 regs->nip, regs->link, regs->ctr); 647 printk("REGS: %p TRAP: %04lx %s (%s)\n", 648 regs, regs->trap, print_tainted(), init_utsname()->release); 649 printk("MSR: "REG" ", regs->msr); 650 printbits(regs->msr, msr_bits); 651 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 652 trap = TRAP(regs); 653 if (trap == 0x300 || trap == 0x600) 654 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 655 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr); 656 #else 657 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr); 658 #endif 659 printk("TASK = %p[%d] '%s' THREAD: %p", 660 current, task_pid_nr(current), current->comm, task_thread_info(current)); 661 662 #ifdef CONFIG_SMP 663 printk(" CPU: %d", raw_smp_processor_id()); 664 #endif /* CONFIG_SMP */ 665 666 for (i = 0; i < 32; i++) { 667 if ((i % REGS_PER_LINE) == 0) 668 printk("\nGPR%02d: ", i); 669 printk(REG " ", regs->gpr[i]); 670 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 671 break; 672 } 673 printk("\n"); 674 #ifdef CONFIG_KALLSYMS 675 /* 676 * Lookup NIP late so we have the best change of getting the 677 * above info out without failing 678 */ 679 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 680 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 681 #endif 682 show_stack(current, (unsigned long *) regs->gpr[1]); 683 if (!user_mode(regs)) 684 show_instructions(regs); 685 } 686 687 void exit_thread(void) 688 { 689 discard_lazy_cpu_state(); 690 } 691 692 void flush_thread(void) 693 { 694 discard_lazy_cpu_state(); 695 696 #ifdef CONFIG_HAVE_HW_BREAKPOINT 697 flush_ptrace_hw_breakpoint(current); 698 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 699 set_debug_reg_defaults(¤t->thread); 700 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 701 } 702 703 void 704 release_thread(struct task_struct *t) 705 { 706 } 707 708 /* 709 * This gets called before we allocate a new thread and copy 710 * the current task into it. 711 */ 712 void prepare_to_copy(struct task_struct *tsk) 713 { 714 flush_fp_to_thread(current); 715 flush_altivec_to_thread(current); 716 flush_vsx_to_thread(current); 717 flush_spe_to_thread(current); 718 #ifdef CONFIG_HAVE_HW_BREAKPOINT 719 flush_ptrace_hw_breakpoint(tsk); 720 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 721 } 722 723 /* 724 * Copy a thread.. 725 */ 726 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */ 727 728 int copy_thread(unsigned long clone_flags, unsigned long usp, 729 unsigned long unused, struct task_struct *p, 730 struct pt_regs *regs) 731 { 732 struct pt_regs *childregs, *kregs; 733 extern void ret_from_fork(void); 734 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 735 736 CHECK_FULL_REGS(regs); 737 /* Copy registers */ 738 sp -= sizeof(struct pt_regs); 739 childregs = (struct pt_regs *) sp; 740 *childregs = *regs; 741 if ((childregs->msr & MSR_PR) == 0) { 742 /* for kernel thread, set `current' and stackptr in new task */ 743 childregs->gpr[1] = sp + sizeof(struct pt_regs); 744 #ifdef CONFIG_PPC32 745 childregs->gpr[2] = (unsigned long) p; 746 #else 747 clear_tsk_thread_flag(p, TIF_32BIT); 748 #endif 749 p->thread.regs = NULL; /* no user register state */ 750 } else { 751 childregs->gpr[1] = usp; 752 p->thread.regs = childregs; 753 if (clone_flags & CLONE_SETTLS) { 754 #ifdef CONFIG_PPC64 755 if (!is_32bit_task()) 756 childregs->gpr[13] = childregs->gpr[6]; 757 else 758 #endif 759 childregs->gpr[2] = childregs->gpr[6]; 760 } 761 } 762 childregs->gpr[3] = 0; /* Result from fork() */ 763 sp -= STACK_FRAME_OVERHEAD; 764 765 /* 766 * The way this works is that at some point in the future 767 * some task will call _switch to switch to the new task. 768 * That will pop off the stack frame created below and start 769 * the new task running at ret_from_fork. The new task will 770 * do some house keeping and then return from the fork or clone 771 * system call, using the stack frame created above. 772 */ 773 sp -= sizeof(struct pt_regs); 774 kregs = (struct pt_regs *) sp; 775 sp -= STACK_FRAME_OVERHEAD; 776 p->thread.ksp = sp; 777 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 778 _ALIGN_UP(sizeof(struct thread_info), 16); 779 780 #ifdef CONFIG_PPC_STD_MMU_64 781 if (mmu_has_feature(MMU_FTR_SLB)) { 782 unsigned long sp_vsid; 783 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 784 785 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 786 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 787 << SLB_VSID_SHIFT_1T; 788 else 789 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 790 << SLB_VSID_SHIFT; 791 sp_vsid |= SLB_VSID_KERNEL | llp; 792 p->thread.ksp_vsid = sp_vsid; 793 } 794 #endif /* CONFIG_PPC_STD_MMU_64 */ 795 #ifdef CONFIG_PPC64 796 if (cpu_has_feature(CPU_FTR_DSCR)) { 797 if (current->thread.dscr_inherit) { 798 p->thread.dscr_inherit = 1; 799 p->thread.dscr = current->thread.dscr; 800 } else if (0 != dscr_default) { 801 p->thread.dscr_inherit = 1; 802 p->thread.dscr = dscr_default; 803 } else { 804 p->thread.dscr_inherit = 0; 805 p->thread.dscr = 0; 806 } 807 } 808 #endif 809 810 /* 811 * The PPC64 ABI makes use of a TOC to contain function 812 * pointers. The function (ret_from_except) is actually a pointer 813 * to the TOC entry. The first entry is a pointer to the actual 814 * function. 815 */ 816 #ifdef CONFIG_PPC64 817 kregs->nip = *((unsigned long *)ret_from_fork); 818 #else 819 kregs->nip = (unsigned long)ret_from_fork; 820 #endif 821 822 return 0; 823 } 824 825 /* 826 * Set up a thread for executing a new program 827 */ 828 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 829 { 830 #ifdef CONFIG_PPC64 831 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 832 #endif 833 834 set_fs(USER_DS); 835 836 /* 837 * If we exec out of a kernel thread then thread.regs will not be 838 * set. Do it now. 839 */ 840 if (!current->thread.regs) { 841 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 842 current->thread.regs = regs - 1; 843 } 844 845 memset(regs->gpr, 0, sizeof(regs->gpr)); 846 regs->ctr = 0; 847 regs->link = 0; 848 regs->xer = 0; 849 regs->ccr = 0; 850 regs->gpr[1] = sp; 851 852 /* 853 * We have just cleared all the nonvolatile GPRs, so make 854 * FULL_REGS(regs) return true. This is necessary to allow 855 * ptrace to examine the thread immediately after exec. 856 */ 857 regs->trap &= ~1UL; 858 859 #ifdef CONFIG_PPC32 860 regs->mq = 0; 861 regs->nip = start; 862 regs->msr = MSR_USER; 863 #else 864 if (!is_32bit_task()) { 865 unsigned long entry, toc; 866 867 /* start is a relocated pointer to the function descriptor for 868 * the elf _start routine. The first entry in the function 869 * descriptor is the entry address of _start and the second 870 * entry is the TOC value we need to use. 871 */ 872 __get_user(entry, (unsigned long __user *)start); 873 __get_user(toc, (unsigned long __user *)start+1); 874 875 /* Check whether the e_entry function descriptor entries 876 * need to be relocated before we can use them. 877 */ 878 if (load_addr != 0) { 879 entry += load_addr; 880 toc += load_addr; 881 } 882 regs->nip = entry; 883 regs->gpr[2] = toc; 884 regs->msr = MSR_USER64; 885 } else { 886 regs->nip = start; 887 regs->gpr[2] = 0; 888 regs->msr = MSR_USER32; 889 } 890 #endif 891 892 discard_lazy_cpu_state(); 893 #ifdef CONFIG_VSX 894 current->thread.used_vsr = 0; 895 #endif 896 memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); 897 current->thread.fpscr.val = 0; 898 #ifdef CONFIG_ALTIVEC 899 memset(current->thread.vr, 0, sizeof(current->thread.vr)); 900 memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); 901 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */ 902 current->thread.vrsave = 0; 903 current->thread.used_vr = 0; 904 #endif /* CONFIG_ALTIVEC */ 905 #ifdef CONFIG_SPE 906 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 907 current->thread.acc = 0; 908 current->thread.spefscr = 0; 909 current->thread.used_spe = 0; 910 #endif /* CONFIG_SPE */ 911 } 912 913 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 914 | PR_FP_EXC_RES | PR_FP_EXC_INV) 915 916 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 917 { 918 struct pt_regs *regs = tsk->thread.regs; 919 920 /* This is a bit hairy. If we are an SPE enabled processor 921 * (have embedded fp) we store the IEEE exception enable flags in 922 * fpexc_mode. fpexc_mode is also used for setting FP exception 923 * mode (asyn, precise, disabled) for 'Classic' FP. */ 924 if (val & PR_FP_EXC_SW_ENABLE) { 925 #ifdef CONFIG_SPE 926 if (cpu_has_feature(CPU_FTR_SPE)) { 927 tsk->thread.fpexc_mode = val & 928 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 929 return 0; 930 } else { 931 return -EINVAL; 932 } 933 #else 934 return -EINVAL; 935 #endif 936 } 937 938 /* on a CONFIG_SPE this does not hurt us. The bits that 939 * __pack_fe01 use do not overlap with bits used for 940 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 941 * on CONFIG_SPE implementations are reserved so writing to 942 * them does not change anything */ 943 if (val > PR_FP_EXC_PRECISE) 944 return -EINVAL; 945 tsk->thread.fpexc_mode = __pack_fe01(val); 946 if (regs != NULL && (regs->msr & MSR_FP) != 0) 947 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 948 | tsk->thread.fpexc_mode; 949 return 0; 950 } 951 952 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 953 { 954 unsigned int val; 955 956 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 957 #ifdef CONFIG_SPE 958 if (cpu_has_feature(CPU_FTR_SPE)) 959 val = tsk->thread.fpexc_mode; 960 else 961 return -EINVAL; 962 #else 963 return -EINVAL; 964 #endif 965 else 966 val = __unpack_fe01(tsk->thread.fpexc_mode); 967 return put_user(val, (unsigned int __user *) adr); 968 } 969 970 int set_endian(struct task_struct *tsk, unsigned int val) 971 { 972 struct pt_regs *regs = tsk->thread.regs; 973 974 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 975 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 976 return -EINVAL; 977 978 if (regs == NULL) 979 return -EINVAL; 980 981 if (val == PR_ENDIAN_BIG) 982 regs->msr &= ~MSR_LE; 983 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 984 regs->msr |= MSR_LE; 985 else 986 return -EINVAL; 987 988 return 0; 989 } 990 991 int get_endian(struct task_struct *tsk, unsigned long adr) 992 { 993 struct pt_regs *regs = tsk->thread.regs; 994 unsigned int val; 995 996 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 997 !cpu_has_feature(CPU_FTR_REAL_LE)) 998 return -EINVAL; 999 1000 if (regs == NULL) 1001 return -EINVAL; 1002 1003 if (regs->msr & MSR_LE) { 1004 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1005 val = PR_ENDIAN_LITTLE; 1006 else 1007 val = PR_ENDIAN_PPC_LITTLE; 1008 } else 1009 val = PR_ENDIAN_BIG; 1010 1011 return put_user(val, (unsigned int __user *)adr); 1012 } 1013 1014 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1015 { 1016 tsk->thread.align_ctl = val; 1017 return 0; 1018 } 1019 1020 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1021 { 1022 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1023 } 1024 1025 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff)) 1026 1027 int sys_clone(unsigned long clone_flags, unsigned long usp, 1028 int __user *parent_tidp, void __user *child_threadptr, 1029 int __user *child_tidp, int p6, 1030 struct pt_regs *regs) 1031 { 1032 CHECK_FULL_REGS(regs); 1033 if (usp == 0) 1034 usp = regs->gpr[1]; /* stack pointer for child */ 1035 #ifdef CONFIG_PPC64 1036 if (is_32bit_task()) { 1037 parent_tidp = TRUNC_PTR(parent_tidp); 1038 child_tidp = TRUNC_PTR(child_tidp); 1039 } 1040 #endif 1041 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp); 1042 } 1043 1044 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3, 1045 unsigned long p4, unsigned long p5, unsigned long p6, 1046 struct pt_regs *regs) 1047 { 1048 CHECK_FULL_REGS(regs); 1049 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); 1050 } 1051 1052 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3, 1053 unsigned long p4, unsigned long p5, unsigned long p6, 1054 struct pt_regs *regs) 1055 { 1056 CHECK_FULL_REGS(regs); 1057 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], 1058 regs, 0, NULL, NULL); 1059 } 1060 1061 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, 1062 unsigned long a3, unsigned long a4, unsigned long a5, 1063 struct pt_regs *regs) 1064 { 1065 int error; 1066 char *filename; 1067 1068 filename = getname((const char __user *) a0); 1069 error = PTR_ERR(filename); 1070 if (IS_ERR(filename)) 1071 goto out; 1072 flush_fp_to_thread(current); 1073 flush_altivec_to_thread(current); 1074 flush_spe_to_thread(current); 1075 error = do_execve(filename, 1076 (const char __user *const __user *) a1, 1077 (const char __user *const __user *) a2, regs); 1078 putname(filename); 1079 out: 1080 return error; 1081 } 1082 1083 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1084 unsigned long nbytes) 1085 { 1086 unsigned long stack_page; 1087 unsigned long cpu = task_cpu(p); 1088 1089 /* 1090 * Avoid crashing if the stack has overflowed and corrupted 1091 * task_cpu(p), which is in the thread_info struct. 1092 */ 1093 if (cpu < NR_CPUS && cpu_possible(cpu)) { 1094 stack_page = (unsigned long) hardirq_ctx[cpu]; 1095 if (sp >= stack_page + sizeof(struct thread_struct) 1096 && sp <= stack_page + THREAD_SIZE - nbytes) 1097 return 1; 1098 1099 stack_page = (unsigned long) softirq_ctx[cpu]; 1100 if (sp >= stack_page + sizeof(struct thread_struct) 1101 && sp <= stack_page + THREAD_SIZE - nbytes) 1102 return 1; 1103 } 1104 return 0; 1105 } 1106 1107 int validate_sp(unsigned long sp, struct task_struct *p, 1108 unsigned long nbytes) 1109 { 1110 unsigned long stack_page = (unsigned long)task_stack_page(p); 1111 1112 if (sp >= stack_page + sizeof(struct thread_struct) 1113 && sp <= stack_page + THREAD_SIZE - nbytes) 1114 return 1; 1115 1116 return valid_irq_stack(sp, p, nbytes); 1117 } 1118 1119 EXPORT_SYMBOL(validate_sp); 1120 1121 unsigned long get_wchan(struct task_struct *p) 1122 { 1123 unsigned long ip, sp; 1124 int count = 0; 1125 1126 if (!p || p == current || p->state == TASK_RUNNING) 1127 return 0; 1128 1129 sp = p->thread.ksp; 1130 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1131 return 0; 1132 1133 do { 1134 sp = *(unsigned long *)sp; 1135 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1136 return 0; 1137 if (count > 0) { 1138 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 1139 if (!in_sched_functions(ip)) 1140 return ip; 1141 } 1142 } while (count++ < 16); 1143 return 0; 1144 } 1145 1146 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 1147 1148 void show_stack(struct task_struct *tsk, unsigned long *stack) 1149 { 1150 unsigned long sp, ip, lr, newsp; 1151 int count = 0; 1152 int firstframe = 1; 1153 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1154 int curr_frame = current->curr_ret_stack; 1155 extern void return_to_handler(void); 1156 unsigned long rth = (unsigned long)return_to_handler; 1157 unsigned long mrth = -1; 1158 #ifdef CONFIG_PPC64 1159 extern void mod_return_to_handler(void); 1160 rth = *(unsigned long *)rth; 1161 mrth = (unsigned long)mod_return_to_handler; 1162 mrth = *(unsigned long *)mrth; 1163 #endif 1164 #endif 1165 1166 sp = (unsigned long) stack; 1167 if (tsk == NULL) 1168 tsk = current; 1169 if (sp == 0) { 1170 if (tsk == current) 1171 asm("mr %0,1" : "=r" (sp)); 1172 else 1173 sp = tsk->thread.ksp; 1174 } 1175 1176 lr = 0; 1177 printk("Call Trace:\n"); 1178 do { 1179 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 1180 return; 1181 1182 stack = (unsigned long *) sp; 1183 newsp = stack[0]; 1184 ip = stack[STACK_FRAME_LR_SAVE]; 1185 if (!firstframe || ip != lr) { 1186 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 1187 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1188 if ((ip == rth || ip == mrth) && curr_frame >= 0) { 1189 printk(" (%pS)", 1190 (void *)current->ret_stack[curr_frame].ret); 1191 curr_frame--; 1192 } 1193 #endif 1194 if (firstframe) 1195 printk(" (unreliable)"); 1196 printk("\n"); 1197 } 1198 firstframe = 0; 1199 1200 /* 1201 * See if this is an exception frame. 1202 * We look for the "regshere" marker in the current frame. 1203 */ 1204 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 1205 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 1206 struct pt_regs *regs = (struct pt_regs *) 1207 (sp + STACK_FRAME_OVERHEAD); 1208 lr = regs->link; 1209 printk("--- Exception: %lx at %pS\n LR = %pS\n", 1210 regs->trap, (void *)regs->nip, (void *)lr); 1211 firstframe = 1; 1212 } 1213 1214 sp = newsp; 1215 } while (count++ < kstack_depth_to_print); 1216 } 1217 1218 void dump_stack(void) 1219 { 1220 show_stack(current, NULL); 1221 } 1222 EXPORT_SYMBOL(dump_stack); 1223 1224 #ifdef CONFIG_PPC64 1225 void ppc64_runlatch_on(void) 1226 { 1227 unsigned long ctrl; 1228 1229 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) { 1230 HMT_medium(); 1231 1232 ctrl = mfspr(SPRN_CTRLF); 1233 ctrl |= CTRL_RUNLATCH; 1234 mtspr(SPRN_CTRLT, ctrl); 1235 1236 set_thread_flag(TIF_RUNLATCH); 1237 } 1238 } 1239 1240 void __ppc64_runlatch_off(void) 1241 { 1242 unsigned long ctrl; 1243 1244 HMT_medium(); 1245 1246 clear_thread_flag(TIF_RUNLATCH); 1247 1248 ctrl = mfspr(SPRN_CTRLF); 1249 ctrl &= ~CTRL_RUNLATCH; 1250 mtspr(SPRN_CTRLT, ctrl); 1251 } 1252 #endif 1253 1254 #if THREAD_SHIFT < PAGE_SHIFT 1255 1256 static struct kmem_cache *thread_info_cache; 1257 1258 struct thread_info *alloc_thread_info_node(struct task_struct *tsk, int node) 1259 { 1260 struct thread_info *ti; 1261 1262 ti = kmem_cache_alloc_node(thread_info_cache, GFP_KERNEL, node); 1263 if (unlikely(ti == NULL)) 1264 return NULL; 1265 #ifdef CONFIG_DEBUG_STACK_USAGE 1266 memset(ti, 0, THREAD_SIZE); 1267 #endif 1268 return ti; 1269 } 1270 1271 void free_thread_info(struct thread_info *ti) 1272 { 1273 kmem_cache_free(thread_info_cache, ti); 1274 } 1275 1276 void thread_info_cache_init(void) 1277 { 1278 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, 1279 THREAD_SIZE, 0, NULL); 1280 BUG_ON(thread_info_cache == NULL); 1281 } 1282 1283 #endif /* THREAD_SHIFT < PAGE_SHIFT */ 1284 1285 unsigned long arch_align_stack(unsigned long sp) 1286 { 1287 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1288 sp -= get_random_int() & ~PAGE_MASK; 1289 return sp & ~0xf; 1290 } 1291 1292 static inline unsigned long brk_rnd(void) 1293 { 1294 unsigned long rnd = 0; 1295 1296 /* 8MB for 32bit, 1GB for 64bit */ 1297 if (is_32bit_task()) 1298 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT))); 1299 else 1300 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT))); 1301 1302 return rnd << PAGE_SHIFT; 1303 } 1304 1305 unsigned long arch_randomize_brk(struct mm_struct *mm) 1306 { 1307 unsigned long base = mm->brk; 1308 unsigned long ret; 1309 1310 #ifdef CONFIG_PPC_STD_MMU_64 1311 /* 1312 * If we are using 1TB segments and we are allowed to randomise 1313 * the heap, we can put it above 1TB so it is backed by a 1TB 1314 * segment. Otherwise the heap will be in the bottom 1TB 1315 * which always uses 256MB segments and this may result in a 1316 * performance penalty. 1317 */ 1318 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 1319 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 1320 #endif 1321 1322 ret = PAGE_ALIGN(base + brk_rnd()); 1323 1324 if (ret < mm->brk) 1325 return mm->brk; 1326 1327 return ret; 1328 } 1329 1330 unsigned long randomize_et_dyn(unsigned long base) 1331 { 1332 unsigned long ret = PAGE_ALIGN(base + brk_rnd()); 1333 1334 if (ret < base) 1335 return base; 1336 1337 return ret; 1338 } 1339