xref: /linux-6.15/arch/arm64/kernel/process.c (revision fc84bc53)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/nospec.h>
21 #include <linux/stddef.h>
22 #include <linux/sysctl.h>
23 #include <linux/unistd.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/pm.h>
32 #include <linux/tick.h>
33 #include <linux/utsname.h>
34 #include <linux/uaccess.h>
35 #include <linux/random.h>
36 #include <linux/hw_breakpoint.h>
37 #include <linux/personality.h>
38 #include <linux/notifier.h>
39 #include <trace/events/power.h>
40 #include <linux/percpu.h>
41 #include <linux/thread_info.h>
42 #include <linux/prctl.h>
43 #include <linux/stacktrace.h>
44 
45 #include <asm/alternative.h>
46 #include <asm/arch_timer.h>
47 #include <asm/compat.h>
48 #include <asm/cpufeature.h>
49 #include <asm/cacheflush.h>
50 #include <asm/exec.h>
51 #include <asm/fpsimd.h>
52 #include <asm/gcs.h>
53 #include <asm/mmu_context.h>
54 #include <asm/mte.h>
55 #include <asm/processor.h>
56 #include <asm/pointer_auth.h>
57 #include <asm/stacktrace.h>
58 #include <asm/switch_to.h>
59 #include <asm/system_misc.h>
60 
61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
62 #include <linux/stackprotector.h>
63 unsigned long __stack_chk_guard __ro_after_init;
64 EXPORT_SYMBOL(__stack_chk_guard);
65 #endif
66 
67 /*
68  * Function pointers to optional machine specific functions
69  */
70 void (*pm_power_off)(void);
71 EXPORT_SYMBOL_GPL(pm_power_off);
72 
73 #ifdef CONFIG_HOTPLUG_CPU
74 void __noreturn arch_cpu_idle_dead(void)
75 {
76        cpu_die();
77 }
78 #endif
79 
80 /*
81  * Called by kexec, immediately prior to machine_kexec().
82  *
83  * This must completely disable all secondary CPUs; simply causing those CPUs
84  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
85  * kexec'd kernel to use any and all RAM as it sees fit, without having to
86  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
87  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
88  */
89 void machine_shutdown(void)
90 {
91 	smp_shutdown_nonboot_cpus(reboot_cpu);
92 }
93 
94 /*
95  * Halting simply requires that the secondary CPUs stop performing any
96  * activity (executing tasks, handling interrupts). smp_send_stop()
97  * achieves this.
98  */
99 void machine_halt(void)
100 {
101 	local_irq_disable();
102 	smp_send_stop();
103 	while (1);
104 }
105 
106 /*
107  * Power-off simply requires that the secondary CPUs stop performing any
108  * activity (executing tasks, handling interrupts). smp_send_stop()
109  * achieves this. When the system power is turned off, it will take all CPUs
110  * with it.
111  */
112 void machine_power_off(void)
113 {
114 	local_irq_disable();
115 	smp_send_stop();
116 	do_kernel_power_off();
117 }
118 
119 /*
120  * Restart requires that the secondary CPUs stop performing any activity
121  * while the primary CPU resets the system. Systems with multiple CPUs must
122  * provide a HW restart implementation, to ensure that all CPUs reset at once.
123  * This is required so that any code running after reset on the primary CPU
124  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
125  * executing pre-reset code, and using RAM that the primary CPU's code wishes
126  * to use. Implementing such co-ordination would be essentially impossible.
127  */
128 void machine_restart(char *cmd)
129 {
130 	/* Disable interrupts first */
131 	local_irq_disable();
132 	smp_send_stop();
133 
134 	/*
135 	 * UpdateCapsule() depends on the system being reset via
136 	 * ResetSystem().
137 	 */
138 	if (efi_enabled(EFI_RUNTIME_SERVICES))
139 		efi_reboot(reboot_mode, NULL);
140 
141 	/* Now call the architecture specific reboot code. */
142 	do_kernel_restart(cmd);
143 
144 	/*
145 	 * Whoops - the architecture was unable to reboot.
146 	 */
147 	printk("Reboot failed -- System halted\n");
148 	while (1);
149 }
150 
151 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
152 static const char *const btypes[] = {
153 	bstr(NONE, "--"),
154 	bstr(  JC, "jc"),
155 	bstr(   C, "-c"),
156 	bstr(  J , "j-")
157 };
158 #undef bstr
159 
160 static void print_pstate(struct pt_regs *regs)
161 {
162 	u64 pstate = regs->pstate;
163 
164 	if (compat_user_mode(regs)) {
165 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
166 			pstate,
167 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
168 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
169 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
170 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
171 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
172 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
173 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
174 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
175 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
176 			pstate & PSR_AA32_F_BIT ? 'F' : 'f',
177 			pstate & PSR_AA32_DIT_BIT ? '+' : '-',
178 			pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
179 	} else {
180 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
181 					       PSR_BTYPE_SHIFT];
182 
183 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
184 			pstate,
185 			pstate & PSR_N_BIT ? 'N' : 'n',
186 			pstate & PSR_Z_BIT ? 'Z' : 'z',
187 			pstate & PSR_C_BIT ? 'C' : 'c',
188 			pstate & PSR_V_BIT ? 'V' : 'v',
189 			pstate & PSR_D_BIT ? 'D' : 'd',
190 			pstate & PSR_A_BIT ? 'A' : 'a',
191 			pstate & PSR_I_BIT ? 'I' : 'i',
192 			pstate & PSR_F_BIT ? 'F' : 'f',
193 			pstate & PSR_PAN_BIT ? '+' : '-',
194 			pstate & PSR_UAO_BIT ? '+' : '-',
195 			pstate & PSR_TCO_BIT ? '+' : '-',
196 			pstate & PSR_DIT_BIT ? '+' : '-',
197 			pstate & PSR_SSBS_BIT ? '+' : '-',
198 			btype_str);
199 	}
200 }
201 
202 void __show_regs(struct pt_regs *regs)
203 {
204 	int i, top_reg;
205 	u64 lr, sp;
206 
207 	if (compat_user_mode(regs)) {
208 		lr = regs->compat_lr;
209 		sp = regs->compat_sp;
210 		top_reg = 12;
211 	} else {
212 		lr = regs->regs[30];
213 		sp = regs->sp;
214 		top_reg = 29;
215 	}
216 
217 	show_regs_print_info(KERN_DEFAULT);
218 	print_pstate(regs);
219 
220 	if (!user_mode(regs)) {
221 		printk("pc : %pS\n", (void *)regs->pc);
222 		printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr));
223 	} else {
224 		printk("pc : %016llx\n", regs->pc);
225 		printk("lr : %016llx\n", lr);
226 	}
227 
228 	printk("sp : %016llx\n", sp);
229 
230 	if (system_uses_irq_prio_masking())
231 		printk("pmr_save: %08llx\n", regs->pmr_save);
232 
233 	i = top_reg;
234 
235 	while (i >= 0) {
236 		printk("x%-2d: %016llx", i, regs->regs[i]);
237 
238 		while (i-- % 3)
239 			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
240 
241 		pr_cont("\n");
242 	}
243 }
244 
245 void show_regs(struct pt_regs *regs)
246 {
247 	__show_regs(regs);
248 	dump_backtrace(regs, NULL, KERN_DEFAULT);
249 }
250 
251 static void tls_thread_flush(void)
252 {
253 	write_sysreg(0, tpidr_el0);
254 	if (system_supports_tpidr2())
255 		write_sysreg_s(0, SYS_TPIDR2_EL0);
256 
257 	if (is_compat_task()) {
258 		current->thread.uw.tp_value = 0;
259 
260 		/*
261 		 * We need to ensure ordering between the shadow state and the
262 		 * hardware state, so that we don't corrupt the hardware state
263 		 * with a stale shadow state during context switch.
264 		 */
265 		barrier();
266 		write_sysreg(0, tpidrro_el0);
267 	}
268 }
269 
270 static void flush_tagged_addr_state(void)
271 {
272 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
273 		clear_thread_flag(TIF_TAGGED_ADDR);
274 }
275 
276 static void flush_poe(void)
277 {
278 	if (!system_supports_poe())
279 		return;
280 
281 	write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0);
282 }
283 
284 #ifdef CONFIG_ARM64_GCS
285 
286 static void flush_gcs(void)
287 {
288 	if (!system_supports_gcs())
289 		return;
290 
291 	gcs_free(current);
292 	current->thread.gcs_el0_mode = 0;
293 	write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
294 	write_sysreg_s(0, SYS_GCSPR_EL0);
295 }
296 
297 #else
298 
299 static void flush_gcs(void) { }
300 
301 #endif
302 
303 void flush_thread(void)
304 {
305 	fpsimd_flush_thread();
306 	tls_thread_flush();
307 	flush_ptrace_hw_breakpoint(current);
308 	flush_tagged_addr_state();
309 	flush_poe();
310 	flush_gcs();
311 }
312 
313 void arch_release_task_struct(struct task_struct *tsk)
314 {
315 	fpsimd_release_task(tsk);
316 }
317 
318 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
319 {
320 	if (current->mm)
321 		fpsimd_preserve_current_state();
322 	*dst = *src;
323 
324 	/*
325 	 * Detach src's sve_state (if any) from dst so that it does not
326 	 * get erroneously used or freed prematurely.  dst's copies
327 	 * will be allocated on demand later on if dst uses SVE.
328 	 * For consistency, also clear TIF_SVE here: this could be done
329 	 * later in copy_process(), but to avoid tripping up future
330 	 * maintainers it is best not to leave TIF flags and buffers in
331 	 * an inconsistent state, even temporarily.
332 	 */
333 	dst->thread.sve_state = NULL;
334 	clear_tsk_thread_flag(dst, TIF_SVE);
335 
336 	/*
337 	 * In the unlikely event that we create a new thread with ZA
338 	 * enabled we should retain the ZA and ZT state so duplicate
339 	 * it here.  This may be shortly freed if we exec() or if
340 	 * CLONE_SETTLS but it's simpler to do it here. To avoid
341 	 * confusing the rest of the code ensure that we have a
342 	 * sve_state allocated whenever sme_state is allocated.
343 	 */
344 	if (thread_za_enabled(&src->thread)) {
345 		dst->thread.sve_state = kzalloc(sve_state_size(src),
346 						GFP_KERNEL);
347 		if (!dst->thread.sve_state)
348 			return -ENOMEM;
349 
350 		dst->thread.sme_state = kmemdup(src->thread.sme_state,
351 						sme_state_size(src),
352 						GFP_KERNEL);
353 		if (!dst->thread.sme_state) {
354 			kfree(dst->thread.sve_state);
355 			dst->thread.sve_state = NULL;
356 			return -ENOMEM;
357 		}
358 	} else {
359 		dst->thread.sme_state = NULL;
360 		clear_tsk_thread_flag(dst, TIF_SME);
361 	}
362 
363 	dst->thread.fp_type = FP_STATE_FPSIMD;
364 
365 	/* clear any pending asynchronous tag fault raised by the parent */
366 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
367 
368 	return 0;
369 }
370 
371 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
372 
373 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
374 {
375 	unsigned long clone_flags = args->flags;
376 	unsigned long stack_start = args->stack;
377 	unsigned long tls = args->tls;
378 	struct pt_regs *childregs = task_pt_regs(p);
379 
380 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
381 
382 	/*
383 	 * In case p was allocated the same task_struct pointer as some
384 	 * other recently-exited task, make sure p is disassociated from
385 	 * any cpu that may have run that now-exited task recently.
386 	 * Otherwise we could erroneously skip reloading the FPSIMD
387 	 * registers for p.
388 	 */
389 	fpsimd_flush_task_state(p);
390 
391 	ptrauth_thread_init_kernel(p);
392 
393 	if (likely(!args->fn)) {
394 		*childregs = *current_pt_regs();
395 		childregs->regs[0] = 0;
396 
397 		/*
398 		 * Read the current TLS pointer from tpidr_el0 as it may be
399 		 * out-of-sync with the saved value.
400 		 */
401 		*task_user_tls(p) = read_sysreg(tpidr_el0);
402 		if (system_supports_tpidr2())
403 			p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
404 
405 		if (system_supports_poe())
406 			p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
407 
408 		if (stack_start) {
409 			if (is_compat_thread(task_thread_info(p)))
410 				childregs->compat_sp = stack_start;
411 			else
412 				childregs->sp = stack_start;
413 		}
414 
415 		/*
416 		 * If a TLS pointer was passed to clone, use it for the new
417 		 * thread.  We also reset TPIDR2 if it's in use.
418 		 */
419 		if (clone_flags & CLONE_SETTLS) {
420 			p->thread.uw.tp_value = tls;
421 			p->thread.tpidr2_el0 = 0;
422 		}
423 	} else {
424 		/*
425 		 * A kthread has no context to ERET to, so ensure any buggy
426 		 * ERET is treated as an illegal exception return.
427 		 *
428 		 * When a user task is created from a kthread, childregs will
429 		 * be initialized by start_thread() or start_compat_thread().
430 		 */
431 		memset(childregs, 0, sizeof(struct pt_regs));
432 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
433 
434 		p->thread.cpu_context.x19 = (unsigned long)args->fn;
435 		p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
436 	}
437 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
438 	p->thread.cpu_context.sp = (unsigned long)childregs;
439 	/*
440 	 * For the benefit of the unwinder, set up childregs->stackframe
441 	 * as the final frame for the new task.
442 	 */
443 	p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
444 
445 	ptrace_hw_copy_thread(p);
446 
447 	return 0;
448 }
449 
450 void tls_preserve_current_state(void)
451 {
452 	*task_user_tls(current) = read_sysreg(tpidr_el0);
453 	if (system_supports_tpidr2() && !is_compat_task())
454 		current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
455 }
456 
457 static void tls_thread_switch(struct task_struct *next)
458 {
459 	tls_preserve_current_state();
460 
461 	if (is_compat_thread(task_thread_info(next)))
462 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
463 	else if (!arm64_kernel_unmapped_at_el0())
464 		write_sysreg(0, tpidrro_el0);
465 
466 	write_sysreg(*task_user_tls(next), tpidr_el0);
467 	if (system_supports_tpidr2())
468 		write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
469 }
470 
471 /*
472  * Force SSBS state on context-switch, since it may be lost after migrating
473  * from a CPU which treats the bit as RES0 in a heterogeneous system.
474  */
475 static void ssbs_thread_switch(struct task_struct *next)
476 {
477 	/*
478 	 * Nothing to do for kernel threads, but 'regs' may be junk
479 	 * (e.g. idle task) so check the flags and bail early.
480 	 */
481 	if (unlikely(next->flags & PF_KTHREAD))
482 		return;
483 
484 	/*
485 	 * If all CPUs implement the SSBS extension, then we just need to
486 	 * context-switch the PSTATE field.
487 	 */
488 	if (alternative_has_cap_unlikely(ARM64_SSBS))
489 		return;
490 
491 	spectre_v4_enable_task_mitigation(next);
492 }
493 
494 /*
495  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
496  * shadow copy so that we can restore this upon entry from userspace.
497  *
498  * This is *only* for exception entry from EL0, and is not valid until we
499  * __switch_to() a user task.
500  */
501 DEFINE_PER_CPU(struct task_struct *, __entry_task);
502 
503 static void entry_task_switch(struct task_struct *next)
504 {
505 	__this_cpu_write(__entry_task, next);
506 }
507 
508 #ifdef CONFIG_ARM64_GCS
509 
510 void gcs_preserve_current_state(void)
511 {
512 	current->thread.gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0);
513 }
514 
515 static void gcs_thread_switch(struct task_struct *next)
516 {
517 	if (!system_supports_gcs())
518 		return;
519 
520 	/* GCSPR_EL0 is always readable */
521 	gcs_preserve_current_state();
522 	write_sysreg_s(next->thread.gcspr_el0, SYS_GCSPR_EL0);
523 
524 	if (current->thread.gcs_el0_mode != next->thread.gcs_el0_mode)
525 		gcs_set_el0_mode(next);
526 
527 	/*
528 	 * Ensure that GCS memory effects of the 'prev' thread are
529 	 * ordered before other memory accesses with release semantics
530 	 * (or preceded by a DMB) on the current PE. In addition, any
531 	 * memory accesses with acquire semantics (or succeeded by a
532 	 * DMB) are ordered before GCS memory effects of the 'next'
533 	 * thread. This will ensure that the GCS memory effects are
534 	 * visible to other PEs in case of migration.
535 	 */
536 	if (task_gcs_el0_enabled(current) || task_gcs_el0_enabled(next))
537 		gcsb_dsync();
538 }
539 
540 #else
541 
542 static void gcs_thread_switch(struct task_struct *next)
543 {
544 }
545 
546 #endif
547 
548 /*
549  * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of
550  * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0}
551  * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is
552  * required or PR_TSC_SIGSEGV is set.
553  */
554 static void update_cntkctl_el1(struct task_struct *next)
555 {
556 	struct thread_info *ti = task_thread_info(next);
557 
558 	if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) ||
559 	    has_erratum_handler(read_cntvct_el0) ||
560 	    (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) &&
561 	     this_cpu_has_cap(ARM64_WORKAROUND_1418040) &&
562 	     is_compat_thread(ti)))
563 		sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
564 	else
565 		sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
566 }
567 
568 static void cntkctl_thread_switch(struct task_struct *prev,
569 				  struct task_struct *next)
570 {
571 	if ((read_ti_thread_flags(task_thread_info(prev)) &
572 	     (_TIF_32BIT | _TIF_TSC_SIGSEGV)) !=
573 	    (read_ti_thread_flags(task_thread_info(next)) &
574 	     (_TIF_32BIT | _TIF_TSC_SIGSEGV)))
575 		update_cntkctl_el1(next);
576 }
577 
578 static int do_set_tsc_mode(unsigned int val)
579 {
580 	bool tsc_sigsegv;
581 
582 	if (val == PR_TSC_SIGSEGV)
583 		tsc_sigsegv = true;
584 	else if (val == PR_TSC_ENABLE)
585 		tsc_sigsegv = false;
586 	else
587 		return -EINVAL;
588 
589 	preempt_disable();
590 	update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv);
591 	update_cntkctl_el1(current);
592 	preempt_enable();
593 
594 	return 0;
595 }
596 
597 static void permission_overlay_switch(struct task_struct *next)
598 {
599 	if (!system_supports_poe())
600 		return;
601 
602 	current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
603 	if (current->thread.por_el0 != next->thread.por_el0) {
604 		write_sysreg_s(next->thread.por_el0, SYS_POR_EL0);
605 	}
606 }
607 
608 /*
609  * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
610  * this function must be called with preemption disabled and the update to
611  * sctlr_user must be made in the same preemption disabled block so that
612  * __switch_to() does not see the variable update before the SCTLR_EL1 one.
613  */
614 void update_sctlr_el1(u64 sctlr)
615 {
616 	/*
617 	 * EnIA must not be cleared while in the kernel as this is necessary for
618 	 * in-kernel PAC. It will be cleared on kernel exit if needed.
619 	 */
620 	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
621 
622 	/* ISB required for the kernel uaccess routines when setting TCF0. */
623 	isb();
624 }
625 
626 /*
627  * Thread switching.
628  */
629 __notrace_funcgraph __sched
630 struct task_struct *__switch_to(struct task_struct *prev,
631 				struct task_struct *next)
632 {
633 	struct task_struct *last;
634 
635 	fpsimd_thread_switch(next);
636 	tls_thread_switch(next);
637 	hw_breakpoint_thread_switch(next);
638 	contextidr_thread_switch(next);
639 	entry_task_switch(next);
640 	ssbs_thread_switch(next);
641 	cntkctl_thread_switch(prev, next);
642 	ptrauth_thread_switch_user(next);
643 	permission_overlay_switch(next);
644 	gcs_thread_switch(next);
645 
646 	/*
647 	 * Complete any pending TLB or cache maintenance on this CPU in case
648 	 * the thread migrates to a different CPU.
649 	 * This full barrier is also required by the membarrier system
650 	 * call.
651 	 */
652 	dsb(ish);
653 
654 	/*
655 	 * MTE thread switching must happen after the DSB above to ensure that
656 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
657 	 * registers.
658 	 */
659 	mte_thread_switch(next);
660 	/* avoid expensive SCTLR_EL1 accesses if no change */
661 	if (prev->thread.sctlr_user != next->thread.sctlr_user)
662 		update_sctlr_el1(next->thread.sctlr_user);
663 
664 	/* the actual thread switch */
665 	last = cpu_switch_to(prev, next);
666 
667 	return last;
668 }
669 
670 struct wchan_info {
671 	unsigned long	pc;
672 	int		count;
673 };
674 
675 static bool get_wchan_cb(void *arg, unsigned long pc)
676 {
677 	struct wchan_info *wchan_info = arg;
678 
679 	if (!in_sched_functions(pc)) {
680 		wchan_info->pc = pc;
681 		return false;
682 	}
683 	return wchan_info->count++ < 16;
684 }
685 
686 unsigned long __get_wchan(struct task_struct *p)
687 {
688 	struct wchan_info wchan_info = {
689 		.pc = 0,
690 		.count = 0,
691 	};
692 
693 	if (!try_get_task_stack(p))
694 		return 0;
695 
696 	arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
697 
698 	put_task_stack(p);
699 
700 	return wchan_info.pc;
701 }
702 
703 unsigned long arch_align_stack(unsigned long sp)
704 {
705 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
706 		sp -= get_random_u32_below(PAGE_SIZE);
707 	return sp & ~0xf;
708 }
709 
710 #ifdef CONFIG_COMPAT
711 int compat_elf_check_arch(const struct elf32_hdr *hdr)
712 {
713 	if (!system_supports_32bit_el0())
714 		return false;
715 
716 	if ((hdr)->e_machine != EM_ARM)
717 		return false;
718 
719 	if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
720 		return false;
721 
722 	/*
723 	 * Prevent execve() of a 32-bit program from a deadline task
724 	 * if the restricted affinity mask would be inadmissible on an
725 	 * asymmetric system.
726 	 */
727 	return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
728 	       !dl_task_check_affinity(current, system_32bit_el0_cpumask());
729 }
730 #endif
731 
732 /*
733  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
734  */
735 void arch_setup_new_exec(void)
736 {
737 	unsigned long mmflags = 0;
738 
739 	if (is_compat_task()) {
740 		mmflags = MMCF_AARCH32;
741 
742 		/*
743 		 * Restrict the CPU affinity mask for a 32-bit task so that
744 		 * it contains only 32-bit-capable CPUs.
745 		 *
746 		 * From the perspective of the task, this looks similar to
747 		 * what would happen if the 64-bit-only CPUs were hot-unplugged
748 		 * at the point of execve(), although we try a bit harder to
749 		 * honour the cpuset hierarchy.
750 		 */
751 		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
752 			force_compatible_cpus_allowed_ptr(current);
753 	} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
754 		relax_compatible_cpus_allowed_ptr(current);
755 	}
756 
757 	current->mm->context.flags = mmflags;
758 	ptrauth_thread_init_user();
759 	mte_thread_init_user();
760 	do_set_tsc_mode(PR_TSC_ENABLE);
761 
762 	if (task_spec_ssb_noexec(current)) {
763 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
764 					 PR_SPEC_ENABLE);
765 	}
766 }
767 
768 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
769 /*
770  * Control the relaxed ABI allowing tagged user addresses into the kernel.
771  */
772 static unsigned int tagged_addr_disabled;
773 
774 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
775 {
776 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
777 	struct thread_info *ti = task_thread_info(task);
778 
779 	if (is_compat_thread(ti))
780 		return -EINVAL;
781 
782 	if (system_supports_mte())
783 		valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
784 			| PR_MTE_TAG_MASK;
785 
786 	if (arg & ~valid_mask)
787 		return -EINVAL;
788 
789 	/*
790 	 * Do not allow the enabling of the tagged address ABI if globally
791 	 * disabled via sysctl abi.tagged_addr_disabled.
792 	 */
793 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
794 		return -EINVAL;
795 
796 	if (set_mte_ctrl(task, arg) != 0)
797 		return -EINVAL;
798 
799 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
800 
801 	return 0;
802 }
803 
804 long get_tagged_addr_ctrl(struct task_struct *task)
805 {
806 	long ret = 0;
807 	struct thread_info *ti = task_thread_info(task);
808 
809 	if (is_compat_thread(ti))
810 		return -EINVAL;
811 
812 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
813 		ret = PR_TAGGED_ADDR_ENABLE;
814 
815 	ret |= get_mte_ctrl(task);
816 
817 	return ret;
818 }
819 
820 /*
821  * Global sysctl to disable the tagged user addresses support. This control
822  * only prevents the tagged address ABI enabling via prctl() and does not
823  * disable it for tasks that already opted in to the relaxed ABI.
824  */
825 
826 static struct ctl_table tagged_addr_sysctl_table[] = {
827 	{
828 		.procname	= "tagged_addr_disabled",
829 		.mode		= 0644,
830 		.data		= &tagged_addr_disabled,
831 		.maxlen		= sizeof(int),
832 		.proc_handler	= proc_dointvec_minmax,
833 		.extra1		= SYSCTL_ZERO,
834 		.extra2		= SYSCTL_ONE,
835 	},
836 };
837 
838 static int __init tagged_addr_init(void)
839 {
840 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
841 		return -EINVAL;
842 	return 0;
843 }
844 
845 core_initcall(tagged_addr_init);
846 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
847 
848 #ifdef CONFIG_BINFMT_ELF
849 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
850 			 bool has_interp, bool is_interp)
851 {
852 	/*
853 	 * For dynamically linked executables the interpreter is
854 	 * responsible for setting PROT_BTI on everything except
855 	 * itself.
856 	 */
857 	if (is_interp != has_interp)
858 		return prot;
859 
860 	if (!(state->flags & ARM64_ELF_BTI))
861 		return prot;
862 
863 	if (prot & PROT_EXEC)
864 		prot |= PROT_BTI;
865 
866 	return prot;
867 }
868 #endif
869 
870 int get_tsc_mode(unsigned long adr)
871 {
872 	unsigned int val;
873 
874 	if (is_compat_task())
875 		return -EINVAL;
876 
877 	if (test_thread_flag(TIF_TSC_SIGSEGV))
878 		val = PR_TSC_SIGSEGV;
879 	else
880 		val = PR_TSC_ENABLE;
881 
882 	return put_user(val, (unsigned int __user *)adr);
883 }
884 
885 int set_tsc_mode(unsigned int val)
886 {
887 	if (is_compat_task())
888 		return -EINVAL;
889 
890 	return do_set_tsc_mode(val);
891 }
892