1 #include "first.h" 2 3 #include "array.h" 4 #include "buffer.h" 5 6 #include <string.h> 7 #include <stdlib.h> 8 #include <limits.h> 9 10 __attribute_cold__ 11 static void array_extend(array * const a, uint32_t n) { 12 a->size += n; 13 a->data = realloc(a->data, sizeof(*a->data) * a->size); 14 a->sorted = realloc(a->sorted, sizeof(*a->sorted) * a->size); 15 force_assert(a->data); 16 force_assert(a->sorted); 17 memset(a->data+a->used, 0, (a->size-a->used)*sizeof(*a->data)); 18 } 19 20 array *array_init(uint32_t n) { 21 array *a; 22 23 a = calloc(1, sizeof(*a)); 24 force_assert(a); 25 if (n) array_extend(a, n); 26 27 return a; 28 } 29 30 void array_free_data(array * const a) { 31 if (a->sorted) free(a->sorted); 32 data_unset ** const data = a->data; 33 const uint32_t sz = a->size; 34 for (uint32_t i = 0; i < sz; ++i) { 35 if (data[i]) data[i]->fn->free(data[i]); 36 } 37 free(data); 38 a->data = NULL; 39 a->sorted = NULL; 40 a->used = 0; 41 a->size = 0; 42 } 43 44 void array_copy_array(array * const dst, const array * const src) { 45 array_free_data(dst); 46 if (0 == src->size) return; 47 48 dst->used = src->used; 49 dst->size = src->size; 50 51 dst->data = calloc(src->size, sizeof(*src->data)); 52 force_assert(NULL != dst->data); 53 dst->sorted = malloc(sizeof(*src->sorted) * src->size); 54 force_assert(NULL != dst->sorted); 55 memcpy(dst->sorted, src->sorted, sizeof(*src->sorted) * src->used); 56 for (uint32_t i = 0; i < src->used; ++i) { 57 dst->data[i] = src->data[i]->fn->copy(src->data[i]); 58 } 59 } 60 61 void array_free(array * const a) { 62 if (!a) return; 63 array_free_data(a); 64 free(a); 65 } 66 67 void array_reset_data_strings(array * const a) { 68 if (!a) return; 69 70 data_string ** const data = (data_string **)a->data; 71 const uint32_t used = a->used; 72 a->used = 0; 73 for (uint32_t i = 0; i < used; ++i) { 74 data_string * const ds = data[i]; 75 /*force_assert(ds->type == TYPE_STRING);*/ 76 buffer_reset(&ds->key); 77 buffer_reset(&ds->value); 78 } 79 } 80 81 #if 0 /*(unused; see array_extract_element_klen())*/ 82 data_unset *array_pop(array * const a) { 83 data_unset *du; 84 85 force_assert(a->used != 0); 86 87 a->used --; 88 du = a->data[a->used]; 89 force_assert(a->sorted[a->used] == du); /* only works on "simple" lists */ 90 a->data[a->used] = NULL; 91 92 return du; 93 } 94 #endif 95 96 __attribute_pure__ 97 static int array_caseless_compare(const char * const a, const char * const b, const size_t len) { 98 for (size_t i = 0; i < len; ++i) { 99 unsigned int ca = ((unsigned char *)a)[i]; 100 unsigned int cb = ((unsigned char *)b)[i]; 101 if (ca == cb) continue; 102 103 /* always lowercase for transitive results */ 104 if (light_isupper(ca)) ca |= 0x20; 105 if (light_isupper(cb)) cb |= 0x20; 106 107 if (ca == cb) continue; 108 return (int)(ca - cb); 109 } 110 return 0; 111 } 112 113 __attribute_pure__ 114 static int array_keycmp(const char * const a, const size_t alen, const char * const b, const size_t blen) { 115 return alen < blen ? -1 : alen > blen ? 1 : array_caseless_compare(a, b, blen); 116 } 117 118 /* returns pos into a->sorted[] which contains copy of data (ptr) in a->data[] 119 * if pos >= 0, or returns -pos-1 if that is the position-1 in a->sorted[] 120 * where the key needs to be inserted (-1 to avoid -0) 121 */ 122 __attribute_hot__ 123 __attribute_pure__ 124 static int32_t array_get_index(const array * const a, const char * const k, const size_t klen) { 125 /* invariant: [lower-1] < probe < [upper] 126 * invariant: 0 <= lower <= upper <= a->used 127 */ 128 uint32_t lower = 0, upper = a->used; 129 while (lower != upper) { 130 uint32_t probe = (lower + upper) / 2; 131 const buffer * const b = &a->sorted[probe]->key; 132 /* key is non-empty (0==b->used), though possibly blank (1==b->used), 133 * if inserted into key-value array */ 134 /*force_assert(b && b->used);*/ 135 int cmp = array_keycmp(k, klen, b->ptr, b->used-1); 136 /*int cmp = array_keycmp(k, klen, CONST_BUF_LEN(b));*/ 137 if (cmp < 0) /* key < [probe] */ 138 upper = probe; /* still: lower <= upper */ 139 else if (cmp > 0) /* key > [probe] */ 140 lower = probe + 1; /* still: lower <= upper */ 141 else /*(cmp == 0)*/ /* found */ 142 return (int32_t)probe; 143 } 144 /* not found: [lower-1] < key < [upper] = [lower] ==> insert at [lower] */ 145 return -(int)lower - 1; 146 } 147 148 __attribute_hot__ 149 data_unset *array_get_element_klen(const array * const a, const char *key, const size_t klen) { 150 const int32_t ipos = array_get_index(a, key, klen); 151 return ipos >= 0 ? a->sorted[ipos] : NULL; 152 } 153 154 /* non-const (data_config *) for configparser.y (not array_get_element_klen())*/ 155 data_unset *array_get_data_unset(const array * const a, const char *key, const size_t klen) { 156 const int32_t ipos = array_get_index(a, key, klen); 157 return ipos >= 0 ? a->sorted[ipos] : NULL; 158 } 159 160 data_unset *array_extract_element_klen(array * const a, const char *key, const size_t klen) { 161 const int32_t ipos = array_get_index(a, key, klen); 162 if (ipos < 0) return NULL; 163 164 /* remove entry from a->sorted: move everything after pos one step left */ 165 data_unset * const entry = a->sorted[ipos]; 166 const uint32_t last_ndx = --a->used; 167 if (last_ndx != (uint32_t)ipos) { 168 data_unset ** const d = a->sorted + ipos; 169 memmove(d, d+1, (last_ndx - (uint32_t)ipos) * sizeof(*d)); 170 } 171 172 if (entry != a->data[last_ndx]) { 173 /* walk a->data[] to find data ptr */ 174 /* (not checking (ndx <= last_ndx) since entry must be in a->data[]) */ 175 uint32_t ndx = 0; 176 while (entry != a->data[ndx]) ++ndx; 177 a->data[ndx] = a->data[last_ndx]; /* swap with last element */ 178 } 179 a->data[last_ndx] = NULL; 180 return entry; 181 } 182 183 static data_unset *array_get_unused_element(array * const a, const data_type_t t) { 184 /* After initial startup and config, most array usage is of homogeneous types 185 * and arrays are cleared once per request, so check only the first unused 186 * element to see if it can be reused */ 187 #if 1 188 data_unset * const du = (a->used < a->size) ? a->data[a->used] : NULL; 189 if (NULL != du && du->type == t) { 190 a->data[a->used] = NULL;/* make empty slot at a->used for next insert */ 191 return du; 192 } 193 return NULL; 194 #else 195 data_unset ** const data = a->data; 196 for (uint32_t i = a->used, sz = a->size; i < sz; ++i) { 197 if (data[i] && data[i]->type == t) { 198 data_unset * const ds = data[i]; 199 200 /* make empty slot at a->used for next insert */ 201 data[i] = data[a->used]; 202 data[a->used] = NULL; 203 204 return ds; 205 } 206 } 207 208 return NULL; 209 #endif 210 } 211 212 static void array_insert_data_at_pos(array * const a, data_unset * const entry, const uint32_t pos) { 213 /* This data structure should not be used for nearly so many entries */ 214 force_assert(a->used + 1 <= INT32_MAX); 215 216 if (a->size == a->used) { 217 array_extend(a, 16); 218 } 219 220 const uint32_t ndx = a->used++; 221 data_unset * const prev = a->data[ndx]; 222 a->data[ndx] = entry; 223 224 /* move everything one step to the right */ 225 if (pos != ndx) { 226 data_unset ** const d = a->sorted + pos; 227 memmove(d+1, d, (ndx - pos) * sizeof(*a->sorted)); 228 } 229 a->sorted[pos] = entry; 230 231 if (prev) prev->fn->free(prev); /* free prior data, if any, from slot */ 232 } 233 234 static data_integer * array_insert_integer_at_pos(array * const a, const uint32_t pos) { 235 #if 0 /*(not currently used by lighttpd in way that reuse would occur)*/ 236 data_integer *di = (data_integer *)array_get_unused_element(a,TYPE_INTEGER); 237 if (NULL == di) di = data_integer_init(); 238 #else 239 data_integer * const di = data_integer_init(); 240 #endif 241 array_insert_data_at_pos(a, (data_unset *)di, pos); 242 return di; 243 } 244 245 static data_string * array_insert_string_at_pos(array * const a, const uint32_t pos) { 246 data_string *ds = (data_string *)array_get_unused_element(a, TYPE_STRING); 247 if (NULL == ds) ds = data_string_init(); 248 array_insert_data_at_pos(a, (data_unset *)ds, pos); 249 return ds; 250 } 251 252 int * array_get_int_ptr(array * const a, const char * const k, const size_t klen) { 253 int32_t ipos = array_get_index(a, k, klen); 254 if (ipos >= 0) return &((data_integer *)a->sorted[ipos])->value; 255 256 data_integer * const di =array_insert_integer_at_pos(a,(uint32_t)(-ipos-1)); 257 buffer_copy_string_len(&di->key, k, klen); 258 di->value = 0; 259 return &di->value; 260 } 261 262 buffer * array_get_buf_ptr(array * const a, const char * const k, const size_t klen) { 263 int32_t ipos = array_get_index(a, k, klen); 264 if (ipos >= 0) return &((data_string *)a->sorted[ipos])->value; 265 266 data_string * const ds = array_insert_string_at_pos(a, (uint32_t)(-ipos-1)); 267 buffer_copy_string_len(&ds->key, k, klen); 268 buffer_clear(&ds->value); 269 return &ds->value; 270 } 271 272 void array_insert_value(array * const a, const char * const v, const size_t vlen) { 273 data_string * const ds = array_insert_string_at_pos(a, a->used); 274 buffer_clear(&ds->key); 275 buffer_copy_string_len(&ds->value, v, vlen); 276 } 277 278 /* if entry already exists return pointer to existing entry, otherwise insert entry and return NULL */ 279 __attribute_cold__ 280 static data_unset **array_find_or_insert(array * const a, data_unset * const entry) { 281 force_assert(NULL != entry); 282 283 /* push value onto end of array if there is no key */ 284 if (buffer_is_empty(&entry->key)) { 285 array_insert_data_at_pos(a, entry, a->used); 286 return NULL; 287 } 288 289 /* try to find the entry */ 290 const int32_t ipos = array_get_index(a, CONST_BUF_LEN(&entry->key)); 291 if (ipos >= 0) return &a->sorted[ipos]; 292 293 array_insert_data_at_pos(a, entry, (uint32_t)(-ipos - 1)); 294 return NULL; 295 } 296 297 /* replace or insert data (free existing entry) */ 298 void array_replace(array * const a, data_unset * const entry) { 299 if (NULL == array_find_or_insert(a, entry)) return; 300 301 /* find the entry (array_find_or_insert() returned non-NULL) */ 302 const int32_t ipos = array_get_index(a, CONST_BUF_LEN(&entry->key)); 303 force_assert(ipos >= 0); 304 data_unset *old = a->sorted[ipos]; 305 force_assert(old != entry); 306 a->sorted[ipos] = entry; 307 308 uint32_t i = 0; 309 while (i < a->used && a->data[i] != old) ++i; 310 force_assert(i != a->used); 311 a->data[i] = entry; 312 313 old->fn->free(old); 314 } 315 316 void array_insert_unique(array * const a, data_unset * const entry) { 317 data_unset **old; 318 319 if (NULL != (old = array_find_or_insert(a, entry))) { 320 force_assert((*old)->type == entry->type); 321 entry->fn->insert_dup(*old, entry); 322 } 323 } 324 325 int array_is_vlist(const array * const a) { 326 for (uint32_t i = 0; i < a->used; ++i) { 327 data_unset *du = a->data[i]; 328 if (!buffer_is_empty(&du->key) || du->type != TYPE_STRING) return 0; 329 } 330 return 1; 331 } 332 333 int array_is_kvany(const array * const a) { 334 for (uint32_t i = 0; i < a->used; ++i) { 335 data_unset *du = a->data[i]; 336 if (buffer_is_empty(&du->key)) return 0; 337 } 338 return 1; 339 } 340 341 int array_is_kvarray(const array * const a) { 342 for (uint32_t i = 0; i < a->used; ++i) { 343 data_unset *du = a->data[i]; 344 if (buffer_is_empty(&du->key) || du->type != TYPE_ARRAY) return 0; 345 } 346 return 1; 347 } 348 349 int array_is_kvstring(const array * const a) { 350 for (uint32_t i = 0; i < a->used; ++i) { 351 data_unset *du = a->data[i]; 352 if (buffer_is_empty(&du->key) || du->type != TYPE_STRING) return 0; 353 } 354 return 1; 355 } 356 357 /* array_match_*() routines follow very similar pattern, but operate on slightly 358 * different data: array key/value, prefix/suffix match, case-insensitive or not 359 * While these could be combined into fewer routines with flags to modify the 360 * behavior, the interface distinctions are useful to add clarity to the code, 361 * and the specialized routines run slightly faster */ 362 363 data_unset * 364 array_match_key_prefix_klen (const array * const a, const char * const s, const size_t slen) 365 { 366 for (uint32_t i = 0; i < a->used; ++i) { 367 const buffer * const key = &a->data[i]->key; 368 const size_t klen = buffer_string_length(key); 369 if (klen <= slen && 0 == memcmp(s, key->ptr, klen)) 370 return a->data[i]; 371 } 372 return NULL; 373 } 374 375 data_unset * 376 array_match_key_prefix_nc_klen (const array * const a, const char * const s, const size_t slen) 377 { 378 for (uint32_t i = 0; i < a->used; ++i) { 379 const buffer * const key = &a->data[i]->key; 380 const size_t klen = buffer_string_length(key); 381 if (klen <= slen && buffer_eq_icase_ssn(s, key->ptr, klen)) 382 return a->data[i]; 383 } 384 return NULL; 385 } 386 387 data_unset * 388 array_match_key_prefix (const array * const a, const buffer * const b) 389 { 390 #ifdef __clang_analyzer__ 391 force_assert(b); 392 #endif 393 return array_match_key_prefix_klen(a, CONST_BUF_LEN(b)); 394 } 395 396 data_unset * 397 array_match_key_prefix_nc (const array * const a, const buffer * const b) 398 { 399 return array_match_key_prefix_nc_klen(a, CONST_BUF_LEN(b)); 400 } 401 402 const buffer * 403 array_match_value_prefix (const array * const a, const buffer * const b) 404 { 405 const size_t blen = buffer_string_length(b); 406 407 for (uint32_t i = 0; i < a->used; ++i) { 408 const buffer * const value = &((data_string *)a->data[i])->value; 409 const size_t vlen = buffer_string_length(value); 410 if (vlen <= blen && 0 == memcmp(b->ptr, value->ptr, vlen)) 411 return value; 412 } 413 return NULL; 414 } 415 416 const buffer * 417 array_match_value_prefix_nc (const array * const a, const buffer * const b) 418 { 419 const size_t blen = buffer_string_length(b); 420 421 for (uint32_t i = 0; i < a->used; ++i) { 422 const buffer * const value = &((data_string *)a->data[i])->value; 423 const size_t vlen = buffer_string_length(value); 424 if (vlen <= blen && buffer_eq_icase_ssn(b->ptr, value->ptr, vlen)) 425 return value; 426 } 427 return NULL; 428 } 429 430 data_unset * 431 array_match_key_suffix (const array * const a, const buffer * const b) 432 { 433 const size_t blen = buffer_string_length(b); 434 const char * const end = b->ptr + blen; 435 436 for (uint32_t i = 0; i < a->used; ++i) { 437 const buffer * const key = &a->data[i]->key; 438 const size_t klen = buffer_string_length(key); 439 if (klen <= blen && 0 == memcmp(end - klen, key->ptr, klen)) 440 return a->data[i]; 441 } 442 return NULL; 443 } 444 445 data_unset * 446 array_match_key_suffix_nc (const array * const a, const buffer * const b) 447 { 448 const size_t blen = buffer_string_length(b); 449 const char * const end = b->ptr + blen; 450 451 for (uint32_t i = 0; i < a->used; ++i) { 452 const buffer * const key = &a->data[i]->key; 453 const size_t klen = buffer_string_length(key); 454 if (klen <= blen && buffer_eq_icase_ssn(end - klen, key->ptr, klen)) 455 return a->data[i]; 456 } 457 return NULL; 458 } 459 460 const buffer * 461 array_match_value_suffix (const array * const a, const buffer * const b) 462 { 463 const size_t blen = buffer_string_length(b); 464 const char * const end = b->ptr + blen; 465 466 for (uint32_t i = 0; i < a->used; ++i) { 467 const buffer * const value = &((data_string *)a->data[i])->value; 468 const size_t vlen = buffer_string_length(value); 469 if (vlen <= blen && 0 == memcmp(end - vlen, value->ptr, vlen)) 470 return value; 471 } 472 return NULL; 473 } 474 475 const buffer * 476 array_match_value_suffix_nc (const array * const a, const buffer * const b) 477 { 478 const size_t blen = buffer_string_length(b); 479 const char * const end = b->ptr + blen; 480 481 for (uint32_t i = 0; i < a->used; ++i) { 482 const buffer * const value = &((data_string *)a->data[i])->value; 483 const size_t vlen = buffer_string_length(value); 484 if (vlen <= blen && buffer_eq_icase_ssn(end - vlen, value->ptr, vlen)) 485 return value; 486 } 487 return NULL; 488 } 489 490 data_unset * 491 array_match_path_or_ext (const array * const a, const buffer * const b) 492 { 493 const size_t blen = buffer_string_length(b); 494 495 for (uint32_t i = 0; i < a->used; ++i) { 496 /* check extension in the form "^/path" or ".ext$" */ 497 const buffer * const key = &a->data[i]->key; 498 const size_t klen = buffer_string_length(key); 499 if (klen <= blen 500 && 0 == memcmp((*(key->ptr) == '/' ? b->ptr : b->ptr + blen - klen), 501 key->ptr, klen)) 502 return a->data[i]; 503 } 504 return NULL; 505 } 506 507 508 509 510 511 #include <stdio.h> 512 513 void array_print_indent(int depth) { 514 int i; 515 for (i = 0; i < depth; i ++) { 516 fprintf(stdout, " "); 517 } 518 } 519 520 size_t array_get_max_key_length(const array * const a) { 521 size_t maxlen = 0; 522 for (uint32_t i = 0; i < a->used; ++i) { 523 const buffer * const k = &a->data[i]->key; 524 size_t len = buffer_string_length(k); 525 526 if (len > maxlen) { 527 maxlen = len; 528 } 529 } 530 return maxlen; 531 } 532 533 int array_print(const array * const a, int depth) { 534 uint32_t i; 535 size_t maxlen; 536 int oneline = 1; 537 538 if (a->used > 5) { 539 oneline = 0; 540 } 541 for (i = 0; i < a->used && oneline; i++) { 542 data_unset *du = a->data[i]; 543 if (!buffer_is_empty(&du->key)) { 544 oneline = 0; 545 break; 546 } 547 switch (du->type) { 548 case TYPE_INTEGER: 549 case TYPE_STRING: 550 break; 551 default: 552 oneline = 0; 553 break; 554 } 555 } 556 if (oneline) { 557 fprintf(stdout, "("); 558 for (i = 0; i < a->used; i++) { 559 data_unset *du = a->data[i]; 560 if (i != 0) { 561 fprintf(stdout, ", "); 562 } 563 du->fn->print(du, depth + 1); 564 } 565 fprintf(stdout, ")"); 566 return 0; 567 } 568 569 maxlen = array_get_max_key_length(a); 570 fprintf(stdout, "(\n"); 571 for (i = 0; i < a->used; i++) { 572 data_unset *du = a->data[i]; 573 array_print_indent(depth + 1); 574 if (!buffer_is_empty(&du->key)) { 575 int j; 576 577 if (i && (i % 5) == 0) { 578 fprintf(stdout, "# %u\n", i); 579 array_print_indent(depth + 1); 580 } 581 fprintf(stdout, "\"%s\"", du->key.ptr); 582 for (j = maxlen - buffer_string_length(&du->key); j > 0; j--) { 583 fprintf(stdout, " "); 584 } 585 fprintf(stdout, " => "); 586 } 587 du->fn->print(du, depth + 1); 588 fprintf(stdout, ",\n"); 589 } 590 if (!(i && (i - 1 % 5) == 0)) { 591 array_print_indent(depth + 1); 592 fprintf(stdout, "# %u\n", i); 593 } 594 array_print_indent(depth); 595 fprintf(stdout, ")"); 596 597 return 0; 598 } 599