1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 #include <linux/compat.h> 10 #include <linux/efi.h> 11 #include <linux/elf.h> 12 #include <linux/export.h> 13 #include <linux/sched.h> 14 #include <linux/sched/debug.h> 15 #include <linux/sched/task.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/mman.h> 19 #include <linux/mm.h> 20 #include <linux/nospec.h> 21 #include <linux/stddef.h> 22 #include <linux/sysctl.h> 23 #include <linux/unistd.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/reboot.h> 27 #include <linux/interrupt.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/elfcore.h> 31 #include <linux/pm.h> 32 #include <linux/tick.h> 33 #include <linux/utsname.h> 34 #include <linux/uaccess.h> 35 #include <linux/random.h> 36 #include <linux/hw_breakpoint.h> 37 #include <linux/personality.h> 38 #include <linux/notifier.h> 39 #include <trace/events/power.h> 40 #include <linux/percpu.h> 41 #include <linux/thread_info.h> 42 #include <linux/prctl.h> 43 #include <linux/stacktrace.h> 44 45 #include <asm/alternative.h> 46 #include <asm/compat.h> 47 #include <asm/cpufeature.h> 48 #include <asm/cacheflush.h> 49 #include <asm/exec.h> 50 #include <asm/fpsimd.h> 51 #include <asm/mmu_context.h> 52 #include <asm/mte.h> 53 #include <asm/processor.h> 54 #include <asm/pointer_auth.h> 55 #include <asm/stacktrace.h> 56 #include <asm/switch_to.h> 57 #include <asm/system_misc.h> 58 59 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 60 #include <linux/stackprotector.h> 61 unsigned long __stack_chk_guard __ro_after_init; 62 EXPORT_SYMBOL(__stack_chk_guard); 63 #endif 64 65 /* 66 * Function pointers to optional machine specific functions 67 */ 68 void (*pm_power_off)(void); 69 EXPORT_SYMBOL_GPL(pm_power_off); 70 71 #ifdef CONFIG_HOTPLUG_CPU 72 void arch_cpu_idle_dead(void) 73 { 74 cpu_die(); 75 } 76 #endif 77 78 /* 79 * Called by kexec, immediately prior to machine_kexec(). 80 * 81 * This must completely disable all secondary CPUs; simply causing those CPUs 82 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 83 * kexec'd kernel to use any and all RAM as it sees fit, without having to 84 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 85 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 86 */ 87 void machine_shutdown(void) 88 { 89 smp_shutdown_nonboot_cpus(reboot_cpu); 90 } 91 92 /* 93 * Halting simply requires that the secondary CPUs stop performing any 94 * activity (executing tasks, handling interrupts). smp_send_stop() 95 * achieves this. 96 */ 97 void machine_halt(void) 98 { 99 local_irq_disable(); 100 smp_send_stop(); 101 while (1); 102 } 103 104 /* 105 * Power-off simply requires that the secondary CPUs stop performing any 106 * activity (executing tasks, handling interrupts). smp_send_stop() 107 * achieves this. When the system power is turned off, it will take all CPUs 108 * with it. 109 */ 110 void machine_power_off(void) 111 { 112 local_irq_disable(); 113 smp_send_stop(); 114 if (pm_power_off) 115 pm_power_off(); 116 } 117 118 /* 119 * Restart requires that the secondary CPUs stop performing any activity 120 * while the primary CPU resets the system. Systems with multiple CPUs must 121 * provide a HW restart implementation, to ensure that all CPUs reset at once. 122 * This is required so that any code running after reset on the primary CPU 123 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 124 * executing pre-reset code, and using RAM that the primary CPU's code wishes 125 * to use. Implementing such co-ordination would be essentially impossible. 126 */ 127 void machine_restart(char *cmd) 128 { 129 /* Disable interrupts first */ 130 local_irq_disable(); 131 smp_send_stop(); 132 133 /* 134 * UpdateCapsule() depends on the system being reset via 135 * ResetSystem(). 136 */ 137 if (efi_enabled(EFI_RUNTIME_SERVICES)) 138 efi_reboot(reboot_mode, NULL); 139 140 /* Now call the architecture specific reboot code. */ 141 do_kernel_restart(cmd); 142 143 /* 144 * Whoops - the architecture was unable to reboot. 145 */ 146 printk("Reboot failed -- System halted\n"); 147 while (1); 148 } 149 150 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 151 static const char *const btypes[] = { 152 bstr(NONE, "--"), 153 bstr( JC, "jc"), 154 bstr( C, "-c"), 155 bstr( J , "j-") 156 }; 157 #undef bstr 158 159 static void print_pstate(struct pt_regs *regs) 160 { 161 u64 pstate = regs->pstate; 162 163 if (compat_user_mode(regs)) { 164 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n", 165 pstate, 166 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 167 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 168 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 169 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 170 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 171 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 172 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 173 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 174 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 175 pstate & PSR_AA32_F_BIT ? 'F' : 'f', 176 pstate & PSR_AA32_DIT_BIT ? '+' : '-', 177 pstate & PSR_AA32_SSBS_BIT ? '+' : '-'); 178 } else { 179 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 180 PSR_BTYPE_SHIFT]; 181 182 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n", 183 pstate, 184 pstate & PSR_N_BIT ? 'N' : 'n', 185 pstate & PSR_Z_BIT ? 'Z' : 'z', 186 pstate & PSR_C_BIT ? 'C' : 'c', 187 pstate & PSR_V_BIT ? 'V' : 'v', 188 pstate & PSR_D_BIT ? 'D' : 'd', 189 pstate & PSR_A_BIT ? 'A' : 'a', 190 pstate & PSR_I_BIT ? 'I' : 'i', 191 pstate & PSR_F_BIT ? 'F' : 'f', 192 pstate & PSR_PAN_BIT ? '+' : '-', 193 pstate & PSR_UAO_BIT ? '+' : '-', 194 pstate & PSR_TCO_BIT ? '+' : '-', 195 pstate & PSR_DIT_BIT ? '+' : '-', 196 pstate & PSR_SSBS_BIT ? '+' : '-', 197 btype_str); 198 } 199 } 200 201 void __show_regs(struct pt_regs *regs) 202 { 203 int i, top_reg; 204 u64 lr, sp; 205 206 if (compat_user_mode(regs)) { 207 lr = regs->compat_lr; 208 sp = regs->compat_sp; 209 top_reg = 12; 210 } else { 211 lr = regs->regs[30]; 212 sp = regs->sp; 213 top_reg = 29; 214 } 215 216 show_regs_print_info(KERN_DEFAULT); 217 print_pstate(regs); 218 219 if (!user_mode(regs)) { 220 printk("pc : %pS\n", (void *)regs->pc); 221 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr)); 222 } else { 223 printk("pc : %016llx\n", regs->pc); 224 printk("lr : %016llx\n", lr); 225 } 226 227 printk("sp : %016llx\n", sp); 228 229 if (system_uses_irq_prio_masking()) 230 printk("pmr_save: %08llx\n", regs->pmr_save); 231 232 i = top_reg; 233 234 while (i >= 0) { 235 printk("x%-2d: %016llx", i, regs->regs[i]); 236 237 while (i-- % 3) 238 pr_cont(" x%-2d: %016llx", i, regs->regs[i]); 239 240 pr_cont("\n"); 241 } 242 } 243 244 void show_regs(struct pt_regs *regs) 245 { 246 __show_regs(regs); 247 dump_backtrace(regs, NULL, KERN_DEFAULT); 248 } 249 250 static void tls_thread_flush(void) 251 { 252 write_sysreg(0, tpidr_el0); 253 254 if (is_compat_task()) { 255 current->thread.uw.tp_value = 0; 256 257 /* 258 * We need to ensure ordering between the shadow state and the 259 * hardware state, so that we don't corrupt the hardware state 260 * with a stale shadow state during context switch. 261 */ 262 barrier(); 263 write_sysreg(0, tpidrro_el0); 264 } 265 } 266 267 static void flush_tagged_addr_state(void) 268 { 269 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 270 clear_thread_flag(TIF_TAGGED_ADDR); 271 } 272 273 void flush_thread(void) 274 { 275 fpsimd_flush_thread(); 276 tls_thread_flush(); 277 flush_ptrace_hw_breakpoint(current); 278 flush_tagged_addr_state(); 279 } 280 281 void release_thread(struct task_struct *dead_task) 282 { 283 } 284 285 void arch_release_task_struct(struct task_struct *tsk) 286 { 287 fpsimd_release_task(tsk); 288 } 289 290 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 291 { 292 if (current->mm) 293 fpsimd_preserve_current_state(); 294 *dst = *src; 295 296 /* We rely on the above assignment to initialize dst's thread_flags: */ 297 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK)); 298 299 /* 300 * Detach src's sve_state (if any) from dst so that it does not 301 * get erroneously used or freed prematurely. dst's sve_state 302 * will be allocated on demand later on if dst uses SVE. 303 * For consistency, also clear TIF_SVE here: this could be done 304 * later in copy_process(), but to avoid tripping up future 305 * maintainers it is best not to leave TIF_SVE and sve_state in 306 * an inconsistent state, even temporarily. 307 */ 308 dst->thread.sve_state = NULL; 309 clear_tsk_thread_flag(dst, TIF_SVE); 310 311 /* clear any pending asynchronous tag fault raised by the parent */ 312 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 313 314 return 0; 315 } 316 317 asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 318 319 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 320 { 321 unsigned long clone_flags = args->flags; 322 unsigned long stack_start = args->stack; 323 unsigned long tls = args->tls; 324 struct pt_regs *childregs = task_pt_regs(p); 325 326 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 327 328 /* 329 * In case p was allocated the same task_struct pointer as some 330 * other recently-exited task, make sure p is disassociated from 331 * any cpu that may have run that now-exited task recently. 332 * Otherwise we could erroneously skip reloading the FPSIMD 333 * registers for p. 334 */ 335 fpsimd_flush_task_state(p); 336 337 ptrauth_thread_init_kernel(p); 338 339 if (likely(!args->fn)) { 340 *childregs = *current_pt_regs(); 341 childregs->regs[0] = 0; 342 343 /* 344 * Read the current TLS pointer from tpidr_el0 as it may be 345 * out-of-sync with the saved value. 346 */ 347 *task_user_tls(p) = read_sysreg(tpidr_el0); 348 349 if (stack_start) { 350 if (is_compat_thread(task_thread_info(p))) 351 childregs->compat_sp = stack_start; 352 else 353 childregs->sp = stack_start; 354 } 355 356 /* 357 * If a TLS pointer was passed to clone, use it for the new 358 * thread. 359 */ 360 if (clone_flags & CLONE_SETTLS) 361 p->thread.uw.tp_value = tls; 362 } else { 363 /* 364 * A kthread has no context to ERET to, so ensure any buggy 365 * ERET is treated as an illegal exception return. 366 * 367 * When a user task is created from a kthread, childregs will 368 * be initialized by start_thread() or start_compat_thread(). 369 */ 370 memset(childregs, 0, sizeof(struct pt_regs)); 371 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 372 373 p->thread.cpu_context.x19 = (unsigned long)args->fn; 374 p->thread.cpu_context.x20 = (unsigned long)args->fn_arg; 375 } 376 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 377 p->thread.cpu_context.sp = (unsigned long)childregs; 378 /* 379 * For the benefit of the unwinder, set up childregs->stackframe 380 * as the final frame for the new task. 381 */ 382 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe; 383 384 ptrace_hw_copy_thread(p); 385 386 return 0; 387 } 388 389 void tls_preserve_current_state(void) 390 { 391 *task_user_tls(current) = read_sysreg(tpidr_el0); 392 } 393 394 static void tls_thread_switch(struct task_struct *next) 395 { 396 tls_preserve_current_state(); 397 398 if (is_compat_thread(task_thread_info(next))) 399 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 400 else if (!arm64_kernel_unmapped_at_el0()) 401 write_sysreg(0, tpidrro_el0); 402 403 write_sysreg(*task_user_tls(next), tpidr_el0); 404 } 405 406 /* 407 * Force SSBS state on context-switch, since it may be lost after migrating 408 * from a CPU which treats the bit as RES0 in a heterogeneous system. 409 */ 410 static void ssbs_thread_switch(struct task_struct *next) 411 { 412 /* 413 * Nothing to do for kernel threads, but 'regs' may be junk 414 * (e.g. idle task) so check the flags and bail early. 415 */ 416 if (unlikely(next->flags & PF_KTHREAD)) 417 return; 418 419 /* 420 * If all CPUs implement the SSBS extension, then we just need to 421 * context-switch the PSTATE field. 422 */ 423 if (cpus_have_const_cap(ARM64_SSBS)) 424 return; 425 426 spectre_v4_enable_task_mitigation(next); 427 } 428 429 /* 430 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 431 * shadow copy so that we can restore this upon entry from userspace. 432 * 433 * This is *only* for exception entry from EL0, and is not valid until we 434 * __switch_to() a user task. 435 */ 436 DEFINE_PER_CPU(struct task_struct *, __entry_task); 437 438 static void entry_task_switch(struct task_struct *next) 439 { 440 __this_cpu_write(__entry_task, next); 441 } 442 443 /* 444 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT. 445 * Ensure access is disabled when switching to a 32bit task, ensure 446 * access is enabled when switching to a 64bit task. 447 */ 448 static void erratum_1418040_thread_switch(struct task_struct *next) 449 { 450 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) || 451 !this_cpu_has_cap(ARM64_WORKAROUND_1418040)) 452 return; 453 454 if (is_compat_thread(task_thread_info(next))) 455 sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0); 456 else 457 sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN); 458 } 459 460 static void erratum_1418040_new_exec(void) 461 { 462 preempt_disable(); 463 erratum_1418040_thread_switch(current); 464 preempt_enable(); 465 } 466 467 /* 468 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore 469 * this function must be called with preemption disabled and the update to 470 * sctlr_user must be made in the same preemption disabled block so that 471 * __switch_to() does not see the variable update before the SCTLR_EL1 one. 472 */ 473 void update_sctlr_el1(u64 sctlr) 474 { 475 /* 476 * EnIA must not be cleared while in the kernel as this is necessary for 477 * in-kernel PAC. It will be cleared on kernel exit if needed. 478 */ 479 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); 480 481 /* ISB required for the kernel uaccess routines when setting TCF0. */ 482 isb(); 483 } 484 485 /* 486 * Thread switching. 487 */ 488 __notrace_funcgraph __sched 489 struct task_struct *__switch_to(struct task_struct *prev, 490 struct task_struct *next) 491 { 492 struct task_struct *last; 493 494 fpsimd_thread_switch(next); 495 tls_thread_switch(next); 496 hw_breakpoint_thread_switch(next); 497 contextidr_thread_switch(next); 498 entry_task_switch(next); 499 ssbs_thread_switch(next); 500 erratum_1418040_thread_switch(next); 501 ptrauth_thread_switch_user(next); 502 503 /* 504 * Complete any pending TLB or cache maintenance on this CPU in case 505 * the thread migrates to a different CPU. 506 * This full barrier is also required by the membarrier system 507 * call. 508 */ 509 dsb(ish); 510 511 /* 512 * MTE thread switching must happen after the DSB above to ensure that 513 * any asynchronous tag check faults have been logged in the TFSR*_EL1 514 * registers. 515 */ 516 mte_thread_switch(next); 517 /* avoid expensive SCTLR_EL1 accesses if no change */ 518 if (prev->thread.sctlr_user != next->thread.sctlr_user) 519 update_sctlr_el1(next->thread.sctlr_user); 520 521 /* the actual thread switch */ 522 last = cpu_switch_to(prev, next); 523 524 return last; 525 } 526 527 struct wchan_info { 528 unsigned long pc; 529 int count; 530 }; 531 532 static bool get_wchan_cb(void *arg, unsigned long pc) 533 { 534 struct wchan_info *wchan_info = arg; 535 536 if (!in_sched_functions(pc)) { 537 wchan_info->pc = pc; 538 return false; 539 } 540 return wchan_info->count++ < 16; 541 } 542 543 unsigned long __get_wchan(struct task_struct *p) 544 { 545 struct wchan_info wchan_info = { 546 .pc = 0, 547 .count = 0, 548 }; 549 550 if (!try_get_task_stack(p)) 551 return 0; 552 553 arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL); 554 555 put_task_stack(p); 556 557 return wchan_info.pc; 558 } 559 560 unsigned long arch_align_stack(unsigned long sp) 561 { 562 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 563 sp -= get_random_int() & ~PAGE_MASK; 564 return sp & ~0xf; 565 } 566 567 #ifdef CONFIG_COMPAT 568 int compat_elf_check_arch(const struct elf32_hdr *hdr) 569 { 570 if (!system_supports_32bit_el0()) 571 return false; 572 573 if ((hdr)->e_machine != EM_ARM) 574 return false; 575 576 if (!((hdr)->e_flags & EF_ARM_EABI_MASK)) 577 return false; 578 579 /* 580 * Prevent execve() of a 32-bit program from a deadline task 581 * if the restricted affinity mask would be inadmissible on an 582 * asymmetric system. 583 */ 584 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) || 585 !dl_task_check_affinity(current, system_32bit_el0_cpumask()); 586 } 587 #endif 588 589 /* 590 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 591 */ 592 void arch_setup_new_exec(void) 593 { 594 unsigned long mmflags = 0; 595 596 if (is_compat_task()) { 597 mmflags = MMCF_AARCH32; 598 599 /* 600 * Restrict the CPU affinity mask for a 32-bit task so that 601 * it contains only 32-bit-capable CPUs. 602 * 603 * From the perspective of the task, this looks similar to 604 * what would happen if the 64-bit-only CPUs were hot-unplugged 605 * at the point of execve(), although we try a bit harder to 606 * honour the cpuset hierarchy. 607 */ 608 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 609 force_compatible_cpus_allowed_ptr(current); 610 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) { 611 relax_compatible_cpus_allowed_ptr(current); 612 } 613 614 current->mm->context.flags = mmflags; 615 ptrauth_thread_init_user(); 616 mte_thread_init_user(); 617 erratum_1418040_new_exec(); 618 619 if (task_spec_ssb_noexec(current)) { 620 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 621 PR_SPEC_ENABLE); 622 } 623 } 624 625 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 626 /* 627 * Control the relaxed ABI allowing tagged user addresses into the kernel. 628 */ 629 static unsigned int tagged_addr_disabled; 630 631 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 632 { 633 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 634 struct thread_info *ti = task_thread_info(task); 635 636 if (is_compat_thread(ti)) 637 return -EINVAL; 638 639 if (system_supports_mte()) 640 valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \ 641 | PR_MTE_TAG_MASK; 642 643 if (arg & ~valid_mask) 644 return -EINVAL; 645 646 /* 647 * Do not allow the enabling of the tagged address ABI if globally 648 * disabled via sysctl abi.tagged_addr_disabled. 649 */ 650 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 651 return -EINVAL; 652 653 if (set_mte_ctrl(task, arg) != 0) 654 return -EINVAL; 655 656 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 657 658 return 0; 659 } 660 661 long get_tagged_addr_ctrl(struct task_struct *task) 662 { 663 long ret = 0; 664 struct thread_info *ti = task_thread_info(task); 665 666 if (is_compat_thread(ti)) 667 return -EINVAL; 668 669 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 670 ret = PR_TAGGED_ADDR_ENABLE; 671 672 ret |= get_mte_ctrl(task); 673 674 return ret; 675 } 676 677 /* 678 * Global sysctl to disable the tagged user addresses support. This control 679 * only prevents the tagged address ABI enabling via prctl() and does not 680 * disable it for tasks that already opted in to the relaxed ABI. 681 */ 682 683 static struct ctl_table tagged_addr_sysctl_table[] = { 684 { 685 .procname = "tagged_addr_disabled", 686 .mode = 0644, 687 .data = &tagged_addr_disabled, 688 .maxlen = sizeof(int), 689 .proc_handler = proc_dointvec_minmax, 690 .extra1 = SYSCTL_ZERO, 691 .extra2 = SYSCTL_ONE, 692 }, 693 { } 694 }; 695 696 static int __init tagged_addr_init(void) 697 { 698 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 699 return -EINVAL; 700 return 0; 701 } 702 703 core_initcall(tagged_addr_init); 704 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 705 706 #ifdef CONFIG_BINFMT_ELF 707 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 708 bool has_interp, bool is_interp) 709 { 710 /* 711 * For dynamically linked executables the interpreter is 712 * responsible for setting PROT_BTI on everything except 713 * itself. 714 */ 715 if (is_interp != has_interp) 716 return prot; 717 718 if (!(state->flags & ARM64_ELF_BTI)) 719 return prot; 720 721 if (prot & PROT_EXEC) 722 prot |= PROT_BTI; 723 724 return prot; 725 } 726 #endif 727