1ab1e2860SLuigi Rizzo /* 217885a7bSLuigi Rizzo * Copyright (C) 2012-2014 Matteo Landi, Luigi Rizzo, Giuseppe Lettieri. All rights reserved. 3ab1e2860SLuigi Rizzo * 4ab1e2860SLuigi Rizzo * Redistribution and use in source and binary forms, with or without 5ab1e2860SLuigi Rizzo * modification, are permitted provided that the following conditions 6ab1e2860SLuigi Rizzo * are met: 7ab1e2860SLuigi Rizzo * 1. Redistributions of source code must retain the above copyright 8ab1e2860SLuigi Rizzo * notice, this list of conditions and the following disclaimer. 9ab1e2860SLuigi Rizzo * 2. Redistributions in binary form must reproduce the above copyright 10ab1e2860SLuigi Rizzo * notice, this list of conditions and the following disclaimer in the 11ab1e2860SLuigi Rizzo * documentation and/or other materials provided with the distribution. 12ab1e2860SLuigi Rizzo * 13ab1e2860SLuigi Rizzo * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14ab1e2860SLuigi Rizzo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15ab1e2860SLuigi Rizzo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16ab1e2860SLuigi Rizzo * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17ab1e2860SLuigi Rizzo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18ab1e2860SLuigi Rizzo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19ab1e2860SLuigi Rizzo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20ab1e2860SLuigi Rizzo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21ab1e2860SLuigi Rizzo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22ab1e2860SLuigi Rizzo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23ab1e2860SLuigi Rizzo * SUCH DAMAGE. 24ab1e2860SLuigi Rizzo */ 25ab1e2860SLuigi Rizzo 26ab1e2860SLuigi Rizzo /* 27ab1e2860SLuigi Rizzo * $FreeBSD$ 28ab1e2860SLuigi Rizzo * 29ab1e2860SLuigi Rizzo * (New) memory allocator for netmap 30ab1e2860SLuigi Rizzo */ 31ab1e2860SLuigi Rizzo 32ab1e2860SLuigi Rizzo /* 33ab1e2860SLuigi Rizzo * This allocator creates three memory pools: 34ab1e2860SLuigi Rizzo * nm_if_pool for the struct netmap_if 35ab1e2860SLuigi Rizzo * nm_ring_pool for the struct netmap_ring 36ab1e2860SLuigi Rizzo * nm_buf_pool for the packet buffers. 37ab1e2860SLuigi Rizzo * 38ab1e2860SLuigi Rizzo * that contain netmap objects. Each pool is made of a number of clusters, 39ab1e2860SLuigi Rizzo * multiple of a page size, each containing an integer number of objects. 40ab1e2860SLuigi Rizzo * The clusters are contiguous in user space but not in the kernel. 41ab1e2860SLuigi Rizzo * Only nm_buf_pool needs to be dma-able, 42ab1e2860SLuigi Rizzo * but for convenience use the same type of allocator for all. 43ab1e2860SLuigi Rizzo * 44ab1e2860SLuigi Rizzo * Once mapped, the three pools are exported to userspace 45ab1e2860SLuigi Rizzo * as a contiguous block, starting from nm_if_pool. Each 46ab1e2860SLuigi Rizzo * cluster (and pool) is an integral number of pages. 47ab1e2860SLuigi Rizzo * [ . . . ][ . . . . . .][ . . . . . . . . . .] 48ab1e2860SLuigi Rizzo * nm_if nm_ring nm_buf 49ab1e2860SLuigi Rizzo * 50ab1e2860SLuigi Rizzo * The userspace areas contain offsets of the objects in userspace. 51ab1e2860SLuigi Rizzo * When (at init time) we write these offsets, we find out the index 52ab1e2860SLuigi Rizzo * of the object, and from there locate the offset from the beginning 53ab1e2860SLuigi Rizzo * of the region. 54ab1e2860SLuigi Rizzo * 55ab1e2860SLuigi Rizzo * The invididual allocators manage a pool of memory for objects of 56ab1e2860SLuigi Rizzo * the same size. 57ab1e2860SLuigi Rizzo * The pool is split into smaller clusters, whose size is a 58ab1e2860SLuigi Rizzo * multiple of the page size. The cluster size is chosen 59ab1e2860SLuigi Rizzo * to minimize the waste for a given max cluster size 60ab1e2860SLuigi Rizzo * (we do it by brute force, as we have relatively few objects 61ab1e2860SLuigi Rizzo * per cluster). 62ab1e2860SLuigi Rizzo * 63ab1e2860SLuigi Rizzo * Objects are aligned to the cache line (64 bytes) rounding up object 64ab1e2860SLuigi Rizzo * sizes when needed. A bitmap contains the state of each object. 65ab1e2860SLuigi Rizzo * Allocation scans the bitmap; this is done only on attach, so we are not 66ab1e2860SLuigi Rizzo * too worried about performance 67ab1e2860SLuigi Rizzo * 68ab1e2860SLuigi Rizzo * For each allocator we can define (thorugh sysctl) the size and 69ab1e2860SLuigi Rizzo * number of each object. Memory is allocated at the first use of a 70ab1e2860SLuigi Rizzo * netmap file descriptor, and can be freed when all such descriptors 71ab1e2860SLuigi Rizzo * have been released (including unmapping the memory). 72ab1e2860SLuigi Rizzo * If memory is scarce, the system tries to get as much as possible 73ab1e2860SLuigi Rizzo * and the sysctl values reflect the actual allocation. 74ab1e2860SLuigi Rizzo * Together with desired values, the sysctl export also absolute 75ab1e2860SLuigi Rizzo * min and maximum values that cannot be overridden. 76ab1e2860SLuigi Rizzo * 77ab1e2860SLuigi Rizzo * struct netmap_if: 78ab1e2860SLuigi Rizzo * variable size, max 16 bytes per ring pair plus some fixed amount. 79ab1e2860SLuigi Rizzo * 1024 bytes should be large enough in practice. 80ab1e2860SLuigi Rizzo * 81ab1e2860SLuigi Rizzo * In the worst case we have one netmap_if per ring in the system. 82ab1e2860SLuigi Rizzo * 83ab1e2860SLuigi Rizzo * struct netmap_ring 84ab1e2860SLuigi Rizzo * variable size, 8 byte per slot plus some fixed amount. 85ab1e2860SLuigi Rizzo * Rings can be large (e.g. 4k slots, or >32Kbytes). 86ab1e2860SLuigi Rizzo * We default to 36 KB (9 pages), and a few hundred rings. 87ab1e2860SLuigi Rizzo * 88ab1e2860SLuigi Rizzo * struct netmap_buffer 89ab1e2860SLuigi Rizzo * The more the better, both because fast interfaces tend to have 90ab1e2860SLuigi Rizzo * many slots, and because we may want to use buffers to store 91ab1e2860SLuigi Rizzo * packets in userspace avoiding copies. 92ab1e2860SLuigi Rizzo * Must contain a full frame (eg 1518, or more for vlans, jumbo 93ab1e2860SLuigi Rizzo * frames etc.) plus be nicely aligned, plus some NICs restrict 94ab1e2860SLuigi Rizzo * the size to multiple of 1K or so. Default to 2K 95ab1e2860SLuigi Rizzo */ 96ab1e2860SLuigi Rizzo #ifndef _NET_NETMAP_MEM2_H_ 97ab1e2860SLuigi Rizzo #define _NET_NETMAP_MEM2_H_ 98ab1e2860SLuigi Rizzo 99ab1e2860SLuigi Rizzo 100ab1e2860SLuigi Rizzo 101ab1e2860SLuigi Rizzo /* We implement two kinds of netmap_mem_d structures: 102ab1e2860SLuigi Rizzo * 103ab1e2860SLuigi Rizzo * - global: used by hardware NICS; 104ab1e2860SLuigi Rizzo * 105ab1e2860SLuigi Rizzo * - private: used by VALE ports. 106ab1e2860SLuigi Rizzo * 107ab1e2860SLuigi Rizzo * In both cases, the netmap_mem_d structure has the same lifetime as the 108ab1e2860SLuigi Rizzo * netmap_adapter of the corresponding NIC or port. It is the responsibility of 109ab1e2860SLuigi Rizzo * the client code to delete the private allocator when the associated 110ab1e2860SLuigi Rizzo * netmap_adapter is freed (this is implemented by the NAF_MEM_OWNER flag in 111ab1e2860SLuigi Rizzo * netmap.c). The 'refcount' field counts the number of active users of the 112ab1e2860SLuigi Rizzo * structure. The global allocator uses this information to prevent/allow 113ab1e2860SLuigi Rizzo * reconfiguration. The private allocators release all their memory when there 114ab1e2860SLuigi Rizzo * are no active users. By 'active user' we mean an existing netmap_priv 115ab1e2860SLuigi Rizzo * structure holding a reference to the allocator. 116ab1e2860SLuigi Rizzo */ 117ab1e2860SLuigi Rizzo 118ab1e2860SLuigi Rizzo extern struct netmap_mem_d nm_mem; 119ab1e2860SLuigi Rizzo 120*4bf50f18SLuigi Rizzo struct lut_entry* netmap_mem_get_lut(struct netmap_mem_d *); 121*4bf50f18SLuigi Rizzo u_int netmap_mem_get_buftotal(struct netmap_mem_d *); 122*4bf50f18SLuigi Rizzo size_t netmap_mem_get_bufsize(struct netmap_mem_d *); 123ab1e2860SLuigi Rizzo vm_paddr_t netmap_mem_ofstophys(struct netmap_mem_d *, vm_ooffset_t); 124*4bf50f18SLuigi Rizzo int netmap_mem_finalize(struct netmap_mem_d *, struct netmap_adapter *); 125ab1e2860SLuigi Rizzo int netmap_mem_init(void); 126ab1e2860SLuigi Rizzo void netmap_mem_fini(void); 127*4bf50f18SLuigi Rizzo struct netmap_if * netmap_mem_if_new(struct netmap_adapter *); 128f9790aebSLuigi Rizzo void netmap_mem_if_delete(struct netmap_adapter *, struct netmap_if *); 129f9790aebSLuigi Rizzo int netmap_mem_rings_create(struct netmap_adapter *); 130f9790aebSLuigi Rizzo void netmap_mem_rings_delete(struct netmap_adapter *); 131*4bf50f18SLuigi Rizzo void netmap_mem_deref(struct netmap_mem_d *, struct netmap_adapter *); 132f0ea3689SLuigi Rizzo int netmap_mem_get_info(struct netmap_mem_d *, u_int *size, u_int *memflags, uint16_t *id); 133f9790aebSLuigi Rizzo ssize_t netmap_mem_if_offset(struct netmap_mem_d *, const void *vaddr); 134f0ea3689SLuigi Rizzo struct netmap_mem_d* netmap_mem_private_new(const char *name, 135f0ea3689SLuigi Rizzo u_int txr, u_int txd, u_int rxr, u_int rxd, u_int extra_bufs, u_int npipes, 136f0ea3689SLuigi Rizzo int* error); 137f9790aebSLuigi Rizzo void netmap_mem_private_delete(struct netmap_mem_d *); 138ab1e2860SLuigi Rizzo 139*4bf50f18SLuigi Rizzo #define NETMAP_MEM_PRIVATE 0x2 /* allocator uses private address space */ 140*4bf50f18SLuigi Rizzo #define NETMAP_MEM_IO 0x4 /* the underlying memory is mmapped I/O */ 141ab1e2860SLuigi Rizzo 142f0ea3689SLuigi Rizzo uint32_t netmap_extra_alloc(struct netmap_adapter *, uint32_t *, uint32_t n); 143ab1e2860SLuigi Rizzo 144ab1e2860SLuigi Rizzo 145ab1e2860SLuigi Rizzo #endif 146