1 /* 2 * Copyright (C) 2011-2012 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 #define NM_BRIDGE 27 28 /* 29 * This module supports memory mapped access to network devices, 30 * see netmap(4). 31 * 32 * The module uses a large, memory pool allocated by the kernel 33 * and accessible as mmapped memory by multiple userspace threads/processes. 34 * The memory pool contains packet buffers and "netmap rings", 35 * i.e. user-accessible copies of the interface's queues. 36 * 37 * Access to the network card works like this: 38 * 1. a process/thread issues one or more open() on /dev/netmap, to create 39 * select()able file descriptor on which events are reported. 40 * 2. on each descriptor, the process issues an ioctl() to identify 41 * the interface that should report events to the file descriptor. 42 * 3. on each descriptor, the process issues an mmap() request to 43 * map the shared memory region within the process' address space. 44 * The list of interesting queues is indicated by a location in 45 * the shared memory region. 46 * 4. using the functions in the netmap(4) userspace API, a process 47 * can look up the occupation state of a queue, access memory buffers, 48 * and retrieve received packets or enqueue packets to transmit. 49 * 5. using some ioctl()s the process can synchronize the userspace view 50 * of the queue with the actual status in the kernel. This includes both 51 * receiving the notification of new packets, and transmitting new 52 * packets on the output interface. 53 * 6. select() or poll() can be used to wait for events on individual 54 * transmit or receive queues (or all queues for a given interface). 55 */ 56 57 #ifdef linux 58 #include "bsd_glue.h" 59 static netdev_tx_t netmap_start_linux(struct sk_buff *skb, struct net_device *dev); 60 #endif /* linux */ 61 #ifdef __APPLE__ 62 #include "osx_glue.h" 63 #endif 64 #ifdef __FreeBSD__ 65 #include <sys/cdefs.h> /* prerequisite */ 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/types.h> 69 #include <sys/module.h> 70 #include <sys/errno.h> 71 #include <sys/param.h> /* defines used in kernel.h */ 72 #include <sys/jail.h> 73 #include <sys/kernel.h> /* types used in module initialization */ 74 #include <sys/conf.h> /* cdevsw struct */ 75 #include <sys/uio.h> /* uio struct */ 76 #include <sys/sockio.h> 77 #include <sys/socketvar.h> /* struct socket */ 78 #include <sys/malloc.h> 79 #include <sys/mman.h> /* PROT_EXEC */ 80 #include <sys/poll.h> 81 #include <sys/proc.h> 82 #include <vm/vm.h> /* vtophys */ 83 #include <vm/pmap.h> /* vtophys */ 84 #include <sys/socket.h> /* sockaddrs */ 85 #include <machine/bus.h> 86 #include <sys/selinfo.h> 87 #include <sys/sysctl.h> 88 #include <net/if.h> 89 #include <net/bpf.h> /* BIOCIMMEDIATE */ 90 #include <net/vnet.h> 91 #include <net/netmap.h> 92 #include <dev/netmap/netmap_kern.h> 93 #include <machine/bus.h> /* bus_dmamap_* */ 94 95 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 96 #endif /* __FreeBSD__ */ 97 98 /* 99 * lock and unlock for the netmap memory allocator 100 */ 101 #define NMA_LOCK() mtx_lock(&nm_mem->nm_mtx); 102 #define NMA_UNLOCK() mtx_unlock(&nm_mem->nm_mtx); 103 struct netmap_mem_d; 104 static struct netmap_mem_d *nm_mem; /* Our memory allocator. */ 105 106 u_int netmap_total_buffers; 107 char *netmap_buffer_base; /* address of an invalid buffer */ 108 109 /* user-controlled variables */ 110 int netmap_verbose; 111 112 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 113 114 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 115 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 116 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 117 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 118 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 119 int netmap_buf_size = 2048; 120 TUNABLE_INT("hw.netmap.buf_size", &netmap_buf_size); 121 SYSCTL_INT(_dev_netmap, OID_AUTO, buf_size, 122 CTLFLAG_RD, &netmap_buf_size, 0, "Size of packet buffers"); 123 int netmap_mitigate = 1; 124 SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, ""); 125 int netmap_no_pendintr = 1; 126 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, 127 CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets."); 128 129 int netmap_drop = 0; /* debugging */ 130 int netmap_flags = 0; /* debug flags */ 131 int netmap_copy = 0; /* debugging, copy content */ 132 133 SYSCTL_INT(_dev_netmap, OID_AUTO, drop, CTLFLAG_RW, &netmap_drop, 0 , ""); 134 SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , ""); 135 SYSCTL_INT(_dev_netmap, OID_AUTO, copy, CTLFLAG_RW, &netmap_copy, 0 , ""); 136 137 #ifdef NM_BRIDGE /* support for netmap bridge */ 138 139 /* 140 * system parameters. 141 * 142 * All switched ports have prefix NM_NAME. 143 * The switch has a max of NM_BDG_MAXPORTS ports (often stored in a bitmap, 144 * so a practical upper bound is 64). 145 * Each tx ring is read-write, whereas rx rings are readonly (XXX not done yet). 146 * The virtual interfaces use per-queue lock instead of core lock. 147 * In the tx loop, we aggregate traffic in batches to make all operations 148 * faster. The batch size is NM_BDG_BATCH 149 */ 150 #define NM_NAME "vale" /* prefix for the interface */ 151 #define NM_BDG_MAXPORTS 16 /* up to 64 ? */ 152 #define NM_BRIDGE_RINGSIZE 1024 /* in the device */ 153 #define NM_BDG_HASH 1024 /* forwarding table entries */ 154 #define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */ 155 #define NM_BRIDGES 4 /* number of bridges */ 156 int netmap_bridge = NM_BDG_BATCH; /* bridge batch size */ 157 SYSCTL_INT(_dev_netmap, OID_AUTO, bridge, CTLFLAG_RW, &netmap_bridge, 0 , ""); 158 #ifdef linux 159 #define ADD_BDG_REF(ifp) (NA(ifp)->if_refcount++) 160 #define DROP_BDG_REF(ifp) (NA(ifp)->if_refcount-- <= 1) 161 #else /* !linux */ 162 #define ADD_BDG_REF(ifp) (ifp)->if_refcount++ 163 #define DROP_BDG_REF(ifp) refcount_release(&(ifp)->if_refcount) 164 #ifdef __FreeBSD__ 165 #include <sys/endian.h> 166 #include <sys/refcount.h> 167 #endif /* __FreeBSD__ */ 168 #endif /* !linux */ 169 170 static void bdg_netmap_attach(struct ifnet *ifp); 171 static int bdg_netmap_reg(struct ifnet *ifp, int onoff); 172 /* per-tx-queue entry */ 173 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 174 void *buf; 175 uint64_t dst; /* dst mask */ 176 uint32_t src; /* src index ? */ 177 uint16_t len; /* src len */ 178 #if 0 179 uint64_t src_mac; /* ignore 2 MSBytes */ 180 uint64_t dst_mac; /* ignore 2 MSBytes */ 181 uint32_t dst_idx; /* dst index in fwd table */ 182 uint32_t dst_buf; /* where we copy to */ 183 #endif 184 }; 185 186 struct nm_hash_ent { 187 uint64_t mac; /* the top 2 bytes are the epoch */ 188 uint64_t ports; 189 }; 190 191 /* 192 * Interfaces for a bridge are all in ports[]. 193 * The array has fixed size, an empty entry does not terminate 194 * the search. 195 */ 196 struct nm_bridge { 197 struct ifnet *bdg_ports[NM_BDG_MAXPORTS]; 198 int n_ports; 199 uint64_t act_ports; 200 int freelist; /* first buffer index */ 201 NM_SELINFO_T si; /* poll/select wait queue */ 202 NM_LOCK_T bdg_lock; /* protect the selinfo ? */ 203 204 /* the forwarding table, MAC+ports */ 205 struct nm_hash_ent ht[NM_BDG_HASH]; 206 207 int namelen; /* 0 means free */ 208 char basename[IFNAMSIZ]; 209 }; 210 211 struct nm_bridge nm_bridges[NM_BRIDGES]; 212 213 #define BDG_LOCK(b) mtx_lock(&(b)->bdg_lock) 214 #define BDG_UNLOCK(b) mtx_unlock(&(b)->bdg_lock) 215 216 /* 217 * NA(ifp)->bdg_port port index 218 */ 219 220 #ifndef linux 221 static inline void prefetch (const void *x) 222 { 223 __asm volatile("prefetcht0 %0" :: "m" (*(const unsigned long *)x)); 224 } 225 #endif /* !linux */ 226 227 // XXX only for multiples of 64 bytes, non overlapped. 228 static inline void 229 pkt_copy(void *_src, void *_dst, int l) 230 { 231 uint64_t *src = _src; 232 uint64_t *dst = _dst; 233 if (unlikely(l >= 1024)) { 234 bcopy(src, dst, l); 235 return; 236 } 237 for (; likely(l > 0); l-=64) { 238 *dst++ = *src++; 239 *dst++ = *src++; 240 *dst++ = *src++; 241 *dst++ = *src++; 242 *dst++ = *src++; 243 *dst++ = *src++; 244 *dst++ = *src++; 245 *dst++ = *src++; 246 } 247 } 248 249 /* 250 * locate a bridge among the existing ones. 251 * a ':' in the name terminates the bridge name. Otherwise, just NM_NAME. 252 * We assume that this is called with a name of at least NM_NAME chars. 253 */ 254 static struct nm_bridge * 255 nm_find_bridge(const char *name) 256 { 257 int i, l, namelen, e; 258 struct nm_bridge *b = NULL; 259 260 namelen = strlen(NM_NAME); /* base length */ 261 l = strlen(name); /* actual length */ 262 for (i = namelen + 1; i < l; i++) { 263 if (name[i] == ':') { 264 namelen = i; 265 break; 266 } 267 } 268 if (namelen >= IFNAMSIZ) 269 namelen = IFNAMSIZ; 270 ND("--- prefix is '%.*s' ---", namelen, name); 271 272 /* use the first entry for locking */ 273 BDG_LOCK(nm_bridges); // XXX do better 274 for (e = -1, i = 1; i < NM_BRIDGES; i++) { 275 b = nm_bridges + i; 276 if (b->namelen == 0) 277 e = i; /* record empty slot */ 278 else if (strncmp(name, b->basename, namelen) == 0) { 279 ND("found '%.*s' at %d", namelen, name, i); 280 break; 281 } 282 } 283 if (i == NM_BRIDGES) { /* all full */ 284 if (e == -1) { /* no empty slot */ 285 b = NULL; 286 } else { 287 b = nm_bridges + e; 288 strncpy(b->basename, name, namelen); 289 b->namelen = namelen; 290 } 291 } 292 BDG_UNLOCK(nm_bridges); 293 return b; 294 } 295 #endif /* NM_BRIDGE */ 296 297 /*------------- memory allocator -----------------*/ 298 #ifdef NETMAP_MEM2 299 #include "netmap_mem2.c" 300 #else /* !NETMAP_MEM2 */ 301 #include "netmap_mem1.c" 302 #endif /* !NETMAP_MEM2 */ 303 /*------------ end of memory allocator ----------*/ 304 305 /* Structure associated to each thread which registered an interface. */ 306 struct netmap_priv_d { 307 struct netmap_if *np_nifp; /* netmap interface descriptor. */ 308 309 struct ifnet *np_ifp; /* device for which we hold a reference */ 310 int np_ringid; /* from the ioctl */ 311 u_int np_qfirst, np_qlast; /* range of rings to scan */ 312 uint16_t np_txpoll; 313 }; 314 315 316 /* 317 * File descriptor's private data destructor. 318 * 319 * Call nm_register(ifp,0) to stop netmap mode on the interface and 320 * revert to normal operation. We expect that np_ifp has not gone. 321 */ 322 static void 323 netmap_dtor_locked(void *data) 324 { 325 struct netmap_priv_d *priv = data; 326 struct ifnet *ifp = priv->np_ifp; 327 struct netmap_adapter *na = NA(ifp); 328 struct netmap_if *nifp = priv->np_nifp; 329 330 na->refcount--; 331 if (na->refcount <= 0) { /* last instance */ 332 u_int i, j, lim; 333 334 D("deleting last netmap instance for %s", ifp->if_xname); 335 /* 336 * there is a race here with *_netmap_task() and 337 * netmap_poll(), which don't run under NETMAP_REG_LOCK. 338 * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP 339 * (aka NETMAP_DELETING(na)) are a unique marker that the 340 * device is dying. 341 * Before destroying stuff we sleep a bit, and then complete 342 * the job. NIOCREG should realize the condition and 343 * loop until they can continue; the other routines 344 * should check the condition at entry and quit if 345 * they cannot run. 346 */ 347 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 348 tsleep(na, 0, "NIOCUNREG", 4); 349 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 350 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ 351 /* Wake up any sleeping threads. netmap_poll will 352 * then return POLLERR 353 */ 354 for (i = 0; i < na->num_tx_rings + 1; i++) 355 selwakeuppri(&na->tx_rings[i].si, PI_NET); 356 for (i = 0; i < na->num_rx_rings + 1; i++) 357 selwakeuppri(&na->rx_rings[i].si, PI_NET); 358 selwakeuppri(&na->tx_si, PI_NET); 359 selwakeuppri(&na->rx_si, PI_NET); 360 /* release all buffers */ 361 NMA_LOCK(); 362 for (i = 0; i < na->num_tx_rings + 1; i++) { 363 struct netmap_ring *ring = na->tx_rings[i].ring; 364 lim = na->tx_rings[i].nkr_num_slots; 365 for (j = 0; j < lim; j++) 366 netmap_free_buf(nifp, ring->slot[j].buf_idx); 367 } 368 for (i = 0; i < na->num_rx_rings + 1; i++) { 369 struct netmap_ring *ring = na->rx_rings[i].ring; 370 lim = na->rx_rings[i].nkr_num_slots; 371 for (j = 0; j < lim; j++) 372 netmap_free_buf(nifp, ring->slot[j].buf_idx); 373 } 374 NMA_UNLOCK(); 375 netmap_free_rings(na); 376 wakeup(na); 377 } 378 netmap_if_free(nifp); 379 } 380 381 static void 382 nm_if_rele(struct ifnet *ifp) 383 { 384 #ifndef NM_BRIDGE 385 if_rele(ifp); 386 #else /* NM_BRIDGE */ 387 int i, full; 388 struct nm_bridge *b; 389 390 if (strncmp(ifp->if_xname, NM_NAME, sizeof(NM_NAME) - 1)) { 391 if_rele(ifp); 392 return; 393 } 394 if (!DROP_BDG_REF(ifp)) 395 return; 396 b = ifp->if_bridge; 397 BDG_LOCK(nm_bridges); 398 BDG_LOCK(b); 399 ND("want to disconnect %s from the bridge", ifp->if_xname); 400 full = 0; 401 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 402 if (b->bdg_ports[i] == ifp) { 403 b->bdg_ports[i] = NULL; 404 bzero(ifp, sizeof(*ifp)); 405 free(ifp, M_DEVBUF); 406 break; 407 } 408 else if (b->bdg_ports[i] != NULL) 409 full = 1; 410 } 411 BDG_UNLOCK(b); 412 if (full == 0) { 413 ND("freeing bridge %d", b - nm_bridges); 414 b->namelen = 0; 415 } 416 BDG_UNLOCK(nm_bridges); 417 if (i == NM_BDG_MAXPORTS) 418 D("ouch, cannot find ifp to remove"); 419 #endif /* NM_BRIDGE */ 420 } 421 422 static void 423 netmap_dtor(void *data) 424 { 425 struct netmap_priv_d *priv = data; 426 struct ifnet *ifp = priv->np_ifp; 427 struct netmap_adapter *na = NA(ifp); 428 429 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 430 netmap_dtor_locked(data); 431 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 432 433 nm_if_rele(ifp); 434 bzero(priv, sizeof(*priv)); /* XXX for safety */ 435 free(priv, M_DEVBUF); 436 } 437 438 439 /* 440 * mmap(2) support for the "netmap" device. 441 * 442 * Expose all the memory previously allocated by our custom memory 443 * allocator: this way the user has only to issue a single mmap(2), and 444 * can work on all the data structures flawlessly. 445 * 446 * Return 0 on success, -1 otherwise. 447 */ 448 449 #ifdef __FreeBSD__ 450 static int 451 netmap_mmap(__unused struct cdev *dev, 452 #if __FreeBSD_version < 900000 453 vm_offset_t offset, vm_paddr_t *paddr, int nprot 454 #else 455 vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, 456 __unused vm_memattr_t *memattr 457 #endif 458 ) 459 { 460 if (nprot & PROT_EXEC) 461 return (-1); // XXX -1 or EINVAL ? 462 463 ND("request for offset 0x%x", (uint32_t)offset); 464 *paddr = netmap_ofstophys(offset); 465 466 return (0); 467 } 468 #endif /* __FreeBSD__ */ 469 470 471 /* 472 * Handlers for synchronization of the queues from/to the host. 473 * 474 * netmap_sync_to_host() passes packets up. We are called from a 475 * system call in user process context, and the only contention 476 * can be among multiple user threads erroneously calling 477 * this routine concurrently. In principle we should not even 478 * need to lock. 479 */ 480 static void 481 netmap_sync_to_host(struct netmap_adapter *na) 482 { 483 struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings]; 484 struct netmap_ring *ring = kring->ring; 485 struct mbuf *head = NULL, *tail = NULL, *m; 486 u_int k, n, lim = kring->nkr_num_slots - 1; 487 488 k = ring->cur; 489 if (k > lim) { 490 netmap_ring_reinit(kring); 491 return; 492 } 493 // na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 494 495 /* Take packets from hwcur to cur and pass them up. 496 * In case of no buffers we give up. At the end of the loop, 497 * the queue is drained in all cases. 498 */ 499 for (n = kring->nr_hwcur; n != k;) { 500 struct netmap_slot *slot = &ring->slot[n]; 501 502 n = (n == lim) ? 0 : n + 1; 503 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { 504 D("bad pkt at %d len %d", n, slot->len); 505 continue; 506 } 507 m = m_devget(NMB(slot), slot->len, 0, na->ifp, NULL); 508 509 if (m == NULL) 510 break; 511 if (tail) 512 tail->m_nextpkt = m; 513 else 514 head = m; 515 tail = m; 516 m->m_nextpkt = NULL; 517 } 518 kring->nr_hwcur = k; 519 kring->nr_hwavail = ring->avail = lim; 520 // na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 521 522 /* send packets up, outside the lock */ 523 while ((m = head) != NULL) { 524 head = head->m_nextpkt; 525 m->m_nextpkt = NULL; 526 if (netmap_verbose & NM_VERB_HOST) 527 D("sending up pkt %p size %d", m, MBUF_LEN(m)); 528 NM_SEND_UP(na->ifp, m); 529 } 530 } 531 532 /* 533 * rxsync backend for packets coming from the host stack. 534 * They have been put in the queue by netmap_start() so we 535 * need to protect access to the kring using a lock. 536 * 537 * This routine also does the selrecord if called from the poll handler 538 * (we know because td != NULL). 539 */ 540 static void 541 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td) 542 { 543 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 544 struct netmap_ring *ring = kring->ring; 545 u_int j, n, lim = kring->nkr_num_slots; 546 u_int k = ring->cur, resvd = ring->reserved; 547 548 na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 549 if (k >= lim) { 550 netmap_ring_reinit(kring); 551 return; 552 } 553 /* new packets are already set in nr_hwavail */ 554 /* skip past packets that userspace has released */ 555 j = kring->nr_hwcur; 556 if (resvd > 0) { 557 if (resvd + ring->avail >= lim + 1) { 558 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 559 ring->reserved = resvd = 0; // XXX panic... 560 } 561 k = (k >= resvd) ? k - resvd : k + lim - resvd; 562 } 563 if (j != k) { 564 n = k >= j ? k - j : k + lim - j; 565 kring->nr_hwavail -= n; 566 kring->nr_hwcur = k; 567 } 568 k = ring->avail = kring->nr_hwavail - resvd; 569 if (k == 0 && td) 570 selrecord(td, &kring->si); 571 if (k && (netmap_verbose & NM_VERB_HOST)) 572 D("%d pkts from stack", k); 573 na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 574 } 575 576 577 /* 578 * get a refcounted reference to an interface. 579 * Return ENXIO if the interface does not exist, EINVAL if netmap 580 * is not supported by the interface. 581 * If successful, hold a reference. 582 */ 583 static int 584 get_ifp(const char *name, struct ifnet **ifp) 585 { 586 #ifdef NM_BRIDGE 587 struct ifnet *iter = NULL; 588 589 do { 590 struct nm_bridge *b; 591 int i, l, cand = -1; 592 593 if (strncmp(name, NM_NAME, sizeof(NM_NAME) - 1)) 594 break; 595 b = nm_find_bridge(name); 596 if (b == NULL) { 597 D("no bridges available for '%s'", name); 598 return (ENXIO); 599 } 600 /* XXX locking */ 601 BDG_LOCK(b); 602 /* lookup in the local list of ports */ 603 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 604 iter = b->bdg_ports[i]; 605 if (iter == NULL) { 606 if (cand == -1) 607 cand = i; /* potential insert point */ 608 continue; 609 } 610 if (!strcmp(iter->if_xname, name)) { 611 ADD_BDG_REF(iter); 612 ND("found existing interface"); 613 BDG_UNLOCK(b); 614 break; 615 } 616 } 617 if (i < NM_BDG_MAXPORTS) /* already unlocked */ 618 break; 619 if (cand == -1) { 620 D("bridge full, cannot create new port"); 621 no_port: 622 BDG_UNLOCK(b); 623 *ifp = NULL; 624 return EINVAL; 625 } 626 ND("create new bridge port %s", name); 627 /* space for forwarding list after the ifnet */ 628 l = sizeof(*iter) + 629 sizeof(struct nm_bdg_fwd)*NM_BDG_BATCH ; 630 iter = malloc(l, M_DEVBUF, M_NOWAIT | M_ZERO); 631 if (!iter) 632 goto no_port; 633 strcpy(iter->if_xname, name); 634 bdg_netmap_attach(iter); 635 b->bdg_ports[cand] = iter; 636 iter->if_bridge = b; 637 ADD_BDG_REF(iter); 638 BDG_UNLOCK(b); 639 ND("attaching virtual bridge %p", b); 640 } while (0); 641 *ifp = iter; 642 if (! *ifp) 643 #endif /* NM_BRIDGE */ 644 *ifp = ifunit_ref(name); 645 if (*ifp == NULL) 646 return (ENXIO); 647 /* can do this if the capability exists and if_pspare[0] 648 * points to the netmap descriptor. 649 */ 650 if ((*ifp)->if_capabilities & IFCAP_NETMAP && NA(*ifp)) 651 return 0; /* valid pointer, we hold the refcount */ 652 nm_if_rele(*ifp); 653 return EINVAL; // not NETMAP capable 654 } 655 656 657 /* 658 * Error routine called when txsync/rxsync detects an error. 659 * Can't do much more than resetting cur = hwcur, avail = hwavail. 660 * Return 1 on reinit. 661 * 662 * This routine is only called by the upper half of the kernel. 663 * It only reads hwcur (which is changed only by the upper half, too) 664 * and hwavail (which may be changed by the lower half, but only on 665 * a tx ring and only to increase it, so any error will be recovered 666 * on the next call). For the above, we don't strictly need to call 667 * it under lock. 668 */ 669 int 670 netmap_ring_reinit(struct netmap_kring *kring) 671 { 672 struct netmap_ring *ring = kring->ring; 673 u_int i, lim = kring->nkr_num_slots - 1; 674 int errors = 0; 675 676 D("called for %s", kring->na->ifp->if_xname); 677 if (ring->cur > lim) 678 errors++; 679 for (i = 0; i <= lim; i++) { 680 u_int idx = ring->slot[i].buf_idx; 681 u_int len = ring->slot[i].len; 682 if (idx < 2 || idx >= netmap_total_buffers) { 683 if (!errors++) 684 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 685 ring->slot[i].buf_idx = 0; 686 ring->slot[i].len = 0; 687 } else if (len > NETMAP_BUF_SIZE) { 688 ring->slot[i].len = 0; 689 if (!errors++) 690 D("bad len %d at slot %d idx %d", 691 len, i, idx); 692 } 693 } 694 if (errors) { 695 int pos = kring - kring->na->tx_rings; 696 int n = kring->na->num_tx_rings + 1; 697 698 D("total %d errors", errors); 699 errors++; 700 D("%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 701 kring->na->ifp->if_xname, 702 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 703 ring->cur, kring->nr_hwcur, 704 ring->avail, kring->nr_hwavail); 705 ring->cur = kring->nr_hwcur; 706 ring->avail = kring->nr_hwavail; 707 } 708 return (errors ? 1 : 0); 709 } 710 711 712 /* 713 * Set the ring ID. For devices with a single queue, a request 714 * for all rings is the same as a single ring. 715 */ 716 static int 717 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 718 { 719 struct ifnet *ifp = priv->np_ifp; 720 struct netmap_adapter *na = NA(ifp); 721 u_int i = ringid & NETMAP_RING_MASK; 722 /* initially (np_qfirst == np_qlast) we don't want to lock */ 723 int need_lock = (priv->np_qfirst != priv->np_qlast); 724 int lim = na->num_rx_rings; 725 726 if (na->num_tx_rings > lim) 727 lim = na->num_tx_rings; 728 if ( (ringid & NETMAP_HW_RING) && i >= lim) { 729 D("invalid ring id %d", i); 730 return (EINVAL); 731 } 732 if (need_lock) 733 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 734 priv->np_ringid = ringid; 735 if (ringid & NETMAP_SW_RING) { 736 priv->np_qfirst = NETMAP_SW_RING; 737 priv->np_qlast = 0; 738 } else if (ringid & NETMAP_HW_RING) { 739 priv->np_qfirst = i; 740 priv->np_qlast = i + 1; 741 } else { 742 priv->np_qfirst = 0; 743 priv->np_qlast = NETMAP_HW_RING ; 744 } 745 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 746 if (need_lock) 747 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 748 if (ringid & NETMAP_SW_RING) 749 D("ringid %s set to SW RING", ifp->if_xname); 750 else if (ringid & NETMAP_HW_RING) 751 D("ringid %s set to HW RING %d", ifp->if_xname, 752 priv->np_qfirst); 753 else 754 D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim); 755 return 0; 756 } 757 758 /* 759 * ioctl(2) support for the "netmap" device. 760 * 761 * Following a list of accepted commands: 762 * - NIOCGINFO 763 * - SIOCGIFADDR just for convenience 764 * - NIOCREGIF 765 * - NIOCUNREGIF 766 * - NIOCTXSYNC 767 * - NIOCRXSYNC 768 * 769 * Return 0 on success, errno otherwise. 770 */ 771 static int 772 netmap_ioctl(__unused struct cdev *dev, u_long cmd, caddr_t data, 773 __unused int fflag, struct thread *td) 774 { 775 struct netmap_priv_d *priv = NULL; 776 struct ifnet *ifp; 777 struct nmreq *nmr = (struct nmreq *) data; 778 struct netmap_adapter *na; 779 int error; 780 u_int i, lim; 781 struct netmap_if *nifp; 782 783 #ifdef linux 784 #define devfs_get_cdevpriv(pp) \ 785 ({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \ 786 (*pp ? 0 : ENOENT); }) 787 788 /* devfs_set_cdevpriv cannot fail on linux */ 789 #define devfs_set_cdevpriv(p, fn) \ 790 ({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); }) 791 792 793 #define devfs_clear_cdevpriv() do { \ 794 netmap_dtor(priv); ((struct file *)td)->private_data = 0; \ 795 } while (0) 796 #endif /* linux */ 797 798 CURVNET_SET(TD_TO_VNET(td)); 799 800 error = devfs_get_cdevpriv((void **)&priv); 801 if (error != ENOENT && error != 0) { 802 CURVNET_RESTORE(); 803 return (error); 804 } 805 806 error = 0; /* Could be ENOENT */ 807 nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */ 808 switch (cmd) { 809 case NIOCGINFO: /* return capabilities etc */ 810 /* memsize is always valid */ 811 nmr->nr_memsize = nm_mem->nm_totalsize; 812 nmr->nr_offset = 0; 813 nmr->nr_rx_rings = nmr->nr_tx_rings = 0; 814 nmr->nr_rx_slots = nmr->nr_tx_slots = 0; 815 if (nmr->nr_version != NETMAP_API) { 816 D("API mismatch got %d have %d", 817 nmr->nr_version, NETMAP_API); 818 nmr->nr_version = NETMAP_API; 819 error = EINVAL; 820 break; 821 } 822 if (nmr->nr_name[0] == '\0') /* just get memory info */ 823 break; 824 error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */ 825 if (error) 826 break; 827 na = NA(ifp); /* retrieve netmap_adapter */ 828 nmr->nr_rx_rings = na->num_rx_rings; 829 nmr->nr_tx_rings = na->num_tx_rings; 830 nmr->nr_rx_slots = na->num_rx_desc; 831 nmr->nr_tx_slots = na->num_tx_desc; 832 nm_if_rele(ifp); /* return the refcount */ 833 break; 834 835 case NIOCREGIF: 836 if (nmr->nr_version != NETMAP_API) { 837 nmr->nr_version = NETMAP_API; 838 error = EINVAL; 839 break; 840 } 841 if (priv != NULL) { /* thread already registered */ 842 error = netmap_set_ringid(priv, nmr->nr_ringid); 843 break; 844 } 845 /* find the interface and a reference */ 846 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 847 if (error) 848 break; 849 na = NA(ifp); /* retrieve netmap adapter */ 850 /* 851 * Allocate the private per-thread structure. 852 * XXX perhaps we can use a blocking malloc ? 853 */ 854 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 855 M_NOWAIT | M_ZERO); 856 if (priv == NULL) { 857 error = ENOMEM; 858 nm_if_rele(ifp); /* return the refcount */ 859 break; 860 } 861 862 for (i = 10; i > 0; i--) { 863 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 864 if (!NETMAP_DELETING(na)) 865 break; 866 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 867 tsleep(na, 0, "NIOCREGIF", hz/10); 868 } 869 if (i == 0) { 870 D("too many NIOCREGIF attempts, give up"); 871 error = EINVAL; 872 free(priv, M_DEVBUF); 873 nm_if_rele(ifp); /* return the refcount */ 874 break; 875 } 876 877 priv->np_ifp = ifp; /* store the reference */ 878 error = netmap_set_ringid(priv, nmr->nr_ringid); 879 if (error) 880 goto error; 881 priv->np_nifp = nifp = netmap_if_new(nmr->nr_name, na); 882 if (nifp == NULL) { /* allocation failed */ 883 error = ENOMEM; 884 } else if (ifp->if_capenable & IFCAP_NETMAP) { 885 /* was already set */ 886 } else { 887 /* Otherwise set the card in netmap mode 888 * and make it use the shared buffers. 889 */ 890 for (i = 0 ; i < na->num_tx_rings + 1; i++) 891 mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock", MTX_NETWORK_LOCK, MTX_DEF); 892 for (i = 0 ; i < na->num_rx_rings + 1; i++) { 893 mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock", MTX_NETWORK_LOCK, MTX_DEF); 894 } 895 error = na->nm_register(ifp, 1); /* mode on */ 896 if (error) 897 netmap_dtor_locked(priv); 898 } 899 900 if (error) { /* reg. failed, release priv and ref */ 901 error: 902 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 903 nm_if_rele(ifp); /* return the refcount */ 904 bzero(priv, sizeof(*priv)); 905 free(priv, M_DEVBUF); 906 break; 907 } 908 909 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 910 error = devfs_set_cdevpriv(priv, netmap_dtor); 911 912 if (error != 0) { 913 /* could not assign the private storage for the 914 * thread, call the destructor explicitly. 915 */ 916 netmap_dtor(priv); 917 break; 918 } 919 920 /* return the offset of the netmap_if object */ 921 nmr->nr_rx_rings = na->num_rx_rings; 922 nmr->nr_tx_rings = na->num_tx_rings; 923 nmr->nr_rx_slots = na->num_rx_desc; 924 nmr->nr_tx_slots = na->num_tx_desc; 925 nmr->nr_memsize = nm_mem->nm_totalsize; 926 nmr->nr_offset = netmap_if_offset(nifp); 927 break; 928 929 case NIOCUNREGIF: 930 if (priv == NULL) { 931 error = ENXIO; 932 break; 933 } 934 935 /* the interface is unregistered inside the 936 destructor of the private data. */ 937 devfs_clear_cdevpriv(); 938 break; 939 940 case NIOCTXSYNC: 941 case NIOCRXSYNC: 942 if (priv == NULL) { 943 error = ENXIO; 944 break; 945 } 946 ifp = priv->np_ifp; /* we have a reference */ 947 na = NA(ifp); /* retrieve netmap adapter */ 948 if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */ 949 if (cmd == NIOCTXSYNC) 950 netmap_sync_to_host(na); 951 else 952 netmap_sync_from_host(na, NULL); 953 break; 954 } 955 /* find the last ring to scan */ 956 lim = priv->np_qlast; 957 if (lim == NETMAP_HW_RING) 958 lim = (cmd == NIOCTXSYNC) ? 959 na->num_tx_rings : na->num_rx_rings; 960 961 for (i = priv->np_qfirst; i < lim; i++) { 962 if (cmd == NIOCTXSYNC) { 963 struct netmap_kring *kring = &na->tx_rings[i]; 964 if (netmap_verbose & NM_VERB_TXSYNC) 965 D("pre txsync ring %d cur %d hwcur %d", 966 i, kring->ring->cur, 967 kring->nr_hwcur); 968 na->nm_txsync(ifp, i, 1 /* do lock */); 969 if (netmap_verbose & NM_VERB_TXSYNC) 970 D("post txsync ring %d cur %d hwcur %d", 971 i, kring->ring->cur, 972 kring->nr_hwcur); 973 } else { 974 na->nm_rxsync(ifp, i, 1 /* do lock */); 975 microtime(&na->rx_rings[i].ring->ts); 976 } 977 } 978 979 break; 980 981 #ifdef __FreeBSD__ 982 case BIOCIMMEDIATE: 983 case BIOCGHDRCMPLT: 984 case BIOCSHDRCMPLT: 985 case BIOCSSEESENT: 986 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 987 break; 988 989 default: /* allow device-specific ioctls */ 990 { 991 struct socket so; 992 bzero(&so, sizeof(so)); 993 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 994 if (error) 995 break; 996 so.so_vnet = ifp->if_vnet; 997 // so->so_proto not null. 998 error = ifioctl(&so, cmd, data, td); 999 nm_if_rele(ifp); 1000 break; 1001 } 1002 1003 #else /* linux */ 1004 default: 1005 error = EOPNOTSUPP; 1006 #endif /* linux */ 1007 } 1008 1009 CURVNET_RESTORE(); 1010 return (error); 1011 } 1012 1013 1014 /* 1015 * select(2) and poll(2) handlers for the "netmap" device. 1016 * 1017 * Can be called for one or more queues. 1018 * Return true the event mask corresponding to ready events. 1019 * If there are no ready events, do a selrecord on either individual 1020 * selfd or on the global one. 1021 * Device-dependent parts (locking and sync of tx/rx rings) 1022 * are done through callbacks. 1023 * 1024 * On linux, pwait is the poll table. 1025 * If pwait == NULL someone else already woke up before. We can report 1026 * events but they are filtered upstream. 1027 * If pwait != NULL, then pwait->key contains the list of events. 1028 */ 1029 static int 1030 netmap_poll(__unused struct cdev *dev, int events, struct thread *td) 1031 { 1032 struct netmap_priv_d *priv = NULL; 1033 struct netmap_adapter *na; 1034 struct ifnet *ifp; 1035 struct netmap_kring *kring; 1036 u_int core_lock, i, check_all, want_tx, want_rx, revents = 0; 1037 u_int lim_tx, lim_rx; 1038 enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */ 1039 1040 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1041 return POLLERR; 1042 1043 ifp = priv->np_ifp; 1044 // XXX check for deleting() ? 1045 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1046 return POLLERR; 1047 1048 if (netmap_verbose & 0x8000) 1049 D("device %s events 0x%x", ifp->if_xname, events); 1050 want_tx = events & (POLLOUT | POLLWRNORM); 1051 want_rx = events & (POLLIN | POLLRDNORM); 1052 1053 na = NA(ifp); /* retrieve netmap adapter */ 1054 1055 lim_tx = na->num_tx_rings; 1056 lim_rx = na->num_rx_rings; 1057 /* how many queues we are scanning */ 1058 if (priv->np_qfirst == NETMAP_SW_RING) { 1059 if (priv->np_txpoll || want_tx) { 1060 /* push any packets up, then we are always ready */ 1061 kring = &na->tx_rings[lim_tx]; 1062 netmap_sync_to_host(na); 1063 revents |= want_tx; 1064 } 1065 if (want_rx) { 1066 kring = &na->rx_rings[lim_rx]; 1067 if (kring->ring->avail == 0) 1068 netmap_sync_from_host(na, td); 1069 if (kring->ring->avail > 0) { 1070 revents |= want_rx; 1071 } 1072 } 1073 return (revents); 1074 } 1075 1076 /* 1077 * check_all is set if the card has more than one queue and 1078 * the client is polling all of them. If true, we sleep on 1079 * the "global" selfd, otherwise we sleep on individual selfd 1080 * (we can only sleep on one of them per direction). 1081 * The interrupt routine in the driver should always wake on 1082 * the individual selfd, and also on the global one if the card 1083 * has more than one ring. 1084 * 1085 * If the card has only one lock, we just use that. 1086 * If the card has separate ring locks, we just use those 1087 * unless we are doing check_all, in which case the whole 1088 * loop is wrapped by the global lock. 1089 * We acquire locks only when necessary: if poll is called 1090 * when buffers are available, we can just return without locks. 1091 * 1092 * rxsync() is only called if we run out of buffers on a POLLIN. 1093 * txsync() is called if we run out of buffers on POLLOUT, or 1094 * there are pending packets to send. The latter can be disabled 1095 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1096 */ 1097 check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1); 1098 1099 /* 1100 * core_lock indicates what to do with the core lock. 1101 * The core lock is used when either the card has no individual 1102 * locks, or it has individual locks but we are cheking all 1103 * rings so we need the core lock to avoid missing wakeup events. 1104 * 1105 * It has three possible states: 1106 * NO_CL we don't need to use the core lock, e.g. 1107 * because we are protected by individual locks. 1108 * NEED_CL we need the core lock. In this case, when we 1109 * call the lock routine, move to LOCKED_CL 1110 * to remember to release the lock once done. 1111 * LOCKED_CL core lock is set, so we need to release it. 1112 */ 1113 core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL; 1114 #ifdef NM_BRIDGE 1115 /* the bridge uses separate locks */ 1116 if (na->nm_register == bdg_netmap_reg) { 1117 ND("not using core lock for %s", ifp->if_xname); 1118 core_lock = NO_CL; 1119 } 1120 #endif /* NM_BRIDGE */ 1121 if (priv->np_qlast != NETMAP_HW_RING) { 1122 lim_tx = lim_rx = priv->np_qlast; 1123 } 1124 1125 /* 1126 * We start with a lock free round which is good if we have 1127 * data available. If this fails, then lock and call the sync 1128 * routines. 1129 */ 1130 for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) { 1131 kring = &na->rx_rings[i]; 1132 if (kring->ring->avail > 0) { 1133 revents |= want_rx; 1134 want_rx = 0; /* also breaks the loop */ 1135 } 1136 } 1137 for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) { 1138 kring = &na->tx_rings[i]; 1139 if (kring->ring->avail > 0) { 1140 revents |= want_tx; 1141 want_tx = 0; /* also breaks the loop */ 1142 } 1143 } 1144 1145 /* 1146 * If we to push packets out (priv->np_txpoll) or want_tx is 1147 * still set, we do need to run the txsync calls (on all rings, 1148 * to avoid that the tx rings stall). 1149 */ 1150 if (priv->np_txpoll || want_tx) { 1151 for (i = priv->np_qfirst; i < lim_tx; i++) { 1152 kring = &na->tx_rings[i]; 1153 /* 1154 * Skip the current ring if want_tx == 0 1155 * (we have already done a successful sync on 1156 * a previous ring) AND kring->cur == kring->hwcur 1157 * (there are no pending transmissions for this ring). 1158 */ 1159 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 1160 continue; 1161 if (core_lock == NEED_CL) { 1162 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1163 core_lock = LOCKED_CL; 1164 } 1165 if (na->separate_locks) 1166 na->nm_lock(ifp, NETMAP_TX_LOCK, i); 1167 if (netmap_verbose & NM_VERB_TXSYNC) 1168 D("send %d on %s %d", 1169 kring->ring->cur, 1170 ifp->if_xname, i); 1171 if (na->nm_txsync(ifp, i, 0 /* no lock */)) 1172 revents |= POLLERR; 1173 1174 /* Check avail/call selrecord only if called with POLLOUT */ 1175 if (want_tx) { 1176 if (kring->ring->avail > 0) { 1177 /* stop at the first ring. We don't risk 1178 * starvation. 1179 */ 1180 revents |= want_tx; 1181 want_tx = 0; 1182 } else if (!check_all) 1183 selrecord(td, &kring->si); 1184 } 1185 if (na->separate_locks) 1186 na->nm_lock(ifp, NETMAP_TX_UNLOCK, i); 1187 } 1188 } 1189 1190 /* 1191 * now if want_rx is still set we need to lock and rxsync. 1192 * Do it on all rings because otherwise we starve. 1193 */ 1194 if (want_rx) { 1195 for (i = priv->np_qfirst; i < lim_rx; i++) { 1196 kring = &na->rx_rings[i]; 1197 if (core_lock == NEED_CL) { 1198 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1199 core_lock = LOCKED_CL; 1200 } 1201 if (na->separate_locks) 1202 na->nm_lock(ifp, NETMAP_RX_LOCK, i); 1203 1204 if (na->nm_rxsync(ifp, i, 0 /* no lock */)) 1205 revents |= POLLERR; 1206 if (netmap_no_timestamp == 0 || 1207 kring->ring->flags & NR_TIMESTAMP) { 1208 microtime(&kring->ring->ts); 1209 } 1210 1211 if (kring->ring->avail > 0) 1212 revents |= want_rx; 1213 else if (!check_all) 1214 selrecord(td, &kring->si); 1215 if (na->separate_locks) 1216 na->nm_lock(ifp, NETMAP_RX_UNLOCK, i); 1217 } 1218 } 1219 if (check_all && revents == 0) { /* signal on the global queue */ 1220 if (want_tx) 1221 selrecord(td, &na->tx_si); 1222 if (want_rx) 1223 selrecord(td, &na->rx_si); 1224 } 1225 if (core_lock == LOCKED_CL) 1226 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1227 1228 return (revents); 1229 } 1230 1231 /*------- driver support routines ------*/ 1232 1233 /* 1234 * default lock wrapper. 1235 */ 1236 static void 1237 netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid) 1238 { 1239 struct netmap_adapter *na = NA(dev); 1240 1241 switch (what) { 1242 #ifdef linux /* some system do not need lock on register */ 1243 case NETMAP_REG_LOCK: 1244 case NETMAP_REG_UNLOCK: 1245 break; 1246 #endif /* linux */ 1247 1248 case NETMAP_CORE_LOCK: 1249 mtx_lock(&na->core_lock); 1250 break; 1251 1252 case NETMAP_CORE_UNLOCK: 1253 mtx_unlock(&na->core_lock); 1254 break; 1255 1256 case NETMAP_TX_LOCK: 1257 mtx_lock(&na->tx_rings[queueid].q_lock); 1258 break; 1259 1260 case NETMAP_TX_UNLOCK: 1261 mtx_unlock(&na->tx_rings[queueid].q_lock); 1262 break; 1263 1264 case NETMAP_RX_LOCK: 1265 mtx_lock(&na->rx_rings[queueid].q_lock); 1266 break; 1267 1268 case NETMAP_RX_UNLOCK: 1269 mtx_unlock(&na->rx_rings[queueid].q_lock); 1270 break; 1271 } 1272 } 1273 1274 1275 /* 1276 * Initialize a ``netmap_adapter`` object created by driver on attach. 1277 * We allocate a block of memory with room for a struct netmap_adapter 1278 * plus two sets of N+2 struct netmap_kring (where N is the number 1279 * of hardware rings): 1280 * krings 0..N-1 are for the hardware queues. 1281 * kring N is for the host stack queue 1282 * kring N+1 is only used for the selinfo for all queues. 1283 * Return 0 on success, ENOMEM otherwise. 1284 * 1285 * na->num_tx_rings can be set for cards with different tx/rx setups 1286 */ 1287 int 1288 netmap_attach(struct netmap_adapter *na, int num_queues) 1289 { 1290 int n, size; 1291 void *buf; 1292 struct ifnet *ifp = na->ifp; 1293 1294 if (ifp == NULL) { 1295 D("ifp not set, giving up"); 1296 return EINVAL; 1297 } 1298 /* clear other fields ? */ 1299 na->refcount = 0; 1300 if (na->num_tx_rings == 0) 1301 na->num_tx_rings = num_queues; 1302 na->num_rx_rings = num_queues; 1303 /* on each direction we have N+1 resources 1304 * 0..n-1 are the hardware rings 1305 * n is the ring attached to the stack. 1306 */ 1307 n = na->num_rx_rings + na->num_tx_rings + 2; 1308 size = sizeof(*na) + n * sizeof(struct netmap_kring); 1309 1310 buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 1311 if (buf) { 1312 WNA(ifp) = buf; 1313 na->tx_rings = (void *)((char *)buf + sizeof(*na)); 1314 na->rx_rings = na->tx_rings + na->num_tx_rings + 1; 1315 bcopy(na, buf, sizeof(*na)); 1316 ifp->if_capabilities |= IFCAP_NETMAP; 1317 1318 na = buf; 1319 if (na->nm_lock == NULL) { 1320 ND("using default locks for %s", ifp->if_xname); 1321 na->nm_lock = netmap_lock_wrapper; 1322 /* core lock initialized here. 1323 * others initialized after netmap_if_new 1324 */ 1325 mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK, MTX_DEF); 1326 } 1327 } 1328 #ifdef linux 1329 if (ifp->netdev_ops) { 1330 D("netdev_ops %p", ifp->netdev_ops); 1331 /* prepare a clone of the netdev ops */ 1332 na->nm_ndo = *ifp->netdev_ops; 1333 } 1334 na->nm_ndo.ndo_start_xmit = netmap_start_linux; 1335 #endif 1336 D("%s for %s", buf ? "ok" : "failed", ifp->if_xname); 1337 1338 return (buf ? 0 : ENOMEM); 1339 } 1340 1341 1342 /* 1343 * Free the allocated memory linked to the given ``netmap_adapter`` 1344 * object. 1345 */ 1346 void 1347 netmap_detach(struct ifnet *ifp) 1348 { 1349 u_int i; 1350 struct netmap_adapter *na = NA(ifp); 1351 1352 if (!na) 1353 return; 1354 1355 for (i = 0; i < na->num_tx_rings + 1; i++) { 1356 knlist_destroy(&na->tx_rings[i].si.si_note); 1357 mtx_destroy(&na->tx_rings[i].q_lock); 1358 } 1359 for (i = 0; i < na->num_rx_rings + 1; i++) { 1360 knlist_destroy(&na->rx_rings[i].si.si_note); 1361 mtx_destroy(&na->rx_rings[i].q_lock); 1362 } 1363 knlist_destroy(&na->tx_si.si_note); 1364 knlist_destroy(&na->rx_si.si_note); 1365 bzero(na, sizeof(*na)); 1366 WNA(ifp) = NULL; 1367 free(na, M_DEVBUF); 1368 } 1369 1370 1371 /* 1372 * Intercept packets from the network stack and pass them 1373 * to netmap as incoming packets on the 'software' ring. 1374 * We are not locked when called. 1375 */ 1376 int 1377 netmap_start(struct ifnet *ifp, struct mbuf *m) 1378 { 1379 struct netmap_adapter *na = NA(ifp); 1380 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 1381 u_int i, len = MBUF_LEN(m); 1382 int error = EBUSY, lim = kring->nkr_num_slots - 1; 1383 struct netmap_slot *slot; 1384 1385 if (netmap_verbose & NM_VERB_HOST) 1386 D("%s packet %d len %d from the stack", ifp->if_xname, 1387 kring->nr_hwcur + kring->nr_hwavail, len); 1388 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1389 if (kring->nr_hwavail >= lim) { 1390 if (netmap_verbose) 1391 D("stack ring %s full\n", ifp->if_xname); 1392 goto done; /* no space */ 1393 } 1394 if (len > NETMAP_BUF_SIZE) { 1395 D("drop packet size %d > %d", len, NETMAP_BUF_SIZE); 1396 goto done; /* too long for us */ 1397 } 1398 1399 /* compute the insert position */ 1400 i = kring->nr_hwcur + kring->nr_hwavail; 1401 if (i > lim) 1402 i -= lim + 1; 1403 slot = &kring->ring->slot[i]; 1404 m_copydata(m, 0, len, NMB(slot)); 1405 slot->len = len; 1406 kring->nr_hwavail++; 1407 if (netmap_verbose & NM_VERB_HOST) 1408 D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings); 1409 selwakeuppri(&kring->si, PI_NET); 1410 error = 0; 1411 done: 1412 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1413 1414 /* release the mbuf in either cases of success or failure. As an 1415 * alternative, put the mbuf in a free list and free the list 1416 * only when really necessary. 1417 */ 1418 m_freem(m); 1419 1420 return (error); 1421 } 1422 1423 1424 /* 1425 * netmap_reset() is called by the driver routines when reinitializing 1426 * a ring. The driver is in charge of locking to protect the kring. 1427 * If netmap mode is not set just return NULL. 1428 */ 1429 struct netmap_slot * 1430 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, 1431 u_int new_cur) 1432 { 1433 struct netmap_kring *kring; 1434 int new_hwofs, lim; 1435 1436 if (na == NULL) 1437 return NULL; /* no netmap support here */ 1438 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) 1439 return NULL; /* nothing to reinitialize */ 1440 1441 if (tx == NR_TX) { 1442 kring = na->tx_rings + n; 1443 new_hwofs = kring->nr_hwcur - new_cur; 1444 } else { 1445 kring = na->rx_rings + n; 1446 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; 1447 } 1448 lim = kring->nkr_num_slots - 1; 1449 if (new_hwofs > lim) 1450 new_hwofs -= lim + 1; 1451 1452 /* Alwayws set the new offset value and realign the ring. */ 1453 kring->nkr_hwofs = new_hwofs; 1454 if (tx == NR_TX) 1455 kring->nr_hwavail = kring->nkr_num_slots - 1; 1456 D("new hwofs %d on %s %s[%d]", 1457 kring->nkr_hwofs, na->ifp->if_xname, 1458 tx == NR_TX ? "TX" : "RX", n); 1459 1460 #if 0 // def linux 1461 /* XXX check that the mappings are correct */ 1462 /* need ring_nr, adapter->pdev, direction */ 1463 buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE); 1464 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1465 D("error mapping rx netmap buffer %d", i); 1466 // XXX fix error handling 1467 } 1468 1469 #endif /* linux */ 1470 /* 1471 * Wakeup on the individual and global lock 1472 * We do the wakeup here, but the ring is not yet reconfigured. 1473 * However, we are under lock so there are no races. 1474 */ 1475 selwakeuppri(&kring->si, PI_NET); 1476 selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET); 1477 return kring->ring->slot; 1478 } 1479 1480 1481 /* 1482 * Default functions to handle rx/tx interrupts 1483 * we have 4 cases: 1484 * 1 ring, single lock: 1485 * lock(core); wake(i=0); unlock(core) 1486 * N rings, single lock: 1487 * lock(core); wake(i); wake(N+1) unlock(core) 1488 * 1 ring, separate locks: (i=0) 1489 * lock(i); wake(i); unlock(i) 1490 * N rings, separate locks: 1491 * lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core) 1492 * work_done is non-null on the RX path. 1493 */ 1494 int 1495 netmap_rx_irq(struct ifnet *ifp, int q, int *work_done) 1496 { 1497 struct netmap_adapter *na; 1498 struct netmap_kring *r; 1499 NM_SELINFO_T *main_wq; 1500 1501 if (!(ifp->if_capenable & IFCAP_NETMAP)) 1502 return 0; 1503 na = NA(ifp); 1504 if (work_done) { /* RX path */ 1505 r = na->rx_rings + q; 1506 r->nr_kflags |= NKR_PENDINTR; 1507 main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL; 1508 } else { /* tx path */ 1509 r = na->tx_rings + q; 1510 main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL; 1511 work_done = &q; /* dummy */ 1512 } 1513 if (na->separate_locks) { 1514 mtx_lock(&r->q_lock); 1515 selwakeuppri(&r->si, PI_NET); 1516 mtx_unlock(&r->q_lock); 1517 if (main_wq) { 1518 mtx_lock(&na->core_lock); 1519 selwakeuppri(main_wq, PI_NET); 1520 mtx_unlock(&na->core_lock); 1521 } 1522 } else { 1523 mtx_lock(&na->core_lock); 1524 selwakeuppri(&r->si, PI_NET); 1525 if (main_wq) 1526 selwakeuppri(main_wq, PI_NET); 1527 mtx_unlock(&na->core_lock); 1528 } 1529 *work_done = 1; /* do not fire napi again */ 1530 return 1; 1531 } 1532 1533 1534 static struct cdevsw netmap_cdevsw = { 1535 .d_version = D_VERSION, 1536 .d_name = "netmap", 1537 .d_mmap = netmap_mmap, 1538 .d_ioctl = netmap_ioctl, 1539 .d_poll = netmap_poll, 1540 }; 1541 1542 #ifdef NM_BRIDGE 1543 /* 1544 *---- support for virtual bridge ----- 1545 */ 1546 1547 /* ----- FreeBSD if_bridge hash function ------- */ 1548 1549 /* 1550 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1551 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1552 * 1553 * http://www.burtleburtle.net/bob/hash/spooky.html 1554 */ 1555 #define mix(a, b, c) \ 1556 do { \ 1557 a -= b; a -= c; a ^= (c >> 13); \ 1558 b -= c; b -= a; b ^= (a << 8); \ 1559 c -= a; c -= b; c ^= (b >> 13); \ 1560 a -= b; a -= c; a ^= (c >> 12); \ 1561 b -= c; b -= a; b ^= (a << 16); \ 1562 c -= a; c -= b; c ^= (b >> 5); \ 1563 a -= b; a -= c; a ^= (c >> 3); \ 1564 b -= c; b -= a; b ^= (a << 10); \ 1565 c -= a; c -= b; c ^= (b >> 15); \ 1566 } while (/*CONSTCOND*/0) 1567 1568 static __inline uint32_t 1569 nm_bridge_rthash(const uint8_t *addr) 1570 { 1571 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key 1572 1573 b += addr[5] << 8; 1574 b += addr[4]; 1575 a += addr[3] << 24; 1576 a += addr[2] << 16; 1577 a += addr[1] << 8; 1578 a += addr[0]; 1579 1580 mix(a, b, c); 1581 #define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1) 1582 return (c & BRIDGE_RTHASH_MASK); 1583 } 1584 1585 #undef mix 1586 1587 1588 static int 1589 bdg_netmap_reg(struct ifnet *ifp, int onoff) 1590 { 1591 int i, err = 0; 1592 struct nm_bridge *b = ifp->if_bridge; 1593 1594 BDG_LOCK(b); 1595 if (onoff) { 1596 /* the interface must be already in the list. 1597 * only need to mark the port as active 1598 */ 1599 ND("should attach %s to the bridge", ifp->if_xname); 1600 for (i=0; i < NM_BDG_MAXPORTS; i++) 1601 if (b->bdg_ports[i] == ifp) 1602 break; 1603 if (i == NM_BDG_MAXPORTS) { 1604 D("no more ports available"); 1605 err = EINVAL; 1606 goto done; 1607 } 1608 ND("setting %s in netmap mode", ifp->if_xname); 1609 ifp->if_capenable |= IFCAP_NETMAP; 1610 NA(ifp)->bdg_port = i; 1611 b->act_ports |= (1<<i); 1612 b->bdg_ports[i] = ifp; 1613 } else { 1614 /* should be in the list, too -- remove from the mask */ 1615 ND("removing %s from netmap mode", ifp->if_xname); 1616 ifp->if_capenable &= ~IFCAP_NETMAP; 1617 i = NA(ifp)->bdg_port; 1618 b->act_ports &= ~(1<<i); 1619 } 1620 done: 1621 BDG_UNLOCK(b); 1622 return err; 1623 } 1624 1625 1626 static int 1627 nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct ifnet *ifp) 1628 { 1629 int i, ifn; 1630 uint64_t all_dst, dst; 1631 uint32_t sh, dh; 1632 uint64_t mysrc = 1 << NA(ifp)->bdg_port; 1633 uint64_t smac, dmac; 1634 struct netmap_slot *slot; 1635 struct nm_bridge *b = ifp->if_bridge; 1636 1637 ND("prepare to send %d packets, act_ports 0x%x", n, b->act_ports); 1638 /* only consider valid destinations */ 1639 all_dst = (b->act_ports & ~mysrc); 1640 /* first pass: hash and find destinations */ 1641 for (i = 0; likely(i < n); i++) { 1642 uint8_t *buf = ft[i].buf; 1643 dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff; 1644 smac = le64toh(*(uint64_t *)(buf + 4)); 1645 smac >>= 16; 1646 if (unlikely(netmap_verbose)) { 1647 uint8_t *s = buf+6, *d = buf; 1648 D("%d len %4d %02x:%02x:%02x:%02x:%02x:%02x -> %02x:%02x:%02x:%02x:%02x:%02x", 1649 i, 1650 ft[i].len, 1651 s[0], s[1], s[2], s[3], s[4], s[5], 1652 d[0], d[1], d[2], d[3], d[4], d[5]); 1653 } 1654 /* 1655 * The hash is somewhat expensive, there might be some 1656 * worthwhile optimizations here. 1657 */ 1658 if ((buf[6] & 1) == 0) { /* valid src */ 1659 uint8_t *s = buf+6; 1660 sh = nm_bridge_rthash(buf+6); // XXX hash of source 1661 /* update source port forwarding entry */ 1662 b->ht[sh].mac = smac; /* XXX expire ? */ 1663 b->ht[sh].ports = mysrc; 1664 if (netmap_verbose) 1665 D("src %02x:%02x:%02x:%02x:%02x:%02x on port %d", 1666 s[0], s[1], s[2], s[3], s[4], s[5], NA(ifp)->bdg_port); 1667 } 1668 dst = 0; 1669 if ( (buf[0] & 1) == 0) { /* unicast */ 1670 uint8_t *d = buf; 1671 dh = nm_bridge_rthash(buf); // XXX hash of dst 1672 if (b->ht[dh].mac == dmac) { /* found dst */ 1673 dst = b->ht[dh].ports; 1674 if (netmap_verbose) 1675 D("dst %02x:%02x:%02x:%02x:%02x:%02x to port %x", 1676 d[0], d[1], d[2], d[3], d[4], d[5], (uint32_t)(dst >> 16)); 1677 } 1678 } 1679 if (dst == 0) 1680 dst = all_dst; 1681 dst &= all_dst; /* only consider valid ports */ 1682 if (unlikely(netmap_verbose)) 1683 D("pkt goes to ports 0x%x", (uint32_t)dst); 1684 ft[i].dst = dst; 1685 } 1686 1687 /* second pass, scan interfaces and forward */ 1688 all_dst = (b->act_ports & ~mysrc); 1689 for (ifn = 0; all_dst; ifn++) { 1690 struct ifnet *dst_ifp = b->bdg_ports[ifn]; 1691 struct netmap_adapter *na; 1692 struct netmap_kring *kring; 1693 struct netmap_ring *ring; 1694 int j, lim, sent, locked; 1695 1696 if (!dst_ifp) 1697 continue; 1698 ND("scan port %d %s", ifn, dst_ifp->if_xname); 1699 dst = 1 << ifn; 1700 if ((dst & all_dst) == 0) /* skip if not set */ 1701 continue; 1702 all_dst &= ~dst; /* clear current node */ 1703 na = NA(dst_ifp); 1704 1705 ring = NULL; 1706 kring = NULL; 1707 lim = sent = locked = 0; 1708 /* inside, scan slots */ 1709 for (i = 0; likely(i < n); i++) { 1710 if ((ft[i].dst & dst) == 0) 1711 continue; /* not here */ 1712 if (!locked) { 1713 kring = &na->rx_rings[0]; 1714 ring = kring->ring; 1715 lim = kring->nkr_num_slots - 1; 1716 na->nm_lock(dst_ifp, NETMAP_RX_LOCK, 0); 1717 locked = 1; 1718 } 1719 if (unlikely(kring->nr_hwavail >= lim)) { 1720 if (netmap_verbose) 1721 D("rx ring full on %s", ifp->if_xname); 1722 break; 1723 } 1724 j = kring->nr_hwcur + kring->nr_hwavail; 1725 if (j > lim) 1726 j -= kring->nkr_num_slots; 1727 slot = &ring->slot[j]; 1728 ND("send %d %d bytes at %s:%d", i, ft[i].len, dst_ifp->if_xname, j); 1729 pkt_copy(ft[i].buf, NMB(slot), ft[i].len); 1730 slot->len = ft[i].len; 1731 kring->nr_hwavail++; 1732 sent++; 1733 } 1734 if (locked) { 1735 ND("sent %d on %s", sent, dst_ifp->if_xname); 1736 if (sent) 1737 selwakeuppri(&kring->si, PI_NET); 1738 na->nm_lock(dst_ifp, NETMAP_RX_UNLOCK, 0); 1739 } 1740 } 1741 return 0; 1742 } 1743 1744 /* 1745 * main dispatch routine 1746 */ 1747 static int 1748 bdg_netmap_txsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 1749 { 1750 struct netmap_adapter *na = NA(ifp); 1751 struct netmap_kring *kring = &na->tx_rings[ring_nr]; 1752 struct netmap_ring *ring = kring->ring; 1753 int i, j, k, lim = kring->nkr_num_slots - 1; 1754 struct nm_bdg_fwd *ft = (struct nm_bdg_fwd *)(ifp + 1); 1755 int ft_i; /* position in the forwarding table */ 1756 1757 k = ring->cur; 1758 if (k > lim) 1759 return netmap_ring_reinit(kring); 1760 if (do_lock) 1761 na->nm_lock(ifp, NETMAP_TX_LOCK, ring_nr); 1762 1763 if (netmap_bridge <= 0) { /* testing only */ 1764 j = k; // used all 1765 goto done; 1766 } 1767 if (netmap_bridge > NM_BDG_BATCH) 1768 netmap_bridge = NM_BDG_BATCH; 1769 1770 ft_i = 0; /* start from 0 */ 1771 for (j = kring->nr_hwcur; likely(j != k); j = unlikely(j == lim) ? 0 : j+1) { 1772 struct netmap_slot *slot = &ring->slot[j]; 1773 int len = ft[ft_i].len = slot->len; 1774 char *buf = ft[ft_i].buf = NMB(slot); 1775 1776 prefetch(buf); 1777 if (unlikely(len < 14)) 1778 continue; 1779 if (unlikely(++ft_i == netmap_bridge)) 1780 ft_i = nm_bdg_flush(ft, ft_i, ifp); 1781 } 1782 if (ft_i) 1783 ft_i = nm_bdg_flush(ft, ft_i, ifp); 1784 /* count how many packets we sent */ 1785 i = k - j; 1786 if (i < 0) 1787 i += kring->nkr_num_slots; 1788 kring->nr_hwavail = kring->nkr_num_slots - 1 - i; 1789 if (j != k) 1790 D("early break at %d/ %d, avail %d", j, k, kring->nr_hwavail); 1791 1792 done: 1793 kring->nr_hwcur = j; 1794 ring->avail = kring->nr_hwavail; 1795 if (do_lock) 1796 na->nm_lock(ifp, NETMAP_TX_UNLOCK, ring_nr); 1797 1798 if (netmap_verbose) 1799 D("%s ring %d lock %d", ifp->if_xname, ring_nr, do_lock); 1800 return 0; 1801 } 1802 1803 static int 1804 bdg_netmap_rxsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 1805 { 1806 struct netmap_adapter *na = NA(ifp); 1807 struct netmap_kring *kring = &na->rx_rings[ring_nr]; 1808 struct netmap_ring *ring = kring->ring; 1809 int j, n, lim = kring->nkr_num_slots - 1; 1810 u_int k = ring->cur, resvd = ring->reserved; 1811 1812 ND("%s ring %d lock %d avail %d", 1813 ifp->if_xname, ring_nr, do_lock, kring->nr_hwavail); 1814 1815 if (k > lim) 1816 return netmap_ring_reinit(kring); 1817 if (do_lock) 1818 na->nm_lock(ifp, NETMAP_RX_LOCK, ring_nr); 1819 1820 /* skip past packets that userspace has released */ 1821 j = kring->nr_hwcur; /* netmap ring index */ 1822 if (resvd > 0) { 1823 if (resvd + ring->avail >= lim + 1) { 1824 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 1825 ring->reserved = resvd = 0; // XXX panic... 1826 } 1827 k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd; 1828 } 1829 1830 if (j != k) { /* userspace has released some packets. */ 1831 n = k - j; 1832 if (n < 0) 1833 n += kring->nkr_num_slots; 1834 ND("userspace releases %d packets", n); 1835 for (n = 0; likely(j != k); n++) { 1836 struct netmap_slot *slot = &ring->slot[j]; 1837 void *addr = NMB(slot); 1838 1839 if (addr == netmap_buffer_base) { /* bad buf */ 1840 if (do_lock) 1841 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 1842 return netmap_ring_reinit(kring); 1843 } 1844 /* decrease refcount for buffer */ 1845 1846 slot->flags &= ~NS_BUF_CHANGED; 1847 j = unlikely(j == lim) ? 0 : j + 1; 1848 } 1849 kring->nr_hwavail -= n; 1850 kring->nr_hwcur = k; 1851 } 1852 /* tell userspace that there are new packets */ 1853 ring->avail = kring->nr_hwavail - resvd; 1854 1855 if (do_lock) 1856 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 1857 return 0; 1858 } 1859 1860 static void 1861 bdg_netmap_attach(struct ifnet *ifp) 1862 { 1863 struct netmap_adapter na; 1864 1865 ND("attaching virtual bridge"); 1866 bzero(&na, sizeof(na)); 1867 1868 na.ifp = ifp; 1869 na.separate_locks = 1; 1870 na.num_tx_desc = NM_BRIDGE_RINGSIZE; 1871 na.num_rx_desc = NM_BRIDGE_RINGSIZE; 1872 na.nm_txsync = bdg_netmap_txsync; 1873 na.nm_rxsync = bdg_netmap_rxsync; 1874 na.nm_register = bdg_netmap_reg; 1875 netmap_attach(&na, 1); 1876 } 1877 1878 #endif /* NM_BRIDGE */ 1879 1880 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 1881 1882 1883 /* 1884 * Module loader. 1885 * 1886 * Create the /dev/netmap device and initialize all global 1887 * variables. 1888 * 1889 * Return 0 on success, errno on failure. 1890 */ 1891 static int 1892 netmap_init(void) 1893 { 1894 int error; 1895 1896 error = netmap_memory_init(); 1897 if (error != 0) { 1898 printf("netmap: unable to initialize the memory allocator."); 1899 return (error); 1900 } 1901 printf("netmap: loaded module with %d Mbytes\n", 1902 (int)(nm_mem->nm_totalsize >> 20)); 1903 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 1904 "netmap"); 1905 1906 #ifdef NM_BRIDGE 1907 { 1908 int i; 1909 for (i = 0; i < NM_BRIDGES; i++) 1910 mtx_init(&nm_bridges[i].bdg_lock, "bdg lock", "bdg_lock", MTX_DEF); 1911 } 1912 #endif 1913 return (error); 1914 } 1915 1916 1917 /* 1918 * Module unloader. 1919 * 1920 * Free all the memory, and destroy the ``/dev/netmap`` device. 1921 */ 1922 static void 1923 netmap_fini(void) 1924 { 1925 destroy_dev(netmap_dev); 1926 netmap_memory_fini(); 1927 printf("netmap: unloaded module.\n"); 1928 } 1929 1930 1931 #ifdef __FreeBSD__ 1932 /* 1933 * Kernel entry point. 1934 * 1935 * Initialize/finalize the module and return. 1936 * 1937 * Return 0 on success, errno on failure. 1938 */ 1939 static int 1940 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1941 { 1942 int error = 0; 1943 1944 switch (event) { 1945 case MOD_LOAD: 1946 error = netmap_init(); 1947 break; 1948 1949 case MOD_UNLOAD: 1950 netmap_fini(); 1951 break; 1952 1953 default: 1954 error = EOPNOTSUPP; 1955 break; 1956 } 1957 1958 return (error); 1959 } 1960 1961 1962 DEV_MODULE(netmap, netmap_loader, NULL); 1963 #endif /* __FreeBSD__ */ 1964