1 /* 2 * Copyright (C) 2011-2012 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 #define NM_BRIDGE 27 28 /* 29 * This module supports memory mapped access to network devices, 30 * see netmap(4). 31 * 32 * The module uses a large, memory pool allocated by the kernel 33 * and accessible as mmapped memory by multiple userspace threads/processes. 34 * The memory pool contains packet buffers and "netmap rings", 35 * i.e. user-accessible copies of the interface's queues. 36 * 37 * Access to the network card works like this: 38 * 1. a process/thread issues one or more open() on /dev/netmap, to create 39 * select()able file descriptor on which events are reported. 40 * 2. on each descriptor, the process issues an ioctl() to identify 41 * the interface that should report events to the file descriptor. 42 * 3. on each descriptor, the process issues an mmap() request to 43 * map the shared memory region within the process' address space. 44 * The list of interesting queues is indicated by a location in 45 * the shared memory region. 46 * 4. using the functions in the netmap(4) userspace API, a process 47 * can look up the occupation state of a queue, access memory buffers, 48 * and retrieve received packets or enqueue packets to transmit. 49 * 5. using some ioctl()s the process can synchronize the userspace view 50 * of the queue with the actual status in the kernel. This includes both 51 * receiving the notification of new packets, and transmitting new 52 * packets on the output interface. 53 * 6. select() or poll() can be used to wait for events on individual 54 * transmit or receive queues (or all queues for a given interface). 55 */ 56 57 #ifdef linux 58 #include "bsd_glue.h" 59 static netdev_tx_t linux_netmap_start(struct sk_buff *skb, struct net_device *dev); 60 #endif /* linux */ 61 62 #ifdef __APPLE__ 63 #include "osx_glue.h" 64 #endif /* __APPLE__ */ 65 66 #ifdef __FreeBSD__ 67 #include <sys/cdefs.h> /* prerequisite */ 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/types.h> 71 #include <sys/module.h> 72 #include <sys/errno.h> 73 #include <sys/param.h> /* defines used in kernel.h */ 74 #include <sys/jail.h> 75 #include <sys/kernel.h> /* types used in module initialization */ 76 #include <sys/conf.h> /* cdevsw struct */ 77 #include <sys/uio.h> /* uio struct */ 78 #include <sys/sockio.h> 79 #include <sys/socketvar.h> /* struct socket */ 80 #include <sys/malloc.h> 81 #include <sys/mman.h> /* PROT_EXEC */ 82 #include <sys/poll.h> 83 #include <sys/proc.h> 84 #include <vm/vm.h> /* vtophys */ 85 #include <vm/pmap.h> /* vtophys */ 86 #include <sys/socket.h> /* sockaddrs */ 87 #include <machine/bus.h> 88 #include <sys/selinfo.h> 89 #include <sys/sysctl.h> 90 #include <net/if.h> 91 #include <net/bpf.h> /* BIOCIMMEDIATE */ 92 #include <net/vnet.h> 93 #include <machine/bus.h> /* bus_dmamap_* */ 94 95 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 96 #endif /* __FreeBSD__ */ 97 98 #include <net/netmap.h> 99 #include <dev/netmap/netmap_kern.h> 100 101 u_int netmap_total_buffers; 102 u_int netmap_buf_size; 103 char *netmap_buffer_base; /* address of an invalid buffer */ 104 105 /* user-controlled variables */ 106 int netmap_verbose; 107 108 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 109 110 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 111 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 112 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 113 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 114 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 115 int netmap_mitigate = 1; 116 SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, ""); 117 int netmap_no_pendintr = 1; 118 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, 119 CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets."); 120 121 int netmap_drop = 0; /* debugging */ 122 int netmap_flags = 0; /* debug flags */ 123 int netmap_copy = 0; /* debugging, copy content */ 124 125 SYSCTL_INT(_dev_netmap, OID_AUTO, drop, CTLFLAG_RW, &netmap_drop, 0 , ""); 126 SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , ""); 127 SYSCTL_INT(_dev_netmap, OID_AUTO, copy, CTLFLAG_RW, &netmap_copy, 0 , ""); 128 129 #ifdef NM_BRIDGE /* support for netmap bridge */ 130 131 /* 132 * system parameters. 133 * 134 * All switched ports have prefix NM_NAME. 135 * The switch has a max of NM_BDG_MAXPORTS ports (often stored in a bitmap, 136 * so a practical upper bound is 64). 137 * Each tx ring is read-write, whereas rx rings are readonly (XXX not done yet). 138 * The virtual interfaces use per-queue lock instead of core lock. 139 * In the tx loop, we aggregate traffic in batches to make all operations 140 * faster. The batch size is NM_BDG_BATCH 141 */ 142 #define NM_NAME "vale" /* prefix for the interface */ 143 #define NM_BDG_MAXPORTS 16 /* up to 64 ? */ 144 #define NM_BRIDGE_RINGSIZE 1024 /* in the device */ 145 #define NM_BDG_HASH 1024 /* forwarding table entries */ 146 #define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */ 147 #define NM_BRIDGES 4 /* number of bridges */ 148 int netmap_bridge = NM_BDG_BATCH; /* bridge batch size */ 149 SYSCTL_INT(_dev_netmap, OID_AUTO, bridge, CTLFLAG_RW, &netmap_bridge, 0 , ""); 150 151 #ifdef linux 152 #define ADD_BDG_REF(ifp) (NA(ifp)->if_refcount++) 153 #define DROP_BDG_REF(ifp) (NA(ifp)->if_refcount-- <= 1) 154 #else /* !linux */ 155 #define ADD_BDG_REF(ifp) (ifp)->if_refcount++ 156 #define DROP_BDG_REF(ifp) refcount_release(&(ifp)->if_refcount) 157 #ifdef __FreeBSD__ 158 #include <sys/endian.h> 159 #include <sys/refcount.h> 160 #endif /* __FreeBSD__ */ 161 #define prefetch(x) __builtin_prefetch(x) 162 #endif /* !linux */ 163 164 static void bdg_netmap_attach(struct ifnet *ifp); 165 static int bdg_netmap_reg(struct ifnet *ifp, int onoff); 166 /* per-tx-queue entry */ 167 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 168 void *buf; 169 uint64_t dst; /* dst mask */ 170 uint32_t src; /* src index ? */ 171 uint16_t len; /* src len */ 172 }; 173 174 struct nm_hash_ent { 175 uint64_t mac; /* the top 2 bytes are the epoch */ 176 uint64_t ports; 177 }; 178 179 /* 180 * Interfaces for a bridge are all in ports[]. 181 * The array has fixed size, an empty entry does not terminate 182 * the search. 183 */ 184 struct nm_bridge { 185 struct ifnet *bdg_ports[NM_BDG_MAXPORTS]; 186 int n_ports; 187 uint64_t act_ports; 188 int freelist; /* first buffer index */ 189 NM_SELINFO_T si; /* poll/select wait queue */ 190 NM_LOCK_T bdg_lock; /* protect the selinfo ? */ 191 192 /* the forwarding table, MAC+ports */ 193 struct nm_hash_ent ht[NM_BDG_HASH]; 194 195 int namelen; /* 0 means free */ 196 char basename[IFNAMSIZ]; 197 }; 198 199 struct nm_bridge nm_bridges[NM_BRIDGES]; 200 201 #define BDG_LOCK(b) mtx_lock(&(b)->bdg_lock) 202 #define BDG_UNLOCK(b) mtx_unlock(&(b)->bdg_lock) 203 204 /* 205 * NA(ifp)->bdg_port port index 206 */ 207 208 // XXX only for multiples of 64 bytes, non overlapped. 209 static inline void 210 pkt_copy(void *_src, void *_dst, int l) 211 { 212 uint64_t *src = _src; 213 uint64_t *dst = _dst; 214 if (unlikely(l >= 1024)) { 215 bcopy(src, dst, l); 216 return; 217 } 218 for (; likely(l > 0); l-=64) { 219 *dst++ = *src++; 220 *dst++ = *src++; 221 *dst++ = *src++; 222 *dst++ = *src++; 223 *dst++ = *src++; 224 *dst++ = *src++; 225 *dst++ = *src++; 226 *dst++ = *src++; 227 } 228 } 229 230 /* 231 * locate a bridge among the existing ones. 232 * a ':' in the name terminates the bridge name. Otherwise, just NM_NAME. 233 * We assume that this is called with a name of at least NM_NAME chars. 234 */ 235 static struct nm_bridge * 236 nm_find_bridge(const char *name) 237 { 238 int i, l, namelen, e; 239 struct nm_bridge *b = NULL; 240 241 namelen = strlen(NM_NAME); /* base length */ 242 l = strlen(name); /* actual length */ 243 for (i = namelen + 1; i < l; i++) { 244 if (name[i] == ':') { 245 namelen = i; 246 break; 247 } 248 } 249 if (namelen >= IFNAMSIZ) 250 namelen = IFNAMSIZ; 251 ND("--- prefix is '%.*s' ---", namelen, name); 252 253 /* use the first entry for locking */ 254 BDG_LOCK(nm_bridges); // XXX do better 255 for (e = -1, i = 1; i < NM_BRIDGES; i++) { 256 b = nm_bridges + i; 257 if (b->namelen == 0) 258 e = i; /* record empty slot */ 259 else if (strncmp(name, b->basename, namelen) == 0) { 260 ND("found '%.*s' at %d", namelen, name, i); 261 break; 262 } 263 } 264 if (i == NM_BRIDGES) { /* all full */ 265 if (e == -1) { /* no empty slot */ 266 b = NULL; 267 } else { 268 b = nm_bridges + e; 269 strncpy(b->basename, name, namelen); 270 b->namelen = namelen; 271 } 272 } 273 BDG_UNLOCK(nm_bridges); 274 return b; 275 } 276 #endif /* NM_BRIDGE */ 277 278 279 /* 280 * Fetch configuration from the device, to cope with dynamic 281 * reconfigurations after loading the module. 282 */ 283 static int 284 netmap_update_config(struct netmap_adapter *na) 285 { 286 struct ifnet *ifp = na->ifp; 287 u_int txr, txd, rxr, rxd; 288 289 txr = txd = rxr = rxd = 0; 290 if (na->nm_config) { 291 na->nm_config(ifp, &txr, &txd, &rxr, &rxd); 292 } else { 293 /* take whatever we had at init time */ 294 txr = na->num_tx_rings; 295 txd = na->num_tx_desc; 296 rxr = na->num_rx_rings; 297 rxd = na->num_rx_desc; 298 } 299 300 if (na->num_tx_rings == txr && na->num_tx_desc == txd && 301 na->num_rx_rings == rxr && na->num_rx_desc == rxd) 302 return 0; /* nothing changed */ 303 if (netmap_verbose || na->refcount > 0) { 304 D("stored config %s: txring %d x %d, rxring %d x %d", 305 ifp->if_xname, 306 na->num_tx_rings, na->num_tx_desc, 307 na->num_rx_rings, na->num_rx_desc); 308 D("new config %s: txring %d x %d, rxring %d x %d", 309 ifp->if_xname, txr, txd, rxr, rxd); 310 } 311 if (na->refcount == 0) { 312 D("configuration changed (but fine)"); 313 na->num_tx_rings = txr; 314 na->num_tx_desc = txd; 315 na->num_rx_rings = rxr; 316 na->num_rx_desc = rxd; 317 return 0; 318 } 319 D("configuration changed while active, this is bad..."); 320 return 1; 321 } 322 323 /*------------- memory allocator -----------------*/ 324 #ifdef NETMAP_MEM2 325 #include "netmap_mem2.c" 326 #else /* !NETMAP_MEM2 */ 327 #include "netmap_mem1.c" 328 #endif /* !NETMAP_MEM2 */ 329 /*------------ end of memory allocator ----------*/ 330 331 332 /* Structure associated to each thread which registered an interface. 333 * 334 * The first 4 fields of this structure are written by NIOCREGIF and 335 * read by poll() and NIOC?XSYNC. 336 * There is low contention among writers (actually, a correct user program 337 * should have no contention among writers) and among writers and readers, 338 * so we use a single global lock to protect the structure initialization. 339 * Since initialization involves the allocation of memory, we reuse the memory 340 * allocator lock. 341 * Read access to the structure is lock free. Readers must check that 342 * np_nifp is not NULL before using the other fields. 343 * If np_nifp is NULL initialization has not been performed, so they should 344 * return an error to userlevel. 345 * 346 * The ref_done field is used to regulate access to the refcount in the 347 * memory allocator. The refcount must be incremented at most once for 348 * each open("/dev/netmap"). The increment is performed by the first 349 * function that calls netmap_get_memory() (currently called by 350 * mmap(), NIOCGINFO and NIOCREGIF). 351 * If the refcount is incremented, it is then decremented when the 352 * private structure is destroyed. 353 */ 354 struct netmap_priv_d { 355 struct netmap_if * volatile np_nifp; /* netmap interface descriptor. */ 356 357 struct ifnet *np_ifp; /* device for which we hold a reference */ 358 int np_ringid; /* from the ioctl */ 359 u_int np_qfirst, np_qlast; /* range of rings to scan */ 360 uint16_t np_txpoll; 361 362 unsigned long ref_done; /* use with NMA_LOCK held */ 363 }; 364 365 366 static int 367 netmap_get_memory(struct netmap_priv_d* p) 368 { 369 int error = 0; 370 NMA_LOCK(); 371 if (!p->ref_done) { 372 error = netmap_memory_finalize(); 373 if (!error) 374 p->ref_done = 1; 375 } 376 NMA_UNLOCK(); 377 return error; 378 } 379 380 /* 381 * File descriptor's private data destructor. 382 * 383 * Call nm_register(ifp,0) to stop netmap mode on the interface and 384 * revert to normal operation. We expect that np_ifp has not gone. 385 */ 386 /* call with NMA_LOCK held */ 387 static void 388 netmap_dtor_locked(void *data) 389 { 390 struct netmap_priv_d *priv = data; 391 struct ifnet *ifp = priv->np_ifp; 392 struct netmap_adapter *na = NA(ifp); 393 struct netmap_if *nifp = priv->np_nifp; 394 395 na->refcount--; 396 if (na->refcount <= 0) { /* last instance */ 397 u_int i, j, lim; 398 399 if (netmap_verbose) 400 D("deleting last instance for %s", ifp->if_xname); 401 /* 402 * there is a race here with *_netmap_task() and 403 * netmap_poll(), which don't run under NETMAP_REG_LOCK. 404 * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP 405 * (aka NETMAP_DELETING(na)) are a unique marker that the 406 * device is dying. 407 * Before destroying stuff we sleep a bit, and then complete 408 * the job. NIOCREG should realize the condition and 409 * loop until they can continue; the other routines 410 * should check the condition at entry and quit if 411 * they cannot run. 412 */ 413 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 414 tsleep(na, 0, "NIOCUNREG", 4); 415 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 416 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ 417 /* Wake up any sleeping threads. netmap_poll will 418 * then return POLLERR 419 */ 420 for (i = 0; i < na->num_tx_rings + 1; i++) 421 selwakeuppri(&na->tx_rings[i].si, PI_NET); 422 for (i = 0; i < na->num_rx_rings + 1; i++) 423 selwakeuppri(&na->rx_rings[i].si, PI_NET); 424 selwakeuppri(&na->tx_si, PI_NET); 425 selwakeuppri(&na->rx_si, PI_NET); 426 /* release all buffers */ 427 for (i = 0; i < na->num_tx_rings + 1; i++) { 428 struct netmap_ring *ring = na->tx_rings[i].ring; 429 lim = na->tx_rings[i].nkr_num_slots; 430 for (j = 0; j < lim; j++) 431 netmap_free_buf(nifp, ring->slot[j].buf_idx); 432 /* knlist_destroy(&na->tx_rings[i].si.si_note); */ 433 mtx_destroy(&na->tx_rings[i].q_lock); 434 } 435 for (i = 0; i < na->num_rx_rings + 1; i++) { 436 struct netmap_ring *ring = na->rx_rings[i].ring; 437 lim = na->rx_rings[i].nkr_num_slots; 438 for (j = 0; j < lim; j++) 439 netmap_free_buf(nifp, ring->slot[j].buf_idx); 440 /* knlist_destroy(&na->rx_rings[i].si.si_note); */ 441 mtx_destroy(&na->rx_rings[i].q_lock); 442 } 443 /* XXX kqueue(9) needed; these will mirror knlist_init. */ 444 /* knlist_destroy(&na->tx_si.si_note); */ 445 /* knlist_destroy(&na->rx_si.si_note); */ 446 netmap_free_rings(na); 447 wakeup(na); 448 } 449 netmap_if_free(nifp); 450 } 451 452 static void 453 nm_if_rele(struct ifnet *ifp) 454 { 455 #ifndef NM_BRIDGE 456 if_rele(ifp); 457 #else /* NM_BRIDGE */ 458 int i, full; 459 struct nm_bridge *b; 460 461 if (strncmp(ifp->if_xname, NM_NAME, sizeof(NM_NAME) - 1)) { 462 if_rele(ifp); 463 return; 464 } 465 if (!DROP_BDG_REF(ifp)) 466 return; 467 b = ifp->if_bridge; 468 BDG_LOCK(nm_bridges); 469 BDG_LOCK(b); 470 ND("want to disconnect %s from the bridge", ifp->if_xname); 471 full = 0; 472 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 473 if (b->bdg_ports[i] == ifp) { 474 b->bdg_ports[i] = NULL; 475 bzero(ifp, sizeof(*ifp)); 476 free(ifp, M_DEVBUF); 477 break; 478 } 479 else if (b->bdg_ports[i] != NULL) 480 full = 1; 481 } 482 BDG_UNLOCK(b); 483 if (full == 0) { 484 ND("freeing bridge %d", b - nm_bridges); 485 b->namelen = 0; 486 } 487 BDG_UNLOCK(nm_bridges); 488 if (i == NM_BDG_MAXPORTS) 489 D("ouch, cannot find ifp to remove"); 490 #endif /* NM_BRIDGE */ 491 } 492 493 static void 494 netmap_dtor(void *data) 495 { 496 struct netmap_priv_d *priv = data; 497 struct ifnet *ifp = priv->np_ifp; 498 struct netmap_adapter *na; 499 500 NMA_LOCK(); 501 if (ifp) { 502 na = NA(ifp); 503 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 504 netmap_dtor_locked(data); 505 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 506 507 nm_if_rele(ifp); 508 } 509 if (priv->ref_done) { 510 netmap_memory_deref(); 511 } 512 NMA_UNLOCK(); 513 bzero(priv, sizeof(*priv)); /* XXX for safety */ 514 free(priv, M_DEVBUF); 515 } 516 517 #ifdef __FreeBSD__ 518 #include <vm/vm.h> 519 #include <vm/vm_param.h> 520 #include <vm/vm_object.h> 521 #include <vm/vm_page.h> 522 #include <vm/vm_pager.h> 523 #include <vm/uma.h> 524 525 static struct cdev_pager_ops saved_cdev_pager_ops; 526 527 static int 528 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 529 vm_ooffset_t foff, struct ucred *cred, u_short *color) 530 { 531 if (netmap_verbose) 532 D("first mmap for %p", handle); 533 return saved_cdev_pager_ops.cdev_pg_ctor(handle, 534 size, prot, foff, cred, color); 535 } 536 537 static void 538 netmap_dev_pager_dtor(void *handle) 539 { 540 saved_cdev_pager_ops.cdev_pg_dtor(handle); 541 ND("ready to release memory for %p", handle); 542 } 543 544 545 static struct cdev_pager_ops netmap_cdev_pager_ops = { 546 .cdev_pg_ctor = netmap_dev_pager_ctor, 547 .cdev_pg_dtor = netmap_dev_pager_dtor, 548 .cdev_pg_fault = NULL, 549 }; 550 551 static int 552 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 553 vm_size_t objsize, vm_object_t *objp, int prot) 554 { 555 vm_object_t obj; 556 557 ND("cdev %p foff %jd size %jd objp %p prot %d", cdev, 558 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 559 obj = vm_pager_allocate(OBJT_DEVICE, cdev, objsize, prot, *foff, 560 curthread->td_ucred); 561 ND("returns obj %p", obj); 562 if (obj == NULL) 563 return EINVAL; 564 if (saved_cdev_pager_ops.cdev_pg_fault == NULL) { 565 ND("initialize cdev_pager_ops"); 566 saved_cdev_pager_ops = *(obj->un_pager.devp.ops); 567 netmap_cdev_pager_ops.cdev_pg_fault = 568 saved_cdev_pager_ops.cdev_pg_fault; 569 }; 570 obj->un_pager.devp.ops = &netmap_cdev_pager_ops; 571 *objp = obj; 572 return 0; 573 } 574 #endif /* __FreeBSD__ */ 575 576 577 /* 578 * mmap(2) support for the "netmap" device. 579 * 580 * Expose all the memory previously allocated by our custom memory 581 * allocator: this way the user has only to issue a single mmap(2), and 582 * can work on all the data structures flawlessly. 583 * 584 * Return 0 on success, -1 otherwise. 585 */ 586 587 #ifdef __FreeBSD__ 588 static int 589 netmap_mmap(__unused struct cdev *dev, 590 #if __FreeBSD_version < 900000 591 vm_offset_t offset, vm_paddr_t *paddr, int nprot 592 #else 593 vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, 594 __unused vm_memattr_t *memattr 595 #endif 596 ) 597 { 598 int error = 0; 599 struct netmap_priv_d *priv; 600 601 if (nprot & PROT_EXEC) 602 return (-1); // XXX -1 or EINVAL ? 603 604 error = devfs_get_cdevpriv((void **)&priv); 605 if (error == EBADF) { /* called on fault, memory is initialized */ 606 ND(5, "handling fault at ofs 0x%x", offset); 607 error = 0; 608 } else if (error == 0) /* make sure memory is set */ 609 error = netmap_get_memory(priv); 610 if (error) 611 return (error); 612 613 ND("request for offset 0x%x", (uint32_t)offset); 614 *paddr = netmap_ofstophys(offset); 615 616 return (*paddr ? 0 : ENOMEM); 617 } 618 619 static int 620 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 621 { 622 if (netmap_verbose) 623 D("dev %p fflag 0x%x devtype %d td %p", 624 dev, fflag, devtype, td); 625 return 0; 626 } 627 628 static int 629 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 630 { 631 struct netmap_priv_d *priv; 632 int error; 633 634 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 635 M_NOWAIT | M_ZERO); 636 if (priv == NULL) 637 return ENOMEM; 638 639 error = devfs_set_cdevpriv(priv, netmap_dtor); 640 if (error) 641 return error; 642 643 return 0; 644 } 645 #endif /* __FreeBSD__ */ 646 647 648 /* 649 * Handlers for synchronization of the queues from/to the host. 650 * 651 * netmap_sync_to_host() passes packets up. We are called from a 652 * system call in user process context, and the only contention 653 * can be among multiple user threads erroneously calling 654 * this routine concurrently. In principle we should not even 655 * need to lock. 656 */ 657 static void 658 netmap_sync_to_host(struct netmap_adapter *na) 659 { 660 struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings]; 661 struct netmap_ring *ring = kring->ring; 662 struct mbuf *head = NULL, *tail = NULL, *m; 663 u_int k, n, lim = kring->nkr_num_slots - 1; 664 665 k = ring->cur; 666 if (k > lim) { 667 netmap_ring_reinit(kring); 668 return; 669 } 670 // na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 671 672 /* Take packets from hwcur to cur and pass them up. 673 * In case of no buffers we give up. At the end of the loop, 674 * the queue is drained in all cases. 675 */ 676 for (n = kring->nr_hwcur; n != k;) { 677 struct netmap_slot *slot = &ring->slot[n]; 678 679 n = (n == lim) ? 0 : n + 1; 680 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { 681 D("bad pkt at %d len %d", n, slot->len); 682 continue; 683 } 684 m = m_devget(NMB(slot), slot->len, 0, na->ifp, NULL); 685 686 if (m == NULL) 687 break; 688 if (tail) 689 tail->m_nextpkt = m; 690 else 691 head = m; 692 tail = m; 693 m->m_nextpkt = NULL; 694 } 695 kring->nr_hwcur = k; 696 kring->nr_hwavail = ring->avail = lim; 697 // na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 698 699 /* send packets up, outside the lock */ 700 while ((m = head) != NULL) { 701 head = head->m_nextpkt; 702 m->m_nextpkt = NULL; 703 if (netmap_verbose & NM_VERB_HOST) 704 D("sending up pkt %p size %d", m, MBUF_LEN(m)); 705 NM_SEND_UP(na->ifp, m); 706 } 707 } 708 709 /* 710 * rxsync backend for packets coming from the host stack. 711 * They have been put in the queue by netmap_start() so we 712 * need to protect access to the kring using a lock. 713 * 714 * This routine also does the selrecord if called from the poll handler 715 * (we know because td != NULL). 716 * 717 * NOTE: on linux, selrecord() is defined as a macro and uses pwait 718 * as an additional hidden argument. 719 */ 720 static void 721 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait) 722 { 723 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 724 struct netmap_ring *ring = kring->ring; 725 u_int j, n, lim = kring->nkr_num_slots; 726 u_int k = ring->cur, resvd = ring->reserved; 727 728 (void)pwait; /* disable unused warnings */ 729 na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 730 if (k >= lim) { 731 netmap_ring_reinit(kring); 732 return; 733 } 734 /* new packets are already set in nr_hwavail */ 735 /* skip past packets that userspace has released */ 736 j = kring->nr_hwcur; 737 if (resvd > 0) { 738 if (resvd + ring->avail >= lim + 1) { 739 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 740 ring->reserved = resvd = 0; // XXX panic... 741 } 742 k = (k >= resvd) ? k - resvd : k + lim - resvd; 743 } 744 if (j != k) { 745 n = k >= j ? k - j : k + lim - j; 746 kring->nr_hwavail -= n; 747 kring->nr_hwcur = k; 748 } 749 k = ring->avail = kring->nr_hwavail - resvd; 750 if (k == 0 && td) 751 selrecord(td, &kring->si); 752 if (k && (netmap_verbose & NM_VERB_HOST)) 753 D("%d pkts from stack", k); 754 na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 755 } 756 757 758 /* 759 * get a refcounted reference to an interface. 760 * Return ENXIO if the interface does not exist, EINVAL if netmap 761 * is not supported by the interface. 762 * If successful, hold a reference. 763 */ 764 static int 765 get_ifp(const char *name, struct ifnet **ifp) 766 { 767 #ifdef NM_BRIDGE 768 struct ifnet *iter = NULL; 769 770 do { 771 struct nm_bridge *b; 772 int i, l, cand = -1; 773 774 if (strncmp(name, NM_NAME, sizeof(NM_NAME) - 1)) 775 break; 776 b = nm_find_bridge(name); 777 if (b == NULL) { 778 D("no bridges available for '%s'", name); 779 return (ENXIO); 780 } 781 /* XXX locking */ 782 BDG_LOCK(b); 783 /* lookup in the local list of ports */ 784 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 785 iter = b->bdg_ports[i]; 786 if (iter == NULL) { 787 if (cand == -1) 788 cand = i; /* potential insert point */ 789 continue; 790 } 791 if (!strcmp(iter->if_xname, name)) { 792 ADD_BDG_REF(iter); 793 ND("found existing interface"); 794 BDG_UNLOCK(b); 795 break; 796 } 797 } 798 if (i < NM_BDG_MAXPORTS) /* already unlocked */ 799 break; 800 if (cand == -1) { 801 D("bridge full, cannot create new port"); 802 no_port: 803 BDG_UNLOCK(b); 804 *ifp = NULL; 805 return EINVAL; 806 } 807 ND("create new bridge port %s", name); 808 /* space for forwarding list after the ifnet */ 809 l = sizeof(*iter) + 810 sizeof(struct nm_bdg_fwd)*NM_BDG_BATCH ; 811 iter = malloc(l, M_DEVBUF, M_NOWAIT | M_ZERO); 812 if (!iter) 813 goto no_port; 814 strcpy(iter->if_xname, name); 815 bdg_netmap_attach(iter); 816 b->bdg_ports[cand] = iter; 817 iter->if_bridge = b; 818 ADD_BDG_REF(iter); 819 BDG_UNLOCK(b); 820 ND("attaching virtual bridge %p", b); 821 } while (0); 822 *ifp = iter; 823 if (! *ifp) 824 #endif /* NM_BRIDGE */ 825 *ifp = ifunit_ref(name); 826 if (*ifp == NULL) 827 return (ENXIO); 828 /* can do this if the capability exists and if_pspare[0] 829 * points to the netmap descriptor. 830 */ 831 if (NETMAP_CAPABLE(*ifp)) 832 return 0; /* valid pointer, we hold the refcount */ 833 nm_if_rele(*ifp); 834 return EINVAL; // not NETMAP capable 835 } 836 837 838 /* 839 * Error routine called when txsync/rxsync detects an error. 840 * Can't do much more than resetting cur = hwcur, avail = hwavail. 841 * Return 1 on reinit. 842 * 843 * This routine is only called by the upper half of the kernel. 844 * It only reads hwcur (which is changed only by the upper half, too) 845 * and hwavail (which may be changed by the lower half, but only on 846 * a tx ring and only to increase it, so any error will be recovered 847 * on the next call). For the above, we don't strictly need to call 848 * it under lock. 849 */ 850 int 851 netmap_ring_reinit(struct netmap_kring *kring) 852 { 853 struct netmap_ring *ring = kring->ring; 854 u_int i, lim = kring->nkr_num_slots - 1; 855 int errors = 0; 856 857 RD(10, "called for %s", kring->na->ifp->if_xname); 858 if (ring->cur > lim) 859 errors++; 860 for (i = 0; i <= lim; i++) { 861 u_int idx = ring->slot[i].buf_idx; 862 u_int len = ring->slot[i].len; 863 if (idx < 2 || idx >= netmap_total_buffers) { 864 if (!errors++) 865 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 866 ring->slot[i].buf_idx = 0; 867 ring->slot[i].len = 0; 868 } else if (len > NETMAP_BUF_SIZE) { 869 ring->slot[i].len = 0; 870 if (!errors++) 871 D("bad len %d at slot %d idx %d", 872 len, i, idx); 873 } 874 } 875 if (errors) { 876 int pos = kring - kring->na->tx_rings; 877 int n = kring->na->num_tx_rings + 1; 878 879 RD(10, "total %d errors", errors); 880 errors++; 881 RD(10, "%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 882 kring->na->ifp->if_xname, 883 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 884 ring->cur, kring->nr_hwcur, 885 ring->avail, kring->nr_hwavail); 886 ring->cur = kring->nr_hwcur; 887 ring->avail = kring->nr_hwavail; 888 } 889 return (errors ? 1 : 0); 890 } 891 892 893 /* 894 * Set the ring ID. For devices with a single queue, a request 895 * for all rings is the same as a single ring. 896 */ 897 static int 898 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 899 { 900 struct ifnet *ifp = priv->np_ifp; 901 struct netmap_adapter *na = NA(ifp); 902 u_int i = ringid & NETMAP_RING_MASK; 903 /* initially (np_qfirst == np_qlast) we don't want to lock */ 904 int need_lock = (priv->np_qfirst != priv->np_qlast); 905 int lim = na->num_rx_rings; 906 907 if (na->num_tx_rings > lim) 908 lim = na->num_tx_rings; 909 if ( (ringid & NETMAP_HW_RING) && i >= lim) { 910 D("invalid ring id %d", i); 911 return (EINVAL); 912 } 913 if (need_lock) 914 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 915 priv->np_ringid = ringid; 916 if (ringid & NETMAP_SW_RING) { 917 priv->np_qfirst = NETMAP_SW_RING; 918 priv->np_qlast = 0; 919 } else if (ringid & NETMAP_HW_RING) { 920 priv->np_qfirst = i; 921 priv->np_qlast = i + 1; 922 } else { 923 priv->np_qfirst = 0; 924 priv->np_qlast = NETMAP_HW_RING ; 925 } 926 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 927 if (need_lock) 928 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 929 if (netmap_verbose) { 930 if (ringid & NETMAP_SW_RING) 931 D("ringid %s set to SW RING", ifp->if_xname); 932 else if (ringid & NETMAP_HW_RING) 933 D("ringid %s set to HW RING %d", ifp->if_xname, 934 priv->np_qfirst); 935 else 936 D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim); 937 } 938 return 0; 939 } 940 941 /* 942 * ioctl(2) support for the "netmap" device. 943 * 944 * Following a list of accepted commands: 945 * - NIOCGINFO 946 * - SIOCGIFADDR just for convenience 947 * - NIOCREGIF 948 * - NIOCUNREGIF 949 * - NIOCTXSYNC 950 * - NIOCRXSYNC 951 * 952 * Return 0 on success, errno otherwise. 953 */ 954 static int 955 netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, 956 int fflag, struct thread *td) 957 { 958 struct netmap_priv_d *priv = NULL; 959 struct ifnet *ifp; 960 struct nmreq *nmr = (struct nmreq *) data; 961 struct netmap_adapter *na; 962 int error; 963 u_int i, lim; 964 struct netmap_if *nifp; 965 966 (void)dev; /* UNUSED */ 967 (void)fflag; /* UNUSED */ 968 #ifdef linux 969 #define devfs_get_cdevpriv(pp) \ 970 ({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \ 971 (*pp ? 0 : ENOENT); }) 972 973 /* devfs_set_cdevpriv cannot fail on linux */ 974 #define devfs_set_cdevpriv(p, fn) \ 975 ({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); }) 976 977 978 #define devfs_clear_cdevpriv() do { \ 979 netmap_dtor(priv); ((struct file *)td)->private_data = 0; \ 980 } while (0) 981 #endif /* linux */ 982 983 CURVNET_SET(TD_TO_VNET(td)); 984 985 error = devfs_get_cdevpriv((void **)&priv); 986 if (error) { 987 CURVNET_RESTORE(); 988 /* XXX ENOENT should be impossible, since the priv 989 * is now created in the open */ 990 return (error == ENOENT ? ENXIO : error); 991 } 992 993 nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */ 994 switch (cmd) { 995 case NIOCGINFO: /* return capabilities etc */ 996 if (nmr->nr_version != NETMAP_API) { 997 D("API mismatch got %d have %d", 998 nmr->nr_version, NETMAP_API); 999 nmr->nr_version = NETMAP_API; 1000 error = EINVAL; 1001 break; 1002 } 1003 /* update configuration */ 1004 error = netmap_get_memory(priv); 1005 ND("get_memory returned %d", error); 1006 if (error) 1007 break; 1008 /* memsize is always valid */ 1009 nmr->nr_memsize = nm_mem.nm_totalsize; 1010 nmr->nr_offset = 0; 1011 nmr->nr_rx_rings = nmr->nr_tx_rings = 0; 1012 nmr->nr_rx_slots = nmr->nr_tx_slots = 0; 1013 if (nmr->nr_name[0] == '\0') /* just get memory info */ 1014 break; 1015 error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */ 1016 if (error) 1017 break; 1018 na = NA(ifp); /* retrieve netmap_adapter */ 1019 netmap_update_config(na); 1020 nmr->nr_rx_rings = na->num_rx_rings; 1021 nmr->nr_tx_rings = na->num_tx_rings; 1022 nmr->nr_rx_slots = na->num_rx_desc; 1023 nmr->nr_tx_slots = na->num_tx_desc; 1024 nm_if_rele(ifp); /* return the refcount */ 1025 break; 1026 1027 case NIOCREGIF: 1028 if (nmr->nr_version != NETMAP_API) { 1029 nmr->nr_version = NETMAP_API; 1030 error = EINVAL; 1031 break; 1032 } 1033 /* ensure allocators are ready */ 1034 error = netmap_get_memory(priv); 1035 ND("get_memory returned %d", error); 1036 if (error) 1037 break; 1038 1039 /* protect access to priv from concurrent NIOCREGIF */ 1040 NMA_LOCK(); 1041 if (priv->np_ifp != NULL) { /* thread already registered */ 1042 error = netmap_set_ringid(priv, nmr->nr_ringid); 1043 NMA_UNLOCK(); 1044 break; 1045 } 1046 /* find the interface and a reference */ 1047 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 1048 if (error) { 1049 NMA_UNLOCK(); 1050 break; 1051 } 1052 na = NA(ifp); /* retrieve netmap adapter */ 1053 1054 for (i = 10; i > 0; i--) { 1055 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 1056 if (!NETMAP_DELETING(na)) 1057 break; 1058 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1059 tsleep(na, 0, "NIOCREGIF", hz/10); 1060 } 1061 if (i == 0) { 1062 D("too many NIOCREGIF attempts, give up"); 1063 error = EINVAL; 1064 nm_if_rele(ifp); /* return the refcount */ 1065 NMA_UNLOCK(); 1066 break; 1067 } 1068 1069 /* ring configuration may have changed, fetch from the card */ 1070 netmap_update_config(na); 1071 priv->np_ifp = ifp; /* store the reference */ 1072 error = netmap_set_ringid(priv, nmr->nr_ringid); 1073 if (error) 1074 goto error; 1075 nifp = netmap_if_new(nmr->nr_name, na); 1076 if (nifp == NULL) { /* allocation failed */ 1077 error = ENOMEM; 1078 } else if (ifp->if_capenable & IFCAP_NETMAP) { 1079 /* was already set */ 1080 } else { 1081 /* Otherwise set the card in netmap mode 1082 * and make it use the shared buffers. 1083 */ 1084 for (i = 0 ; i < na->num_tx_rings + 1; i++) 1085 mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock", MTX_NETWORK_LOCK, MTX_DEF); 1086 for (i = 0 ; i < na->num_rx_rings + 1; i++) { 1087 mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock", MTX_NETWORK_LOCK, MTX_DEF); 1088 } 1089 error = na->nm_register(ifp, 1); /* mode on */ 1090 if (error) { 1091 netmap_dtor_locked(priv); 1092 netmap_if_free(nifp); 1093 } 1094 } 1095 1096 if (error) { /* reg. failed, release priv and ref */ 1097 error: 1098 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1099 nm_if_rele(ifp); /* return the refcount */ 1100 priv->np_ifp = NULL; 1101 priv->np_nifp = NULL; 1102 NMA_UNLOCK(); 1103 break; 1104 } 1105 1106 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 1107 1108 /* the following assignment is a commitment. 1109 * Readers (i.e., poll and *SYNC) check for 1110 * np_nifp != NULL without locking 1111 */ 1112 wmb(); /* make sure previous writes are visible to all CPUs */ 1113 priv->np_nifp = nifp; 1114 NMA_UNLOCK(); 1115 1116 /* return the offset of the netmap_if object */ 1117 nmr->nr_rx_rings = na->num_rx_rings; 1118 nmr->nr_tx_rings = na->num_tx_rings; 1119 nmr->nr_rx_slots = na->num_rx_desc; 1120 nmr->nr_tx_slots = na->num_tx_desc; 1121 nmr->nr_memsize = nm_mem.nm_totalsize; 1122 nmr->nr_offset = netmap_if_offset(nifp); 1123 break; 1124 1125 case NIOCUNREGIF: 1126 // XXX we have no data here ? 1127 D("deprecated, data is %p", nmr); 1128 error = EINVAL; 1129 break; 1130 1131 case NIOCTXSYNC: 1132 case NIOCRXSYNC: 1133 nifp = priv->np_nifp; 1134 1135 if (nifp == NULL) { 1136 error = ENXIO; 1137 break; 1138 } 1139 rmb(); /* make sure following reads are not from cache */ 1140 1141 1142 ifp = priv->np_ifp; /* we have a reference */ 1143 1144 if (ifp == NULL) { 1145 D("Internal error: nifp != NULL && ifp == NULL"); 1146 error = ENXIO; 1147 break; 1148 } 1149 1150 na = NA(ifp); /* retrieve netmap adapter */ 1151 if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */ 1152 if (cmd == NIOCTXSYNC) 1153 netmap_sync_to_host(na); 1154 else 1155 netmap_sync_from_host(na, NULL, NULL); 1156 break; 1157 } 1158 /* find the last ring to scan */ 1159 lim = priv->np_qlast; 1160 if (lim == NETMAP_HW_RING) 1161 lim = (cmd == NIOCTXSYNC) ? 1162 na->num_tx_rings : na->num_rx_rings; 1163 1164 for (i = priv->np_qfirst; i < lim; i++) { 1165 if (cmd == NIOCTXSYNC) { 1166 struct netmap_kring *kring = &na->tx_rings[i]; 1167 if (netmap_verbose & NM_VERB_TXSYNC) 1168 D("pre txsync ring %d cur %d hwcur %d", 1169 i, kring->ring->cur, 1170 kring->nr_hwcur); 1171 na->nm_txsync(ifp, i, 1 /* do lock */); 1172 if (netmap_verbose & NM_VERB_TXSYNC) 1173 D("post txsync ring %d cur %d hwcur %d", 1174 i, kring->ring->cur, 1175 kring->nr_hwcur); 1176 } else { 1177 na->nm_rxsync(ifp, i, 1 /* do lock */); 1178 microtime(&na->rx_rings[i].ring->ts); 1179 } 1180 } 1181 1182 break; 1183 1184 #ifdef __FreeBSD__ 1185 case BIOCIMMEDIATE: 1186 case BIOCGHDRCMPLT: 1187 case BIOCSHDRCMPLT: 1188 case BIOCSSEESENT: 1189 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 1190 break; 1191 1192 default: /* allow device-specific ioctls */ 1193 { 1194 struct socket so; 1195 bzero(&so, sizeof(so)); 1196 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 1197 if (error) 1198 break; 1199 so.so_vnet = ifp->if_vnet; 1200 // so->so_proto not null. 1201 error = ifioctl(&so, cmd, data, td); 1202 nm_if_rele(ifp); 1203 break; 1204 } 1205 1206 #else /* linux */ 1207 default: 1208 error = EOPNOTSUPP; 1209 #endif /* linux */ 1210 } 1211 1212 CURVNET_RESTORE(); 1213 return (error); 1214 } 1215 1216 1217 /* 1218 * select(2) and poll(2) handlers for the "netmap" device. 1219 * 1220 * Can be called for one or more queues. 1221 * Return true the event mask corresponding to ready events. 1222 * If there are no ready events, do a selrecord on either individual 1223 * selfd or on the global one. 1224 * Device-dependent parts (locking and sync of tx/rx rings) 1225 * are done through callbacks. 1226 * 1227 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 1228 * The first one is remapped to pwait as selrecord() uses the name as an 1229 * hidden argument. 1230 */ 1231 static int 1232 netmap_poll(struct cdev *dev, int events, struct thread *td) 1233 { 1234 struct netmap_priv_d *priv = NULL; 1235 struct netmap_adapter *na; 1236 struct ifnet *ifp; 1237 struct netmap_kring *kring; 1238 u_int core_lock, i, check_all, want_tx, want_rx, revents = 0; 1239 u_int lim_tx, lim_rx; 1240 enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */ 1241 void *pwait = dev; /* linux compatibility */ 1242 1243 (void)pwait; 1244 1245 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1246 return POLLERR; 1247 1248 if (priv->np_nifp == NULL) { 1249 D("No if registered"); 1250 return POLLERR; 1251 } 1252 rmb(); /* make sure following reads are not from cache */ 1253 1254 ifp = priv->np_ifp; 1255 // XXX check for deleting() ? 1256 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1257 return POLLERR; 1258 1259 if (netmap_verbose & 0x8000) 1260 D("device %s events 0x%x", ifp->if_xname, events); 1261 want_tx = events & (POLLOUT | POLLWRNORM); 1262 want_rx = events & (POLLIN | POLLRDNORM); 1263 1264 na = NA(ifp); /* retrieve netmap adapter */ 1265 1266 lim_tx = na->num_tx_rings; 1267 lim_rx = na->num_rx_rings; 1268 /* how many queues we are scanning */ 1269 if (priv->np_qfirst == NETMAP_SW_RING) { 1270 if (priv->np_txpoll || want_tx) { 1271 /* push any packets up, then we are always ready */ 1272 kring = &na->tx_rings[lim_tx]; 1273 netmap_sync_to_host(na); 1274 revents |= want_tx; 1275 } 1276 if (want_rx) { 1277 kring = &na->rx_rings[lim_rx]; 1278 if (kring->ring->avail == 0) 1279 netmap_sync_from_host(na, td, dev); 1280 if (kring->ring->avail > 0) { 1281 revents |= want_rx; 1282 } 1283 } 1284 return (revents); 1285 } 1286 1287 /* 1288 * check_all is set if the card has more than one queue and 1289 * the client is polling all of them. If true, we sleep on 1290 * the "global" selfd, otherwise we sleep on individual selfd 1291 * (we can only sleep on one of them per direction). 1292 * The interrupt routine in the driver should always wake on 1293 * the individual selfd, and also on the global one if the card 1294 * has more than one ring. 1295 * 1296 * If the card has only one lock, we just use that. 1297 * If the card has separate ring locks, we just use those 1298 * unless we are doing check_all, in which case the whole 1299 * loop is wrapped by the global lock. 1300 * We acquire locks only when necessary: if poll is called 1301 * when buffers are available, we can just return without locks. 1302 * 1303 * rxsync() is only called if we run out of buffers on a POLLIN. 1304 * txsync() is called if we run out of buffers on POLLOUT, or 1305 * there are pending packets to send. The latter can be disabled 1306 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1307 */ 1308 check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1); 1309 1310 /* 1311 * core_lock indicates what to do with the core lock. 1312 * The core lock is used when either the card has no individual 1313 * locks, or it has individual locks but we are cheking all 1314 * rings so we need the core lock to avoid missing wakeup events. 1315 * 1316 * It has three possible states: 1317 * NO_CL we don't need to use the core lock, e.g. 1318 * because we are protected by individual locks. 1319 * NEED_CL we need the core lock. In this case, when we 1320 * call the lock routine, move to LOCKED_CL 1321 * to remember to release the lock once done. 1322 * LOCKED_CL core lock is set, so we need to release it. 1323 */ 1324 core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL; 1325 #ifdef NM_BRIDGE 1326 /* the bridge uses separate locks */ 1327 if (na->nm_register == bdg_netmap_reg) { 1328 ND("not using core lock for %s", ifp->if_xname); 1329 core_lock = NO_CL; 1330 } 1331 #endif /* NM_BRIDGE */ 1332 if (priv->np_qlast != NETMAP_HW_RING) { 1333 lim_tx = lim_rx = priv->np_qlast; 1334 } 1335 1336 /* 1337 * We start with a lock free round which is good if we have 1338 * data available. If this fails, then lock and call the sync 1339 * routines. 1340 */ 1341 for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) { 1342 kring = &na->rx_rings[i]; 1343 if (kring->ring->avail > 0) { 1344 revents |= want_rx; 1345 want_rx = 0; /* also breaks the loop */ 1346 } 1347 } 1348 for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) { 1349 kring = &na->tx_rings[i]; 1350 if (kring->ring->avail > 0) { 1351 revents |= want_tx; 1352 want_tx = 0; /* also breaks the loop */ 1353 } 1354 } 1355 1356 /* 1357 * If we to push packets out (priv->np_txpoll) or want_tx is 1358 * still set, we do need to run the txsync calls (on all rings, 1359 * to avoid that the tx rings stall). 1360 */ 1361 if (priv->np_txpoll || want_tx) { 1362 for (i = priv->np_qfirst; i < lim_tx; i++) { 1363 kring = &na->tx_rings[i]; 1364 /* 1365 * Skip the current ring if want_tx == 0 1366 * (we have already done a successful sync on 1367 * a previous ring) AND kring->cur == kring->hwcur 1368 * (there are no pending transmissions for this ring). 1369 */ 1370 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 1371 continue; 1372 if (core_lock == NEED_CL) { 1373 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1374 core_lock = LOCKED_CL; 1375 } 1376 if (na->separate_locks) 1377 na->nm_lock(ifp, NETMAP_TX_LOCK, i); 1378 if (netmap_verbose & NM_VERB_TXSYNC) 1379 D("send %d on %s %d", 1380 kring->ring->cur, 1381 ifp->if_xname, i); 1382 if (na->nm_txsync(ifp, i, 0 /* no lock */)) 1383 revents |= POLLERR; 1384 1385 /* Check avail/call selrecord only if called with POLLOUT */ 1386 if (want_tx) { 1387 if (kring->ring->avail > 0) { 1388 /* stop at the first ring. We don't risk 1389 * starvation. 1390 */ 1391 revents |= want_tx; 1392 want_tx = 0; 1393 } else if (!check_all) 1394 selrecord(td, &kring->si); 1395 } 1396 if (na->separate_locks) 1397 na->nm_lock(ifp, NETMAP_TX_UNLOCK, i); 1398 } 1399 } 1400 1401 /* 1402 * now if want_rx is still set we need to lock and rxsync. 1403 * Do it on all rings because otherwise we starve. 1404 */ 1405 if (want_rx) { 1406 for (i = priv->np_qfirst; i < lim_rx; i++) { 1407 kring = &na->rx_rings[i]; 1408 if (core_lock == NEED_CL) { 1409 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1410 core_lock = LOCKED_CL; 1411 } 1412 if (na->separate_locks) 1413 na->nm_lock(ifp, NETMAP_RX_LOCK, i); 1414 1415 if (na->nm_rxsync(ifp, i, 0 /* no lock */)) 1416 revents |= POLLERR; 1417 if (netmap_no_timestamp == 0 || 1418 kring->ring->flags & NR_TIMESTAMP) { 1419 microtime(&kring->ring->ts); 1420 } 1421 1422 if (kring->ring->avail > 0) 1423 revents |= want_rx; 1424 else if (!check_all) 1425 selrecord(td, &kring->si); 1426 if (na->separate_locks) 1427 na->nm_lock(ifp, NETMAP_RX_UNLOCK, i); 1428 } 1429 } 1430 if (check_all && revents == 0) { /* signal on the global queue */ 1431 if (want_tx) 1432 selrecord(td, &na->tx_si); 1433 if (want_rx) 1434 selrecord(td, &na->rx_si); 1435 } 1436 if (core_lock == LOCKED_CL) 1437 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1438 1439 return (revents); 1440 } 1441 1442 /*------- driver support routines ------*/ 1443 1444 /* 1445 * default lock wrapper. 1446 */ 1447 static void 1448 netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid) 1449 { 1450 struct netmap_adapter *na = NA(dev); 1451 1452 switch (what) { 1453 #ifdef linux /* some system do not need lock on register */ 1454 case NETMAP_REG_LOCK: 1455 case NETMAP_REG_UNLOCK: 1456 break; 1457 #endif /* linux */ 1458 1459 case NETMAP_CORE_LOCK: 1460 mtx_lock(&na->core_lock); 1461 break; 1462 1463 case NETMAP_CORE_UNLOCK: 1464 mtx_unlock(&na->core_lock); 1465 break; 1466 1467 case NETMAP_TX_LOCK: 1468 mtx_lock(&na->tx_rings[queueid].q_lock); 1469 break; 1470 1471 case NETMAP_TX_UNLOCK: 1472 mtx_unlock(&na->tx_rings[queueid].q_lock); 1473 break; 1474 1475 case NETMAP_RX_LOCK: 1476 mtx_lock(&na->rx_rings[queueid].q_lock); 1477 break; 1478 1479 case NETMAP_RX_UNLOCK: 1480 mtx_unlock(&na->rx_rings[queueid].q_lock); 1481 break; 1482 } 1483 } 1484 1485 1486 /* 1487 * Initialize a ``netmap_adapter`` object created by driver on attach. 1488 * We allocate a block of memory with room for a struct netmap_adapter 1489 * plus two sets of N+2 struct netmap_kring (where N is the number 1490 * of hardware rings): 1491 * krings 0..N-1 are for the hardware queues. 1492 * kring N is for the host stack queue 1493 * kring N+1 is only used for the selinfo for all queues. 1494 * Return 0 on success, ENOMEM otherwise. 1495 * 1496 * By default the receive and transmit adapter ring counts are both initialized 1497 * to num_queues. na->num_tx_rings can be set for cards with different tx/rx 1498 * setups. 1499 */ 1500 int 1501 netmap_attach(struct netmap_adapter *arg, int num_queues) 1502 { 1503 struct netmap_adapter *na = NULL; 1504 struct ifnet *ifp = arg ? arg->ifp : NULL; 1505 1506 if (arg == NULL || ifp == NULL) 1507 goto fail; 1508 na = malloc(sizeof(*na), M_DEVBUF, M_NOWAIT | M_ZERO); 1509 if (na == NULL) 1510 goto fail; 1511 WNA(ifp) = na; 1512 *na = *arg; /* copy everything, trust the driver to not pass junk */ 1513 NETMAP_SET_CAPABLE(ifp); 1514 if (na->num_tx_rings == 0) 1515 na->num_tx_rings = num_queues; 1516 na->num_rx_rings = num_queues; 1517 na->refcount = na->na_single = na->na_multi = 0; 1518 /* Core lock initialized here, others after netmap_if_new. */ 1519 mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK, MTX_DEF); 1520 if (na->nm_lock == NULL) { 1521 ND("using default locks for %s", ifp->if_xname); 1522 na->nm_lock = netmap_lock_wrapper; 1523 } 1524 #ifdef linux 1525 if (ifp->netdev_ops) { 1526 ND("netdev_ops %p", ifp->netdev_ops); 1527 /* prepare a clone of the netdev ops */ 1528 na->nm_ndo = *ifp->netdev_ops; 1529 } 1530 na->nm_ndo.ndo_start_xmit = linux_netmap_start; 1531 #endif 1532 D("success for %s", ifp->if_xname); 1533 return 0; 1534 1535 fail: 1536 D("fail, arg %p ifp %p na %p", arg, ifp, na); 1537 return (na ? EINVAL : ENOMEM); 1538 } 1539 1540 1541 /* 1542 * Free the allocated memory linked to the given ``netmap_adapter`` 1543 * object. 1544 */ 1545 void 1546 netmap_detach(struct ifnet *ifp) 1547 { 1548 struct netmap_adapter *na = NA(ifp); 1549 1550 if (!na) 1551 return; 1552 1553 mtx_destroy(&na->core_lock); 1554 1555 if (na->tx_rings) { /* XXX should not happen */ 1556 D("freeing leftover tx_rings"); 1557 free(na->tx_rings, M_DEVBUF); 1558 } 1559 bzero(na, sizeof(*na)); 1560 WNA(ifp) = NULL; 1561 free(na, M_DEVBUF); 1562 } 1563 1564 1565 /* 1566 * Intercept packets from the network stack and pass them 1567 * to netmap as incoming packets on the 'software' ring. 1568 * We are not locked when called. 1569 */ 1570 int 1571 netmap_start(struct ifnet *ifp, struct mbuf *m) 1572 { 1573 struct netmap_adapter *na = NA(ifp); 1574 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 1575 u_int i, len = MBUF_LEN(m); 1576 u_int error = EBUSY, lim = kring->nkr_num_slots - 1; 1577 struct netmap_slot *slot; 1578 1579 if (netmap_verbose & NM_VERB_HOST) 1580 D("%s packet %d len %d from the stack", ifp->if_xname, 1581 kring->nr_hwcur + kring->nr_hwavail, len); 1582 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1583 if (kring->nr_hwavail >= lim) { 1584 if (netmap_verbose) 1585 D("stack ring %s full\n", ifp->if_xname); 1586 goto done; /* no space */ 1587 } 1588 if (len > NETMAP_BUF_SIZE) { 1589 D("drop packet size %d > %d", len, NETMAP_BUF_SIZE); 1590 goto done; /* too long for us */ 1591 } 1592 1593 /* compute the insert position */ 1594 i = kring->nr_hwcur + kring->nr_hwavail; 1595 if (i > lim) 1596 i -= lim + 1; 1597 slot = &kring->ring->slot[i]; 1598 m_copydata(m, 0, len, NMB(slot)); 1599 slot->len = len; 1600 kring->nr_hwavail++; 1601 if (netmap_verbose & NM_VERB_HOST) 1602 D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings); 1603 selwakeuppri(&kring->si, PI_NET); 1604 error = 0; 1605 done: 1606 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1607 1608 /* release the mbuf in either cases of success or failure. As an 1609 * alternative, put the mbuf in a free list and free the list 1610 * only when really necessary. 1611 */ 1612 m_freem(m); 1613 1614 return (error); 1615 } 1616 1617 1618 /* 1619 * netmap_reset() is called by the driver routines when reinitializing 1620 * a ring. The driver is in charge of locking to protect the kring. 1621 * If netmap mode is not set just return NULL. 1622 */ 1623 struct netmap_slot * 1624 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, 1625 u_int new_cur) 1626 { 1627 struct netmap_kring *kring; 1628 int new_hwofs, lim; 1629 1630 if (na == NULL) 1631 return NULL; /* no netmap support here */ 1632 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) 1633 return NULL; /* nothing to reinitialize */ 1634 1635 if (tx == NR_TX) { 1636 if (n >= na->num_tx_rings) 1637 return NULL; 1638 kring = na->tx_rings + n; 1639 new_hwofs = kring->nr_hwcur - new_cur; 1640 } else { 1641 if (n >= na->num_rx_rings) 1642 return NULL; 1643 kring = na->rx_rings + n; 1644 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; 1645 } 1646 lim = kring->nkr_num_slots - 1; 1647 if (new_hwofs > lim) 1648 new_hwofs -= lim + 1; 1649 1650 /* Alwayws set the new offset value and realign the ring. */ 1651 kring->nkr_hwofs = new_hwofs; 1652 if (tx == NR_TX) 1653 kring->nr_hwavail = kring->nkr_num_slots - 1; 1654 ND(10, "new hwofs %d on %s %s[%d]", 1655 kring->nkr_hwofs, na->ifp->if_xname, 1656 tx == NR_TX ? "TX" : "RX", n); 1657 1658 #if 0 // def linux 1659 /* XXX check that the mappings are correct */ 1660 /* need ring_nr, adapter->pdev, direction */ 1661 buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE); 1662 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1663 D("error mapping rx netmap buffer %d", i); 1664 // XXX fix error handling 1665 } 1666 1667 #endif /* linux */ 1668 /* 1669 * Wakeup on the individual and global lock 1670 * We do the wakeup here, but the ring is not yet reconfigured. 1671 * However, we are under lock so there are no races. 1672 */ 1673 selwakeuppri(&kring->si, PI_NET); 1674 selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET); 1675 return kring->ring->slot; 1676 } 1677 1678 1679 /* 1680 * Default functions to handle rx/tx interrupts 1681 * we have 4 cases: 1682 * 1 ring, single lock: 1683 * lock(core); wake(i=0); unlock(core) 1684 * N rings, single lock: 1685 * lock(core); wake(i); wake(N+1) unlock(core) 1686 * 1 ring, separate locks: (i=0) 1687 * lock(i); wake(i); unlock(i) 1688 * N rings, separate locks: 1689 * lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core) 1690 * work_done is non-null on the RX path. 1691 */ 1692 int 1693 netmap_rx_irq(struct ifnet *ifp, int q, int *work_done) 1694 { 1695 struct netmap_adapter *na; 1696 struct netmap_kring *r; 1697 NM_SELINFO_T *main_wq; 1698 1699 if (!(ifp->if_capenable & IFCAP_NETMAP)) 1700 return 0; 1701 ND(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 1702 na = NA(ifp); 1703 if (na->na_flags & NAF_SKIP_INTR) { 1704 ND("use regular interrupt"); 1705 return 0; 1706 } 1707 1708 if (work_done) { /* RX path */ 1709 if (q >= na->num_rx_rings) 1710 return 0; // regular queue 1711 r = na->rx_rings + q; 1712 r->nr_kflags |= NKR_PENDINTR; 1713 main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL; 1714 } else { /* tx path */ 1715 if (q >= na->num_tx_rings) 1716 return 0; // regular queue 1717 r = na->tx_rings + q; 1718 main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL; 1719 work_done = &q; /* dummy */ 1720 } 1721 if (na->separate_locks) { 1722 mtx_lock(&r->q_lock); 1723 selwakeuppri(&r->si, PI_NET); 1724 mtx_unlock(&r->q_lock); 1725 if (main_wq) { 1726 mtx_lock(&na->core_lock); 1727 selwakeuppri(main_wq, PI_NET); 1728 mtx_unlock(&na->core_lock); 1729 } 1730 } else { 1731 mtx_lock(&na->core_lock); 1732 selwakeuppri(&r->si, PI_NET); 1733 if (main_wq) 1734 selwakeuppri(main_wq, PI_NET); 1735 mtx_unlock(&na->core_lock); 1736 } 1737 *work_done = 1; /* do not fire napi again */ 1738 return 1; 1739 } 1740 1741 1742 #ifdef linux /* linux-specific routines */ 1743 1744 /* 1745 * Remap linux arguments into the FreeBSD call. 1746 * - pwait is the poll table, passed as 'dev'; 1747 * If pwait == NULL someone else already woke up before. We can report 1748 * events but they are filtered upstream. 1749 * If pwait != NULL, then pwait->key contains the list of events. 1750 * - events is computed from pwait as above. 1751 * - file is passed as 'td'; 1752 */ 1753 static u_int 1754 linux_netmap_poll(struct file * file, struct poll_table_struct *pwait) 1755 { 1756 #if LINUX_VERSION_CODE < KERNEL_VERSION(3,4,0) 1757 int events = pwait ? pwait->key : POLLIN | POLLOUT; 1758 #else /* in 3.4.0 field 'key' was renamed to '_key' */ 1759 int events = pwait ? pwait->_key : POLLIN | POLLOUT; 1760 #endif 1761 return netmap_poll((void *)pwait, events, (void *)file); 1762 } 1763 1764 static int 1765 linux_netmap_mmap(struct file *f, struct vm_area_struct *vma) 1766 { 1767 int lut_skip, i, j; 1768 int user_skip = 0; 1769 struct lut_entry *l_entry; 1770 int error = 0; 1771 unsigned long off, tomap; 1772 /* 1773 * vma->vm_start: start of mapping user address space 1774 * vma->vm_end: end of the mapping user address space 1775 * vma->vm_pfoff: offset of first page in the device 1776 */ 1777 1778 // XXX security checks 1779 1780 error = netmap_get_memory(f->private_data); 1781 ND("get_memory returned %d", error); 1782 if (error) 1783 return -error; 1784 1785 off = vma->vm_pgoff << PAGE_SHIFT; /* offset in bytes */ 1786 tomap = vma->vm_end - vma->vm_start; 1787 for (i = 0; i < NETMAP_POOLS_NR; i++) { /* loop through obj_pools */ 1788 const struct netmap_obj_pool *p = &nm_mem.pools[i]; 1789 /* 1790 * In each pool memory is allocated in clusters 1791 * of size _clustsize, each containing clustentries 1792 * entries. For each object k we already store the 1793 * vtophys mapping in lut[k] so we use that, scanning 1794 * the lut[] array in steps of clustentries, 1795 * and we map each cluster (not individual pages, 1796 * it would be overkill). 1797 */ 1798 1799 /* 1800 * We interpret vm_pgoff as an offset into the whole 1801 * netmap memory, as if all clusters where contiguous. 1802 */ 1803 for (lut_skip = 0, j = 0; j < p->_numclusters; j++, lut_skip += p->clustentries) { 1804 unsigned long paddr, mapsize; 1805 if (p->_clustsize <= off) { 1806 off -= p->_clustsize; 1807 continue; 1808 } 1809 l_entry = &p->lut[lut_skip]; /* first obj in the cluster */ 1810 paddr = l_entry->paddr + off; 1811 mapsize = p->_clustsize - off; 1812 off = 0; 1813 if (mapsize > tomap) 1814 mapsize = tomap; 1815 ND("remap_pfn_range(%lx, %lx, %lx)", 1816 vma->vm_start + user_skip, 1817 paddr >> PAGE_SHIFT, mapsize); 1818 if (remap_pfn_range(vma, vma->vm_start + user_skip, 1819 paddr >> PAGE_SHIFT, mapsize, 1820 vma->vm_page_prot)) 1821 return -EAGAIN; // XXX check return value 1822 user_skip += mapsize; 1823 tomap -= mapsize; 1824 if (tomap == 0) 1825 goto done; 1826 } 1827 } 1828 done: 1829 1830 return 0; 1831 } 1832 1833 static netdev_tx_t 1834 linux_netmap_start(struct sk_buff *skb, struct net_device *dev) 1835 { 1836 netmap_start(dev, skb); 1837 return (NETDEV_TX_OK); 1838 } 1839 1840 1841 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) // XXX was 38 1842 #define LIN_IOCTL_NAME .ioctl 1843 int 1844 linux_netmap_ioctl(struct inode *inode, struct file *file, u_int cmd, u_long data /* arg */) 1845 #else 1846 #define LIN_IOCTL_NAME .unlocked_ioctl 1847 long 1848 linux_netmap_ioctl(struct file *file, u_int cmd, u_long data /* arg */) 1849 #endif 1850 { 1851 int ret; 1852 struct nmreq nmr; 1853 bzero(&nmr, sizeof(nmr)); 1854 1855 if (data && copy_from_user(&nmr, (void *)data, sizeof(nmr) ) != 0) 1856 return -EFAULT; 1857 ret = netmap_ioctl(NULL, cmd, (caddr_t)&nmr, 0, (void *)file); 1858 if (data && copy_to_user((void*)data, &nmr, sizeof(nmr) ) != 0) 1859 return -EFAULT; 1860 return -ret; 1861 } 1862 1863 1864 static int 1865 netmap_release(struct inode *inode, struct file *file) 1866 { 1867 (void)inode; /* UNUSED */ 1868 if (file->private_data) 1869 netmap_dtor(file->private_data); 1870 return (0); 1871 } 1872 1873 static int 1874 linux_netmap_open(struct inode *inode, struct file *file) 1875 { 1876 struct netmap_priv_d *priv; 1877 (void)inode; /* UNUSED */ 1878 1879 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 1880 M_NOWAIT | M_ZERO); 1881 if (priv == NULL) 1882 return -ENOMEM; 1883 1884 file->private_data = priv; 1885 1886 return (0); 1887 } 1888 1889 static struct file_operations netmap_fops = { 1890 .open = linux_netmap_open, 1891 .mmap = linux_netmap_mmap, 1892 LIN_IOCTL_NAME = linux_netmap_ioctl, 1893 .poll = linux_netmap_poll, 1894 .release = netmap_release, 1895 }; 1896 1897 static struct miscdevice netmap_cdevsw = { /* same name as FreeBSD */ 1898 MISC_DYNAMIC_MINOR, 1899 "netmap", 1900 &netmap_fops, 1901 }; 1902 1903 static int netmap_init(void); 1904 static void netmap_fini(void); 1905 1906 /* Errors have negative values on linux */ 1907 static int linux_netmap_init(void) 1908 { 1909 return -netmap_init(); 1910 } 1911 1912 module_init(linux_netmap_init); 1913 module_exit(netmap_fini); 1914 /* export certain symbols to other modules */ 1915 EXPORT_SYMBOL(netmap_attach); // driver attach routines 1916 EXPORT_SYMBOL(netmap_detach); // driver detach routines 1917 EXPORT_SYMBOL(netmap_ring_reinit); // ring init on error 1918 EXPORT_SYMBOL(netmap_buffer_lut); 1919 EXPORT_SYMBOL(netmap_total_buffers); // index check 1920 EXPORT_SYMBOL(netmap_buffer_base); 1921 EXPORT_SYMBOL(netmap_reset); // ring init routines 1922 EXPORT_SYMBOL(netmap_buf_size); 1923 EXPORT_SYMBOL(netmap_rx_irq); // default irq handler 1924 EXPORT_SYMBOL(netmap_no_pendintr); // XXX mitigation - should go away 1925 1926 1927 MODULE_AUTHOR("http://info.iet.unipi.it/~luigi/netmap/"); 1928 MODULE_DESCRIPTION("The netmap packet I/O framework"); 1929 MODULE_LICENSE("Dual BSD/GPL"); /* the code here is all BSD. */ 1930 1931 #else /* __FreeBSD__ */ 1932 1933 static struct cdevsw netmap_cdevsw = { 1934 .d_version = D_VERSION, 1935 .d_name = "netmap", 1936 .d_open = netmap_open, 1937 .d_mmap = netmap_mmap, 1938 .d_mmap_single = netmap_mmap_single, 1939 .d_ioctl = netmap_ioctl, 1940 .d_poll = netmap_poll, 1941 .d_close = netmap_close, 1942 }; 1943 #endif /* __FreeBSD__ */ 1944 1945 #ifdef NM_BRIDGE 1946 /* 1947 *---- support for virtual bridge ----- 1948 */ 1949 1950 /* ----- FreeBSD if_bridge hash function ------- */ 1951 1952 /* 1953 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1954 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1955 * 1956 * http://www.burtleburtle.net/bob/hash/spooky.html 1957 */ 1958 #define mix(a, b, c) \ 1959 do { \ 1960 a -= b; a -= c; a ^= (c >> 13); \ 1961 b -= c; b -= a; b ^= (a << 8); \ 1962 c -= a; c -= b; c ^= (b >> 13); \ 1963 a -= b; a -= c; a ^= (c >> 12); \ 1964 b -= c; b -= a; b ^= (a << 16); \ 1965 c -= a; c -= b; c ^= (b >> 5); \ 1966 a -= b; a -= c; a ^= (c >> 3); \ 1967 b -= c; b -= a; b ^= (a << 10); \ 1968 c -= a; c -= b; c ^= (b >> 15); \ 1969 } while (/*CONSTCOND*/0) 1970 1971 static __inline uint32_t 1972 nm_bridge_rthash(const uint8_t *addr) 1973 { 1974 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key 1975 1976 b += addr[5] << 8; 1977 b += addr[4]; 1978 a += addr[3] << 24; 1979 a += addr[2] << 16; 1980 a += addr[1] << 8; 1981 a += addr[0]; 1982 1983 mix(a, b, c); 1984 #define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1) 1985 return (c & BRIDGE_RTHASH_MASK); 1986 } 1987 1988 #undef mix 1989 1990 1991 static int 1992 bdg_netmap_reg(struct ifnet *ifp, int onoff) 1993 { 1994 int i, err = 0; 1995 struct nm_bridge *b = ifp->if_bridge; 1996 1997 BDG_LOCK(b); 1998 if (onoff) { 1999 /* the interface must be already in the list. 2000 * only need to mark the port as active 2001 */ 2002 ND("should attach %s to the bridge", ifp->if_xname); 2003 for (i=0; i < NM_BDG_MAXPORTS; i++) 2004 if (b->bdg_ports[i] == ifp) 2005 break; 2006 if (i == NM_BDG_MAXPORTS) { 2007 D("no more ports available"); 2008 err = EINVAL; 2009 goto done; 2010 } 2011 ND("setting %s in netmap mode", ifp->if_xname); 2012 ifp->if_capenable |= IFCAP_NETMAP; 2013 NA(ifp)->bdg_port = i; 2014 b->act_ports |= (1<<i); 2015 b->bdg_ports[i] = ifp; 2016 } else { 2017 /* should be in the list, too -- remove from the mask */ 2018 ND("removing %s from netmap mode", ifp->if_xname); 2019 ifp->if_capenable &= ~IFCAP_NETMAP; 2020 i = NA(ifp)->bdg_port; 2021 b->act_ports &= ~(1<<i); 2022 } 2023 done: 2024 BDG_UNLOCK(b); 2025 return err; 2026 } 2027 2028 2029 static int 2030 nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct ifnet *ifp) 2031 { 2032 int i, ifn; 2033 uint64_t all_dst, dst; 2034 uint32_t sh, dh; 2035 uint64_t mysrc = 1 << NA(ifp)->bdg_port; 2036 uint64_t smac, dmac; 2037 struct netmap_slot *slot; 2038 struct nm_bridge *b = ifp->if_bridge; 2039 2040 ND("prepare to send %d packets, act_ports 0x%x", n, b->act_ports); 2041 /* only consider valid destinations */ 2042 all_dst = (b->act_ports & ~mysrc); 2043 /* first pass: hash and find destinations */ 2044 for (i = 0; likely(i < n); i++) { 2045 uint8_t *buf = ft[i].buf; 2046 dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff; 2047 smac = le64toh(*(uint64_t *)(buf + 4)); 2048 smac >>= 16; 2049 if (unlikely(netmap_verbose)) { 2050 uint8_t *s = buf+6, *d = buf; 2051 D("%d len %4d %02x:%02x:%02x:%02x:%02x:%02x -> %02x:%02x:%02x:%02x:%02x:%02x", 2052 i, 2053 ft[i].len, 2054 s[0], s[1], s[2], s[3], s[4], s[5], 2055 d[0], d[1], d[2], d[3], d[4], d[5]); 2056 } 2057 /* 2058 * The hash is somewhat expensive, there might be some 2059 * worthwhile optimizations here. 2060 */ 2061 if ((buf[6] & 1) == 0) { /* valid src */ 2062 uint8_t *s = buf+6; 2063 sh = nm_bridge_rthash(buf+6); // XXX hash of source 2064 /* update source port forwarding entry */ 2065 b->ht[sh].mac = smac; /* XXX expire ? */ 2066 b->ht[sh].ports = mysrc; 2067 if (netmap_verbose) 2068 D("src %02x:%02x:%02x:%02x:%02x:%02x on port %d", 2069 s[0], s[1], s[2], s[3], s[4], s[5], NA(ifp)->bdg_port); 2070 } 2071 dst = 0; 2072 if ( (buf[0] & 1) == 0) { /* unicast */ 2073 uint8_t *d = buf; 2074 dh = nm_bridge_rthash(buf); // XXX hash of dst 2075 if (b->ht[dh].mac == dmac) { /* found dst */ 2076 dst = b->ht[dh].ports; 2077 if (netmap_verbose) 2078 D("dst %02x:%02x:%02x:%02x:%02x:%02x to port %x", 2079 d[0], d[1], d[2], d[3], d[4], d[5], (uint32_t)(dst >> 16)); 2080 } 2081 } 2082 if (dst == 0) 2083 dst = all_dst; 2084 dst &= all_dst; /* only consider valid ports */ 2085 if (unlikely(netmap_verbose)) 2086 D("pkt goes to ports 0x%x", (uint32_t)dst); 2087 ft[i].dst = dst; 2088 } 2089 2090 /* second pass, scan interfaces and forward */ 2091 all_dst = (b->act_ports & ~mysrc); 2092 for (ifn = 0; all_dst; ifn++) { 2093 struct ifnet *dst_ifp = b->bdg_ports[ifn]; 2094 struct netmap_adapter *na; 2095 struct netmap_kring *kring; 2096 struct netmap_ring *ring; 2097 int j, lim, sent, locked; 2098 2099 if (!dst_ifp) 2100 continue; 2101 ND("scan port %d %s", ifn, dst_ifp->if_xname); 2102 dst = 1 << ifn; 2103 if ((dst & all_dst) == 0) /* skip if not set */ 2104 continue; 2105 all_dst &= ~dst; /* clear current node */ 2106 na = NA(dst_ifp); 2107 2108 ring = NULL; 2109 kring = NULL; 2110 lim = sent = locked = 0; 2111 /* inside, scan slots */ 2112 for (i = 0; likely(i < n); i++) { 2113 if ((ft[i].dst & dst) == 0) 2114 continue; /* not here */ 2115 if (!locked) { 2116 kring = &na->rx_rings[0]; 2117 ring = kring->ring; 2118 lim = kring->nkr_num_slots - 1; 2119 na->nm_lock(dst_ifp, NETMAP_RX_LOCK, 0); 2120 locked = 1; 2121 } 2122 if (unlikely(kring->nr_hwavail >= lim)) { 2123 if (netmap_verbose) 2124 D("rx ring full on %s", ifp->if_xname); 2125 break; 2126 } 2127 j = kring->nr_hwcur + kring->nr_hwavail; 2128 if (j > lim) 2129 j -= kring->nkr_num_slots; 2130 slot = &ring->slot[j]; 2131 ND("send %d %d bytes at %s:%d", i, ft[i].len, dst_ifp->if_xname, j); 2132 pkt_copy(ft[i].buf, NMB(slot), ft[i].len); 2133 slot->len = ft[i].len; 2134 kring->nr_hwavail++; 2135 sent++; 2136 } 2137 if (locked) { 2138 ND("sent %d on %s", sent, dst_ifp->if_xname); 2139 if (sent) 2140 selwakeuppri(&kring->si, PI_NET); 2141 na->nm_lock(dst_ifp, NETMAP_RX_UNLOCK, 0); 2142 } 2143 } 2144 return 0; 2145 } 2146 2147 /* 2148 * main dispatch routine 2149 */ 2150 static int 2151 bdg_netmap_txsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 2152 { 2153 struct netmap_adapter *na = NA(ifp); 2154 struct netmap_kring *kring = &na->tx_rings[ring_nr]; 2155 struct netmap_ring *ring = kring->ring; 2156 int i, j, k, lim = kring->nkr_num_slots - 1; 2157 struct nm_bdg_fwd *ft = (struct nm_bdg_fwd *)(ifp + 1); 2158 int ft_i; /* position in the forwarding table */ 2159 2160 k = ring->cur; 2161 if (k > lim) 2162 return netmap_ring_reinit(kring); 2163 if (do_lock) 2164 na->nm_lock(ifp, NETMAP_TX_LOCK, ring_nr); 2165 2166 if (netmap_bridge <= 0) { /* testing only */ 2167 j = k; // used all 2168 goto done; 2169 } 2170 if (netmap_bridge > NM_BDG_BATCH) 2171 netmap_bridge = NM_BDG_BATCH; 2172 2173 ft_i = 0; /* start from 0 */ 2174 for (j = kring->nr_hwcur; likely(j != k); j = unlikely(j == lim) ? 0 : j+1) { 2175 struct netmap_slot *slot = &ring->slot[j]; 2176 int len = ft[ft_i].len = slot->len; 2177 char *buf = ft[ft_i].buf = NMB(slot); 2178 2179 prefetch(buf); 2180 if (unlikely(len < 14)) 2181 continue; 2182 if (unlikely(++ft_i == netmap_bridge)) 2183 ft_i = nm_bdg_flush(ft, ft_i, ifp); 2184 } 2185 if (ft_i) 2186 ft_i = nm_bdg_flush(ft, ft_i, ifp); 2187 /* count how many packets we sent */ 2188 i = k - j; 2189 if (i < 0) 2190 i += kring->nkr_num_slots; 2191 kring->nr_hwavail = kring->nkr_num_slots - 1 - i; 2192 if (j != k) 2193 D("early break at %d/ %d, avail %d", j, k, kring->nr_hwavail); 2194 2195 done: 2196 kring->nr_hwcur = j; 2197 ring->avail = kring->nr_hwavail; 2198 if (do_lock) 2199 na->nm_lock(ifp, NETMAP_TX_UNLOCK, ring_nr); 2200 2201 if (netmap_verbose) 2202 D("%s ring %d lock %d", ifp->if_xname, ring_nr, do_lock); 2203 return 0; 2204 } 2205 2206 static int 2207 bdg_netmap_rxsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 2208 { 2209 struct netmap_adapter *na = NA(ifp); 2210 struct netmap_kring *kring = &na->rx_rings[ring_nr]; 2211 struct netmap_ring *ring = kring->ring; 2212 u_int j, n, lim = kring->nkr_num_slots - 1; 2213 u_int k = ring->cur, resvd = ring->reserved; 2214 2215 ND("%s ring %d lock %d avail %d", 2216 ifp->if_xname, ring_nr, do_lock, kring->nr_hwavail); 2217 2218 if (k > lim) 2219 return netmap_ring_reinit(kring); 2220 if (do_lock) 2221 na->nm_lock(ifp, NETMAP_RX_LOCK, ring_nr); 2222 2223 /* skip past packets that userspace has released */ 2224 j = kring->nr_hwcur; /* netmap ring index */ 2225 if (resvd > 0) { 2226 if (resvd + ring->avail >= lim + 1) { 2227 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 2228 ring->reserved = resvd = 0; // XXX panic... 2229 } 2230 k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd; 2231 } 2232 2233 if (j != k) { /* userspace has released some packets. */ 2234 n = k - j; 2235 if (n < 0) 2236 n += kring->nkr_num_slots; 2237 ND("userspace releases %d packets", n); 2238 for (n = 0; likely(j != k); n++) { 2239 struct netmap_slot *slot = &ring->slot[j]; 2240 void *addr = NMB(slot); 2241 2242 if (addr == netmap_buffer_base) { /* bad buf */ 2243 if (do_lock) 2244 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 2245 return netmap_ring_reinit(kring); 2246 } 2247 /* decrease refcount for buffer */ 2248 2249 slot->flags &= ~NS_BUF_CHANGED; 2250 j = unlikely(j == lim) ? 0 : j + 1; 2251 } 2252 kring->nr_hwavail -= n; 2253 kring->nr_hwcur = k; 2254 } 2255 /* tell userspace that there are new packets */ 2256 ring->avail = kring->nr_hwavail - resvd; 2257 2258 if (do_lock) 2259 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 2260 return 0; 2261 } 2262 2263 static void 2264 bdg_netmap_attach(struct ifnet *ifp) 2265 { 2266 struct netmap_adapter na; 2267 2268 ND("attaching virtual bridge"); 2269 bzero(&na, sizeof(na)); 2270 2271 na.ifp = ifp; 2272 na.separate_locks = 1; 2273 na.num_tx_desc = NM_BRIDGE_RINGSIZE; 2274 na.num_rx_desc = NM_BRIDGE_RINGSIZE; 2275 na.nm_txsync = bdg_netmap_txsync; 2276 na.nm_rxsync = bdg_netmap_rxsync; 2277 na.nm_register = bdg_netmap_reg; 2278 netmap_attach(&na, 1); 2279 } 2280 2281 #endif /* NM_BRIDGE */ 2282 2283 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 2284 2285 2286 /* 2287 * Module loader. 2288 * 2289 * Create the /dev/netmap device and initialize all global 2290 * variables. 2291 * 2292 * Return 0 on success, errno on failure. 2293 */ 2294 static int 2295 netmap_init(void) 2296 { 2297 int error; 2298 2299 error = netmap_memory_init(); 2300 if (error != 0) { 2301 printf("netmap: unable to initialize the memory allocator.\n"); 2302 return (error); 2303 } 2304 printf("netmap: loaded module\n"); 2305 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 2306 "netmap"); 2307 2308 #ifdef NM_BRIDGE 2309 { 2310 int i; 2311 for (i = 0; i < NM_BRIDGES; i++) 2312 mtx_init(&nm_bridges[i].bdg_lock, "bdg lock", "bdg_lock", MTX_DEF); 2313 } 2314 #endif 2315 return (error); 2316 } 2317 2318 2319 /* 2320 * Module unloader. 2321 * 2322 * Free all the memory, and destroy the ``/dev/netmap`` device. 2323 */ 2324 static void 2325 netmap_fini(void) 2326 { 2327 destroy_dev(netmap_dev); 2328 netmap_memory_fini(); 2329 printf("netmap: unloaded module.\n"); 2330 } 2331 2332 2333 #ifdef __FreeBSD__ 2334 /* 2335 * Kernel entry point. 2336 * 2337 * Initialize/finalize the module and return. 2338 * 2339 * Return 0 on success, errno on failure. 2340 */ 2341 static int 2342 netmap_loader(__unused struct module *module, int event, __unused void *arg) 2343 { 2344 int error = 0; 2345 2346 switch (event) { 2347 case MOD_LOAD: 2348 error = netmap_init(); 2349 break; 2350 2351 case MOD_UNLOAD: 2352 netmap_fini(); 2353 break; 2354 2355 default: 2356 error = EOPNOTSUPP; 2357 break; 2358 } 2359 2360 return (error); 2361 } 2362 2363 2364 DEV_MODULE(netmap, netmap_loader, NULL); 2365 #endif /* __FreeBSD__ */ 2366