xref: /linux-6.15/arch/mips/kernel/setup.c (revision b56c8c22)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/module.h>
16 #include <linux/screen_info.h>
17 #include <linux/bootmem.h>
18 #include <linux/initrd.h>
19 #include <linux/root_dev.h>
20 #include <linux/highmem.h>
21 #include <linux/console.h>
22 #include <linux/pfn.h>
23 #include <linux/debugfs.h>
24 
25 #include <asm/addrspace.h>
26 #include <asm/bootinfo.h>
27 #include <asm/bugs.h>
28 #include <asm/cache.h>
29 #include <asm/cpu.h>
30 #include <asm/sections.h>
31 #include <asm/setup.h>
32 #include <asm/smp-ops.h>
33 #include <asm/system.h>
34 
35 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
36 
37 EXPORT_SYMBOL(cpu_data);
38 
39 #ifdef CONFIG_VT
40 struct screen_info screen_info;
41 #endif
42 
43 /*
44  * Despite it's name this variable is even if we don't have PCI
45  */
46 unsigned int PCI_DMA_BUS_IS_PHYS;
47 
48 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
49 
50 /*
51  * Setup information
52  *
53  * These are initialized so they are in the .data section
54  */
55 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
56 
57 EXPORT_SYMBOL(mips_machtype);
58 
59 struct boot_mem_map boot_mem_map;
60 
61 static char command_line[CL_SIZE];
62        char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
63 
64 /*
65  * mips_io_port_base is the begin of the address space to which x86 style
66  * I/O ports are mapped.
67  */
68 const unsigned long mips_io_port_base __read_mostly = -1;
69 EXPORT_SYMBOL(mips_io_port_base);
70 
71 static struct resource code_resource = { .name = "Kernel code", };
72 static struct resource data_resource = { .name = "Kernel data", };
73 
74 void __init add_memory_region(phys_t start, phys_t size, long type)
75 {
76 	int x = boot_mem_map.nr_map;
77 	struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
78 
79 	/* Sanity check */
80 	if (start + size < start) {
81 		pr_warning("Trying to add an invalid memory region, skipped\n");
82 		return;
83 	}
84 
85 	/*
86 	 * Try to merge with previous entry if any.  This is far less than
87 	 * perfect but is sufficient for most real world cases.
88 	 */
89 	if (x && prev->addr + prev->size == start && prev->type == type) {
90 		prev->size += size;
91 		return;
92 	}
93 
94 	if (x == BOOT_MEM_MAP_MAX) {
95 		pr_err("Ooops! Too many entries in the memory map!\n");
96 		return;
97 	}
98 
99 	boot_mem_map.map[x].addr = start;
100 	boot_mem_map.map[x].size = size;
101 	boot_mem_map.map[x].type = type;
102 	boot_mem_map.nr_map++;
103 }
104 
105 static void __init print_memory_map(void)
106 {
107 	int i;
108 	const int field = 2 * sizeof(unsigned long);
109 
110 	for (i = 0; i < boot_mem_map.nr_map; i++) {
111 		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
112 		       field, (unsigned long long) boot_mem_map.map[i].size,
113 		       field, (unsigned long long) boot_mem_map.map[i].addr);
114 
115 		switch (boot_mem_map.map[i].type) {
116 		case BOOT_MEM_RAM:
117 			printk(KERN_CONT "(usable)\n");
118 			break;
119 		case BOOT_MEM_ROM_DATA:
120 			printk(KERN_CONT "(ROM data)\n");
121 			break;
122 		case BOOT_MEM_RESERVED:
123 			printk(KERN_CONT "(reserved)\n");
124 			break;
125 		default:
126 			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
127 			break;
128 		}
129 	}
130 }
131 
132 /*
133  * Manage initrd
134  */
135 #ifdef CONFIG_BLK_DEV_INITRD
136 
137 static int __init rd_start_early(char *p)
138 {
139 	unsigned long start = memparse(p, &p);
140 
141 #ifdef CONFIG_64BIT
142 	/* Guess if the sign extension was forgotten by bootloader */
143 	if (start < XKPHYS)
144 		start = (int)start;
145 #endif
146 	initrd_start = start;
147 	initrd_end += start;
148 	return 0;
149 }
150 early_param("rd_start", rd_start_early);
151 
152 static int __init rd_size_early(char *p)
153 {
154 	initrd_end += memparse(p, &p);
155 	return 0;
156 }
157 early_param("rd_size", rd_size_early);
158 
159 /* it returns the next free pfn after initrd */
160 static unsigned long __init init_initrd(void)
161 {
162 	unsigned long end;
163 	u32 *initrd_header;
164 
165 	/*
166 	 * Board specific code or command line parser should have
167 	 * already set up initrd_start and initrd_end. In these cases
168 	 * perfom sanity checks and use them if all looks good.
169 	 */
170 	if (initrd_start && initrd_end > initrd_start)
171 		goto sanitize;
172 
173 	/*
174 	 * See if initrd has been added to the kernel image by
175 	 * arch/mips/boot/addinitrd.c. In that case a header is
176 	 * prepended to initrd and is made up by 8 bytes. The fisrt
177 	 * word is a magic number and the second one is the size of
178 	 * initrd.  Initrd start must be page aligned in any cases.
179 	 */
180 	initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
181 	if (initrd_header[0] != 0x494E5244)
182 		goto disable;
183 	initrd_start = (unsigned long)(initrd_header + 2);
184 	initrd_end = initrd_start + initrd_header[1];
185 
186 sanitize:
187 	if (initrd_start & ~PAGE_MASK) {
188 		pr_err("initrd start must be page aligned\n");
189 		goto disable;
190 	}
191 	if (initrd_start < PAGE_OFFSET) {
192 		pr_err("initrd start < PAGE_OFFSET\n");
193 		goto disable;
194 	}
195 
196 	/*
197 	 * Sanitize initrd addresses. For example firmware
198 	 * can't guess if they need to pass them through
199 	 * 64-bits values if the kernel has been built in pure
200 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
201 	 * addresses now, so the code can now safely use __pa().
202 	 */
203 	end = __pa(initrd_end);
204 	initrd_end = (unsigned long)__va(end);
205 	initrd_start = (unsigned long)__va(__pa(initrd_start));
206 
207 	ROOT_DEV = Root_RAM0;
208 	return PFN_UP(end);
209 disable:
210 	initrd_start = 0;
211 	initrd_end = 0;
212 	return 0;
213 }
214 
215 static void __init finalize_initrd(void)
216 {
217 	unsigned long size = initrd_end - initrd_start;
218 
219 	if (size == 0) {
220 		printk(KERN_INFO "Initrd not found or empty");
221 		goto disable;
222 	}
223 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
224 		printk(KERN_ERR "Initrd extends beyond end of memory");
225 		goto disable;
226 	}
227 
228 	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
229 	initrd_below_start_ok = 1;
230 
231 	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
232 		initrd_start, size);
233 	return;
234 disable:
235 	printk(KERN_CONT " - disabling initrd\n");
236 	initrd_start = 0;
237 	initrd_end = 0;
238 }
239 
240 #else  /* !CONFIG_BLK_DEV_INITRD */
241 
242 static unsigned long __init init_initrd(void)
243 {
244 	return 0;
245 }
246 
247 #define finalize_initrd()	do {} while (0)
248 
249 #endif
250 
251 /*
252  * Initialize the bootmem allocator. It also setup initrd related data
253  * if needed.
254  */
255 #ifdef CONFIG_SGI_IP27
256 
257 static void __init bootmem_init(void)
258 {
259 	init_initrd();
260 	finalize_initrd();
261 }
262 
263 #else  /* !CONFIG_SGI_IP27 */
264 
265 static void __init bootmem_init(void)
266 {
267 	unsigned long reserved_end;
268 	unsigned long mapstart = ~0UL;
269 	unsigned long bootmap_size;
270 	int i;
271 
272 	/*
273 	 * Init any data related to initrd. It's a nop if INITRD is
274 	 * not selected. Once that done we can determine the low bound
275 	 * of usable memory.
276 	 */
277 	reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
278 
279 	/*
280 	 * max_low_pfn is not a number of pages. The number of pages
281 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
282 	 */
283 	min_low_pfn = ~0UL;
284 	max_low_pfn = 0;
285 
286 	/*
287 	 * Find the highest page frame number we have available.
288 	 */
289 	for (i = 0; i < boot_mem_map.nr_map; i++) {
290 		unsigned long start, end;
291 
292 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
293 			continue;
294 
295 		start = PFN_UP(boot_mem_map.map[i].addr);
296 		end = PFN_DOWN(boot_mem_map.map[i].addr
297 				+ boot_mem_map.map[i].size);
298 
299 		if (end > max_low_pfn)
300 			max_low_pfn = end;
301 		if (start < min_low_pfn)
302 			min_low_pfn = start;
303 		if (end <= reserved_end)
304 			continue;
305 		if (start >= mapstart)
306 			continue;
307 		mapstart = max(reserved_end, start);
308 	}
309 
310 	if (min_low_pfn >= max_low_pfn)
311 		panic("Incorrect memory mapping !!!");
312 	if (min_low_pfn > ARCH_PFN_OFFSET) {
313 		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
314 			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
315 			min_low_pfn - ARCH_PFN_OFFSET);
316 	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
317 		pr_info("%lu free pages won't be used\n",
318 			ARCH_PFN_OFFSET - min_low_pfn);
319 	}
320 	min_low_pfn = ARCH_PFN_OFFSET;
321 
322 	/*
323 	 * Determine low and high memory ranges
324 	 */
325 	max_pfn = max_low_pfn;
326 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
327 #ifdef CONFIG_HIGHMEM
328 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
329 		highend_pfn = max_low_pfn;
330 #endif
331 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
332 	}
333 
334 	/*
335 	 * Initialize the boot-time allocator with low memory only.
336 	 */
337 	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
338 					 min_low_pfn, max_low_pfn);
339 
340 
341 	for (i = 0; i < boot_mem_map.nr_map; i++) {
342 		unsigned long start, end;
343 
344 		start = PFN_UP(boot_mem_map.map[i].addr);
345 		end = PFN_DOWN(boot_mem_map.map[i].addr
346 				+ boot_mem_map.map[i].size);
347 
348 		if (start <= min_low_pfn)
349 			start = min_low_pfn;
350 		if (start >= end)
351 			continue;
352 
353 #ifndef CONFIG_HIGHMEM
354 		if (end > max_low_pfn)
355 			end = max_low_pfn;
356 
357 		/*
358 		 * ... finally, is the area going away?
359 		 */
360 		if (end <= start)
361 			continue;
362 #endif
363 
364 		add_active_range(0, start, end);
365 	}
366 
367 	/*
368 	 * Register fully available low RAM pages with the bootmem allocator.
369 	 */
370 	for (i = 0; i < boot_mem_map.nr_map; i++) {
371 		unsigned long start, end, size;
372 
373 		/*
374 		 * Reserve usable memory.
375 		 */
376 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
377 			continue;
378 
379 		start = PFN_UP(boot_mem_map.map[i].addr);
380 		end   = PFN_DOWN(boot_mem_map.map[i].addr
381 				    + boot_mem_map.map[i].size);
382 		/*
383 		 * We are rounding up the start address of usable memory
384 		 * and at the end of the usable range downwards.
385 		 */
386 		if (start >= max_low_pfn)
387 			continue;
388 		if (start < reserved_end)
389 			start = reserved_end;
390 		if (end > max_low_pfn)
391 			end = max_low_pfn;
392 
393 		/*
394 		 * ... finally, is the area going away?
395 		 */
396 		if (end <= start)
397 			continue;
398 		size = end - start;
399 
400 		/* Register lowmem ranges */
401 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
402 		memory_present(0, start, end);
403 	}
404 
405 	/*
406 	 * Reserve the bootmap memory.
407 	 */
408 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
409 
410 	/*
411 	 * Reserve initrd memory if needed.
412 	 */
413 	finalize_initrd();
414 }
415 
416 #endif	/* CONFIG_SGI_IP27 */
417 
418 /*
419  * arch_mem_init - initialize memory management subsystem
420  *
421  *  o plat_mem_setup() detects the memory configuration and will record detected
422  *    memory areas using add_memory_region.
423  *
424  * At this stage the memory configuration of the system is known to the
425  * kernel but generic memory management system is still entirely uninitialized.
426  *
427  *  o bootmem_init()
428  *  o sparse_init()
429  *  o paging_init()
430  *
431  * At this stage the bootmem allocator is ready to use.
432  *
433  * NOTE: historically plat_mem_setup did the entire platform initialization.
434  *       This was rather impractical because it meant plat_mem_setup had to
435  * get away without any kind of memory allocator.  To keep old code from
436  * breaking plat_setup was just renamed to plat_setup and a second platform
437  * initialization hook for anything else was introduced.
438  */
439 
440 static int usermem __initdata = 0;
441 
442 static int __init early_parse_mem(char *p)
443 {
444 	unsigned long start, size;
445 
446 	/*
447 	 * If a user specifies memory size, we
448 	 * blow away any automatically generated
449 	 * size.
450 	 */
451 	if (usermem == 0) {
452 		boot_mem_map.nr_map = 0;
453 		usermem = 1;
454  	}
455 	start = 0;
456 	size = memparse(p, &p);
457 	if (*p == '@')
458 		start = memparse(p + 1, &p);
459 
460 	add_memory_region(start, size, BOOT_MEM_RAM);
461 	return 0;
462 }
463 early_param("mem", early_parse_mem);
464 
465 static void __init arch_mem_init(char **cmdline_p)
466 {
467 	extern void plat_mem_setup(void);
468 
469 	/* call board setup routine */
470 	plat_mem_setup();
471 
472 	pr_info("Determined physical RAM map:\n");
473 	print_memory_map();
474 
475 	strlcpy(command_line, arcs_cmdline, sizeof(command_line));
476 	strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
477 
478 	*cmdline_p = command_line;
479 
480 	parse_early_param();
481 
482 	if (usermem) {
483 		pr_info("User-defined physical RAM map:\n");
484 		print_memory_map();
485 	}
486 
487 	bootmem_init();
488 	sparse_init();
489 	paging_init();
490 }
491 
492 static void __init resource_init(void)
493 {
494 	int i;
495 
496 	if (UNCAC_BASE != IO_BASE)
497 		return;
498 
499 	code_resource.start = __pa_symbol(&_text);
500 	code_resource.end = __pa_symbol(&_etext) - 1;
501 	data_resource.start = __pa_symbol(&_etext);
502 	data_resource.end = __pa_symbol(&_edata) - 1;
503 
504 	/*
505 	 * Request address space for all standard RAM.
506 	 */
507 	for (i = 0; i < boot_mem_map.nr_map; i++) {
508 		struct resource *res;
509 		unsigned long start, end;
510 
511 		start = boot_mem_map.map[i].addr;
512 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
513 		if (start >= HIGHMEM_START)
514 			continue;
515 		if (end >= HIGHMEM_START)
516 			end = HIGHMEM_START - 1;
517 
518 		res = alloc_bootmem(sizeof(struct resource));
519 		switch (boot_mem_map.map[i].type) {
520 		case BOOT_MEM_RAM:
521 		case BOOT_MEM_ROM_DATA:
522 			res->name = "System RAM";
523 			break;
524 		case BOOT_MEM_RESERVED:
525 		default:
526 			res->name = "reserved";
527 		}
528 
529 		res->start = start;
530 		res->end = end;
531 
532 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
533 		request_resource(&iomem_resource, res);
534 
535 		/*
536 		 *  We don't know which RAM region contains kernel data,
537 		 *  so we try it repeatedly and let the resource manager
538 		 *  test it.
539 		 */
540 		request_resource(res, &code_resource);
541 		request_resource(res, &data_resource);
542 	}
543 }
544 
545 void __init setup_arch(char **cmdline_p)
546 {
547 	cpu_probe();
548 	prom_init();
549 
550 #ifdef CONFIG_EARLY_PRINTK
551 	setup_early_printk();
552 #endif
553 	cpu_report();
554 	check_bugs_early();
555 
556 #if defined(CONFIG_VT)
557 #if defined(CONFIG_VGA_CONSOLE)
558 	conswitchp = &vga_con;
559 #elif defined(CONFIG_DUMMY_CONSOLE)
560 	conswitchp = &dummy_con;
561 #endif
562 #endif
563 
564 	arch_mem_init(cmdline_p);
565 
566 	resource_init();
567 	plat_smp_setup();
568 }
569 
570 static int __init fpu_disable(char *s)
571 {
572 	int i;
573 
574 	for (i = 0; i < NR_CPUS; i++)
575 		cpu_data[i].options &= ~MIPS_CPU_FPU;
576 
577 	return 1;
578 }
579 
580 __setup("nofpu", fpu_disable);
581 
582 static int __init dsp_disable(char *s)
583 {
584 	cpu_data[0].ases &= ~MIPS_ASE_DSP;
585 
586 	return 1;
587 }
588 
589 __setup("nodsp", dsp_disable);
590 
591 unsigned long kernelsp[NR_CPUS];
592 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
593 
594 #ifdef CONFIG_DEBUG_FS
595 struct dentry *mips_debugfs_dir;
596 static int __init debugfs_mips(void)
597 {
598 	struct dentry *d;
599 
600 	d = debugfs_create_dir("mips", NULL);
601 	if (IS_ERR(d))
602 		return PTR_ERR(d);
603 	mips_debugfs_dir = d;
604 	return 0;
605 }
606 arch_initcall(debugfs_mips);
607 #endif
608