1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 #include <linux/compat.h> 10 #include <linux/efi.h> 11 #include <linux/elf.h> 12 #include <linux/export.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/sched/task.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/mman.h> 19 #include <linux/mm.h> 20 #include <linux/nospec.h> 21 #include <linux/stddef.h> 22 #include <linux/sysctl.h> 23 #include <linux/unistd.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/reboot.h> 27 #include <linux/interrupt.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/elfcore.h> 31 #include <linux/pm.h> 32 #include <linux/tick.h> 33 #include <linux/utsname.h> 34 #include <linux/uaccess.h> 35 #include <linux/random.h> 36 #include <linux/hw_breakpoint.h> 37 #include <linux/personality.h> 38 #include <linux/notifier.h> 39 #include <trace/events/power.h> 40 #include <linux/percpu.h> 41 #include <linux/thread_info.h> 42 #include <linux/prctl.h> 43 #include <linux/stacktrace.h> 44 45 #include <asm/alternative.h> 46 #include <asm/arch_timer.h> 47 #include <asm/compat.h> 48 #include <asm/cpufeature.h> 49 #include <asm/cacheflush.h> 50 #include <asm/exec.h> 51 #include <asm/fpsimd.h> 52 #include <asm/gcs.h> 53 #include <asm/mmu_context.h> 54 #include <asm/mte.h> 55 #include <asm/processor.h> 56 #include <asm/pointer_auth.h> 57 #include <asm/stacktrace.h> 58 #include <asm/switch_to.h> 59 #include <asm/system_misc.h> 60 61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 62 #include <linux/stackprotector.h> 63 unsigned long __stack_chk_guard __ro_after_init; 64 EXPORT_SYMBOL(__stack_chk_guard); 65 #endif 66 67 /* 68 * Function pointers to optional machine specific functions 69 */ 70 void (*pm_power_off)(void); 71 EXPORT_SYMBOL_GPL(pm_power_off); 72 73 #ifdef CONFIG_HOTPLUG_CPU 74 void __noreturn arch_cpu_idle_dead(void) 75 { 76 cpu_die(); 77 } 78 #endif 79 80 /* 81 * Called by kexec, immediately prior to machine_kexec(). 82 * 83 * This must completely disable all secondary CPUs; simply causing those CPUs 84 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 85 * kexec'd kernel to use any and all RAM as it sees fit, without having to 86 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 87 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 88 */ 89 void machine_shutdown(void) 90 { 91 smp_shutdown_nonboot_cpus(reboot_cpu); 92 } 93 94 /* 95 * Halting simply requires that the secondary CPUs stop performing any 96 * activity (executing tasks, handling interrupts). smp_send_stop() 97 * achieves this. 98 */ 99 void machine_halt(void) 100 { 101 local_irq_disable(); 102 smp_send_stop(); 103 while (1); 104 } 105 106 /* 107 * Power-off simply requires that the secondary CPUs stop performing any 108 * activity (executing tasks, handling interrupts). smp_send_stop() 109 * achieves this. When the system power is turned off, it will take all CPUs 110 * with it. 111 */ 112 void machine_power_off(void) 113 { 114 local_irq_disable(); 115 smp_send_stop(); 116 do_kernel_power_off(); 117 } 118 119 /* 120 * Restart requires that the secondary CPUs stop performing any activity 121 * while the primary CPU resets the system. Systems with multiple CPUs must 122 * provide a HW restart implementation, to ensure that all CPUs reset at once. 123 * This is required so that any code running after reset on the primary CPU 124 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 125 * executing pre-reset code, and using RAM that the primary CPU's code wishes 126 * to use. Implementing such co-ordination would be essentially impossible. 127 */ 128 void machine_restart(char *cmd) 129 { 130 /* Disable interrupts first */ 131 local_irq_disable(); 132 smp_send_stop(); 133 134 /* 135 * UpdateCapsule() depends on the system being reset via 136 * ResetSystem(). 137 */ 138 if (efi_enabled(EFI_RUNTIME_SERVICES)) 139 efi_reboot(reboot_mode, NULL); 140 141 /* Now call the architecture specific reboot code. */ 142 do_kernel_restart(cmd); 143 144 /* 145 * Whoops - the architecture was unable to reboot. 146 */ 147 printk("Reboot failed -- System halted\n"); 148 while (1); 149 } 150 151 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 152 static const char *const btypes[] = { 153 bstr(NONE, "--"), 154 bstr( JC, "jc"), 155 bstr( C, "-c"), 156 bstr( J , "j-") 157 }; 158 #undef bstr 159 160 static void print_pstate(struct pt_regs *regs) 161 { 162 u64 pstate = regs->pstate; 163 164 if (compat_user_mode(regs)) { 165 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n", 166 pstate, 167 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 168 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 169 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 170 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 171 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 172 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 173 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 174 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 175 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 176 pstate & PSR_AA32_F_BIT ? 'F' : 'f', 177 pstate & PSR_AA32_DIT_BIT ? '+' : '-', 178 pstate & PSR_AA32_SSBS_BIT ? '+' : '-'); 179 } else { 180 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 181 PSR_BTYPE_SHIFT]; 182 183 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n", 184 pstate, 185 pstate & PSR_N_BIT ? 'N' : 'n', 186 pstate & PSR_Z_BIT ? 'Z' : 'z', 187 pstate & PSR_C_BIT ? 'C' : 'c', 188 pstate & PSR_V_BIT ? 'V' : 'v', 189 pstate & PSR_D_BIT ? 'D' : 'd', 190 pstate & PSR_A_BIT ? 'A' : 'a', 191 pstate & PSR_I_BIT ? 'I' : 'i', 192 pstate & PSR_F_BIT ? 'F' : 'f', 193 pstate & PSR_PAN_BIT ? '+' : '-', 194 pstate & PSR_UAO_BIT ? '+' : '-', 195 pstate & PSR_TCO_BIT ? '+' : '-', 196 pstate & PSR_DIT_BIT ? '+' : '-', 197 pstate & PSR_SSBS_BIT ? '+' : '-', 198 btype_str); 199 } 200 } 201 202 void __show_regs(struct pt_regs *regs) 203 { 204 int i, top_reg; 205 u64 lr, sp; 206 207 if (compat_user_mode(regs)) { 208 lr = regs->compat_lr; 209 sp = regs->compat_sp; 210 top_reg = 12; 211 } else { 212 lr = regs->regs[30]; 213 sp = regs->sp; 214 top_reg = 29; 215 } 216 217 show_regs_print_info(KERN_DEFAULT); 218 print_pstate(regs); 219 220 if (!user_mode(regs)) { 221 printk("pc : %pS\n", (void *)regs->pc); 222 printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr)); 223 } else { 224 printk("pc : %016llx\n", regs->pc); 225 printk("lr : %016llx\n", lr); 226 } 227 228 printk("sp : %016llx\n", sp); 229 230 if (system_uses_irq_prio_masking()) 231 printk("pmr_save: %08llx\n", regs->pmr_save); 232 233 i = top_reg; 234 235 while (i >= 0) { 236 printk("x%-2d: %016llx", i, regs->regs[i]); 237 238 while (i-- % 3) 239 pr_cont(" x%-2d: %016llx", i, regs->regs[i]); 240 241 pr_cont("\n"); 242 } 243 } 244 245 void show_regs(struct pt_regs *regs) 246 { 247 __show_regs(regs); 248 dump_backtrace(regs, NULL, KERN_DEFAULT); 249 } 250 251 static void tls_thread_flush(void) 252 { 253 write_sysreg(0, tpidr_el0); 254 if (system_supports_tpidr2()) 255 write_sysreg_s(0, SYS_TPIDR2_EL0); 256 257 if (is_compat_task()) { 258 current->thread.uw.tp_value = 0; 259 260 /* 261 * We need to ensure ordering between the shadow state and the 262 * hardware state, so that we don't corrupt the hardware state 263 * with a stale shadow state during context switch. 264 */ 265 barrier(); 266 write_sysreg(0, tpidrro_el0); 267 } 268 } 269 270 static void flush_tagged_addr_state(void) 271 { 272 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 273 clear_thread_flag(TIF_TAGGED_ADDR); 274 } 275 276 static void flush_poe(void) 277 { 278 if (!system_supports_poe()) 279 return; 280 281 write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0); 282 } 283 284 #ifdef CONFIG_ARM64_GCS 285 286 static void flush_gcs(void) 287 { 288 if (!system_supports_gcs()) 289 return; 290 291 gcs_free(current); 292 current->thread.gcs_el0_mode = 0; 293 write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1); 294 write_sysreg_s(0, SYS_GCSPR_EL0); 295 } 296 297 #else 298 299 static void flush_gcs(void) { } 300 301 #endif 302 303 void flush_thread(void) 304 { 305 fpsimd_flush_thread(); 306 tls_thread_flush(); 307 flush_ptrace_hw_breakpoint(current); 308 flush_tagged_addr_state(); 309 flush_poe(); 310 flush_gcs(); 311 } 312 313 void arch_release_task_struct(struct task_struct *tsk) 314 { 315 fpsimd_release_task(tsk); 316 } 317 318 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 319 { 320 if (current->mm) 321 fpsimd_preserve_current_state(); 322 *dst = *src; 323 324 /* 325 * Detach src's sve_state (if any) from dst so that it does not 326 * get erroneously used or freed prematurely. dst's copies 327 * will be allocated on demand later on if dst uses SVE. 328 * For consistency, also clear TIF_SVE here: this could be done 329 * later in copy_process(), but to avoid tripping up future 330 * maintainers it is best not to leave TIF flags and buffers in 331 * an inconsistent state, even temporarily. 332 */ 333 dst->thread.sve_state = NULL; 334 clear_tsk_thread_flag(dst, TIF_SVE); 335 336 /* 337 * In the unlikely event that we create a new thread with ZA 338 * enabled we should retain the ZA and ZT state so duplicate 339 * it here. This may be shortly freed if we exec() or if 340 * CLONE_SETTLS but it's simpler to do it here. To avoid 341 * confusing the rest of the code ensure that we have a 342 * sve_state allocated whenever sme_state is allocated. 343 */ 344 if (thread_za_enabled(&src->thread)) { 345 dst->thread.sve_state = kzalloc(sve_state_size(src), 346 GFP_KERNEL); 347 if (!dst->thread.sve_state) 348 return -ENOMEM; 349 350 dst->thread.sme_state = kmemdup(src->thread.sme_state, 351 sme_state_size(src), 352 GFP_KERNEL); 353 if (!dst->thread.sme_state) { 354 kfree(dst->thread.sve_state); 355 dst->thread.sve_state = NULL; 356 return -ENOMEM; 357 } 358 } else { 359 dst->thread.sme_state = NULL; 360 clear_tsk_thread_flag(dst, TIF_SME); 361 } 362 363 dst->thread.fp_type = FP_STATE_FPSIMD; 364 365 /* clear any pending asynchronous tag fault raised by the parent */ 366 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 367 368 return 0; 369 } 370 371 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 372 373 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 374 { 375 unsigned long clone_flags = args->flags; 376 unsigned long stack_start = args->stack; 377 unsigned long tls = args->tls; 378 struct pt_regs *childregs = task_pt_regs(p); 379 380 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 381 382 /* 383 * In case p was allocated the same task_struct pointer as some 384 * other recently-exited task, make sure p is disassociated from 385 * any cpu that may have run that now-exited task recently. 386 * Otherwise we could erroneously skip reloading the FPSIMD 387 * registers for p. 388 */ 389 fpsimd_flush_task_state(p); 390 391 ptrauth_thread_init_kernel(p); 392 393 if (likely(!args->fn)) { 394 *childregs = *current_pt_regs(); 395 childregs->regs[0] = 0; 396 397 /* 398 * Read the current TLS pointer from tpidr_el0 as it may be 399 * out-of-sync with the saved value. 400 */ 401 *task_user_tls(p) = read_sysreg(tpidr_el0); 402 if (system_supports_tpidr2()) 403 p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); 404 405 if (system_supports_poe()) 406 p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); 407 408 if (stack_start) { 409 if (is_compat_thread(task_thread_info(p))) 410 childregs->compat_sp = stack_start; 411 else 412 childregs->sp = stack_start; 413 } 414 415 /* 416 * If a TLS pointer was passed to clone, use it for the new 417 * thread. We also reset TPIDR2 if it's in use. 418 */ 419 if (clone_flags & CLONE_SETTLS) { 420 p->thread.uw.tp_value = tls; 421 p->thread.tpidr2_el0 = 0; 422 } 423 } else { 424 /* 425 * A kthread has no context to ERET to, so ensure any buggy 426 * ERET is treated as an illegal exception return. 427 * 428 * When a user task is created from a kthread, childregs will 429 * be initialized by start_thread() or start_compat_thread(). 430 */ 431 memset(childregs, 0, sizeof(struct pt_regs)); 432 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 433 434 p->thread.cpu_context.x19 = (unsigned long)args->fn; 435 p->thread.cpu_context.x20 = (unsigned long)args->fn_arg; 436 } 437 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 438 p->thread.cpu_context.sp = (unsigned long)childregs; 439 /* 440 * For the benefit of the unwinder, set up childregs->stackframe 441 * as the final frame for the new task. 442 */ 443 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe; 444 445 ptrace_hw_copy_thread(p); 446 447 return 0; 448 } 449 450 void tls_preserve_current_state(void) 451 { 452 *task_user_tls(current) = read_sysreg(tpidr_el0); 453 if (system_supports_tpidr2() && !is_compat_task()) 454 current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); 455 } 456 457 static void tls_thread_switch(struct task_struct *next) 458 { 459 tls_preserve_current_state(); 460 461 if (is_compat_thread(task_thread_info(next))) 462 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 463 else if (!arm64_kernel_unmapped_at_el0()) 464 write_sysreg(0, tpidrro_el0); 465 466 write_sysreg(*task_user_tls(next), tpidr_el0); 467 if (system_supports_tpidr2()) 468 write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0); 469 } 470 471 /* 472 * Force SSBS state on context-switch, since it may be lost after migrating 473 * from a CPU which treats the bit as RES0 in a heterogeneous system. 474 */ 475 static void ssbs_thread_switch(struct task_struct *next) 476 { 477 /* 478 * Nothing to do for kernel threads, but 'regs' may be junk 479 * (e.g. idle task) so check the flags and bail early. 480 */ 481 if (unlikely(next->flags & PF_KTHREAD)) 482 return; 483 484 /* 485 * If all CPUs implement the SSBS extension, then we just need to 486 * context-switch the PSTATE field. 487 */ 488 if (alternative_has_cap_unlikely(ARM64_SSBS)) 489 return; 490 491 spectre_v4_enable_task_mitigation(next); 492 } 493 494 /* 495 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 496 * shadow copy so that we can restore this upon entry from userspace. 497 * 498 * This is *only* for exception entry from EL0, and is not valid until we 499 * __switch_to() a user task. 500 */ 501 DEFINE_PER_CPU(struct task_struct *, __entry_task); 502 503 static void entry_task_switch(struct task_struct *next) 504 { 505 __this_cpu_write(__entry_task, next); 506 } 507 508 #ifdef CONFIG_ARM64_GCS 509 510 void gcs_preserve_current_state(void) 511 { 512 current->thread.gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0); 513 } 514 515 static void gcs_thread_switch(struct task_struct *next) 516 { 517 if (!system_supports_gcs()) 518 return; 519 520 /* GCSPR_EL0 is always readable */ 521 gcs_preserve_current_state(); 522 write_sysreg_s(next->thread.gcspr_el0, SYS_GCSPR_EL0); 523 524 if (current->thread.gcs_el0_mode != next->thread.gcs_el0_mode) 525 gcs_set_el0_mode(next); 526 527 /* 528 * Ensure that GCS memory effects of the 'prev' thread are 529 * ordered before other memory accesses with release semantics 530 * (or preceded by a DMB) on the current PE. In addition, any 531 * memory accesses with acquire semantics (or succeeded by a 532 * DMB) are ordered before GCS memory effects of the 'next' 533 * thread. This will ensure that the GCS memory effects are 534 * visible to other PEs in case of migration. 535 */ 536 if (task_gcs_el0_enabled(current) || task_gcs_el0_enabled(next)) 537 gcsb_dsync(); 538 } 539 540 #else 541 542 static void gcs_thread_switch(struct task_struct *next) 543 { 544 } 545 546 #endif 547 548 /* 549 * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of 550 * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0} 551 * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is 552 * required or PR_TSC_SIGSEGV is set. 553 */ 554 static void update_cntkctl_el1(struct task_struct *next) 555 { 556 struct thread_info *ti = task_thread_info(next); 557 558 if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) || 559 has_erratum_handler(read_cntvct_el0) || 560 (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) && 561 this_cpu_has_cap(ARM64_WORKAROUND_1418040) && 562 is_compat_thread(ti))) 563 sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0); 564 else 565 sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN); 566 } 567 568 static void cntkctl_thread_switch(struct task_struct *prev, 569 struct task_struct *next) 570 { 571 if ((read_ti_thread_flags(task_thread_info(prev)) & 572 (_TIF_32BIT | _TIF_TSC_SIGSEGV)) != 573 (read_ti_thread_flags(task_thread_info(next)) & 574 (_TIF_32BIT | _TIF_TSC_SIGSEGV))) 575 update_cntkctl_el1(next); 576 } 577 578 static int do_set_tsc_mode(unsigned int val) 579 { 580 bool tsc_sigsegv; 581 582 if (val == PR_TSC_SIGSEGV) 583 tsc_sigsegv = true; 584 else if (val == PR_TSC_ENABLE) 585 tsc_sigsegv = false; 586 else 587 return -EINVAL; 588 589 preempt_disable(); 590 update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv); 591 update_cntkctl_el1(current); 592 preempt_enable(); 593 594 return 0; 595 } 596 597 static void permission_overlay_switch(struct task_struct *next) 598 { 599 if (!system_supports_poe()) 600 return; 601 602 current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0); 603 if (current->thread.por_el0 != next->thread.por_el0) { 604 write_sysreg_s(next->thread.por_el0, SYS_POR_EL0); 605 } 606 } 607 608 /* 609 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore 610 * this function must be called with preemption disabled and the update to 611 * sctlr_user must be made in the same preemption disabled block so that 612 * __switch_to() does not see the variable update before the SCTLR_EL1 one. 613 */ 614 void update_sctlr_el1(u64 sctlr) 615 { 616 /* 617 * EnIA must not be cleared while in the kernel as this is necessary for 618 * in-kernel PAC. It will be cleared on kernel exit if needed. 619 */ 620 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); 621 622 /* ISB required for the kernel uaccess routines when setting TCF0. */ 623 isb(); 624 } 625 626 /* 627 * Thread switching. 628 */ 629 __notrace_funcgraph __sched 630 struct task_struct *__switch_to(struct task_struct *prev, 631 struct task_struct *next) 632 { 633 struct task_struct *last; 634 635 fpsimd_thread_switch(next); 636 tls_thread_switch(next); 637 hw_breakpoint_thread_switch(next); 638 contextidr_thread_switch(next); 639 entry_task_switch(next); 640 ssbs_thread_switch(next); 641 cntkctl_thread_switch(prev, next); 642 ptrauth_thread_switch_user(next); 643 permission_overlay_switch(next); 644 gcs_thread_switch(next); 645 646 /* 647 * Complete any pending TLB or cache maintenance on this CPU in case 648 * the thread migrates to a different CPU. 649 * This full barrier is also required by the membarrier system 650 * call. 651 */ 652 dsb(ish); 653 654 /* 655 * MTE thread switching must happen after the DSB above to ensure that 656 * any asynchronous tag check faults have been logged in the TFSR*_EL1 657 * registers. 658 */ 659 mte_thread_switch(next); 660 /* avoid expensive SCTLR_EL1 accesses if no change */ 661 if (prev->thread.sctlr_user != next->thread.sctlr_user) 662 update_sctlr_el1(next->thread.sctlr_user); 663 664 /* the actual thread switch */ 665 last = cpu_switch_to(prev, next); 666 667 return last; 668 } 669 670 struct wchan_info { 671 unsigned long pc; 672 int count; 673 }; 674 675 static bool get_wchan_cb(void *arg, unsigned long pc) 676 { 677 struct wchan_info *wchan_info = arg; 678 679 if (!in_sched_functions(pc)) { 680 wchan_info->pc = pc; 681 return false; 682 } 683 return wchan_info->count++ < 16; 684 } 685 686 unsigned long __get_wchan(struct task_struct *p) 687 { 688 struct wchan_info wchan_info = { 689 .pc = 0, 690 .count = 0, 691 }; 692 693 if (!try_get_task_stack(p)) 694 return 0; 695 696 arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL); 697 698 put_task_stack(p); 699 700 return wchan_info.pc; 701 } 702 703 unsigned long arch_align_stack(unsigned long sp) 704 { 705 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 706 sp -= get_random_u32_below(PAGE_SIZE); 707 return sp & ~0xf; 708 } 709 710 #ifdef CONFIG_COMPAT 711 int compat_elf_check_arch(const struct elf32_hdr *hdr) 712 { 713 if (!system_supports_32bit_el0()) 714 return false; 715 716 if ((hdr)->e_machine != EM_ARM) 717 return false; 718 719 if (!((hdr)->e_flags & EF_ARM_EABI_MASK)) 720 return false; 721 722 /* 723 * Prevent execve() of a 32-bit program from a deadline task 724 * if the restricted affinity mask would be inadmissible on an 725 * asymmetric system. 726 */ 727 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) || 728 !dl_task_check_affinity(current, system_32bit_el0_cpumask()); 729 } 730 #endif 731 732 /* 733 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 734 */ 735 void arch_setup_new_exec(void) 736 { 737 unsigned long mmflags = 0; 738 739 if (is_compat_task()) { 740 mmflags = MMCF_AARCH32; 741 742 /* 743 * Restrict the CPU affinity mask for a 32-bit task so that 744 * it contains only 32-bit-capable CPUs. 745 * 746 * From the perspective of the task, this looks similar to 747 * what would happen if the 64-bit-only CPUs were hot-unplugged 748 * at the point of execve(), although we try a bit harder to 749 * honour the cpuset hierarchy. 750 */ 751 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 752 force_compatible_cpus_allowed_ptr(current); 753 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) { 754 relax_compatible_cpus_allowed_ptr(current); 755 } 756 757 current->mm->context.flags = mmflags; 758 ptrauth_thread_init_user(); 759 mte_thread_init_user(); 760 do_set_tsc_mode(PR_TSC_ENABLE); 761 762 if (task_spec_ssb_noexec(current)) { 763 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 764 PR_SPEC_ENABLE); 765 } 766 } 767 768 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 769 /* 770 * Control the relaxed ABI allowing tagged user addresses into the kernel. 771 */ 772 static unsigned int tagged_addr_disabled; 773 774 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 775 { 776 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 777 struct thread_info *ti = task_thread_info(task); 778 779 if (is_compat_thread(ti)) 780 return -EINVAL; 781 782 if (system_supports_mte()) 783 valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \ 784 | PR_MTE_TAG_MASK; 785 786 if (arg & ~valid_mask) 787 return -EINVAL; 788 789 /* 790 * Do not allow the enabling of the tagged address ABI if globally 791 * disabled via sysctl abi.tagged_addr_disabled. 792 */ 793 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 794 return -EINVAL; 795 796 if (set_mte_ctrl(task, arg) != 0) 797 return -EINVAL; 798 799 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 800 801 return 0; 802 } 803 804 long get_tagged_addr_ctrl(struct task_struct *task) 805 { 806 long ret = 0; 807 struct thread_info *ti = task_thread_info(task); 808 809 if (is_compat_thread(ti)) 810 return -EINVAL; 811 812 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 813 ret = PR_TAGGED_ADDR_ENABLE; 814 815 ret |= get_mte_ctrl(task); 816 817 return ret; 818 } 819 820 /* 821 * Global sysctl to disable the tagged user addresses support. This control 822 * only prevents the tagged address ABI enabling via prctl() and does not 823 * disable it for tasks that already opted in to the relaxed ABI. 824 */ 825 826 static struct ctl_table tagged_addr_sysctl_table[] = { 827 { 828 .procname = "tagged_addr_disabled", 829 .mode = 0644, 830 .data = &tagged_addr_disabled, 831 .maxlen = sizeof(int), 832 .proc_handler = proc_dointvec_minmax, 833 .extra1 = SYSCTL_ZERO, 834 .extra2 = SYSCTL_ONE, 835 }, 836 }; 837 838 static int __init tagged_addr_init(void) 839 { 840 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 841 return -EINVAL; 842 return 0; 843 } 844 845 core_initcall(tagged_addr_init); 846 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 847 848 #ifdef CONFIG_BINFMT_ELF 849 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 850 bool has_interp, bool is_interp) 851 { 852 /* 853 * For dynamically linked executables the interpreter is 854 * responsible for setting PROT_BTI on everything except 855 * itself. 856 */ 857 if (is_interp != has_interp) 858 return prot; 859 860 if (!(state->flags & ARM64_ELF_BTI)) 861 return prot; 862 863 if (prot & PROT_EXEC) 864 prot |= PROT_BTI; 865 866 return prot; 867 } 868 #endif 869 870 int get_tsc_mode(unsigned long adr) 871 { 872 unsigned int val; 873 874 if (is_compat_task()) 875 return -EINVAL; 876 877 if (test_thread_flag(TIF_TSC_SIGSEGV)) 878 val = PR_TSC_SIGSEGV; 879 else 880 val = PR_TSC_ENABLE; 881 882 return put_user(val, (unsigned int __user *)adr); 883 } 884 885 int set_tsc_mode(unsigned int val) 886 { 887 if (is_compat_task()) 888 return -EINVAL; 889 890 return do_set_tsc_mode(val); 891 } 892