1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* $FreeBSD$ */ 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 32 #include <sys/param.h> 33 #include <sys/module.h> 34 #include <sys/errno.h> 35 #include <sys/eventhandler.h> 36 #include <sys/jail.h> 37 #include <sys/poll.h> /* POLLIN, POLLOUT */ 38 #include <sys/kernel.h> /* types used in module initialization */ 39 #include <sys/conf.h> /* DEV_MODULE_ORDERED */ 40 #include <sys/endian.h> 41 #include <sys/syscallsubr.h> /* kern_ioctl() */ 42 43 #include <sys/rwlock.h> 44 45 #include <vm/vm.h> /* vtophys */ 46 #include <vm/pmap.h> /* vtophys */ 47 #include <vm/vm_param.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/vm_pager.h> 51 #include <vm/uma.h> 52 53 54 #include <sys/malloc.h> 55 #include <sys/socket.h> /* sockaddrs */ 56 #include <sys/selinfo.h> 57 #include <sys/kthread.h> /* kthread_add() */ 58 #include <sys/proc.h> /* PROC_LOCK() */ 59 #include <sys/unistd.h> /* RFNOWAIT */ 60 #include <sys/sched.h> /* sched_bind() */ 61 #include <sys/smp.h> /* mp_maxid */ 62 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */ 63 #include <net/if.h> 64 #include <net/if_var.h> 65 #include <net/if_types.h> /* IFT_ETHER */ 66 #include <net/ethernet.h> /* ether_ifdetach */ 67 #include <net/if_dl.h> /* LLADDR */ 68 #include <machine/bus.h> /* bus_dmamap_* */ 69 #include <netinet/in.h> /* in6_cksum_pseudo() */ 70 #include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */ 71 72 #include <net/netmap.h> 73 #include <dev/netmap/netmap_kern.h> 74 #include <net/netmap_virt.h> 75 #include <dev/netmap/netmap_mem2.h> 76 77 78 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */ 79 80 static void 81 nm_kqueue_notify(void *opaque, int pending) 82 { 83 struct nm_selinfo *si = opaque; 84 85 /* We use a non-zero hint to distinguish this notification call 86 * from the call done in kqueue_scan(), which uses hint=0. 87 */ 88 KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100); 89 } 90 91 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) { 92 int err; 93 94 TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si); 95 si->ntfytq = taskqueue_create(name, M_NOWAIT, 96 taskqueue_thread_enqueue, &si->ntfytq); 97 if (si->ntfytq == NULL) 98 return -ENOMEM; 99 err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name); 100 if (err) { 101 taskqueue_free(si->ntfytq); 102 si->ntfytq = NULL; 103 return err; 104 } 105 106 snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name); 107 mtx_init(&si->m, si->mtxname, NULL, MTX_DEF); 108 knlist_init_mtx(&si->si.si_note, &si->m); 109 si->kqueue_users = 0; 110 111 return (0); 112 } 113 114 void 115 nm_os_selinfo_uninit(NM_SELINFO_T *si) 116 { 117 if (si->ntfytq == NULL) { 118 return; /* si was not initialized */ 119 } 120 taskqueue_drain(si->ntfytq, &si->ntfytask); 121 taskqueue_free(si->ntfytq); 122 si->ntfytq = NULL; 123 knlist_delete(&si->si.si_note, curthread, /*islocked=*/0); 124 knlist_destroy(&si->si.si_note); 125 /* now we don't need the mutex anymore */ 126 mtx_destroy(&si->m); 127 } 128 129 void * 130 nm_os_malloc(size_t size) 131 { 132 return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 133 } 134 135 void * 136 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused) 137 { 138 return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO); 139 } 140 141 void 142 nm_os_free(void *addr) 143 { 144 free(addr, M_DEVBUF); 145 } 146 147 void 148 nm_os_ifnet_lock(void) 149 { 150 IFNET_RLOCK(); 151 } 152 153 void 154 nm_os_ifnet_unlock(void) 155 { 156 IFNET_RUNLOCK(); 157 } 158 159 static int netmap_use_count = 0; 160 161 void 162 nm_os_get_module(void) 163 { 164 netmap_use_count++; 165 } 166 167 void 168 nm_os_put_module(void) 169 { 170 netmap_use_count--; 171 } 172 173 static void 174 netmap_ifnet_arrival_handler(void *arg __unused, if_t ifp) 175 { 176 netmap_undo_zombie(ifp); 177 } 178 179 static void 180 netmap_ifnet_departure_handler(void *arg __unused, if_t ifp) 181 { 182 netmap_make_zombie(ifp); 183 } 184 185 static eventhandler_tag nm_ifnet_ah_tag; 186 static eventhandler_tag nm_ifnet_dh_tag; 187 188 int 189 nm_os_ifnet_init(void) 190 { 191 nm_ifnet_ah_tag = 192 EVENTHANDLER_REGISTER(ifnet_arrival_event, 193 netmap_ifnet_arrival_handler, 194 NULL, EVENTHANDLER_PRI_ANY); 195 nm_ifnet_dh_tag = 196 EVENTHANDLER_REGISTER(ifnet_departure_event, 197 netmap_ifnet_departure_handler, 198 NULL, EVENTHANDLER_PRI_ANY); 199 return 0; 200 } 201 202 void 203 nm_os_ifnet_fini(void) 204 { 205 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 206 nm_ifnet_ah_tag); 207 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 208 nm_ifnet_dh_tag); 209 } 210 211 unsigned 212 nm_os_ifnet_mtu(if_t ifp) 213 { 214 return if_getmtu(ifp); 215 } 216 217 rawsum_t 218 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum) 219 { 220 /* TODO XXX please use the FreeBSD implementation for this. */ 221 uint16_t *words = (uint16_t *)data; 222 int nw = len / 2; 223 int i; 224 225 for (i = 0; i < nw; i++) 226 cur_sum += be16toh(words[i]); 227 228 if (len & 1) 229 cur_sum += (data[len-1] << 8); 230 231 return cur_sum; 232 } 233 234 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the 235 * return value is in network byte order. 236 */ 237 uint16_t 238 nm_os_csum_fold(rawsum_t cur_sum) 239 { 240 /* TODO XXX please use the FreeBSD implementation for this. */ 241 while (cur_sum >> 16) 242 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16); 243 244 return htobe16((~cur_sum) & 0xFFFF); 245 } 246 247 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph) 248 { 249 #if 0 250 return in_cksum_hdr((void *)iph); 251 #else 252 return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0)); 253 #endif 254 } 255 256 void 257 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 258 size_t datalen, uint16_t *check) 259 { 260 #ifdef INET 261 uint16_t pseudolen = datalen + iph->protocol; 262 263 /* Compute and insert the pseudo-header checksum. */ 264 *check = in_pseudo(iph->saddr, iph->daddr, 265 htobe16(pseudolen)); 266 /* Compute the checksum on TCP/UDP header + payload 267 * (includes the pseudo-header). 268 */ 269 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 270 #else 271 static int notsupported = 0; 272 if (!notsupported) { 273 notsupported = 1; 274 nm_prerr("inet4 segmentation not supported"); 275 } 276 #endif 277 } 278 279 void 280 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 281 size_t datalen, uint16_t *check) 282 { 283 #ifdef INET6 284 *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0); 285 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 286 #else 287 static int notsupported = 0; 288 if (!notsupported) { 289 notsupported = 1; 290 nm_prerr("inet6 segmentation not supported"); 291 } 292 #endif 293 } 294 295 /* on FreeBSD we send up one packet at a time */ 296 void * 297 nm_os_send_up(if_t ifp, struct mbuf *m, struct mbuf *prev) 298 { 299 NA(ifp)->if_input(ifp, m); 300 return NULL; 301 } 302 303 int 304 nm_os_mbuf_has_csum_offld(struct mbuf *m) 305 { 306 return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP | 307 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | 308 CSUM_SCTP_IPV6); 309 } 310 311 int 312 nm_os_mbuf_has_seg_offld(struct mbuf *m) 313 { 314 return m->m_pkthdr.csum_flags & CSUM_TSO; 315 } 316 317 static void 318 freebsd_generic_rx_handler(if_t ifp, struct mbuf *m) 319 { 320 int stolen; 321 322 if (unlikely(!NM_NA_VALID(ifp))) { 323 nm_prlim(1, "Warning: RX packet intercepted, but no" 324 " emulated adapter"); 325 return; 326 } 327 328 stolen = generic_rx_handler(ifp, m); 329 if (!stolen) { 330 NA(ifp)->if_input(ifp, m); 331 } 332 } 333 334 /* 335 * Intercept the rx routine in the standard device driver. 336 * Second argument is non-zero to intercept, 0 to restore 337 */ 338 int 339 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept) 340 { 341 struct netmap_adapter *na = &gna->up.up; 342 if_t ifp = na->ifp; 343 int ret = 0; 344 345 nm_os_ifnet_lock(); 346 if (intercept) { 347 if_setcapenablebit(ifp, IFCAP_NETMAP, 0); 348 if_setinputfn(ifp, freebsd_generic_rx_handler); 349 } else { 350 if_setcapenablebit(ifp, 0, IFCAP_NETMAP); 351 if_setinputfn(ifp, na->if_input); 352 } 353 nm_os_ifnet_unlock(); 354 355 return ret; 356 } 357 358 359 /* 360 * Intercept the packet steering routine in the tx path, 361 * so that we can decide which queue is used for an mbuf. 362 * Second argument is non-zero to intercept, 0 to restore. 363 * On freebsd we just intercept if_transmit. 364 */ 365 int 366 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept) 367 { 368 struct netmap_adapter *na = &gna->up.up; 369 if_t ifp = netmap_generic_getifp(gna); 370 371 nm_os_ifnet_lock(); 372 if (intercept) { 373 na->if_transmit = if_gettransmitfn(ifp); 374 if_settransmitfn(ifp, netmap_transmit); 375 } else { 376 if_settransmitfn(ifp, na->if_transmit); 377 } 378 nm_os_ifnet_unlock(); 379 380 return 0; 381 } 382 383 384 /* 385 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success 386 * and non-zero on error (which may be packet drops or other errors). 387 * addr and len identify the netmap buffer, m is the (preallocated) 388 * mbuf to use for transmissions. 389 * 390 * Zero-copy transmission is possible if netmap is attached directly to a 391 * hardware interface: when cleaning we simply wait for the mbuf cluster 392 * refcount to decrement to 1, indicating that the driver has completed 393 * transmission and is done with the buffer. However, this approach can 394 * lead to queue deadlocks when attaching to software interfaces (e.g., 395 * if_bridge) since we cannot rely on member ports to promptly reclaim 396 * transmitted mbufs. Since there is no easy way to distinguish these 397 * cases, we currently always copy the buffer. 398 * 399 * On multiqueue cards, we can force the queue using 400 * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 401 * i = m->m_pkthdr.flowid % adapter->num_queues; 402 * else 403 * i = curcpu % adapter->num_queues; 404 */ 405 int 406 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a) 407 { 408 int ret; 409 u_int len = a->len; 410 if_t ifp = a->ifp; 411 struct mbuf *m = a->m; 412 413 M_ASSERTPKTHDR(m); 414 KASSERT((m->m_flags & M_EXT) != 0, 415 ("%s: mbuf %p has no cluster", __func__, m)); 416 417 if (MBUF_REFCNT(m) != 1) { 418 nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m); 419 panic("in generic_xmit_frame"); 420 } 421 if (unlikely(m->m_ext.ext_size < len)) { 422 nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len); 423 len = m->m_ext.ext_size; 424 } 425 426 m_copyback(m, 0, len, a->addr); 427 m->m_len = m->m_pkthdr.len = len; 428 SET_MBUF_REFCNT(m, 2); 429 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 430 m->m_pkthdr.flowid = a->ring_nr; 431 m->m_pkthdr.rcvif = ifp; /* used for tx notification */ 432 CURVNET_SET(if_getvnet(ifp)); 433 ret = NA(ifp)->if_transmit(ifp, m); 434 CURVNET_RESTORE(); 435 return ret ? -1 : 0; 436 } 437 438 struct netmap_adapter * 439 netmap_getna(if_t ifp) 440 { 441 return (NA(ifp)); 442 } 443 444 /* 445 * The following two functions are empty until we have a generic 446 * way to extract the info from the ifp 447 */ 448 int 449 nm_os_generic_find_num_desc(if_t ifp, unsigned int *tx, unsigned int *rx) 450 { 451 return 0; 452 } 453 454 455 void 456 nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq) 457 { 458 unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1; 459 460 *txq = num_rings; 461 *rxq = num_rings; 462 } 463 464 void 465 nm_os_generic_set_features(struct netmap_generic_adapter *gna) 466 { 467 468 gna->rxsg = 1; /* Supported through m_copydata. */ 469 gna->txqdisc = 0; /* Not supported. */ 470 } 471 472 void 473 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na) 474 { 475 mit->mit_pending = 0; 476 mit->mit_ring_idx = idx; 477 mit->mit_na = na; 478 } 479 480 481 void 482 nm_os_mitigation_start(struct nm_generic_mit *mit) 483 { 484 } 485 486 487 void 488 nm_os_mitigation_restart(struct nm_generic_mit *mit) 489 { 490 } 491 492 493 int 494 nm_os_mitigation_active(struct nm_generic_mit *mit) 495 { 496 497 return 0; 498 } 499 500 501 void 502 nm_os_mitigation_cleanup(struct nm_generic_mit *mit) 503 { 504 } 505 506 static int 507 nm_vi_dummy(if_t ifp, u_long cmd, caddr_t addr) 508 { 509 510 return EINVAL; 511 } 512 513 static void 514 nm_vi_start(if_t ifp) 515 { 516 panic("nm_vi_start() must not be called"); 517 } 518 519 /* 520 * Index manager of persistent virtual interfaces. 521 * It is used to decide the lowest byte of the MAC address. 522 * We use the same algorithm with management of bridge port index. 523 */ 524 #define NM_VI_MAX 255 525 static struct { 526 uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */ 527 uint8_t active; 528 struct mtx lock; 529 } nm_vi_indices; 530 531 void 532 nm_os_vi_init_index(void) 533 { 534 int i; 535 for (i = 0; i < NM_VI_MAX; i++) 536 nm_vi_indices.index[i] = i; 537 nm_vi_indices.active = 0; 538 mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF); 539 } 540 541 /* return -1 if no index available */ 542 static int 543 nm_vi_get_index(void) 544 { 545 int ret; 546 547 mtx_lock(&nm_vi_indices.lock); 548 ret = nm_vi_indices.active == NM_VI_MAX ? -1 : 549 nm_vi_indices.index[nm_vi_indices.active++]; 550 mtx_unlock(&nm_vi_indices.lock); 551 return ret; 552 } 553 554 static void 555 nm_vi_free_index(uint8_t val) 556 { 557 int i, lim; 558 559 mtx_lock(&nm_vi_indices.lock); 560 lim = nm_vi_indices.active; 561 for (i = 0; i < lim; i++) { 562 if (nm_vi_indices.index[i] == val) { 563 /* swap index[lim-1] and j */ 564 int tmp = nm_vi_indices.index[lim-1]; 565 nm_vi_indices.index[lim-1] = val; 566 nm_vi_indices.index[i] = tmp; 567 nm_vi_indices.active--; 568 break; 569 } 570 } 571 if (lim == nm_vi_indices.active) 572 nm_prerr("Index %u not found", val); 573 mtx_unlock(&nm_vi_indices.lock); 574 } 575 #undef NM_VI_MAX 576 577 /* 578 * Implementation of a netmap-capable virtual interface that 579 * registered to the system. 580 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9. 581 * 582 * Note: Linux sets refcount to 0 on allocation of net_device, 583 * then increments it on registration to the system. 584 * FreeBSD sets refcount to 1 on if_alloc(), and does not 585 * increment this refcount on if_attach(). 586 */ 587 int 588 nm_os_vi_persist(const char *name, if_t *ret) 589 { 590 if_t ifp; 591 u_short macaddr_hi; 592 uint32_t macaddr_mid; 593 u_char eaddr[6]; 594 int unit = nm_vi_get_index(); /* just to decide MAC address */ 595 596 if (unit < 0) 597 return EBUSY; 598 /* 599 * We use the same MAC address generation method with tap 600 * except for the highest octet is 00:be instead of 00:bd 601 */ 602 macaddr_hi = htons(0x00be); /* XXX tap + 1 */ 603 macaddr_mid = (uint32_t) ticks; 604 bcopy(&macaddr_hi, eaddr, sizeof(short)); 605 bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t)); 606 eaddr[5] = (uint8_t)unit; 607 608 ifp = if_alloc(IFT_ETHER); 609 if (ifp == NULL) { 610 nm_prerr("if_alloc failed"); 611 return ENOMEM; 612 } 613 if_initname(ifp, name, IF_DUNIT_NONE); 614 if_setflags(ifp, IFF_UP | IFF_SIMPLEX | IFF_MULTICAST); 615 if_setinitfn(ifp, (void *)nm_vi_dummy); 616 if_setioctlfn(ifp, nm_vi_dummy); 617 if_setstartfn(ifp, nm_vi_start); 618 if_setmtu(ifp, ETHERMTU); 619 if_setsendqlen(ifp, ifqmaxlen); 620 if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0); 621 if_setcapenablebit(ifp, IFCAP_LINKSTATE, 0); 622 623 ether_ifattach(ifp, eaddr); 624 *ret = ifp; 625 return 0; 626 } 627 628 /* unregister from the system and drop the final refcount */ 629 void 630 nm_os_vi_detach(if_t ifp) 631 { 632 nm_vi_free_index(((char *)if_getlladdr(ifp))[5]); 633 ether_ifdetach(ifp); 634 if_free(ifp); 635 } 636 637 #ifdef WITH_EXTMEM 638 #include <vm/vm_map.h> 639 #include <vm/vm_extern.h> 640 #include <vm/vm_kern.h> 641 struct nm_os_extmem { 642 vm_object_t obj; 643 vm_offset_t kva; 644 vm_offset_t size; 645 uintptr_t scan; 646 }; 647 648 void 649 nm_os_extmem_delete(struct nm_os_extmem *e) 650 { 651 nm_prinf("freeing %zx bytes", (size_t)e->size); 652 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 653 nm_os_free(e); 654 } 655 656 char * 657 nm_os_extmem_nextpage(struct nm_os_extmem *e) 658 { 659 char *rv = NULL; 660 if (e->scan < e->kva + e->size) { 661 rv = (char *)e->scan; 662 e->scan += PAGE_SIZE; 663 } 664 return rv; 665 } 666 667 int 668 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2) 669 { 670 return (e1->obj == e2->obj); 671 } 672 673 int 674 nm_os_extmem_nr_pages(struct nm_os_extmem *e) 675 { 676 return e->size >> PAGE_SHIFT; 677 } 678 679 struct nm_os_extmem * 680 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror) 681 { 682 vm_map_t map; 683 vm_map_entry_t entry; 684 vm_object_t obj; 685 vm_prot_t prot; 686 vm_pindex_t index; 687 boolean_t wired; 688 struct nm_os_extmem *e = NULL; 689 int rv, error = 0; 690 691 e = nm_os_malloc(sizeof(*e)); 692 if (e == NULL) { 693 error = ENOMEM; 694 goto out; 695 } 696 697 map = &curthread->td_proc->p_vmspace->vm_map; 698 rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry, 699 &obj, &index, &prot, &wired); 700 if (rv != KERN_SUCCESS) { 701 nm_prerr("address %lx not found", p); 702 error = vm_mmap_to_errno(rv); 703 goto out_free; 704 } 705 vm_object_reference(obj); 706 707 /* check that we are given the whole vm_object ? */ 708 vm_map_lookup_done(map, entry); 709 710 e->obj = obj; 711 /* Wire the memory and add the vm_object to the kernel map, 712 * to make sure that it is not freed even if all the processes 713 * that are mmap()ing should munmap() it. 714 */ 715 e->kva = vm_map_min(kernel_map); 716 e->size = obj->size << PAGE_SHIFT; 717 rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0, 718 VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE, 719 VM_PROT_READ | VM_PROT_WRITE, 0); 720 if (rv != KERN_SUCCESS) { 721 nm_prerr("vm_map_find(%zx) failed", (size_t)e->size); 722 error = vm_mmap_to_errno(rv); 723 goto out_rel; 724 } 725 rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size, 726 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); 727 if (rv != KERN_SUCCESS) { 728 nm_prerr("vm_map_wire failed"); 729 error = vm_mmap_to_errno(rv); 730 goto out_rem; 731 } 732 733 e->scan = e->kva; 734 735 return e; 736 737 out_rem: 738 vm_map_remove(kernel_map, e->kva, e->kva + e->size); 739 out_rel: 740 vm_object_deallocate(e->obj); 741 e->obj = NULL; 742 out_free: 743 nm_os_free(e); 744 out: 745 if (perror) 746 *perror = error; 747 return NULL; 748 } 749 #endif /* WITH_EXTMEM */ 750 751 /* ================== PTNETMAP GUEST SUPPORT ==================== */ 752 753 #ifdef WITH_PTNETMAP 754 #include <sys/bus.h> 755 #include <sys/rman.h> 756 #include <machine/bus.h> /* bus_dmamap_* */ 757 #include <machine/resource.h> 758 #include <dev/pci/pcivar.h> 759 #include <dev/pci/pcireg.h> 760 /* 761 * ptnetmap memory device (memdev) for freebsd guest, 762 * ssed to expose host netmap memory to the guest through a PCI BAR. 763 */ 764 765 /* 766 * ptnetmap memdev private data structure 767 */ 768 struct ptnetmap_memdev { 769 device_t dev; 770 struct resource *pci_io; 771 struct resource *pci_mem; 772 struct netmap_mem_d *nm_mem; 773 }; 774 775 static int ptn_memdev_probe(device_t); 776 static int ptn_memdev_attach(device_t); 777 static int ptn_memdev_detach(device_t); 778 static int ptn_memdev_shutdown(device_t); 779 780 static device_method_t ptn_memdev_methods[] = { 781 DEVMETHOD(device_probe, ptn_memdev_probe), 782 DEVMETHOD(device_attach, ptn_memdev_attach), 783 DEVMETHOD(device_detach, ptn_memdev_detach), 784 DEVMETHOD(device_shutdown, ptn_memdev_shutdown), 785 DEVMETHOD_END 786 }; 787 788 static driver_t ptn_memdev_driver = { 789 PTNETMAP_MEMDEV_NAME, 790 ptn_memdev_methods, 791 sizeof(struct ptnetmap_memdev), 792 }; 793 794 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation 795 * below. */ 796 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, NULL, NULL, 797 SI_ORDER_MIDDLE + 1); 798 799 /* 800 * Map host netmap memory through PCI-BAR in the guest OS, 801 * returning physical (nm_paddr) and virtual (nm_addr) addresses 802 * of the netmap memory mapped in the guest. 803 */ 804 int 805 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr, 806 void **nm_addr, uint64_t *mem_size) 807 { 808 int rid; 809 810 nm_prinf("ptn_memdev_driver iomap"); 811 812 rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR); 813 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI); 814 *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) | 815 (*mem_size << 32); 816 817 /* map memory allocator */ 818 ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY, 819 &rid, 0, ~0, *mem_size, RF_ACTIVE); 820 if (ptn_dev->pci_mem == NULL) { 821 *nm_paddr = 0; 822 *nm_addr = NULL; 823 return ENOMEM; 824 } 825 826 *nm_paddr = rman_get_start(ptn_dev->pci_mem); 827 *nm_addr = rman_get_virtual(ptn_dev->pci_mem); 828 829 nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===", 830 PTNETMAP_MEM_PCI_BAR, 831 (unsigned long)(*nm_paddr), 832 (unsigned long)rman_get_size(ptn_dev->pci_mem), 833 (unsigned long)*mem_size); 834 return (0); 835 } 836 837 uint32_t 838 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg) 839 { 840 return bus_read_4(ptn_dev->pci_io, reg); 841 } 842 843 /* Unmap host netmap memory. */ 844 void 845 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev) 846 { 847 nm_prinf("ptn_memdev_driver iounmap"); 848 849 if (ptn_dev->pci_mem) { 850 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY, 851 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 852 ptn_dev->pci_mem = NULL; 853 } 854 } 855 856 /* Device identification routine, return BUS_PROBE_DEFAULT on success, 857 * positive on failure */ 858 static int 859 ptn_memdev_probe(device_t dev) 860 { 861 char desc[256]; 862 863 if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID) 864 return (ENXIO); 865 if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID) 866 return (ENXIO); 867 868 snprintf(desc, sizeof(desc), "%s PCI adapter", 869 PTNETMAP_MEMDEV_NAME); 870 device_set_desc_copy(dev, desc); 871 872 return (BUS_PROBE_DEFAULT); 873 } 874 875 /* Device initialization routine. */ 876 static int 877 ptn_memdev_attach(device_t dev) 878 { 879 struct ptnetmap_memdev *ptn_dev; 880 int rid; 881 uint16_t mem_id; 882 883 ptn_dev = device_get_softc(dev); 884 ptn_dev->dev = dev; 885 886 pci_enable_busmaster(dev); 887 888 rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR); 889 ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, 890 RF_ACTIVE); 891 if (ptn_dev->pci_io == NULL) { 892 device_printf(dev, "cannot map I/O space\n"); 893 return (ENXIO); 894 } 895 896 mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID); 897 898 /* create guest allocator */ 899 ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id); 900 if (ptn_dev->nm_mem == NULL) { 901 ptn_memdev_detach(dev); 902 return (ENOMEM); 903 } 904 netmap_mem_get(ptn_dev->nm_mem); 905 906 nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id); 907 908 return (0); 909 } 910 911 /* Device removal routine. */ 912 static int 913 ptn_memdev_detach(device_t dev) 914 { 915 struct ptnetmap_memdev *ptn_dev; 916 917 ptn_dev = device_get_softc(dev); 918 919 if (ptn_dev->nm_mem) { 920 nm_prinf("ptnetmap memdev detached, host memid %u", 921 netmap_mem_get_id(ptn_dev->nm_mem)); 922 netmap_mem_put(ptn_dev->nm_mem); 923 ptn_dev->nm_mem = NULL; 924 } 925 if (ptn_dev->pci_mem) { 926 bus_release_resource(dev, SYS_RES_MEMORY, 927 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 928 ptn_dev->pci_mem = NULL; 929 } 930 if (ptn_dev->pci_io) { 931 bus_release_resource(dev, SYS_RES_IOPORT, 932 PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io); 933 ptn_dev->pci_io = NULL; 934 } 935 936 return (0); 937 } 938 939 static int 940 ptn_memdev_shutdown(device_t dev) 941 { 942 return bus_generic_shutdown(dev); 943 } 944 945 #endif /* WITH_PTNETMAP */ 946 947 /* 948 * In order to track whether pages are still mapped, we hook into 949 * the standard cdev_pager and intercept the constructor and 950 * destructor. 951 */ 952 953 struct netmap_vm_handle_t { 954 struct cdev *dev; 955 struct netmap_priv_d *priv; 956 }; 957 958 959 static int 960 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 961 vm_ooffset_t foff, struct ucred *cred, u_short *color) 962 { 963 struct netmap_vm_handle_t *vmh = handle; 964 965 if (netmap_verbose) 966 nm_prinf("handle %p size %jd prot %d foff %jd", 967 handle, (intmax_t)size, prot, (intmax_t)foff); 968 if (color) 969 *color = 0; 970 dev_ref(vmh->dev); 971 return 0; 972 } 973 974 975 static void 976 netmap_dev_pager_dtor(void *handle) 977 { 978 struct netmap_vm_handle_t *vmh = handle; 979 struct cdev *dev = vmh->dev; 980 struct netmap_priv_d *priv = vmh->priv; 981 982 if (netmap_verbose) 983 nm_prinf("handle %p", handle); 984 netmap_dtor(priv); 985 free(vmh, M_DEVBUF); 986 dev_rel(dev); 987 } 988 989 990 static int 991 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset, 992 int prot, vm_page_t *mres) 993 { 994 struct netmap_vm_handle_t *vmh = object->handle; 995 struct netmap_priv_d *priv = vmh->priv; 996 struct netmap_adapter *na = priv->np_na; 997 vm_paddr_t paddr; 998 vm_page_t page; 999 vm_memattr_t memattr; 1000 1001 nm_prdis("object %p offset %jd prot %d mres %p", 1002 object, (intmax_t)offset, prot, mres); 1003 memattr = object->memattr; 1004 paddr = netmap_mem_ofstophys(na->nm_mem, offset); 1005 if (paddr == 0) 1006 return VM_PAGER_FAIL; 1007 1008 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 1009 /* 1010 * If the passed in result page is a fake page, update it with 1011 * the new physical address. 1012 */ 1013 page = *mres; 1014 vm_page_updatefake(page, paddr, memattr); 1015 } else { 1016 /* 1017 * Replace the passed in reqpage page with our own fake page and 1018 * free up the all of the original pages. 1019 */ 1020 VM_OBJECT_WUNLOCK(object); 1021 page = vm_page_getfake(paddr, memattr); 1022 VM_OBJECT_WLOCK(object); 1023 vm_page_replace(page, object, (*mres)->pindex, *mres); 1024 *mres = page; 1025 } 1026 page->valid = VM_PAGE_BITS_ALL; 1027 return (VM_PAGER_OK); 1028 } 1029 1030 1031 static struct cdev_pager_ops netmap_cdev_pager_ops = { 1032 .cdev_pg_ctor = netmap_dev_pager_ctor, 1033 .cdev_pg_dtor = netmap_dev_pager_dtor, 1034 .cdev_pg_fault = netmap_dev_pager_fault, 1035 }; 1036 1037 1038 static int 1039 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 1040 vm_size_t objsize, vm_object_t *objp, int prot) 1041 { 1042 int error; 1043 struct netmap_vm_handle_t *vmh; 1044 struct netmap_priv_d *priv; 1045 vm_object_t obj; 1046 1047 if (netmap_verbose) 1048 nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev, 1049 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 1050 1051 vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF, 1052 M_NOWAIT | M_ZERO); 1053 if (vmh == NULL) 1054 return ENOMEM; 1055 vmh->dev = cdev; 1056 1057 NMG_LOCK(); 1058 error = devfs_get_cdevpriv((void**)&priv); 1059 if (error) 1060 goto err_unlock; 1061 if (priv->np_nifp == NULL) { 1062 error = EINVAL; 1063 goto err_unlock; 1064 } 1065 vmh->priv = priv; 1066 priv->np_refs++; 1067 NMG_UNLOCK(); 1068 1069 obj = cdev_pager_allocate(vmh, OBJT_DEVICE, 1070 &netmap_cdev_pager_ops, objsize, prot, 1071 *foff, NULL); 1072 if (obj == NULL) { 1073 nm_prerr("cdev_pager_allocate failed"); 1074 error = EINVAL; 1075 goto err_deref; 1076 } 1077 1078 *objp = obj; 1079 return 0; 1080 1081 err_deref: 1082 NMG_LOCK(); 1083 priv->np_refs--; 1084 err_unlock: 1085 NMG_UNLOCK(); 1086 // err: 1087 free(vmh, M_DEVBUF); 1088 return error; 1089 } 1090 1091 /* 1092 * On FreeBSD the close routine is only called on the last close on 1093 * the device (/dev/netmap) so we cannot do anything useful. 1094 * To track close() on individual file descriptors we pass netmap_dtor() to 1095 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor 1096 * when the last fd pointing to the device is closed. 1097 * 1098 * Note that FreeBSD does not even munmap() on close() so we also have 1099 * to track mmap() ourselves, and postpone the call to 1100 * netmap_dtor() is called when the process has no open fds and no active 1101 * memory maps on /dev/netmap, as in linux. 1102 */ 1103 static int 1104 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 1105 { 1106 if (netmap_verbose) 1107 nm_prinf("dev %p fflag 0x%x devtype %d td %p", 1108 dev, fflag, devtype, td); 1109 return 0; 1110 } 1111 1112 1113 static int 1114 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 1115 { 1116 struct netmap_priv_d *priv; 1117 int error; 1118 1119 (void)dev; 1120 (void)oflags; 1121 (void)devtype; 1122 (void)td; 1123 1124 NMG_LOCK(); 1125 priv = netmap_priv_new(); 1126 if (priv == NULL) { 1127 error = ENOMEM; 1128 goto out; 1129 } 1130 error = devfs_set_cdevpriv(priv, netmap_dtor); 1131 if (error) { 1132 netmap_priv_delete(priv); 1133 } 1134 out: 1135 NMG_UNLOCK(); 1136 return error; 1137 } 1138 1139 /******************** kthread wrapper ****************/ 1140 #include <sys/sysproto.h> 1141 u_int 1142 nm_os_ncpus(void) 1143 { 1144 return mp_maxid + 1; 1145 } 1146 1147 struct nm_kctx_ctx { 1148 /* Userspace thread (kthread creator). */ 1149 struct thread *user_td; 1150 1151 /* worker function and parameter */ 1152 nm_kctx_worker_fn_t worker_fn; 1153 void *worker_private; 1154 1155 struct nm_kctx *nmk; 1156 1157 /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */ 1158 long type; 1159 }; 1160 1161 struct nm_kctx { 1162 struct thread *worker; 1163 struct mtx worker_lock; 1164 struct nm_kctx_ctx worker_ctx; 1165 int run; /* used to stop kthread */ 1166 int attach_user; /* kthread attached to user_process */ 1167 int affinity; 1168 }; 1169 1170 static void 1171 nm_kctx_worker(void *data) 1172 { 1173 struct nm_kctx *nmk = data; 1174 struct nm_kctx_ctx *ctx = &nmk->worker_ctx; 1175 1176 if (nmk->affinity >= 0) { 1177 thread_lock(curthread); 1178 sched_bind(curthread, nmk->affinity); 1179 thread_unlock(curthread); 1180 } 1181 1182 while (nmk->run) { 1183 /* 1184 * check if the parent process dies 1185 * (when kthread is attached to user process) 1186 */ 1187 if (ctx->user_td) { 1188 PROC_LOCK(curproc); 1189 thread_suspend_check(0); 1190 PROC_UNLOCK(curproc); 1191 } else { 1192 kthread_suspend_check(); 1193 } 1194 1195 /* Continuously execute worker process. */ 1196 ctx->worker_fn(ctx->worker_private); /* worker body */ 1197 } 1198 1199 kthread_exit(); 1200 } 1201 1202 void 1203 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity) 1204 { 1205 nmk->affinity = affinity; 1206 } 1207 1208 struct nm_kctx * 1209 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque) 1210 { 1211 struct nm_kctx *nmk = NULL; 1212 1213 nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO); 1214 if (!nmk) 1215 return NULL; 1216 1217 mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF); 1218 nmk->worker_ctx.worker_fn = cfg->worker_fn; 1219 nmk->worker_ctx.worker_private = cfg->worker_private; 1220 nmk->worker_ctx.type = cfg->type; 1221 nmk->affinity = -1; 1222 1223 /* attach kthread to user process (ptnetmap) */ 1224 nmk->attach_user = cfg->attach_user; 1225 1226 return nmk; 1227 } 1228 1229 int 1230 nm_os_kctx_worker_start(struct nm_kctx *nmk) 1231 { 1232 struct proc *p = NULL; 1233 int error = 0; 1234 1235 /* Temporarily disable this function as it is currently broken 1236 * and causes kernel crashes. The failure can be triggered by 1237 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */ 1238 return EOPNOTSUPP; 1239 1240 if (nmk->worker) 1241 return EBUSY; 1242 1243 /* check if we want to attach kthread to user process */ 1244 if (nmk->attach_user) { 1245 nmk->worker_ctx.user_td = curthread; 1246 p = curthread->td_proc; 1247 } 1248 1249 /* enable kthread main loop */ 1250 nmk->run = 1; 1251 /* create kthread */ 1252 if((error = kthread_add(nm_kctx_worker, nmk, p, 1253 &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld", 1254 nmk->worker_ctx.type))) { 1255 goto err; 1256 } 1257 1258 nm_prinf("nm_kthread started td %p", nmk->worker); 1259 1260 return 0; 1261 err: 1262 nm_prerr("nm_kthread start failed err %d", error); 1263 nmk->worker = NULL; 1264 return error; 1265 } 1266 1267 void 1268 nm_os_kctx_worker_stop(struct nm_kctx *nmk) 1269 { 1270 if (!nmk->worker) 1271 return; 1272 1273 /* tell to kthread to exit from main loop */ 1274 nmk->run = 0; 1275 1276 /* wake up kthread if it sleeps */ 1277 kthread_resume(nmk->worker); 1278 1279 nmk->worker = NULL; 1280 } 1281 1282 void 1283 nm_os_kctx_destroy(struct nm_kctx *nmk) 1284 { 1285 if (!nmk) 1286 return; 1287 1288 if (nmk->worker) 1289 nm_os_kctx_worker_stop(nmk); 1290 1291 free(nmk, M_DEVBUF); 1292 } 1293 1294 /******************** kqueue support ****************/ 1295 1296 /* 1297 * In addition to calling selwakeuppri(), nm_os_selwakeup() also 1298 * needs to call knote() to wake up kqueue listeners. 1299 * This operation is deferred to a taskqueue in order to avoid possible 1300 * lock order reversals; these may happen because knote() grabs a 1301 * private lock associated to the 'si' (see struct selinfo, 1302 * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup() 1303 * can be called while holding the lock associated to a different 1304 * 'si'. 1305 * When calling knote() we use a non-zero 'hint' argument to inform 1306 * the netmap_knrw() function that it is being called from 1307 * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is 1308 * called by the kevent subsystem (i.e. kevent_scan()) we also need to 1309 * call netmap_poll(). 1310 * 1311 * The netmap_kqfilter() function registers one or another f_event 1312 * depending on read or write mode. A pointer to the struct 1313 * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later 1314 * be passed to netmap_poll(). We pass NULL as a third argument to 1315 * netmap_poll(), so that the latter only runs the txsync/rxsync 1316 * (if necessary), and skips the nm_os_selrecord() calls. 1317 */ 1318 1319 1320 void 1321 nm_os_selwakeup(struct nm_selinfo *si) 1322 { 1323 selwakeuppri(&si->si, PI_NET); 1324 if (si->kqueue_users > 0) { 1325 taskqueue_enqueue(si->ntfytq, &si->ntfytask); 1326 } 1327 } 1328 1329 void 1330 nm_os_selrecord(struct thread *td, struct nm_selinfo *si) 1331 { 1332 selrecord(td, &si->si); 1333 } 1334 1335 static void 1336 netmap_knrdetach(struct knote *kn) 1337 { 1338 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1339 struct nm_selinfo *si = priv->np_si[NR_RX]; 1340 1341 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1342 NMG_LOCK(); 1343 KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s", 1344 si->mtxname)); 1345 si->kqueue_users--; 1346 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1347 NMG_UNLOCK(); 1348 } 1349 1350 static void 1351 netmap_knwdetach(struct knote *kn) 1352 { 1353 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1354 struct nm_selinfo *si = priv->np_si[NR_TX]; 1355 1356 knlist_remove(&si->si.si_note, kn, /*islocked=*/0); 1357 NMG_LOCK(); 1358 si->kqueue_users--; 1359 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1360 NMG_UNLOCK(); 1361 } 1362 1363 /* 1364 * Callback triggered by netmap notifications (see netmap_notify()), 1365 * and by the application calling kevent(). In the former case we 1366 * just return 1 (events ready), since we are not able to do better. 1367 * In the latter case we use netmap_poll() to see which events are 1368 * ready. 1369 */ 1370 static int 1371 netmap_knrw(struct knote *kn, long hint, int events) 1372 { 1373 struct netmap_priv_d *priv; 1374 int revents; 1375 1376 if (hint != 0) { 1377 /* Called from netmap_notify(), typically from a 1378 * thread different from the one issuing kevent(). 1379 * Assume we are ready. */ 1380 return 1; 1381 } 1382 1383 /* Called from kevent(). */ 1384 priv = kn->kn_hook; 1385 revents = netmap_poll(priv, events, /*thread=*/NULL); 1386 1387 return (events & revents) ? 1 : 0; 1388 } 1389 1390 static int 1391 netmap_knread(struct knote *kn, long hint) 1392 { 1393 return netmap_knrw(kn, hint, POLLIN); 1394 } 1395 1396 static int 1397 netmap_knwrite(struct knote *kn, long hint) 1398 { 1399 return netmap_knrw(kn, hint, POLLOUT); 1400 } 1401 1402 static struct filterops netmap_rfiltops = { 1403 .f_isfd = 1, 1404 .f_detach = netmap_knrdetach, 1405 .f_event = netmap_knread, 1406 }; 1407 1408 static struct filterops netmap_wfiltops = { 1409 .f_isfd = 1, 1410 .f_detach = netmap_knwdetach, 1411 .f_event = netmap_knwrite, 1412 }; 1413 1414 1415 /* 1416 * This is called when a thread invokes kevent() to record 1417 * a change in the configuration of the kqueue(). 1418 * The 'priv' is the one associated to the open netmap device. 1419 */ 1420 static int 1421 netmap_kqfilter(struct cdev *dev, struct knote *kn) 1422 { 1423 struct netmap_priv_d *priv; 1424 int error; 1425 struct netmap_adapter *na; 1426 struct nm_selinfo *si; 1427 int ev = kn->kn_filter; 1428 1429 if (ev != EVFILT_READ && ev != EVFILT_WRITE) { 1430 nm_prerr("bad filter request %d", ev); 1431 return 1; 1432 } 1433 error = devfs_get_cdevpriv((void**)&priv); 1434 if (error) { 1435 nm_prerr("device not yet setup"); 1436 return 1; 1437 } 1438 na = priv->np_na; 1439 if (na == NULL) { 1440 nm_prerr("no netmap adapter for this file descriptor"); 1441 return 1; 1442 } 1443 /* the si is indicated in the priv */ 1444 si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX]; 1445 kn->kn_fop = (ev == EVFILT_WRITE) ? 1446 &netmap_wfiltops : &netmap_rfiltops; 1447 kn->kn_hook = priv; 1448 NMG_LOCK(); 1449 si->kqueue_users++; 1450 nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users); 1451 NMG_UNLOCK(); 1452 knlist_add(&si->si.si_note, kn, /*islocked=*/0); 1453 1454 return 0; 1455 } 1456 1457 static int 1458 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td) 1459 { 1460 struct netmap_priv_d *priv; 1461 if (devfs_get_cdevpriv((void **)&priv)) { 1462 return POLLERR; 1463 } 1464 return netmap_poll(priv, events, td); 1465 } 1466 1467 static int 1468 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data, 1469 int ffla __unused, struct thread *td) 1470 { 1471 int error; 1472 struct netmap_priv_d *priv; 1473 1474 CURVNET_SET(TD_TO_VNET(td)); 1475 error = devfs_get_cdevpriv((void **)&priv); 1476 if (error) { 1477 /* XXX ENOENT should be impossible, since the priv 1478 * is now created in the open */ 1479 if (error == ENOENT) 1480 error = ENXIO; 1481 goto out; 1482 } 1483 error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1); 1484 out: 1485 CURVNET_RESTORE(); 1486 1487 return error; 1488 } 1489 1490 void 1491 nm_os_onattach(if_t ifp) 1492 { 1493 if_setcapabilitiesbit(ifp, IFCAP_NETMAP, 0); 1494 } 1495 1496 void 1497 nm_os_onenter(if_t ifp) 1498 { 1499 struct netmap_adapter *na = NA(ifp); 1500 1501 na->if_transmit = if_gettransmitfn(ifp); 1502 if_settransmitfn(ifp, netmap_transmit); 1503 if_setcapenablebit(ifp, IFCAP_NETMAP, 0); 1504 } 1505 1506 void 1507 nm_os_onexit(if_t ifp) 1508 { 1509 struct netmap_adapter *na = NA(ifp); 1510 1511 if_settransmitfn(ifp, na->if_transmit); 1512 if_setcapenablebit(ifp, 0, IFCAP_NETMAP); 1513 } 1514 1515 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */ 1516 struct cdevsw netmap_cdevsw = { 1517 .d_version = D_VERSION, 1518 .d_name = "netmap", 1519 .d_open = netmap_open, 1520 .d_mmap_single = netmap_mmap_single, 1521 .d_ioctl = freebsd_netmap_ioctl, 1522 .d_poll = freebsd_netmap_poll, 1523 .d_kqfilter = netmap_kqfilter, 1524 .d_close = netmap_close, 1525 }; 1526 /*--- end of kqueue support ----*/ 1527 1528 /* 1529 * Kernel entry point. 1530 * 1531 * Initialize/finalize the module and return. 1532 * 1533 * Return 0 on success, errno on failure. 1534 */ 1535 static int 1536 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1537 { 1538 int error = 0; 1539 1540 switch (event) { 1541 case MOD_LOAD: 1542 error = netmap_init(); 1543 break; 1544 1545 case MOD_UNLOAD: 1546 /* 1547 * if some one is still using netmap, 1548 * then the module can not be unloaded. 1549 */ 1550 if (netmap_use_count) { 1551 nm_prerr("netmap module can not be unloaded - netmap_use_count: %d", 1552 netmap_use_count); 1553 error = EBUSY; 1554 break; 1555 } 1556 netmap_fini(); 1557 break; 1558 1559 default: 1560 error = EOPNOTSUPP; 1561 break; 1562 } 1563 1564 return (error); 1565 } 1566 1567 #ifdef DEV_MODULE_ORDERED 1568 /* 1569 * The netmap module contains three drivers: (i) the netmap character device 1570 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI 1571 * device driver. The attach() routines of both (ii) and (iii) need the 1572 * lock of the global allocator, and such lock is initialized in netmap_init(), 1573 * which is part of (i). 1574 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using 1575 * the 'order' parameter of driver declaration macros. For (i), we specify 1576 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED 1577 * macros for (ii) and (iii). 1578 */ 1579 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE); 1580 #else /* !DEV_MODULE_ORDERED */ 1581 DEV_MODULE(netmap, netmap_loader, NULL); 1582 #endif /* DEV_MODULE_ORDERED */ 1583 MODULE_DEPEND(netmap, pci, 1, 1, 1); 1584 MODULE_VERSION(netmap, 1); 1585 /* reduce conditional code */ 1586 // linux API, use for the knlist in FreeBSD 1587 /* use a private mutex for the knlist */ 1588