1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo 5 * Copyright (C) 2013-2016 Universita` di Pisa 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * 32 * The header contains the definitions of constants and function 33 * prototypes used only in kernelspace. 34 */ 35 36 #ifndef _NET_NETMAP_KERN_H_ 37 #define _NET_NETMAP_KERN_H_ 38 39 #if defined(linux) 40 41 #if defined(CONFIG_NETMAP_EXTMEM) 42 #define WITH_EXTMEM 43 #endif 44 #if defined(CONFIG_NETMAP_VALE) 45 #define WITH_VALE 46 #endif 47 #if defined(CONFIG_NETMAP_PIPE) 48 #define WITH_PIPES 49 #endif 50 #if defined(CONFIG_NETMAP_MONITOR) 51 #define WITH_MONITOR 52 #endif 53 #if defined(CONFIG_NETMAP_GENERIC) 54 #define WITH_GENERIC 55 #endif 56 #if defined(CONFIG_NETMAP_PTNETMAP) 57 #define WITH_PTNETMAP 58 #endif 59 #if defined(CONFIG_NETMAP_SINK) 60 #define WITH_SINK 61 #endif 62 #if defined(CONFIG_NETMAP_NULL) 63 #define WITH_NMNULL 64 #endif 65 66 #elif defined (_WIN32) 67 #define WITH_VALE // comment out to disable VALE support 68 #define WITH_PIPES 69 #define WITH_MONITOR 70 #define WITH_GENERIC 71 #define WITH_NMNULL 72 73 #else /* neither linux nor windows */ 74 #define WITH_VALE // comment out to disable VALE support 75 #define WITH_PIPES 76 #define WITH_MONITOR 77 #define WITH_GENERIC 78 #define WITH_EXTMEM 79 #define WITH_NMNULL 80 #endif 81 82 #if defined(__FreeBSD__) 83 #include <sys/selinfo.h> 84 #include <vm/vm.h> 85 86 #define likely(x) __builtin_expect((long)!!(x), 1L) 87 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 88 #define __user 89 90 #define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */ 91 92 #define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */ 93 #define NM_MTX_INIT(m) sx_init(&(m), #m) 94 #define NM_MTX_DESTROY(m) sx_destroy(&(m)) 95 #define NM_MTX_LOCK(m) sx_xlock(&(m)) 96 #define NM_MTX_SPINLOCK(m) while (!sx_try_xlock(&(m))) ; 97 #define NM_MTX_UNLOCK(m) sx_xunlock(&(m)) 98 #define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED) 99 100 #define NM_SELINFO_T struct nm_selinfo 101 #define NM_SELRECORD_T struct thread 102 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 103 #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid) 104 #define MBUF_TRANSMIT(na, ifp, m) ((na)->if_transmit(ifp, m)) 105 #define GEN_TX_MBUF_IFP(m) ((m)->m_pkthdr.rcvif) 106 107 #define NM_ATOMIC_T volatile int /* required by atomic/bitops.h */ 108 /* atomic operations */ 109 #include <machine/atomic.h> 110 #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) 111 #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) 112 113 struct netmap_adapter *netmap_getna(if_t ifp); 114 115 #define MBUF_REFCNT(m) ((m)->m_ext.ext_count) 116 #define SET_MBUF_REFCNT(m, x) (m)->m_ext.ext_count = x 117 118 #define MBUF_QUEUED(m) 1 119 120 struct nm_selinfo { 121 /* Support for select(2) and poll(2). */ 122 struct selinfo si; 123 /* Support for kqueue(9). See comments in netmap_freebsd.c */ 124 struct taskqueue *ntfytq; 125 struct task ntfytask; 126 struct mtx m; 127 char mtxname[32]; 128 int kqueue_users; 129 }; 130 131 132 struct hrtimer { 133 /* Not used in FreeBSD. */ 134 }; 135 136 #define NM_BNS_GET(b) 137 #define NM_BNS_PUT(b) 138 139 #elif defined (linux) 140 141 #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h 142 #define NM_SELINFO_T wait_queue_head_t 143 #define MBUF_LEN(m) ((m)->len) 144 #define MBUF_TRANSMIT(na, ifp, m) \ 145 ({ \ 146 /* Avoid infinite recursion with generic. */ \ 147 m->priority = NM_MAGIC_PRIORITY_TX; \ 148 (((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \ 149 0; \ 150 }) 151 152 /* See explanation in nm_os_generic_xmit_frame. */ 153 #define GEN_TX_MBUF_IFP(m) ((if_t)skb_shinfo(m)->destructor_arg) 154 155 #define NM_ATOMIC_T volatile long unsigned int 156 157 #define NM_MTX_T struct mutex /* OS-specific sleepable lock */ 158 #define NM_MTX_INIT(m) mutex_init(&(m)) 159 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 160 #define NM_MTX_LOCK(m) mutex_lock(&(m)) 161 #define NM_MTX_UNLOCK(m) mutex_unlock(&(m)) 162 #define NM_MTX_ASSERT(m) mutex_is_locked(&(m)) 163 164 #ifndef DEV_NETMAP 165 #define DEV_NETMAP 166 #endif /* DEV_NETMAP */ 167 168 #elif defined (__APPLE__) 169 170 #warning apple support is incomplete. 171 #define likely(x) __builtin_expect(!!(x), 1) 172 #define unlikely(x) __builtin_expect(!!(x), 0) 173 #define NM_LOCK_T IOLock * 174 #define NM_SELINFO_T struct selinfo 175 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 176 177 #elif defined (_WIN32) 178 #include "../../../WINDOWS/win_glue.h" 179 180 #define NM_SELRECORD_T IO_STACK_LOCATION 181 #define NM_SELINFO_T win_SELINFO // see win_glue.h 182 #define NM_LOCK_T win_spinlock_t // see win_glue.h 183 #define NM_MTX_T KGUARDED_MUTEX /* OS-specific mutex (sleepable) */ 184 185 #define NM_MTX_INIT(m) KeInitializeGuardedMutex(&m); 186 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 187 #define NM_MTX_LOCK(m) KeAcquireGuardedMutex(&(m)) 188 #define NM_MTX_UNLOCK(m) KeReleaseGuardedMutex(&(m)) 189 #define NM_MTX_ASSERT(m) assert(&m.Count>0) 190 191 //These linknames are for the NDIS driver 192 #define NETMAP_NDIS_LINKNAME_STRING L"\\DosDevices\\NMAPNDIS" 193 #define NETMAP_NDIS_NTDEVICE_STRING L"\\Device\\NMAPNDIS" 194 195 //Definition of internal driver-to-driver ioctl codes 196 #define NETMAP_KERNEL_XCHANGE_POINTERS _IO('i', 180) 197 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL _IO_direct('i', 195) 198 199 typedef struct hrtimer{ 200 KTIMER timer; 201 BOOLEAN active; 202 KDPC deferred_proc; 203 }; 204 205 /* MSVC does not have likely/unlikely support */ 206 #ifdef _MSC_VER 207 #define likely(x) (x) 208 #define unlikely(x) (x) 209 #else 210 #define likely(x) __builtin_expect((long)!!(x), 1L) 211 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 212 #endif //_MSC_VER 213 214 #else 215 216 #error unsupported platform 217 218 #endif /* end - platform-specific code */ 219 220 #ifndef _WIN32 /* support for emulated sysctl */ 221 #define SYSBEGIN(x) 222 #define SYSEND 223 #endif /* _WIN32 */ 224 225 #define NM_ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x)) 226 227 #define NMG_LOCK_T NM_MTX_T 228 #define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock) 229 #define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock) 230 #define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock) 231 #define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock) 232 #define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock) 233 234 #if defined(__FreeBSD__) 235 #define nm_prerr_int printf 236 #define nm_prinf_int printf 237 #elif defined (_WIN32) 238 #define nm_prerr_int DbgPrint 239 #define nm_prinf_int DbgPrint 240 #elif defined(linux) 241 #define nm_prerr_int(fmt, arg...) printk(KERN_ERR fmt, ##arg) 242 #define nm_prinf_int(fmt, arg...) printk(KERN_INFO fmt, ##arg) 243 #endif 244 245 #define nm_prinf(format, ...) \ 246 do { \ 247 struct timeval __xxts; \ 248 microtime(&__xxts); \ 249 nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\ 250 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 251 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 252 } while (0) 253 254 #define nm_prerr(format, ...) \ 255 do { \ 256 struct timeval __xxts; \ 257 microtime(&__xxts); \ 258 nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\ 259 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 260 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 261 } while (0) 262 263 /* Disabled printf (used to be nm_prdis). */ 264 #define nm_prdis(format, ...) 265 266 /* Rate limited, lps indicates how many per second. */ 267 #define nm_prlim(lps, format, ...) \ 268 do { \ 269 static int t0, __cnt; \ 270 if (t0 != time_second) { \ 271 t0 = time_second; \ 272 __cnt = 0; \ 273 } \ 274 if (__cnt++ < lps) \ 275 nm_prinf(format, ##__VA_ARGS__); \ 276 } while (0) 277 278 struct netmap_adapter; 279 struct nm_bdg_fwd; 280 struct nm_bridge; 281 struct netmap_priv_d; 282 struct nm_bdg_args; 283 284 /* os-specific NM_SELINFO_T initialization/destruction functions */ 285 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name); 286 void nm_os_selinfo_uninit(NM_SELINFO_T *); 287 288 const char *nm_dump_buf(char *p, int len, int lim, char *dst); 289 290 void nm_os_selwakeup(NM_SELINFO_T *si); 291 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si); 292 293 int nm_os_ifnet_init(void); 294 void nm_os_ifnet_fini(void); 295 void nm_os_ifnet_lock(void); 296 void nm_os_ifnet_unlock(void); 297 298 unsigned nm_os_ifnet_mtu(if_t ifp); 299 300 void nm_os_get_module(void); 301 void nm_os_put_module(void); 302 303 void netmap_make_zombie(if_t); 304 void netmap_undo_zombie(if_t); 305 306 /* os independent alloc/realloc/free */ 307 void *nm_os_malloc(size_t); 308 void *nm_os_vmalloc(size_t); 309 void *nm_os_realloc(void *, size_t new_size, size_t old_size); 310 void nm_os_free(void *); 311 void nm_os_vfree(void *); 312 313 /* os specific attach/detach enter/exit-netmap-mode routines */ 314 void nm_os_onattach(if_t); 315 void nm_os_ondetach(if_t); 316 void nm_os_onenter(if_t); 317 void nm_os_onexit(if_t); 318 319 /* passes a packet up to the host stack. 320 * If the packet is sent (or dropped) immediately it returns NULL, 321 * otherwise it links the packet to prev and returns m. 322 * In this case, a final call with m=NULL and prev != NULL will send up 323 * the entire chain to the host stack. 324 */ 325 void *nm_os_send_up(if_t, struct mbuf *m, struct mbuf *prev); 326 327 int nm_os_mbuf_has_seg_offld(struct mbuf *m); 328 int nm_os_mbuf_has_csum_offld(struct mbuf *m); 329 330 #include "netmap_mbq.h" 331 332 extern NMG_LOCK_T netmap_global_lock; 333 334 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX }; 335 336 static __inline const char* 337 nm_txrx2str(enum txrx t) 338 { 339 return (t== NR_RX ? "RX" : "TX"); 340 } 341 342 static __inline enum txrx 343 nm_txrx_swap(enum txrx t) 344 { 345 return (t== NR_RX ? NR_TX : NR_RX); 346 } 347 348 #define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++) 349 350 #ifdef WITH_MONITOR 351 struct netmap_zmon_list { 352 struct netmap_kring *next; 353 struct netmap_kring *prev; 354 }; 355 #endif /* WITH_MONITOR */ 356 357 /* 358 * private, kernel view of a ring. Keeps track of the status of 359 * a ring across system calls. 360 * 361 * nr_hwcur index of the next buffer to refill. 362 * It corresponds to ring->head 363 * at the time the system call returns. 364 * 365 * nr_hwtail index of the first buffer owned by the kernel. 366 * On RX, hwcur->hwtail are receive buffers 367 * not yet released. hwcur is advanced following 368 * ring->head, hwtail is advanced on incoming packets, 369 * and a wakeup is generated when hwtail passes ring->cur 370 * On TX, hwcur->rcur have been filled by the sender 371 * but not sent yet to the NIC; rcur->hwtail are available 372 * for new transmissions, and hwtail->hwcur-1 are pending 373 * transmissions not yet acknowledged. 374 * 375 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. 376 * This is so that, on a reset, buffers owned by userspace are not 377 * modified by the kernel. In particular: 378 * RX rings: the next empty buffer (hwtail + hwofs) coincides with 379 * the next empty buffer as known by the hardware (next_to_check or so). 380 * TX rings: hwcur + hwofs coincides with next_to_send 381 * 382 * The following fields are used to implement lock-free copy of packets 383 * from input to output ports in VALE switch: 384 * nkr_hwlease buffer after the last one being copied. 385 * A writer in nm_bdg_flush reserves N buffers 386 * from nr_hwlease, advances it, then does the 387 * copy outside the lock. 388 * In RX rings (used for VALE ports), 389 * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1 390 * In TX rings (used for NIC or host stack ports) 391 * nkr_hwcur <= nkr_hwlease < nkr_hwtail 392 * nkr_leases array of nkr_num_slots where writers can report 393 * completion of their block. NR_NOSLOT (~0) indicates 394 * that the writer has not finished yet 395 * nkr_lease_idx index of next free slot in nr_leases, to be assigned 396 * 397 * The kring is manipulated by txsync/rxsync and generic netmap function. 398 * 399 * Concurrent rxsync or txsync on the same ring are prevented through 400 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need 401 * for NIC rings, and for TX rings attached to the host stack. 402 * 403 * RX rings attached to the host stack use an mbq (rx_queue) on both 404 * rxsync_from_host() and netmap_transmit(). The mbq is protected 405 * by its internal lock. 406 * 407 * RX rings attached to the VALE switch are accessed by both senders 408 * and receiver. They are protected through the q_lock on the RX ring. 409 */ 410 struct netmap_kring { 411 struct netmap_ring *ring; 412 413 uint32_t nr_hwcur; /* should be nr_hwhead */ 414 uint32_t nr_hwtail; 415 416 /* 417 * Copies of values in user rings, so we do not need to look 418 * at the ring (which could be modified). These are set in the 419 * *sync_prologue()/finalize() routines. 420 */ 421 uint32_t rhead; 422 uint32_t rcur; 423 uint32_t rtail; 424 425 uint32_t nr_kflags; /* private driver flags */ 426 #define NKR_PENDINTR 0x1 // Pending interrupt. 427 #define NKR_EXCLUSIVE 0x2 /* exclusive binding */ 428 #define NKR_FORWARD 0x4 /* (host ring only) there are 429 packets to forward 430 */ 431 #define NKR_NEEDRING 0x8 /* ring needed even if users==0 432 * (used internally by pipes and 433 * by ptnetmap host ports) 434 */ 435 #define NKR_NOINTR 0x10 /* don't use interrupts on this ring */ 436 #define NKR_FAKERING 0x20 /* don't allocate/free buffers */ 437 438 uint32_t nr_mode; 439 uint32_t nr_pending_mode; 440 #define NKR_NETMAP_OFF 0x0 441 #define NKR_NETMAP_ON 0x1 442 443 uint32_t nkr_num_slots; 444 445 /* 446 * On a NIC reset, the NIC ring indexes may be reset but the 447 * indexes in the netmap rings remain the same. nkr_hwofs 448 * keeps track of the offset between the two. 449 * 450 * Moreover, during reset, we can restore only the subset of 451 * the NIC ring that corresponds to the kernel-owned part of 452 * the netmap ring. The rest of the slots must be restored 453 * by the *sync routines when the user releases more slots. 454 * The nkr_to_refill field keeps track of the number of slots 455 * that still need to be restored. 456 */ 457 int32_t nkr_hwofs; 458 int32_t nkr_to_refill; 459 460 /* last_reclaim is opaque marker to help reduce the frequency 461 * of operations such as reclaiming tx buffers. A possible use 462 * is set it to ticks and do the reclaim only once per tick. 463 */ 464 uint64_t last_reclaim; 465 466 467 NM_SELINFO_T si; /* poll/select wait queue */ 468 NM_LOCK_T q_lock; /* protects kring and ring. */ 469 NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ 470 471 /* the adapter the owns this kring */ 472 struct netmap_adapter *na; 473 474 /* the adapter that wants to be notified when this kring has 475 * new slots available. This is usually the same as the above, 476 * but wrappers may let it point to themselves 477 */ 478 struct netmap_adapter *notify_na; 479 480 /* The following fields are for VALE switch support */ 481 struct nm_bdg_fwd *nkr_ft; 482 uint32_t *nkr_leases; 483 #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */ 484 uint32_t nkr_hwlease; 485 uint32_t nkr_lease_idx; 486 487 /* while nkr_stopped is set, no new [tr]xsync operations can 488 * be started on this kring. 489 * This is used by netmap_disable_all_rings() 490 * to find a synchronization point where critical data 491 * structures pointed to by the kring can be added or removed 492 */ 493 volatile int nkr_stopped; 494 495 /* Support for adapters without native netmap support. 496 * On tx rings we preallocate an array of tx buffers 497 * (same size as the netmap ring), on rx rings we 498 * store incoming mbufs in a queue that is drained by 499 * a rxsync. 500 */ 501 struct mbuf **tx_pool; 502 struct mbuf *tx_event; /* TX event used as a notification */ 503 NM_LOCK_T tx_event_lock; /* protects the tx_event mbuf */ 504 #ifdef __FreeBSD__ 505 struct callout tx_event_callout; 506 #endif 507 struct mbq rx_queue; /* intercepted rx mbufs. */ 508 509 uint32_t users; /* existing bindings for this ring */ 510 511 uint32_t ring_id; /* kring identifier */ 512 enum txrx tx; /* kind of ring (tx or rx) */ 513 char name[64]; /* diagnostic */ 514 515 /* [tx]sync callback for this kring. 516 * The default nm_kring_create callback (netmap_krings_create) 517 * sets the nm_sync callback of each hardware tx(rx) kring to 518 * the corresponding nm_txsync(nm_rxsync) taken from the 519 * netmap_adapter; moreover, it sets the sync callback 520 * of the host tx(rx) ring to netmap_txsync_to_host 521 * (netmap_rxsync_from_host). 522 * 523 * Overrides: the above configuration is not changed by 524 * any of the nm_krings_create callbacks. 525 */ 526 int (*nm_sync)(struct netmap_kring *kring, int flags); 527 int (*nm_notify)(struct netmap_kring *kring, int flags); 528 529 #ifdef WITH_PIPES 530 struct netmap_kring *pipe; /* if this is a pipe ring, 531 * pointer to the other end 532 */ 533 uint32_t pipe_tail; /* hwtail updated by the other end */ 534 #endif /* WITH_PIPES */ 535 536 /* mask for the offset-related part of the ptr field in the slots */ 537 uint64_t offset_mask; 538 /* maximum user-specified offset, as stipulated at bind time. 539 * Larger offset requests will be silently capped to offset_max. 540 */ 541 uint64_t offset_max; 542 /* minimum gap between two consecutive offsets into the same 543 * buffer, as stipulated at bind time. This is used to choose 544 * the hwbuf_len, but is not otherwise checked for compliance 545 * at runtime. 546 */ 547 uint64_t offset_gap; 548 549 /* size of hardware buffer. This may be less than the size of 550 * the netmap buffers because of non-zero offsets, or because 551 * the netmap buffer size exceeds the capability of the hardware. 552 */ 553 uint64_t hwbuf_len; 554 555 /* required alignment (in bytes) for the buffers used by this ring. 556 * Netmap buffers are aligned to cachelines, which should suffice 557 * for most NICs. If the user is passing offsets, though, we need 558 * to check that the resulting buf address complies with any 559 * alignment restriction. 560 */ 561 uint64_t buf_align; 562 563 /* hardware specific logic for the selection of the hwbuf_len */ 564 int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target); 565 566 int (*save_notify)(struct netmap_kring *kring, int flags); 567 568 #ifdef WITH_MONITOR 569 /* array of krings that are monitoring this kring */ 570 struct netmap_kring **monitors; 571 uint32_t max_monitors; /* current size of the monitors array */ 572 uint32_t n_monitors; /* next unused entry in the monitor array */ 573 uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */ 574 uint32_t mon_tail; /* last seen slot on rx */ 575 576 /* circular list of zero-copy monitors */ 577 struct netmap_zmon_list zmon_list[NR_TXRX]; 578 579 /* 580 * Monitors work by intercepting the sync and notify callbacks of the 581 * monitored krings. This is implemented by replacing the pointers 582 * above and saving the previous ones in mon_* pointers below 583 */ 584 int (*mon_sync)(struct netmap_kring *kring, int flags); 585 int (*mon_notify)(struct netmap_kring *kring, int flags); 586 587 #endif 588 } 589 #ifdef _WIN32 590 __declspec(align(64)); 591 #else 592 __attribute__((__aligned__(64))); 593 #endif 594 595 /* return 1 iff the kring needs to be turned on */ 596 static inline int 597 nm_kring_pending_on(struct netmap_kring *kring) 598 { 599 return kring->nr_pending_mode == NKR_NETMAP_ON && 600 kring->nr_mode == NKR_NETMAP_OFF; 601 } 602 603 /* return 1 iff the kring needs to be turned off */ 604 static inline int 605 nm_kring_pending_off(struct netmap_kring *kring) 606 { 607 return kring->nr_pending_mode == NKR_NETMAP_OFF && 608 kring->nr_mode == NKR_NETMAP_ON; 609 } 610 611 /* return the next index, with wraparound */ 612 static inline uint32_t 613 nm_next(uint32_t i, uint32_t lim) 614 { 615 return unlikely (i == lim) ? 0 : i + 1; 616 } 617 618 619 /* return the previous index, with wraparound */ 620 static inline uint32_t 621 nm_prev(uint32_t i, uint32_t lim) 622 { 623 return unlikely (i == 0) ? lim : i - 1; 624 } 625 626 627 /* 628 * 629 * Here is the layout for the Rx and Tx rings. 630 631 RxRING TxRING 632 633 +-----------------+ +-----------------+ 634 | | | | 635 | free | | free | 636 +-----------------+ +-----------------+ 637 head->| owned by user |<-hwcur | not sent to nic |<-hwcur 638 | | | yet | 639 +-----------------+ | | 640 cur->| available to | | | 641 | user, not read | +-----------------+ 642 | yet | cur->| (being | 643 | | | prepared) | 644 | | | | 645 +-----------------+ + ------ + 646 tail->| |<-hwtail | |<-hwlease 647 | (being | ... | | ... 648 | prepared) | ... | | ... 649 +-----------------+ ... | | ... 650 | |<-hwlease +-----------------+ 651 | | tail->| |<-hwtail 652 | | | | 653 | | | | 654 | | | | 655 +-----------------+ +-----------------+ 656 657 * The cur/tail (user view) and hwcur/hwtail (kernel view) 658 * are used in the normal operation of the card. 659 * 660 * When a ring is the output of a switch port (Rx ring for 661 * a VALE port, Tx ring for the host stack or NIC), slots 662 * are reserved in blocks through 'hwlease' which points 663 * to the next unused slot. 664 * On an Rx ring, hwlease is always after hwtail, 665 * and completions cause hwtail to advance. 666 * On a Tx ring, hwlease is always between cur and hwtail, 667 * and completions cause cur to advance. 668 * 669 * nm_kr_space() returns the maximum number of slots that 670 * can be assigned. 671 * nm_kr_lease() reserves the required number of buffers, 672 * advances nkr_hwlease and also returns an entry in 673 * a circular array where completions should be reported. 674 */ 675 676 struct lut_entry; 677 #ifdef __FreeBSD__ 678 #define plut_entry lut_entry 679 #endif 680 681 struct netmap_lut { 682 struct lut_entry *lut; 683 struct plut_entry *plut; 684 uint32_t objtotal; /* max buffer index */ 685 uint32_t objsize; /* buffer size */ 686 }; 687 688 struct netmap_vp_adapter; // forward 689 struct nm_bridge; 690 691 /* Struct to be filled by nm_config callbacks. */ 692 struct nm_config_info { 693 unsigned num_tx_rings; 694 unsigned num_rx_rings; 695 unsigned num_tx_descs; 696 unsigned num_rx_descs; 697 unsigned rx_buf_maxsize; 698 }; 699 700 /* 701 * default type for the magic field. 702 * May be overridden in glue code. 703 */ 704 #ifndef NM_OS_MAGIC 705 #define NM_OS_MAGIC uint32_t 706 #endif /* !NM_OS_MAGIC */ 707 708 /* 709 * The "struct netmap_adapter" extends the "struct adapter" 710 * (or equivalent) device descriptor. 711 * It contains all base fields needed to support netmap operation. 712 * There are in fact different types of netmap adapters 713 * (native, generic, VALE switch...) so a netmap_adapter is 714 * just the first field in the derived type. 715 */ 716 struct netmap_adapter { 717 /* 718 * On linux we do not have a good way to tell if an interface 719 * is netmap-capable. So we always use the following trick: 720 * NA(ifp) points here, and the first entry (which hopefully 721 * always exists and is at least 32 bits) contains a magic 722 * value which we can use to detect that the interface is good. 723 */ 724 NM_OS_MAGIC magic; 725 uint32_t na_flags; /* enabled, and other flags */ 726 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. 727 * useful during initialization 728 */ 729 #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ 730 #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when 731 * forwarding packets coming from this 732 * interface 733 */ 734 #define NAF_MEM_OWNER 8 /* the adapter uses its own memory area 735 * that cannot be changed 736 */ 737 #define NAF_NATIVE 16 /* the adapter is native. 738 * Virtual ports (non persistent vale ports, 739 * pipes, monitors...) should never use 740 * this flag. 741 */ 742 #define NAF_NETMAP_ON 32 /* netmap is active (either native or 743 * emulated). Where possible (e.g. FreeBSD) 744 * IFCAP_NETMAP also mirrors this flag. 745 */ 746 #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */ 747 #define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */ 748 /* free */ 749 #define NAF_MOREFRAG 512 /* the adapter supports NS_MOREFRAG */ 750 #define NAF_OFFSETS 1024 /* the adapter supports the slot offsets */ 751 #define NAF_HOST_ALL 2048 /* the adapter wants as many host rings as hw */ 752 #define NAF_ZOMBIE (1U<<30) /* the nic driver has been unloaded */ 753 #define NAF_BUSY (1U<<31) /* the adapter is used internally and 754 * cannot be registered from userspace 755 */ 756 int active_fds; /* number of user-space descriptors using this 757 interface, which is equal to the number of 758 struct netmap_if objs in the mapped region. */ 759 760 u_int num_rx_rings; /* number of adapter receive rings */ 761 u_int num_tx_rings; /* number of adapter transmit rings */ 762 u_int num_host_rx_rings; /* number of host receive rings */ 763 u_int num_host_tx_rings; /* number of host transmit rings */ 764 765 u_int num_tx_desc; /* number of descriptor in each queue */ 766 u_int num_rx_desc; 767 768 /* tx_rings and rx_rings are private but allocated as a 769 * contiguous chunk of memory. Each array has N+K entries, 770 * N for the hardware rings and K for the host rings. 771 */ 772 struct netmap_kring **tx_rings; /* array of TX rings. */ 773 struct netmap_kring **rx_rings; /* array of RX rings. */ 774 775 void *tailroom; /* space below the rings array */ 776 /* (used for leases) */ 777 778 779 NM_SELINFO_T si[NR_TXRX]; /* global wait queues */ 780 781 /* count users of the global wait queues */ 782 int si_users[NR_TXRX]; 783 784 void *pdev; /* used to store pci device */ 785 786 /* copy of if_qflush and if_transmit pointers, to intercept 787 * packets from the network stack when netmap is active. 788 */ 789 int (*if_transmit)(if_t, struct mbuf *); 790 791 /* copy of if_input for netmap_send_up() */ 792 void (*if_input)(if_t, struct mbuf *); 793 794 /* Back reference to the parent ifnet struct. Used for 795 * hardware ports (emulated netmap included). */ 796 if_t ifp; /* adapter is if_getsoftc(ifp) */ 797 798 /*---- callbacks for this netmap adapter -----*/ 799 /* 800 * nm_dtor() is the cleanup routine called when destroying 801 * the adapter. 802 * Called with NMG_LOCK held. 803 * 804 * nm_register() is called on NIOCREGIF and close() to enter 805 * or exit netmap mode on the NIC 806 * Called with NNG_LOCK held. 807 * 808 * nm_txsync() pushes packets to the underlying hw/switch 809 * 810 * nm_rxsync() collects packets from the underlying hw/switch 811 * 812 * nm_config() returns configuration information from the OS 813 * Called with NMG_LOCK held. 814 * 815 * nm_bufcfg() 816 * the purpose of this callback is to fill the kring->hwbuf_len 817 * (l) and kring->buf_align fields. The l value is most important 818 * for RX rings, where we want to disallow writes outside of the 819 * netmap buffer. The l value must be computed taking into account 820 * the stipulated max_offset (o), possibly increased if there are 821 * alignment constraints, the maxframe (m), if known, and the 822 * current NETMAP_BUF_SIZE (b) of the memory region used by the 823 * adapter. We want the largest supported l such that o + l <= b. 824 * If m is known to be <= b - o, the callback may also choose the 825 * largest l <= m, ignoring the offset. The buf_align field is 826 * most important for TX rings when there are offsets. The user 827 * will see this value in the ring->buf_align field. Misaligned 828 * offsets will cause the corresponding packets to be silently 829 * dropped. 830 * 831 * nm_krings_create() create and init the tx_rings and 832 * rx_rings arrays of kring structures. In particular, 833 * set the nm_sync callbacks for each ring. 834 * There is no need to also allocate the corresponding 835 * netmap_rings, since netmap_mem_rings_create() will always 836 * be called to provide the missing ones. 837 * Called with NNG_LOCK held. 838 * 839 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings 840 * arrays 841 * Called with NMG_LOCK held. 842 * 843 * nm_notify() is used to act after data have become available 844 * (or the stopped state of the ring has changed) 845 * For hw devices this is typically a selwakeup(), 846 * but for NIC/host ports attached to a switch (or vice-versa) 847 * we also need to invoke the 'txsync' code downstream. 848 * This callback pointer is actually used only to initialize 849 * kring->nm_notify. 850 * Return values are the same as for netmap_rx_irq(). 851 */ 852 void (*nm_dtor)(struct netmap_adapter *); 853 854 int (*nm_register)(struct netmap_adapter *, int onoff); 855 void (*nm_intr)(struct netmap_adapter *, int onoff); 856 857 int (*nm_txsync)(struct netmap_kring *kring, int flags); 858 int (*nm_rxsync)(struct netmap_kring *kring, int flags); 859 int (*nm_notify)(struct netmap_kring *kring, int flags); 860 int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target); 861 #define NAF_FORCE_READ 1 862 #define NAF_FORCE_RECLAIM 2 863 #define NAF_CAN_FORWARD_DOWN 4 864 /* return configuration information */ 865 int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info); 866 int (*nm_krings_create)(struct netmap_adapter *); 867 void (*nm_krings_delete)(struct netmap_adapter *); 868 /* 869 * nm_bdg_attach() initializes the na_vp field to point 870 * to an adapter that can be attached to a VALE switch. If the 871 * current adapter is already a VALE port, na_vp is simply a cast; 872 * otherwise, na_vp points to a netmap_bwrap_adapter. 873 * If applicable, this callback also initializes na_hostvp, 874 * that can be used to connect the adapter host rings to the 875 * switch. 876 * Called with NMG_LOCK held. 877 * 878 * nm_bdg_ctl() is called on the actual attach/detach to/from 879 * to/from the switch, to perform adapter-specific 880 * initializations 881 * Called with NMG_LOCK held. 882 */ 883 int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *, 884 struct nm_bridge *); 885 int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *); 886 887 /* adapter used to attach this adapter to a VALE switch (if any) */ 888 struct netmap_vp_adapter *na_vp; 889 /* adapter used to attach the host rings of this adapter 890 * to a VALE switch (if any) */ 891 struct netmap_vp_adapter *na_hostvp; 892 893 /* standard refcount to control the lifetime of the adapter 894 * (it should be equal to the lifetime of the corresponding ifp) 895 */ 896 int na_refcount; 897 898 /* memory allocator (opaque) 899 * We also cache a pointer to the lut_entry for translating 900 * buffer addresses, the total number of buffers and the buffer size. 901 */ 902 struct netmap_mem_d *nm_mem; 903 struct netmap_mem_d *nm_mem_prev; 904 struct netmap_lut na_lut; 905 906 /* additional information attached to this adapter 907 * by other netmap subsystems. Currently used by 908 * bwrap, LINUX/v1000 and ptnetmap 909 */ 910 void *na_private; 911 912 /* array of pipes that have this adapter as a parent */ 913 struct netmap_pipe_adapter **na_pipes; 914 int na_next_pipe; /* next free slot in the array */ 915 int na_max_pipes; /* size of the array */ 916 917 /* Offset of ethernet header for each packet. */ 918 u_int virt_hdr_len; 919 920 /* Max number of bytes that the NIC can store in the buffer 921 * referenced by each RX descriptor. This translates to the maximum 922 * bytes that a single netmap slot can reference. Larger packets 923 * require NS_MOREFRAG support. */ 924 unsigned rx_buf_maxsize; 925 926 char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */ 927 928 #ifdef WITH_MONITOR 929 unsigned long monitor_id; /* debugging */ 930 #endif 931 }; 932 933 static __inline u_int 934 nma_get_ndesc(struct netmap_adapter *na, enum txrx t) 935 { 936 return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc); 937 } 938 939 static __inline void 940 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v) 941 { 942 if (t == NR_TX) 943 na->num_tx_desc = v; 944 else 945 na->num_rx_desc = v; 946 } 947 948 static __inline u_int 949 nma_get_nrings(struct netmap_adapter *na, enum txrx t) 950 { 951 return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings); 952 } 953 954 static __inline u_int 955 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t) 956 { 957 return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings); 958 } 959 960 static __inline void 961 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 962 { 963 if (t == NR_TX) 964 na->num_tx_rings = v; 965 else 966 na->num_rx_rings = v; 967 } 968 969 static __inline void 970 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 971 { 972 if (t == NR_TX) 973 na->num_host_tx_rings = v; 974 else 975 na->num_host_rx_rings = v; 976 } 977 978 static __inline struct netmap_kring** 979 NMR(struct netmap_adapter *na, enum txrx t) 980 { 981 return (t == NR_TX ? na->tx_rings : na->rx_rings); 982 } 983 984 int nma_intr_enable(struct netmap_adapter *na, int onoff); 985 986 /* 987 * If the NIC is owned by the kernel 988 * (i.e., bridge), neither another bridge nor user can use it; 989 * if the NIC is owned by a user, only users can share it. 990 * Evaluation must be done under NMG_LOCK(). 991 */ 992 #define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY) 993 #define NETMAP_OWNED_BY_ANY(na) \ 994 (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0)) 995 996 /* 997 * derived netmap adapters for various types of ports 998 */ 999 struct netmap_vp_adapter { /* VALE software port */ 1000 struct netmap_adapter up; 1001 1002 /* 1003 * Bridge support: 1004 * 1005 * bdg_port is the port number used in the bridge; 1006 * na_bdg points to the bridge this NA is attached to. 1007 */ 1008 int bdg_port; 1009 struct nm_bridge *na_bdg; 1010 int retry; 1011 int autodelete; /* remove the ifp on last reference */ 1012 1013 /* Maximum Frame Size, used in bdg_mismatch_datapath() */ 1014 u_int mfs; 1015 /* Last source MAC on this port */ 1016 uint64_t last_smac; 1017 }; 1018 1019 1020 struct netmap_hw_adapter { /* physical device */ 1021 struct netmap_adapter up; 1022 1023 #ifdef linux 1024 struct net_device_ops nm_ndo; 1025 struct ethtool_ops nm_eto; 1026 #endif 1027 const struct ethtool_ops* save_ethtool; 1028 1029 int (*nm_hw_register)(struct netmap_adapter *, int onoff); 1030 }; 1031 1032 #ifdef WITH_GENERIC 1033 /* Mitigation support. */ 1034 struct nm_generic_mit { 1035 struct hrtimer mit_timer; 1036 int mit_pending; 1037 int mit_ring_idx; /* index of the ring being mitigated */ 1038 struct netmap_adapter *mit_na; /* backpointer */ 1039 }; 1040 1041 struct netmap_generic_adapter { /* emulated device */ 1042 struct netmap_hw_adapter up; 1043 1044 /* Pointer to a previously used netmap adapter. */ 1045 struct netmap_adapter *prev; 1046 1047 /* Emulated netmap adapters support: 1048 * - mit implements rx interrupt mitigation; 1049 */ 1050 struct nm_generic_mit *mit; 1051 #ifdef linux 1052 netdev_tx_t (*save_start_xmit)(struct mbuf *, if_t); 1053 #endif 1054 /* Is the adapter able to use multiple RX slots to scatter 1055 * each packet pushed up by the driver? */ 1056 int rxsg; 1057 1058 /* Is the transmission path controlled by a netmap-aware 1059 * device queue (i.e. qdisc on linux)? */ 1060 int txqdisc; 1061 }; 1062 #endif /* WITH_GENERIC */ 1063 1064 static __inline u_int 1065 netmap_real_rings(struct netmap_adapter *na, enum txrx t) 1066 { 1067 return nma_get_nrings(na, t) + 1068 !!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t); 1069 } 1070 1071 /* account for fake rings */ 1072 static __inline u_int 1073 netmap_all_rings(struct netmap_adapter *na, enum txrx t) 1074 { 1075 return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t)); 1076 } 1077 1078 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na, 1079 struct nm_bridge *); 1080 struct nm_bdg_polling_state; 1081 /* 1082 * Bridge wrapper for non VALE ports attached to a VALE switch. 1083 * 1084 * The real device must already have its own netmap adapter (hwna). 1085 * The bridge wrapper and the hwna adapter share the same set of 1086 * netmap rings and buffers, but they have two separate sets of 1087 * krings descriptors, with tx/rx meanings swapped: 1088 * 1089 * netmap 1090 * bwrap krings rings krings hwna 1091 * +------+ +------+ +-----+ +------+ +------+ 1092 * |tx_rings->| |\ /| |----| |<-tx_rings| 1093 * | | +------+ \ / +-----+ +------+ | | 1094 * | | X | | 1095 * | | / \ | | 1096 * | | +------+/ \+-----+ +------+ | | 1097 * |rx_rings->| | | |----| |<-rx_rings| 1098 * | | +------+ +-----+ +------+ | | 1099 * +------+ +------+ 1100 * 1101 * - packets coming from the bridge go to the brwap rx rings, 1102 * which are also the hwna tx rings. The bwrap notify callback 1103 * will then complete the hwna tx (see netmap_bwrap_notify). 1104 * 1105 * - packets coming from the outside go to the hwna rx rings, 1106 * which are also the bwrap tx rings. The (overwritten) hwna 1107 * notify method will then complete the bridge tx 1108 * (see netmap_bwrap_intr_notify). 1109 * 1110 * The bridge wrapper may optionally connect the hwna 'host' rings 1111 * to the bridge. This is done by using a second port in the 1112 * bridge and connecting it to the 'host' netmap_vp_adapter 1113 * contained in the netmap_bwrap_adapter. The brwap host adapter 1114 * cross-links the hwna host rings in the same way as shown above. 1115 * 1116 * - packets coming from the bridge and directed to the host stack 1117 * are handled by the bwrap host notify callback 1118 * (see netmap_bwrap_host_notify) 1119 * 1120 * - packets coming from the host stack are still handled by the 1121 * overwritten hwna notify callback (netmap_bwrap_intr_notify), 1122 * but are diverted to the host adapter depending on the ring number. 1123 * 1124 */ 1125 struct netmap_bwrap_adapter { 1126 struct netmap_vp_adapter up; 1127 struct netmap_vp_adapter host; /* for host rings */ 1128 struct netmap_adapter *hwna; /* the underlying device */ 1129 1130 /* 1131 * When we attach a physical interface to the bridge, we 1132 * allow the controlling process to terminate, so we need 1133 * a place to store the n_detmap_priv_d data structure. 1134 * This is only done when physical interfaces 1135 * are attached to a bridge. 1136 */ 1137 struct netmap_priv_d *na_kpriv; 1138 struct nm_bdg_polling_state *na_polling_state; 1139 /* we overwrite the hwna->na_vp pointer, so we save 1140 * here its original value, to be restored at detach 1141 */ 1142 struct netmap_vp_adapter *saved_na_vp; 1143 int (*nm_intr_notify)(struct netmap_kring *kring, int flags); 1144 }; 1145 int nm_is_bwrap(struct netmap_adapter *na); 1146 int nm_bdg_polling(struct nmreq_header *hdr); 1147 1148 int netmap_bdg_attach(struct nmreq_header *hdr, void *auth_token); 1149 int netmap_bdg_detach(struct nmreq_header *hdr, void *auth_token); 1150 #ifdef WITH_VALE 1151 int netmap_vale_list(struct nmreq_header *hdr); 1152 int netmap_vi_create(struct nmreq_header *hdr, int); 1153 int nm_vi_create(struct nmreq_header *); 1154 int nm_vi_destroy(const char *name); 1155 #else /* !WITH_VALE */ 1156 #define netmap_vi_create(hdr, a) (EOPNOTSUPP) 1157 #endif /* WITH_VALE */ 1158 1159 #ifdef WITH_PIPES 1160 1161 #define NM_MAXPIPES 64 /* max number of pipes per adapter */ 1162 1163 struct netmap_pipe_adapter { 1164 /* pipe identifier is up.name */ 1165 struct netmap_adapter up; 1166 1167 #define NM_PIPE_ROLE_MASTER 0x1 1168 #define NM_PIPE_ROLE_SLAVE 0x2 1169 int role; /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */ 1170 1171 struct netmap_adapter *parent; /* adapter that owns the memory */ 1172 struct netmap_pipe_adapter *peer; /* the other end of the pipe */ 1173 int peer_ref; /* 1 iff we are holding a ref to the peer */ 1174 if_t parent_ifp; /* maybe null */ 1175 1176 u_int parent_slot; /* index in the parent pipe array */ 1177 }; 1178 1179 #endif /* WITH_PIPES */ 1180 1181 #ifdef WITH_NMNULL 1182 struct netmap_null_adapter { 1183 struct netmap_adapter up; 1184 }; 1185 #endif /* WITH_NMNULL */ 1186 1187 1188 /* return slots reserved to rx clients; used in drivers */ 1189 static inline uint32_t 1190 nm_kr_rxspace(struct netmap_kring *k) 1191 { 1192 int space = k->nr_hwtail - k->nr_hwcur; 1193 if (space < 0) 1194 space += k->nkr_num_slots; 1195 nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail); 1196 1197 return space; 1198 } 1199 1200 /* return slots reserved to tx clients */ 1201 #define nm_kr_txspace(_k) nm_kr_rxspace(_k) 1202 1203 1204 /* True if no space in the tx ring, only valid after txsync_prologue */ 1205 static inline int 1206 nm_kr_txempty(struct netmap_kring *kring) 1207 { 1208 return kring->rhead == kring->nr_hwtail; 1209 } 1210 1211 /* True if no more completed slots in the rx ring, only valid after 1212 * rxsync_prologue */ 1213 #define nm_kr_rxempty(_k) nm_kr_txempty(_k) 1214 1215 /* True if the application needs to wait for more space on the ring 1216 * (more received packets or more free tx slots). 1217 * Only valid after *xsync_prologue. */ 1218 static inline int 1219 nm_kr_wouldblock(struct netmap_kring *kring) 1220 { 1221 return kring->rcur == kring->nr_hwtail; 1222 } 1223 1224 /* 1225 * protect against multiple threads using the same ring. 1226 * also check that the ring has not been stopped or locked 1227 */ 1228 #define NM_KR_BUSY 1 /* some other thread is syncing the ring */ 1229 #define NM_KR_STOPPED 2 /* unbounded stop (ifconfig down or driver unload) */ 1230 #define NM_KR_LOCKED 3 /* bounded, brief stop for mutual exclusion */ 1231 1232 1233 /* release the previously acquired right to use the *sync() methods of the ring */ 1234 static __inline void nm_kr_put(struct netmap_kring *kr) 1235 { 1236 NM_ATOMIC_CLEAR(&kr->nr_busy); 1237 } 1238 1239 1240 /* true if the ifp that backed the adapter has disappeared (e.g., the 1241 * driver has been unloaded) 1242 */ 1243 static inline int nm_iszombie(struct netmap_adapter *na); 1244 1245 /* try to obtain exclusive right to issue the *sync() operations on the ring. 1246 * The right is obtained and must be later relinquished via nm_kr_put() if and 1247 * only if nm_kr_tryget() returns 0. 1248 * If can_sleep is 1 there are only two other possible outcomes: 1249 * - the function returns NM_KR_BUSY 1250 * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr 1251 * (if non-null) 1252 * In both cases the caller will typically skip the ring, possibly collecting 1253 * errors along the way. 1254 * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep. 1255 * In the latter case, the function may also return NM_KR_LOCKED and leave *perr 1256 * untouched: ideally, the caller should try again at a later time. 1257 */ 1258 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr) 1259 { 1260 int busy = 1, stopped; 1261 /* check a first time without taking the lock 1262 * to avoid starvation for nm_kr_get() 1263 */ 1264 retry: 1265 stopped = kr->nkr_stopped; 1266 if (unlikely(stopped)) { 1267 goto stop; 1268 } 1269 busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy); 1270 /* we should not return NM_KR_BUSY if the ring was 1271 * actually stopped, so check another time after 1272 * the barrier provided by the atomic operation 1273 */ 1274 stopped = kr->nkr_stopped; 1275 if (unlikely(stopped)) { 1276 goto stop; 1277 } 1278 1279 if (unlikely(nm_iszombie(kr->na))) { 1280 stopped = NM_KR_STOPPED; 1281 goto stop; 1282 } 1283 1284 return unlikely(busy) ? NM_KR_BUSY : 0; 1285 1286 stop: 1287 if (!busy) 1288 nm_kr_put(kr); 1289 if (stopped == NM_KR_STOPPED) { 1290 /* if POLLERR is defined we want to use it to simplify netmap_poll(). 1291 * Otherwise, any non-zero value will do. 1292 */ 1293 #ifdef POLLERR 1294 #define NM_POLLERR POLLERR 1295 #else 1296 #define NM_POLLERR 1 1297 #endif /* POLLERR */ 1298 if (perr) 1299 *perr |= NM_POLLERR; 1300 #undef NM_POLLERR 1301 } else if (can_sleep) { 1302 tsleep(kr, 0, "NM_KR_TRYGET", 4); 1303 goto retry; 1304 } 1305 return stopped; 1306 } 1307 1308 /* put the ring in the 'stopped' state and wait for the current user (if any) to 1309 * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED 1310 */ 1311 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped) 1312 { 1313 kr->nkr_stopped = stopped; 1314 while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)) 1315 tsleep(kr, 0, "NM_KR_GET", 4); 1316 } 1317 1318 /* restart a ring after a stop */ 1319 static __inline void nm_kr_start(struct netmap_kring *kr) 1320 { 1321 kr->nkr_stopped = 0; 1322 nm_kr_put(kr); 1323 } 1324 1325 1326 /* 1327 * The following functions are used by individual drivers to 1328 * support netmap operation. 1329 * 1330 * netmap_attach() initializes a struct netmap_adapter, allocating the 1331 * struct netmap_ring's and the struct selinfo. 1332 * 1333 * netmap_detach() frees the memory allocated by netmap_attach(). 1334 * 1335 * netmap_transmit() replaces the if_transmit routine of the interface, 1336 * and is used to intercept packets coming from the stack. 1337 * 1338 * netmap_load_map/netmap_reload_map are helper routines to set/reset 1339 * the dmamap for a packet buffer 1340 * 1341 * netmap_reset() is a helper routine to be called in the hw driver 1342 * when reinitializing a ring. It should not be called by 1343 * virtual ports (vale, pipes, monitor) 1344 */ 1345 int netmap_attach(struct netmap_adapter *); 1346 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg); 1347 void netmap_detach(if_t); 1348 int netmap_transmit(if_t, struct mbuf *); 1349 struct netmap_slot *netmap_reset(struct netmap_adapter *na, 1350 enum txrx tx, u_int n, u_int new_cur); 1351 int netmap_ring_reinit(struct netmap_kring *); 1352 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *); 1353 1354 /* Return codes for netmap_*x_irq. */ 1355 enum { 1356 /* Driver should do normal interrupt processing, e.g. because 1357 * the interface is not in netmap mode. */ 1358 NM_IRQ_PASS = 0, 1359 /* Port is in netmap mode, and the interrupt work has been 1360 * completed. The driver does not have to notify netmap 1361 * again before the next interrupt. */ 1362 NM_IRQ_COMPLETED = -1, 1363 /* Port is in netmap mode, but the interrupt work has not been 1364 * completed. The driver has to make sure netmap will be 1365 * notified again soon, even if no more interrupts come (e.g. 1366 * on Linux the driver should not call napi_complete()). */ 1367 NM_IRQ_RESCHED = -2, 1368 }; 1369 1370 /* default functions to handle rx/tx interrupts */ 1371 int netmap_rx_irq(if_t, u_int, u_int *); 1372 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) 1373 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done); 1374 1375 1376 #ifdef WITH_VALE 1377 /* functions used by external modules to interface with VALE */ 1378 #define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp) 1379 #define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp) 1380 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp) 1381 #define netmap_bdg_idx(_vp) ((_vp)->bdg_port) 1382 const char *netmap_bdg_name(struct netmap_vp_adapter *); 1383 #else /* !WITH_VALE */ 1384 #define netmap_vp_to_ifp(_vp) NULL 1385 #define netmap_ifp_to_vp(_ifp) NULL 1386 #define netmap_ifp_to_host_vp(_ifp) NULL 1387 #define netmap_bdg_idx(_vp) -1 1388 #endif /* WITH_VALE */ 1389 1390 static inline int 1391 nm_netmap_on(struct netmap_adapter *na) 1392 { 1393 return na && na->na_flags & NAF_NETMAP_ON; 1394 } 1395 1396 static inline int 1397 nm_native_on(struct netmap_adapter *na) 1398 { 1399 return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE); 1400 } 1401 1402 static inline struct netmap_kring * 1403 netmap_kring_on(struct netmap_adapter *na, u_int q, enum txrx t) 1404 { 1405 struct netmap_kring *kring = NULL; 1406 1407 if (!nm_native_on(na)) 1408 return NULL; 1409 1410 if (t == NR_RX && q < na->num_rx_rings) 1411 kring = na->rx_rings[q]; 1412 else if (t == NR_TX && q < na->num_tx_rings) 1413 kring = na->tx_rings[q]; 1414 else 1415 return NULL; 1416 1417 return (kring->nr_mode == NKR_NETMAP_ON) ? kring : NULL; 1418 } 1419 1420 static inline int 1421 nm_iszombie(struct netmap_adapter *na) 1422 { 1423 return na == NULL || (na->na_flags & NAF_ZOMBIE); 1424 } 1425 1426 void nm_set_native_flags(struct netmap_adapter *); 1427 void nm_clear_native_flags(struct netmap_adapter *); 1428 1429 void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff); 1430 1431 /* 1432 * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap 1433 * kthreads. 1434 * We need netmap_ring* parameter, because in ptnetmap it is decoupled 1435 * from host kring. 1436 * The user-space ring pointers (head/cur/tail) are shared through 1437 * CSB between host and guest. 1438 */ 1439 1440 /* 1441 * validates parameters in the ring/kring, returns a value for head 1442 * If any error, returns ring_size to force a reinit. 1443 */ 1444 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *); 1445 1446 1447 /* 1448 * validates parameters in the ring/kring, returns a value for head 1449 * If any error, returns ring_size lim to force a reinit. 1450 */ 1451 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *); 1452 1453 1454 /* check/fix address and len in tx rings */ 1455 #if 1 /* debug version */ 1456 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1457 if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \ 1458 nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d", \ 1459 kring->ring_id, nm_i, slot->buf_idx, len); \ 1460 if (_l > NETMAP_BUF_SIZE(_na)) \ 1461 _l = NETMAP_BUF_SIZE(_na); \ 1462 } } while (0) 1463 #else /* no debug version */ 1464 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1465 if (_l > NETMAP_BUF_SIZE(_na)) \ 1466 _l = NETMAP_BUF_SIZE(_na); \ 1467 } while (0) 1468 #endif 1469 1470 #define NM_CHECK_ADDR_LEN_OFF(na_, l_, o_) do { \ 1471 if ((l_) + (o_) < (l_) || \ 1472 (l_) + (o_) > NETMAP_BUF_SIZE(na_)) { \ 1473 (l_) = NETMAP_BUF_SIZE(na_) - (o_); \ 1474 } } while (0) 1475 1476 1477 /*---------------------------------------------------------------*/ 1478 /* 1479 * Support routines used by netmap subsystems 1480 * (native drivers, VALE, generic, pipes, monitors, ...) 1481 */ 1482 1483 1484 /* common routine for all functions that create a netmap adapter. It performs 1485 * two main tasks: 1486 * - if the na points to an ifp, mark the ifp as netmap capable 1487 * using na as its native adapter; 1488 * - provide defaults for the setup callbacks and the memory allocator 1489 */ 1490 int netmap_attach_common(struct netmap_adapter *); 1491 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information 1492 * coming from a struct nmreq_register 1493 */ 1494 int netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr); 1495 /* update the ring parameters (number and size of tx and rx rings). 1496 * It calls the nm_config callback, if available. 1497 */ 1498 int netmap_update_config(struct netmap_adapter *na); 1499 /* create and initialize the common fields of the krings array. 1500 * using the information that must be already available in the na. 1501 * tailroom can be used to request the allocation of additional 1502 * tailroom bytes after the krings array. This is used by 1503 * netmap_vp_adapter's (i.e., VALE ports) to make room for 1504 * leasing-related data structures 1505 */ 1506 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom); 1507 /* deletes the kring array of the adapter. The array must have 1508 * been created using netmap_krings_create 1509 */ 1510 void netmap_krings_delete(struct netmap_adapter *na); 1511 1512 int netmap_hw_krings_create(struct netmap_adapter *na); 1513 void netmap_hw_krings_delete(struct netmap_adapter *na); 1514 1515 /* set the stopped/enabled status of ring 1516 * When stopping, they also wait for all current activity on the ring to 1517 * terminate. The status change is then notified using the na nm_notify 1518 * callback. 1519 */ 1520 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped); 1521 /* set the stopped/enabled status of all rings of the adapter. */ 1522 void netmap_set_all_rings(struct netmap_adapter *, int stopped); 1523 /* convenience wrappers for netmap_set_all_rings */ 1524 void netmap_disable_all_rings(if_t); 1525 void netmap_enable_all_rings(if_t); 1526 1527 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu); 1528 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 1529 struct nmreq_header *); 1530 void netmap_do_unregif(struct netmap_priv_d *priv); 1531 1532 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); 1533 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1534 if_t *ifp, struct netmap_mem_d *nmd, int create); 1535 void netmap_unget_na(struct netmap_adapter *na, if_t ifp); 1536 int netmap_get_hw_na(if_t ifp, 1537 struct netmap_mem_d *nmd, struct netmap_adapter **na); 1538 void netmap_mem_restore(struct netmap_adapter *na); 1539 1540 #ifdef WITH_VALE 1541 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring, 1542 struct netmap_vp_adapter *, void *private_data); 1543 1544 /* these are redefined in case of no VALE support */ 1545 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1546 struct netmap_mem_d *nmd, int create); 1547 void *netmap_vale_create(const char *bdg_name, int *return_status); 1548 int netmap_vale_destroy(const char *bdg_name, void *auth_token); 1549 1550 extern unsigned int vale_max_bridges; 1551 1552 #else /* !WITH_VALE */ 1553 #define netmap_bdg_learning(_1, _2, _3, _4) 0 1554 #define netmap_get_vale_na(_1, _2, _3, _4) 0 1555 #define netmap_bdg_create(_1, _2) NULL 1556 #define netmap_bdg_destroy(_1, _2) 0 1557 #define vale_max_bridges 1 1558 #endif /* !WITH_VALE */ 1559 1560 #ifdef WITH_PIPES 1561 /* max number of pipes per device */ 1562 #define NM_MAXPIPES 64 /* XXX this should probably be a sysctl */ 1563 void netmap_pipe_dealloc(struct netmap_adapter *); 1564 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1565 struct netmap_mem_d *nmd, int create); 1566 #else /* !WITH_PIPES */ 1567 #define NM_MAXPIPES 0 1568 #define netmap_pipe_alloc(_1, _2) 0 1569 #define netmap_pipe_dealloc(_1) 1570 #define netmap_get_pipe_na(hdr, _2, _3, _4) \ 1571 ((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0) 1572 #endif 1573 1574 #ifdef WITH_MONITOR 1575 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1576 struct netmap_mem_d *nmd, int create); 1577 void netmap_monitor_stop(struct netmap_adapter *na); 1578 #else 1579 #define netmap_get_monitor_na(hdr, _2, _3, _4) \ 1580 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1581 #endif 1582 1583 #ifdef WITH_NMNULL 1584 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1585 struct netmap_mem_d *nmd, int create); 1586 #else /* !WITH_NMNULL */ 1587 #define netmap_get_null_na(hdr, _2, _3, _4) \ 1588 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1589 #endif /* WITH_NMNULL */ 1590 1591 #ifdef CONFIG_NET_NS 1592 struct net *netmap_bns_get(void); 1593 void netmap_bns_put(struct net *); 1594 void netmap_bns_getbridges(struct nm_bridge **, u_int *); 1595 #else 1596 extern struct nm_bridge *nm_bridges; 1597 #define netmap_bns_get() 1598 #define netmap_bns_put(_1) 1599 #define netmap_bns_getbridges(b, n) \ 1600 do { *b = nm_bridges; *n = vale_max_bridges; } while (0) 1601 #endif 1602 1603 /* Various prototypes */ 1604 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td); 1605 int netmap_init(void); 1606 void netmap_fini(void); 1607 int netmap_get_memory(struct netmap_priv_d* p); 1608 void netmap_dtor(void *data); 1609 1610 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1611 struct thread *, int nr_body_is_user); 1612 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1613 struct thread *td); 1614 size_t nmreq_size_by_type(uint16_t nr_reqtype); 1615 1616 /* netmap_adapter creation/destruction */ 1617 1618 // #define NM_DEBUG_PUTGET 1 1619 1620 #ifdef NM_DEBUG_PUTGET 1621 1622 #define NM_DBG(f) __##f 1623 1624 void __netmap_adapter_get(struct netmap_adapter *na); 1625 1626 #define netmap_adapter_get(na) \ 1627 do { \ 1628 struct netmap_adapter *__na = na; \ 1629 __netmap_adapter_get(__na); \ 1630 nm_prinf("getting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount); \ 1631 } while (0) 1632 1633 int __netmap_adapter_put(struct netmap_adapter *na); 1634 1635 #define netmap_adapter_put(na) \ 1636 ({ \ 1637 struct netmap_adapter *__na = na; \ 1638 if (__na == NULL) \ 1639 nm_prinf("putting NULL"); \ 1640 else \ 1641 nm_prinf("putting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount - 1); \ 1642 __netmap_adapter_put(__na); \ 1643 }) 1644 1645 #else /* !NM_DEBUG_PUTGET */ 1646 1647 #define NM_DBG(f) f 1648 void netmap_adapter_get(struct netmap_adapter *na); 1649 int netmap_adapter_put(struct netmap_adapter *na); 1650 1651 #endif /* !NM_DEBUG_PUTGET */ 1652 1653 1654 /* 1655 * module variables 1656 */ 1657 #define NETMAP_BUF_BASE(_na) ((_na)->na_lut.lut[0].vaddr) 1658 #define NETMAP_BUF_SIZE(_na) ((_na)->na_lut.objsize) 1659 extern int netmap_no_pendintr; 1660 extern int netmap_verbose; 1661 #ifdef CONFIG_NETMAP_DEBUG 1662 extern int netmap_debug; /* for debugging */ 1663 #else /* !CONFIG_NETMAP_DEBUG */ 1664 #define netmap_debug (0) 1665 #endif /* !CONFIG_NETMAP_DEBUG */ 1666 enum { /* debug flags */ 1667 NM_DEBUG_ON = 1, /* generic debug messages */ 1668 NM_DEBUG_HOST = 0x2, /* debug host stack */ 1669 NM_DEBUG_RXSYNC = 0x10, /* debug on rxsync/txsync */ 1670 NM_DEBUG_TXSYNC = 0x20, 1671 NM_DEBUG_RXINTR = 0x100, /* debug on rx/tx intr (driver) */ 1672 NM_DEBUG_TXINTR = 0x200, 1673 NM_DEBUG_NIC_RXSYNC = 0x1000, /* debug on rx/tx intr (driver) */ 1674 NM_DEBUG_NIC_TXSYNC = 0x2000, 1675 NM_DEBUG_MEM = 0x4000, /* verbose memory allocations/deallocations */ 1676 NM_DEBUG_VALE = 0x8000, /* debug messages from memory allocators */ 1677 NM_DEBUG_BDG = NM_DEBUG_VALE, 1678 }; 1679 1680 extern int netmap_txsync_retry; 1681 extern int netmap_generic_hwcsum; 1682 extern int netmap_generic_mit; 1683 extern int netmap_generic_ringsize; 1684 extern int netmap_generic_rings; 1685 #ifdef linux 1686 extern int netmap_generic_txqdisc; 1687 #endif 1688 1689 /* 1690 * NA returns a pointer to the struct netmap adapter from the ifp. 1691 * The if_getnetmapadapter() and if_setnetmapadapter() helpers are 1692 * os-specific and must be defined in glue code. 1693 */ 1694 #define NA(_ifp) (if_getnetmapadapter(_ifp)) 1695 1696 /* 1697 * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA 1698 * based on the if_setnetmapadapter() setter function. 1699 * Glue code may override this by defining its own NM_ATTACH_NA 1700 */ 1701 #ifndef NM_ATTACH_NA 1702 /* 1703 * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we 1704 * overload another pointer in the netdev. 1705 * 1706 * We check if NA(ifp) is set and its first element has a related 1707 * magic value. The capenable is within the struct netmap_adapter. 1708 */ 1709 #define NETMAP_MAGIC 0x52697a7a 1710 1711 #define NM_NA_VALID(ifp) (NA(ifp) && \ 1712 ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) 1713 1714 #define NM_ATTACH_NA(ifp, na) do { \ 1715 if_setnetmapadapter(ifp, na); \ 1716 if (NA(ifp)) \ 1717 NA(ifp)->magic = \ 1718 ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC; \ 1719 } while(0) 1720 #define NM_RESTORE_NA(ifp, na) if_setnetmapadapter(ifp, na); 1721 1722 #define NM_DETACH_NA(ifp) do { if_setnetmapadapter(ifp, NULL); } while (0) 1723 #define NM_NA_CLASH(ifp) (NA(ifp) && !NM_NA_VALID(ifp)) 1724 #endif /* !NM_ATTACH_NA */ 1725 1726 1727 #define NM_IS_NATIVE(ifp) (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor) 1728 1729 #if defined(__FreeBSD__) 1730 extern int netmap_port_numa_affinity; 1731 1732 static inline int 1733 nm_iommu_group_id(struct netmap_adapter *na) 1734 { 1735 return (-1); 1736 } 1737 1738 static inline int 1739 nm_numa_domain(struct netmap_adapter *na) 1740 { 1741 int domain; 1742 1743 /* 1744 * If the system has only one NUMA domain, don't bother distinguishing 1745 * between IF_NODOM and domain 0. 1746 */ 1747 if (vm_ndomains == 1 || netmap_port_numa_affinity == 0) 1748 return (-1); 1749 domain = if_getnumadomain(na->ifp); 1750 if (domain == IF_NODOM) 1751 domain = -1; 1752 return (domain); 1753 } 1754 1755 /* Callback invoked by the dma machinery after a successful dmamap_load */ 1756 static void netmap_dmamap_cb(__unused void *arg, 1757 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) 1758 { 1759 } 1760 1761 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. 1762 * XXX can we do it without a callback ? 1763 */ 1764 static inline int 1765 netmap_load_map(struct netmap_adapter *na, 1766 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1767 { 1768 if (map) 1769 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1770 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1771 return 0; 1772 } 1773 1774 static inline void 1775 netmap_unload_map(struct netmap_adapter *na, 1776 bus_dma_tag_t tag, bus_dmamap_t map) 1777 { 1778 if (map) 1779 bus_dmamap_unload(tag, map); 1780 } 1781 1782 #define netmap_sync_map(na, tag, map, sz, t) 1783 1784 /* update the map when a buffer changes. */ 1785 static inline void 1786 netmap_reload_map(struct netmap_adapter *na, 1787 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1788 { 1789 if (map) { 1790 bus_dmamap_unload(tag, map); 1791 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1792 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1793 } 1794 } 1795 1796 #elif defined(_WIN32) 1797 1798 #else /* linux */ 1799 1800 int nm_iommu_group_id(bus_dma_tag_t dev); 1801 #include <linux/dma-mapping.h> 1802 1803 /* 1804 * on linux we need 1805 * dma_map_single(&pdev->dev, virt_addr, len, direction) 1806 * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction) 1807 */ 1808 #if 0 1809 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; 1810 /* set time_stamp *before* dma to help avoid a possible race */ 1811 buffer_info->time_stamp = jiffies; 1812 buffer_info->mapped_as_page = false; 1813 buffer_info->length = len; 1814 //buffer_info->next_to_watch = l; 1815 /* reload dma map */ 1816 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1817 NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1818 buffer_info->dma = dma_map_single(&adapter->pdev->dev, 1819 addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1820 1821 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1822 nm_prerr("dma mapping error"); 1823 /* goto dma_error; See e1000_put_txbuf() */ 1824 /* XXX reset */ 1825 } 1826 tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX 1827 1828 #endif 1829 1830 static inline int 1831 netmap_load_map(struct netmap_adapter *na, 1832 bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size) 1833 { 1834 if (map) { 1835 *map = dma_map_single(na->pdev, buf, size, 1836 DMA_BIDIRECTIONAL); 1837 if (dma_mapping_error(na->pdev, *map)) { 1838 *map = 0; 1839 return ENOMEM; 1840 } 1841 } 1842 return 0; 1843 } 1844 1845 static inline void 1846 netmap_unload_map(struct netmap_adapter *na, 1847 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz) 1848 { 1849 if (*map) { 1850 dma_unmap_single(na->pdev, *map, sz, 1851 DMA_BIDIRECTIONAL); 1852 } 1853 } 1854 1855 #ifdef NETMAP_LINUX_HAVE_DMASYNC 1856 static inline void 1857 netmap_sync_map_cpu(struct netmap_adapter *na, 1858 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1859 { 1860 if (*map) { 1861 dma_sync_single_for_cpu(na->pdev, *map, sz, 1862 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1863 } 1864 } 1865 1866 static inline void 1867 netmap_sync_map_dev(struct netmap_adapter *na, 1868 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1869 { 1870 if (*map) { 1871 dma_sync_single_for_device(na->pdev, *map, sz, 1872 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1873 } 1874 } 1875 1876 static inline void 1877 netmap_reload_map(struct netmap_adapter *na, 1878 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1879 { 1880 u_int sz = NETMAP_BUF_SIZE(na); 1881 1882 if (*map) { 1883 dma_unmap_single(na->pdev, *map, sz, 1884 DMA_BIDIRECTIONAL); 1885 } 1886 1887 *map = dma_map_single(na->pdev, buf, sz, 1888 DMA_BIDIRECTIONAL); 1889 } 1890 #else /* !NETMAP_LINUX_HAVE_DMASYNC */ 1891 #define netmap_sync_map_cpu(na, tag, map, sz, t) 1892 #define netmap_sync_map_dev(na, tag, map, sz, t) 1893 #endif /* NETMAP_LINUX_HAVE_DMASYNC */ 1894 1895 #endif /* linux */ 1896 1897 1898 /* 1899 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) 1900 */ 1901 static inline int 1902 netmap_idx_n2k(struct netmap_kring *kr, int idx) 1903 { 1904 int n = kr->nkr_num_slots; 1905 1906 if (likely(kr->nkr_hwofs == 0)) { 1907 return idx; 1908 } 1909 1910 idx += kr->nkr_hwofs; 1911 if (idx < 0) 1912 return idx + n; 1913 else if (idx < n) 1914 return idx; 1915 else 1916 return idx - n; 1917 } 1918 1919 1920 static inline int 1921 netmap_idx_k2n(struct netmap_kring *kr, int idx) 1922 { 1923 int n = kr->nkr_num_slots; 1924 1925 if (likely(kr->nkr_hwofs == 0)) { 1926 return idx; 1927 } 1928 1929 idx -= kr->nkr_hwofs; 1930 if (idx < 0) 1931 return idx + n; 1932 else if (idx < n) 1933 return idx; 1934 else 1935 return idx - n; 1936 } 1937 1938 1939 /* Entries of the look-up table. */ 1940 #ifdef __FreeBSD__ 1941 struct lut_entry { 1942 void *vaddr; /* virtual address. */ 1943 vm_paddr_t paddr; /* physical address. */ 1944 }; 1945 #else /* linux & _WIN32 */ 1946 /* dma-mapping in linux can assign a buffer a different address 1947 * depending on the device, so we need to have a separate 1948 * physical-address look-up table for each na. 1949 * We can still share the vaddrs, though, therefore we split 1950 * the lut_entry structure. 1951 */ 1952 struct lut_entry { 1953 void *vaddr; /* virtual address. */ 1954 }; 1955 1956 struct plut_entry { 1957 vm_paddr_t paddr; /* physical address. */ 1958 }; 1959 #endif /* linux & _WIN32 */ 1960 1961 struct netmap_obj_pool; 1962 1963 /* alignment for netmap buffers */ 1964 #define NM_BUF_ALIGN 64 1965 1966 /* 1967 * NMB return the virtual address of a buffer (buffer 0 on bad index) 1968 * PNMB also fills the physical address 1969 */ 1970 static inline void * 1971 NMB(struct netmap_adapter *na, struct netmap_slot *slot) 1972 { 1973 struct lut_entry *lut = na->na_lut.lut; 1974 uint32_t i = slot->buf_idx; 1975 return (unlikely(i >= na->na_lut.objtotal)) ? 1976 lut[0].vaddr : lut[i].vaddr; 1977 } 1978 1979 static inline void * 1980 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp) 1981 { 1982 uint32_t i = slot->buf_idx; 1983 struct lut_entry *lut = na->na_lut.lut; 1984 struct plut_entry *plut = na->na_lut.plut; 1985 void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr; 1986 1987 #ifdef _WIN32 1988 *pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart; 1989 #else 1990 *pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr; 1991 #endif 1992 return ret; 1993 } 1994 1995 static inline void 1996 nm_write_offset(struct netmap_kring *kring, 1997 struct netmap_slot *slot, uint64_t offset) 1998 { 1999 slot->ptr = (slot->ptr & ~kring->offset_mask) | 2000 (offset & kring->offset_mask); 2001 } 2002 2003 static inline uint64_t 2004 nm_get_offset(struct netmap_kring *kring, struct netmap_slot *slot) 2005 { 2006 uint64_t offset = (slot->ptr & kring->offset_mask); 2007 if (unlikely(offset > kring->offset_max)) 2008 offset = kring->offset_max; 2009 return offset; 2010 } 2011 2012 static inline void * 2013 NMB_O(struct netmap_kring *kring, struct netmap_slot *slot) 2014 { 2015 void *addr = NMB(kring->na, slot); 2016 return (char *)addr + nm_get_offset(kring, slot); 2017 } 2018 2019 static inline void * 2020 PNMB_O(struct netmap_kring *kring, struct netmap_slot *slot, uint64_t *pp) 2021 { 2022 void *addr = PNMB(kring->na, slot, pp); 2023 uint64_t offset = nm_get_offset(kring, slot); 2024 addr = (char *)addr + offset; 2025 *pp += offset; 2026 return addr; 2027 } 2028 2029 2030 /* 2031 * Structure associated to each netmap file descriptor. 2032 * It is created on open and left unbound (np_nifp == NULL). 2033 * A successful NIOCREGIF will set np_nifp and the first few fields; 2034 * this is protected by a global lock (NMG_LOCK) due to low contention. 2035 * 2036 * np_refs counts the number of references to the structure: one for the fd, 2037 * plus (on FreeBSD) one for each active mmap which we track ourselves 2038 * (linux automatically tracks them, but FreeBSD does not). 2039 * np_refs is protected by NMG_LOCK. 2040 * 2041 * Read access to the structure is lock free, because ni_nifp once set 2042 * can only go to 0 when nobody is using the entry anymore. Readers 2043 * must check that np_nifp != NULL before using the other fields. 2044 */ 2045 struct netmap_priv_d { 2046 struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ 2047 2048 struct netmap_adapter *np_na; 2049 if_t np_ifp; 2050 uint32_t np_flags; /* from the ioctl */ 2051 u_int np_qfirst[NR_TXRX], 2052 np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */ 2053 uint16_t np_txpoll; 2054 uint16_t np_kloop_state; /* use with NMG_LOCK held */ 2055 #define NM_SYNC_KLOOP_RUNNING (1 << 0) 2056 #define NM_SYNC_KLOOP_STOPPING (1 << 1) 2057 int np_sync_flags; /* to be passed to nm_sync */ 2058 2059 int np_refs; /* use with NMG_LOCK held */ 2060 2061 /* pointers to the selinfo to be used for selrecord. 2062 * Either the local or the global one depending on the 2063 * number of rings. 2064 */ 2065 NM_SELINFO_T *np_si[NR_TXRX]; 2066 2067 /* In the optional CSB mode, the user must specify the start address 2068 * of two arrays of Communication Status Block (CSB) entries, for the 2069 * two directions (kernel read application write, and kernel write 2070 * application read). 2071 * The number of entries must agree with the number of rings bound to 2072 * the netmap file descriptor. The entries corresponding to the TX 2073 * rings are laid out before the ones corresponding to the RX rings. 2074 * 2075 * Array of CSB entries for application --> kernel communication 2076 * (N entries). */ 2077 struct nm_csb_atok *np_csb_atok_base; 2078 /* Array of CSB entries for kernel --> application communication 2079 * (N entries). */ 2080 struct nm_csb_ktoa *np_csb_ktoa_base; 2081 2082 #ifdef linux 2083 struct file *np_filp; /* used by sync kloop */ 2084 #endif /* linux */ 2085 }; 2086 2087 struct netmap_priv_d *netmap_priv_new(void); 2088 void netmap_priv_delete(struct netmap_priv_d *); 2089 2090 static inline int nm_kring_pending(struct netmap_priv_d *np) 2091 { 2092 struct netmap_adapter *na = np->np_na; 2093 enum txrx t; 2094 int i; 2095 2096 for_rx_tx(t) { 2097 for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) { 2098 struct netmap_kring *kring = NMR(na, t)[i]; 2099 if (kring->nr_mode != kring->nr_pending_mode) { 2100 return 1; 2101 } 2102 } 2103 } 2104 return 0; 2105 } 2106 2107 /* call with NMG_LOCK held */ 2108 static __inline int 2109 nm_si_user(struct netmap_priv_d *priv, enum txrx t) 2110 { 2111 return (priv->np_na != NULL && 2112 (priv->np_qlast[t] - priv->np_qfirst[t] > 1)); 2113 } 2114 2115 #ifdef WITH_PIPES 2116 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags); 2117 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags); 2118 int netmap_pipe_krings_create_both(struct netmap_adapter *na, 2119 struct netmap_adapter *ona); 2120 void netmap_pipe_krings_delete_both(struct netmap_adapter *na, 2121 struct netmap_adapter *ona); 2122 int netmap_pipe_reg_both(struct netmap_adapter *na, 2123 struct netmap_adapter *ona); 2124 #endif /* WITH_PIPES */ 2125 2126 #ifdef WITH_MONITOR 2127 2128 struct netmap_monitor_adapter { 2129 struct netmap_adapter up; 2130 2131 struct netmap_priv_d priv; 2132 uint32_t flags; 2133 }; 2134 2135 #endif /* WITH_MONITOR */ 2136 2137 2138 #ifdef WITH_GENERIC 2139 /* 2140 * generic netmap emulation for devices that do not have 2141 * native netmap support. 2142 */ 2143 int generic_netmap_attach(if_t ifp); 2144 int generic_rx_handler(if_t ifp, struct mbuf *m); 2145 2146 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept); 2147 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept); 2148 2149 int na_is_generic(struct netmap_adapter *na); 2150 2151 /* 2152 * the generic transmit routine is passed a structure to optionally 2153 * build a queue of descriptors, in an OS-specific way. 2154 * The payload is at addr, if non-null, and the routine should send or queue 2155 * the packet, returning 0 if successful, 1 on failure. 2156 * 2157 * At the end, if head is non-null, there will be an additional call 2158 * to the function with addr = NULL; this should tell the OS-specific 2159 * routine to send the queue and free any resources. Failure is ignored. 2160 */ 2161 struct nm_os_gen_arg { 2162 if_t ifp; 2163 void *m; /* os-specific mbuf-like object */ 2164 void *head, *tail; /* tailq, if the OS-specific routine needs to build one */ 2165 void *addr; /* payload of current packet */ 2166 u_int len; /* packet length */ 2167 u_int ring_nr; /* transmit ring index */ 2168 u_int qevent; /* in txqdisc mode, place an event on this mbuf */ 2169 }; 2170 2171 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *); 2172 int nm_os_generic_find_num_desc(if_t ifp, u_int *tx, u_int *rx); 2173 void nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq); 2174 void nm_os_generic_set_features(struct netmap_generic_adapter *gna); 2175 2176 static inline if_t 2177 netmap_generic_getifp(struct netmap_generic_adapter *gna) 2178 { 2179 if (gna->prev) 2180 return gna->prev->ifp; 2181 2182 return gna->up.up.ifp; 2183 } 2184 2185 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done); 2186 2187 //#define RATE_GENERIC /* Enables communication statistics for generic. */ 2188 #ifdef RATE_GENERIC 2189 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi); 2190 #else 2191 #define generic_rate(txp, txs, txi, rxp, rxs, rxi) 2192 #endif 2193 2194 /* 2195 * netmap_mitigation API. This is used by the generic adapter 2196 * to reduce the number of interrupt requests/selwakeup 2197 * to clients on incoming packets. 2198 */ 2199 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, 2200 struct netmap_adapter *na); 2201 void nm_os_mitigation_start(struct nm_generic_mit *mit); 2202 void nm_os_mitigation_restart(struct nm_generic_mit *mit); 2203 int nm_os_mitigation_active(struct nm_generic_mit *mit); 2204 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit); 2205 #else /* !WITH_GENERIC */ 2206 #define generic_netmap_attach(ifp) (EOPNOTSUPP) 2207 #define na_is_generic(na) (0) 2208 #endif /* WITH_GENERIC */ 2209 2210 /* Shared declarations for the VALE switch. */ 2211 2212 /* 2213 * Each transmit queue accumulates a batch of packets into 2214 * a structure before forwarding. Packets to the same 2215 * destination are put in a list using ft_next as a link field. 2216 * ft_frags and ft_next are valid only on the first fragment. 2217 */ 2218 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 2219 void *ft_buf; /* netmap or indirect buffer */ 2220 uint8_t ft_frags; /* how many fragments (only on 1st frag) */ 2221 uint16_t ft_offset; /* dst port (unused) */ 2222 uint16_t ft_flags; /* flags, e.g. indirect */ 2223 uint16_t ft_len; /* src fragment len */ 2224 uint16_t ft_next; /* next packet to same destination */ 2225 }; 2226 2227 /* struct 'virtio_net_hdr' from linux. */ 2228 struct nm_vnet_hdr { 2229 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */ 2230 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */ 2231 uint8_t flags; 2232 #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */ 2233 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */ 2234 #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */ 2235 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */ 2236 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */ 2237 uint8_t gso_type; 2238 uint16_t hdr_len; 2239 uint16_t gso_size; 2240 uint16_t csum_start; 2241 uint16_t csum_offset; 2242 }; 2243 2244 #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */ 2245 2246 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */ 2247 2248 struct nm_iphdr { 2249 uint8_t version_ihl; 2250 uint8_t tos; 2251 uint16_t tot_len; 2252 uint16_t id; 2253 uint16_t frag_off; 2254 uint8_t ttl; 2255 uint8_t protocol; 2256 uint16_t check; 2257 uint32_t saddr; 2258 uint32_t daddr; 2259 /*The options start here. */ 2260 }; 2261 2262 struct nm_tcphdr { 2263 uint16_t source; 2264 uint16_t dest; 2265 uint32_t seq; 2266 uint32_t ack_seq; 2267 uint8_t doff; /* Data offset + Reserved */ 2268 uint8_t flags; 2269 uint16_t window; 2270 uint16_t check; 2271 uint16_t urg_ptr; 2272 }; 2273 2274 struct nm_udphdr { 2275 uint16_t source; 2276 uint16_t dest; 2277 uint16_t len; 2278 uint16_t check; 2279 }; 2280 2281 struct nm_ipv6hdr { 2282 uint8_t priority_version; 2283 uint8_t flow_lbl[3]; 2284 2285 uint16_t payload_len; 2286 uint8_t nexthdr; 2287 uint8_t hop_limit; 2288 2289 uint8_t saddr[16]; 2290 uint8_t daddr[16]; 2291 }; 2292 2293 /* Type used to store a checksum (in host byte order) that hasn't been 2294 * folded yet. 2295 */ 2296 #define rawsum_t uint32_t 2297 2298 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum); 2299 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph); 2300 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 2301 size_t datalen, uint16_t *check); 2302 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 2303 size_t datalen, uint16_t *check); 2304 uint16_t nm_os_csum_fold(rawsum_t cur_sum); 2305 2306 void bdg_mismatch_datapath(struct netmap_vp_adapter *na, 2307 struct netmap_vp_adapter *dst_na, 2308 const struct nm_bdg_fwd *ft_p, 2309 struct netmap_ring *dst_ring, 2310 u_int *j, u_int lim, u_int *howmany); 2311 2312 /* persistent virtual port routines */ 2313 int nm_os_vi_persist(const char *, if_t *); 2314 void nm_os_vi_detach(if_t); 2315 void nm_os_vi_init_index(void); 2316 2317 /* 2318 * kernel thread routines 2319 */ 2320 struct nm_kctx; /* OS-specific kernel context - opaque */ 2321 typedef void (*nm_kctx_worker_fn_t)(void *data); 2322 2323 /* kthread configuration */ 2324 struct nm_kctx_cfg { 2325 long type; /* kthread type/identifier */ 2326 nm_kctx_worker_fn_t worker_fn; /* worker function */ 2327 void *worker_private;/* worker parameter */ 2328 int attach_user; /* attach kthread to user process */ 2329 }; 2330 /* kthread configuration */ 2331 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg, 2332 void *opaque); 2333 int nm_os_kctx_worker_start(struct nm_kctx *); 2334 void nm_os_kctx_worker_stop(struct nm_kctx *); 2335 void nm_os_kctx_destroy(struct nm_kctx *); 2336 void nm_os_kctx_worker_setaff(struct nm_kctx *, int); 2337 u_int nm_os_ncpus(void); 2338 2339 int netmap_sync_kloop(struct netmap_priv_d *priv, 2340 struct nmreq_header *hdr); 2341 int netmap_sync_kloop_stop(struct netmap_priv_d *priv); 2342 2343 #ifdef WITH_PTNETMAP 2344 /* ptnetmap guest routines */ 2345 2346 /* 2347 * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver 2348 */ 2349 struct ptnetmap_memdev; 2350 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **, 2351 uint64_t *); 2352 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *); 2353 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int); 2354 2355 /* 2356 * netmap adapter for guest ptnetmap ports 2357 */ 2358 struct netmap_pt_guest_adapter { 2359 /* The netmap adapter to be used by netmap applications. 2360 * This field must be the first, to allow upcast. */ 2361 struct netmap_hw_adapter hwup; 2362 2363 /* The netmap adapter to be used by the driver. */ 2364 struct netmap_hw_adapter dr; 2365 2366 /* Reference counter to track users of backend netmap port: the 2367 * network stack and netmap clients. 2368 * Used to decide when we need (de)allocate krings/rings and 2369 * start (stop) ptnetmap kthreads. */ 2370 int backend_users; 2371 2372 }; 2373 2374 int netmap_pt_guest_attach(struct netmap_adapter *na, 2375 unsigned int nifp_offset, 2376 unsigned int memid); 2377 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok, 2378 struct nm_csb_ktoa *ktoa, 2379 struct netmap_kring *kring, int flags); 2380 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok, 2381 struct nm_csb_ktoa *ktoa, 2382 struct netmap_kring *kring, int flags); 2383 int ptnet_nm_krings_create(struct netmap_adapter *na); 2384 void ptnet_nm_krings_delete(struct netmap_adapter *na); 2385 void ptnet_nm_dtor(struct netmap_adapter *na); 2386 2387 /* Helper function wrapping nm_sync_kloop_appl_read(). */ 2388 static inline void 2389 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring) 2390 { 2391 struct netmap_ring *ring = kring->ring; 2392 2393 /* Update hwcur and hwtail as known by the host. */ 2394 nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur); 2395 2396 /* nm_sync_finalize */ 2397 ring->tail = kring->rtail = kring->nr_hwtail; 2398 } 2399 #endif /* WITH_PTNETMAP */ 2400 2401 #ifdef __FreeBSD__ 2402 /* 2403 * FreeBSD mbuf allocator/deallocator in emulation mode: 2404 * 2405 * We allocate mbufs with m_gethdr(), since the mbuf header is needed 2406 * by the driver. We also attach a customly-provided external storage, 2407 * which in this case is a netmap buffer. 2408 * 2409 * The dtor function does nothing, however we need it since mb_free_ext() 2410 * has a KASSERT(), checking that the mbuf dtor function is not NULL. 2411 */ 2412 2413 static inline void 2414 nm_generic_mbuf_dtor(struct mbuf *m) 2415 { 2416 uma_zfree(zone_clust, m->m_ext.ext_buf); 2417 } 2418 2419 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 2420 (m)->m_ext.ext_free = (fn != NULL) ? \ 2421 (void *)fn : (void *)nm_generic_mbuf_dtor; \ 2422 } while (0) 2423 2424 static inline struct mbuf * 2425 nm_os_get_mbuf(if_t ifp __unused, int len) 2426 { 2427 struct mbuf *m; 2428 void *buf; 2429 2430 KASSERT(len <= MCLBYTES, ("%s: len %d", __func__, len)); 2431 2432 m = m_gethdr(M_NOWAIT, MT_DATA); 2433 if (__predict_false(m == NULL)) 2434 return (NULL); 2435 buf = uma_zalloc(zone_clust, M_NOWAIT); 2436 if (__predict_false(buf == NULL)) { 2437 m_free(m); 2438 return (NULL); 2439 } 2440 m_extadd(m, buf, MCLBYTES, nm_generic_mbuf_dtor, NULL, NULL, 0, 2441 EXT_NET_DRV); 2442 return (m); 2443 } 2444 2445 static inline void 2446 nm_os_mbuf_reinit(struct mbuf *m) 2447 { 2448 void *buf; 2449 2450 KASSERT((m->m_flags & M_EXT) != 0, 2451 ("%s: mbuf %p has no external storage", __func__, m)); 2452 KASSERT(m->m_ext.ext_size == MCLBYTES, 2453 ("%s: mbuf %p has wrong external storage size %u", __func__, m, 2454 m->m_ext.ext_size)); 2455 2456 buf = m->m_ext.ext_buf; 2457 m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR); 2458 m_extadd(m, buf, MCLBYTES, nm_generic_mbuf_dtor, NULL, NULL, 0, 2459 EXT_NET_DRV); 2460 } 2461 2462 #endif /* __FreeBSD__ */ 2463 2464 struct nmreq_option * nmreq_getoption(struct nmreq_header *, uint16_t); 2465 2466 int netmap_init_bridges(void); 2467 void netmap_uninit_bridges(void); 2468 2469 /* Functions to read and write CSB fields from the kernel. */ 2470 #if defined (linux) 2471 #define CSB_READ(csb, field, r) (get_user(r, &csb->field)) 2472 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field)) 2473 #else /* ! linux */ 2474 #define CSB_READ(csb, field, r) do { \ 2475 int32_t v __diagused; \ 2476 \ 2477 v = fuword32(&csb->field); \ 2478 KASSERT(v != -1, ("%s: fuword32 failed", __func__)); \ 2479 r = v; \ 2480 } while (0) 2481 #define CSB_WRITE(csb, field, v) do { \ 2482 int error __diagused; \ 2483 \ 2484 error = suword32(&csb->field, v); \ 2485 KASSERT(error == 0, ("%s: suword32 failed", __func__)); \ 2486 } while (0) 2487 #endif /* ! linux */ 2488 2489 /* some macros that may not be defined */ 2490 #ifndef ETH_HLEN 2491 #define ETH_HLEN 6 2492 #endif 2493 #ifndef ETH_FCS_LEN 2494 #define ETH_FCS_LEN 4 2495 #endif 2496 #ifndef VLAN_HLEN 2497 #define VLAN_HLEN 4 2498 #endif 2499 2500 #endif /* _NET_NETMAP_KERN_H_ */ 2501