1 /* 2 * Copyright (C) 2011 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 /* 27 * $FreeBSD$ 28 * $Id: netmap.c 9795 2011-12-02 11:39:08Z luigi $ 29 * 30 * This module supports memory mapped access to network devices, 31 * see netmap(4). 32 * 33 * The module uses a large, memory pool allocated by the kernel 34 * and accessible as mmapped memory by multiple userspace threads/processes. 35 * The memory pool contains packet buffers and "netmap rings", 36 * i.e. user-accessible copies of the interface's queues. 37 * 38 * Access to the network card works like this: 39 * 1. a process/thread issues one or more open() on /dev/netmap, to create 40 * select()able file descriptor on which events are reported. 41 * 2. on each descriptor, the process issues an ioctl() to identify 42 * the interface that should report events to the file descriptor. 43 * 3. on each descriptor, the process issues an mmap() request to 44 * map the shared memory region within the process' address space. 45 * The list of interesting queues is indicated by a location in 46 * the shared memory region. 47 * 4. using the functions in the netmap(4) userspace API, a process 48 * can look up the occupation state of a queue, access memory buffers, 49 * and retrieve received packets or enqueue packets to transmit. 50 * 5. using some ioctl()s the process can synchronize the userspace view 51 * of the queue with the actual status in the kernel. This includes both 52 * receiving the notification of new packets, and transmitting new 53 * packets on the output interface. 54 * 6. select() or poll() can be used to wait for events on individual 55 * transmit or receive queues (or all queues for a given interface). 56 */ 57 58 #include <sys/cdefs.h> /* prerequisite */ 59 __FBSDID("$FreeBSD$"); 60 61 #include <sys/types.h> 62 #include <sys/module.h> 63 #include <sys/errno.h> 64 #include <sys/param.h> /* defines used in kernel.h */ 65 #include <sys/jail.h> 66 #include <sys/kernel.h> /* types used in module initialization */ 67 #include <sys/conf.h> /* cdevsw struct */ 68 #include <sys/uio.h> /* uio struct */ 69 #include <sys/sockio.h> 70 #include <sys/socketvar.h> /* struct socket */ 71 #include <sys/malloc.h> 72 #include <sys/mman.h> /* PROT_EXEC */ 73 #include <sys/poll.h> 74 #include <sys/proc.h> 75 #include <vm/vm.h> /* vtophys */ 76 #include <vm/pmap.h> /* vtophys */ 77 #include <sys/socket.h> /* sockaddrs */ 78 #include <machine/bus.h> 79 #include <sys/selinfo.h> 80 #include <sys/sysctl.h> 81 #include <net/if.h> 82 #include <net/bpf.h> /* BIOCIMMEDIATE */ 83 #include <net/vnet.h> 84 #include <net/netmap.h> 85 #include <dev/netmap/netmap_kern.h> 86 #include <machine/bus.h> /* bus_dmamap_* */ 87 88 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 89 90 /* 91 * lock and unlock for the netmap memory allocator 92 */ 93 #define NMA_LOCK() mtx_lock(&netmap_mem_d->nm_mtx); 94 #define NMA_UNLOCK() mtx_unlock(&netmap_mem_d->nm_mtx); 95 96 /* 97 * Default amount of memory pre-allocated by the module. 98 * We start with a large size and then shrink our demand 99 * according to what is avalable when the module is loaded. 100 * At the moment the block is contiguous, but we can easily 101 * restrict our demand to smaller units (16..64k) 102 */ 103 #define NETMAP_MEMORY_SIZE (64 * 1024 * PAGE_SIZE) 104 static void * netmap_malloc(size_t size, const char *msg); 105 static void netmap_free(void *addr, const char *msg); 106 107 #define netmap_if_malloc(len) netmap_malloc(len, "nifp") 108 #define netmap_if_free(v) netmap_free((v), "nifp") 109 110 #define netmap_ring_malloc(len) netmap_malloc(len, "ring") 111 #define netmap_free_rings(na) \ 112 netmap_free((na)->tx_rings[0].ring, "shadow rings"); 113 114 /* 115 * Allocator for a pool of packet buffers. For each buffer we have 116 * one entry in the bitmap to signal the state. Allocation scans 117 * the bitmap, but since this is done only on attach, we are not 118 * too worried about performance 119 * XXX if we need to allocate small blocks, a translation 120 * table is used both for kernel virtual address and physical 121 * addresses. 122 */ 123 struct netmap_buf_pool { 124 u_int total_buffers; /* total buffers. */ 125 u_int free; 126 u_int bufsize; 127 char *base; /* buffer base address */ 128 uint32_t *bitmap; /* one bit per buffer, 1 means free */ 129 }; 130 struct netmap_buf_pool nm_buf_pool; 131 /* XXX move these two vars back into netmap_buf_pool */ 132 u_int netmap_total_buffers; 133 char *netmap_buffer_base; /* address of an invalid buffer */ 134 135 /* user-controlled variables */ 136 int netmap_verbose; 137 138 static int no_timestamp; /* don't timestamp on rxsync */ 139 140 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 141 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 142 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 143 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 144 CTLFLAG_RW, &no_timestamp, 0, "no_timestamp"); 145 SYSCTL_INT(_dev_netmap, OID_AUTO, total_buffers, 146 CTLFLAG_RD, &nm_buf_pool.total_buffers, 0, "total_buffers"); 147 SYSCTL_INT(_dev_netmap, OID_AUTO, free_buffers, 148 CTLFLAG_RD, &nm_buf_pool.free, 0, "free_buffers"); 149 150 /* 151 * Allocate n buffers from the ring, and fill the slot. 152 * Buffer 0 is the 'junk' buffer. 153 */ 154 static void 155 netmap_new_bufs(struct netmap_buf_pool *p, struct netmap_slot *slot, u_int n) 156 { 157 uint32_t bi = 0; /* index in the bitmap */ 158 uint32_t mask, j, i = 0; /* slot counter */ 159 160 if (n > p->free) { 161 D("only %d out of %d buffers available", i, n); 162 return; 163 } 164 /* termination is guaranteed by p->free */ 165 while (i < n && p->free > 0) { 166 uint32_t cur = p->bitmap[bi]; 167 if (cur == 0) { /* bitmask is fully used */ 168 bi++; 169 continue; 170 } 171 /* locate a slot */ 172 for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1) ; 173 p->bitmap[bi] &= ~mask; /* slot in use */ 174 p->free--; 175 slot[i].buf_idx = bi*32+j; 176 slot[i].len = p->bufsize; 177 slot[i].flags = NS_BUF_CHANGED; 178 i++; 179 } 180 ND("allocated %d buffers, %d available", n, p->free); 181 } 182 183 184 static void 185 netmap_free_buf(struct netmap_buf_pool *p, uint32_t i) 186 { 187 uint32_t pos, mask; 188 if (i >= p->total_buffers) { 189 D("invalid free index %d", i); 190 return; 191 } 192 pos = i / 32; 193 mask = 1 << (i % 32); 194 if (p->bitmap[pos] & mask) { 195 D("slot %d already free", i); 196 return; 197 } 198 p->bitmap[pos] |= mask; 199 p->free++; 200 } 201 202 203 /* Descriptor of the memory objects handled by our memory allocator. */ 204 struct netmap_mem_obj { 205 TAILQ_ENTRY(netmap_mem_obj) nmo_next; /* next object in the 206 chain. */ 207 int nmo_used; /* flag set on used memory objects. */ 208 size_t nmo_size; /* size of the memory area reserved for the 209 object. */ 210 void *nmo_data; /* pointer to the memory area. */ 211 }; 212 213 /* Wrap our memory objects to make them ``chainable``. */ 214 TAILQ_HEAD(netmap_mem_obj_h, netmap_mem_obj); 215 216 217 /* Descriptor of our custom memory allocator. */ 218 struct netmap_mem_d { 219 struct mtx nm_mtx; /* lock used to handle the chain of memory 220 objects. */ 221 struct netmap_mem_obj_h nm_molist; /* list of memory objects */ 222 size_t nm_size; /* total amount of memory used for rings etc. */ 223 size_t nm_totalsize; /* total amount of allocated memory 224 (the difference is used for buffers) */ 225 size_t nm_buf_start; /* offset of packet buffers. 226 This is page-aligned. */ 227 size_t nm_buf_len; /* total memory for buffers */ 228 void *nm_buffer; /* pointer to the whole pre-allocated memory 229 area. */ 230 }; 231 232 233 /* Structure associated to each thread which registered an interface. */ 234 struct netmap_priv_d { 235 struct netmap_if *np_nifp; /* netmap interface descriptor. */ 236 237 struct ifnet *np_ifp; /* device for which we hold a reference */ 238 int np_ringid; /* from the ioctl */ 239 u_int np_qfirst, np_qlast; /* range of rings to scan */ 240 uint16_t np_txpoll; 241 }; 242 243 /* Shorthand to compute a netmap interface offset. */ 244 #define netmap_if_offset(v) \ 245 ((char *) (v) - (char *) netmap_mem_d->nm_buffer) 246 /* .. and get a physical address given a memory offset */ 247 #define netmap_ofstophys(o) \ 248 (vtophys(netmap_mem_d->nm_buffer) + (o)) 249 250 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 251 static struct netmap_mem_d *netmap_mem_d; /* Our memory allocator. */ 252 253 254 static d_mmap_t netmap_mmap; 255 static d_ioctl_t netmap_ioctl; 256 static d_poll_t netmap_poll; 257 258 #ifdef NETMAP_KEVENT 259 static d_kqfilter_t netmap_kqfilter; 260 #endif 261 262 static struct cdevsw netmap_cdevsw = { 263 .d_version = D_VERSION, 264 .d_name = "netmap", 265 .d_mmap = netmap_mmap, 266 .d_ioctl = netmap_ioctl, 267 .d_poll = netmap_poll, 268 #ifdef NETMAP_KEVENT 269 .d_kqfilter = netmap_kqfilter, 270 #endif 271 }; 272 273 #ifdef NETMAP_KEVENT 274 static int netmap_kqread(struct knote *, long); 275 static int netmap_kqwrite(struct knote *, long); 276 static void netmap_kqdetach(struct knote *); 277 278 static struct filterops netmap_read_filterops = { 279 .f_isfd = 1, 280 .f_attach = NULL, 281 .f_detach = netmap_kqdetach, 282 .f_event = netmap_kqread, 283 }; 284 285 static struct filterops netmap_write_filterops = { 286 .f_isfd = 1, 287 .f_attach = NULL, 288 .f_detach = netmap_kqdetach, 289 .f_event = netmap_kqwrite, 290 }; 291 292 /* 293 * support for the kevent() system call. 294 * 295 * This is the kevent filter, and is executed each time a new event 296 * is triggered on the device. This function execute some operation 297 * depending on the received filter. 298 * 299 * The implementation should test the filters and should implement 300 * filter operations we are interested on (a full list in /sys/event.h). 301 * 302 * On a match we should: 303 * - set kn->kn_fop 304 * - set kn->kn_hook 305 * - call knlist_add() to deliver the event to the application. 306 * 307 * Return 0 if the event should be delivered to the application. 308 */ 309 static int 310 netmap_kqfilter(struct cdev *dev, struct knote *kn) 311 { 312 /* declare variables needed to read/write */ 313 314 switch(kn->kn_filter) { 315 case EVFILT_READ: 316 if (netmap_verbose) 317 D("%s kqfilter: EVFILT_READ" ifp->if_xname); 318 319 /* read operations */ 320 kn->kn_fop = &netmap_read_filterops; 321 break; 322 323 case EVFILT_WRITE: 324 if (netmap_verbose) 325 D("%s kqfilter: EVFILT_WRITE" ifp->if_xname); 326 327 /* write operations */ 328 kn->kn_fop = &netmap_write_filterops; 329 break; 330 331 default: 332 if (netmap_verbose) 333 D("%s kqfilter: invalid filter" ifp->if_xname); 334 return(EINVAL); 335 } 336 337 kn->kn_hook = 0;// 338 knlist_add(&netmap_sc->tun_rsel.si_note, kn, 0); 339 340 return (0); 341 } 342 #endif /* NETMAP_KEVENT */ 343 344 /* 345 * File descriptor's private data destructor. 346 * 347 * Call nm_register(ifp,0) to stop netmap mode on the interface and 348 * revert to normal operation. We expect that np_ifp has not gone. 349 */ 350 static void 351 netmap_dtor(void *data) 352 { 353 struct netmap_priv_d *priv = data; 354 struct ifnet *ifp = priv->np_ifp; 355 struct netmap_adapter *na = NA(ifp); 356 struct netmap_if *nifp = priv->np_nifp; 357 358 if (0) 359 printf("%s starting for %p ifp %p\n", __FUNCTION__, priv, 360 priv ? priv->np_ifp : NULL); 361 362 na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); 363 364 na->refcount--; 365 if (na->refcount <= 0) { /* last instance */ 366 u_int i; 367 368 D("deleting last netmap instance for %s", ifp->if_xname); 369 /* 370 * there is a race here with *_netmap_task() and 371 * netmap_poll(), which don't run under NETMAP_CORE_LOCK. 372 * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP 373 * (aka NETMAP_DELETING(na)) are a unique marker that the 374 * device is dying. 375 * Before destroying stuff we sleep a bit, and then complete 376 * the job. NIOCREG should realize the condition and 377 * loop until they can continue; the other routines 378 * should check the condition at entry and quit if 379 * they cannot run. 380 */ 381 na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 382 tsleep(na, 0, "NIOCUNREG", 4); 383 na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); 384 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ 385 /* Wake up any sleeping threads. netmap_poll will 386 * then return POLLERR 387 */ 388 for (i = 0; i < na->num_queues + 2; i++) { 389 selwakeuppri(&na->tx_rings[i].si, PI_NET); 390 selwakeuppri(&na->rx_rings[i].si, PI_NET); 391 } 392 /* release all buffers */ 393 NMA_LOCK(); 394 for (i = 0; i < na->num_queues + 1; i++) { 395 int j, lim; 396 struct netmap_ring *ring; 397 398 ND("tx queue %d", i); 399 ring = na->tx_rings[i].ring; 400 lim = na->tx_rings[i].nkr_num_slots; 401 for (j = 0; j < lim; j++) 402 netmap_free_buf(&nm_buf_pool, 403 ring->slot[j].buf_idx); 404 405 ND("rx queue %d", i); 406 ring = na->rx_rings[i].ring; 407 lim = na->rx_rings[i].nkr_num_slots; 408 for (j = 0; j < lim; j++) 409 netmap_free_buf(&nm_buf_pool, 410 ring->slot[j].buf_idx); 411 } 412 NMA_UNLOCK(); 413 netmap_free_rings(na); 414 wakeup(na); 415 } 416 netmap_if_free(nifp); 417 418 na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 419 420 if_rele(ifp); 421 422 bzero(priv, sizeof(*priv)); /* XXX for safety */ 423 free(priv, M_DEVBUF); 424 } 425 426 427 428 /* 429 * Create and return a new ``netmap_if`` object, and possibly also 430 * rings and packet buffors. 431 * 432 * Return NULL on failure. 433 */ 434 static void * 435 netmap_if_new(const char *ifname, struct netmap_adapter *na) 436 { 437 struct netmap_if *nifp; 438 struct netmap_ring *ring; 439 char *buff; 440 u_int i, len, ofs; 441 u_int n = na->num_queues + 1; /* shorthand, include stack queue */ 442 443 /* 444 * the descriptor is followed inline by an array of offsets 445 * to the tx and rx rings in the shared memory region. 446 */ 447 len = sizeof(struct netmap_if) + 2 * n * sizeof(ssize_t); 448 nifp = netmap_if_malloc(len); 449 if (nifp == NULL) 450 return (NULL); 451 452 /* initialize base fields */ 453 *(int *)(uintptr_t)&nifp->ni_num_queues = na->num_queues; 454 strncpy(nifp->ni_name, ifname, IFNAMSIZ); 455 456 (na->refcount)++; /* XXX atomic ? we are under lock */ 457 if (na->refcount > 1) 458 goto final; 459 460 /* 461 * If this is the first instance, allocate the shadow rings and 462 * buffers for this card (one for each hw queue, one for the host). 463 * The rings are contiguous, but have variable size. 464 * The entire block is reachable at 465 * na->tx_rings[0].ring 466 */ 467 468 len = n * (2 * sizeof(struct netmap_ring) + 469 (na->num_tx_desc + na->num_rx_desc) * 470 sizeof(struct netmap_slot) ); 471 buff = netmap_ring_malloc(len); 472 if (buff == NULL) { 473 D("failed to allocate %d bytes for %s shadow ring", 474 len, ifname); 475 error: 476 (na->refcount)--; 477 netmap_if_free(nifp); 478 return (NULL); 479 } 480 /* do we have the bufers ? we are in need of num_tx_desc buffers for 481 * each tx ring and num_tx_desc buffers for each rx ring. */ 482 len = n * (na->num_tx_desc + na->num_rx_desc); 483 NMA_LOCK(); 484 if (nm_buf_pool.free < len) { 485 NMA_UNLOCK(); 486 netmap_free(buff, "not enough bufs"); 487 goto error; 488 } 489 /* 490 * in the kring, store the pointers to the shared rings 491 * and initialize the rings. We are under NMA_LOCK(). 492 */ 493 ofs = 0; 494 for (i = 0; i < n; i++) { 495 struct netmap_kring *kring; 496 int numdesc; 497 498 /* Transmit rings */ 499 kring = &na->tx_rings[i]; 500 numdesc = na->num_tx_desc; 501 bzero(kring, sizeof(*kring)); 502 kring->na = na; 503 504 ring = kring->ring = (struct netmap_ring *)(buff + ofs); 505 *(ssize_t *)(uintptr_t)&ring->buf_ofs = 506 nm_buf_pool.base - (char *)ring; 507 ND("txring[%d] at %p ofs %d", i, ring, ring->buf_ofs); 508 *(int *)(int *)(uintptr_t)&ring->num_slots = 509 kring->nkr_num_slots = numdesc; 510 511 /* 512 * IMPORTANT: 513 * Always keep one slot empty, so we can detect new 514 * transmissions comparing cur and nr_hwcur (they are 515 * the same only if there are no new transmissions). 516 */ 517 ring->avail = kring->nr_hwavail = numdesc - 1; 518 ring->cur = kring->nr_hwcur = 0; 519 netmap_new_bufs(&nm_buf_pool, ring->slot, numdesc); 520 521 ofs += sizeof(struct netmap_ring) + 522 numdesc * sizeof(struct netmap_slot); 523 524 /* Receive rings */ 525 kring = &na->rx_rings[i]; 526 numdesc = na->num_rx_desc; 527 bzero(kring, sizeof(*kring)); 528 kring->na = na; 529 530 ring = kring->ring = (struct netmap_ring *)(buff + ofs); 531 *(ssize_t *)(uintptr_t)&ring->buf_ofs = 532 nm_buf_pool.base - (char *)ring; 533 ND("rxring[%d] at %p offset %d", i, ring, ring->buf_ofs); 534 *(int *)(int *)(uintptr_t)&ring->num_slots = 535 kring->nkr_num_slots = numdesc; 536 ring->cur = kring->nr_hwcur = 0; 537 ring->avail = kring->nr_hwavail = 0; /* empty */ 538 netmap_new_bufs(&nm_buf_pool, ring->slot, numdesc); 539 ofs += sizeof(struct netmap_ring) + 540 numdesc * sizeof(struct netmap_slot); 541 } 542 NMA_UNLOCK(); 543 for (i = 0; i < n+1; i++) { 544 // XXX initialize the selrecord structs. 545 } 546 final: 547 /* 548 * fill the slots for the rx and tx queues. They contain the offset 549 * between the ring and nifp, so the information is usable in 550 * userspace to reach the ring from the nifp. 551 */ 552 for (i = 0; i < n; i++) { 553 char *base = (char *)nifp; 554 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = 555 (char *)na->tx_rings[i].ring - base; 556 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n] = 557 (char *)na->rx_rings[i].ring - base; 558 } 559 return (nifp); 560 } 561 562 563 /* 564 * mmap(2) support for the "netmap" device. 565 * 566 * Expose all the memory previously allocated by our custom memory 567 * allocator: this way the user has only to issue a single mmap(2), and 568 * can work on all the data structures flawlessly. 569 * 570 * Return 0 on success, -1 otherwise. 571 */ 572 static int 573 #if __FreeBSD_version < 900000 574 netmap_mmap(__unused struct cdev *dev, vm_offset_t offset, vm_paddr_t *paddr, 575 int nprot) 576 #else 577 netmap_mmap(__unused struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr, 578 int nprot, __unused vm_memattr_t *memattr) 579 #endif 580 { 581 if (nprot & PROT_EXEC) 582 return (-1); // XXX -1 or EINVAL ? 583 ND("request for offset 0x%x", (uint32_t)offset); 584 *paddr = vtophys(netmap_mem_d->nm_buffer) + offset; 585 586 return (0); 587 } 588 589 590 /* 591 * Handlers for synchronization of the queues from/to the host. 592 * 593 * netmap_sync_to_host() passes packets up. We are called from a 594 * system call in user process context, and the only contention 595 * can be among multiple user threads erroneously calling 596 * this routine concurrently. In principle we should not even 597 * need to lock. 598 */ 599 static void 600 netmap_sync_to_host(struct netmap_adapter *na) 601 { 602 struct netmap_kring *kring = &na->tx_rings[na->num_queues]; 603 struct netmap_ring *ring = kring->ring; 604 struct mbuf *head = NULL, *tail = NULL, *m; 605 u_int k, n, lim = kring->nkr_num_slots - 1; 606 607 k = ring->cur; 608 if (k > lim) { 609 netmap_ring_reinit(kring); 610 return; 611 } 612 // na->nm_lock(na->ifp->if_softc, NETMAP_CORE_LOCK, 0); 613 614 /* Take packets from hwcur to cur and pass them up. 615 * In case of no buffers we give up. At the end of the loop, 616 * the queue is drained in all cases. 617 */ 618 for (n = kring->nr_hwcur; n != k;) { 619 struct netmap_slot *slot = &ring->slot[n]; 620 621 n = (n == lim) ? 0 : n + 1; 622 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { 623 D("bad pkt at %d len %d", n, slot->len); 624 continue; 625 } 626 m = m_devget(NMB(slot), slot->len, 0, na->ifp, NULL); 627 628 if (m == NULL) 629 break; 630 if (tail) 631 tail->m_nextpkt = m; 632 else 633 head = m; 634 tail = m; 635 m->m_nextpkt = NULL; 636 } 637 kring->nr_hwcur = k; 638 kring->nr_hwavail = ring->avail = lim; 639 // na->nm_lock(na->ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 640 641 /* send packets up, outside the lock */ 642 while ((m = head) != NULL) { 643 head = head->m_nextpkt; 644 m->m_nextpkt = NULL; 645 m->m_pkthdr.rcvif = na->ifp; 646 if (netmap_verbose & NM_VERB_HOST) 647 D("sending up pkt %p size %d", m, m->m_pkthdr.len); 648 (na->ifp->if_input)(na->ifp, m); 649 } 650 } 651 652 /* 653 * rxsync backend for packets coming from the host stack. 654 * They have been put in the queue by netmap_start() so we 655 * need to protect access to the kring using a lock. 656 * 657 * This routine also does the selrecord if called from the poll handler 658 * (we know because td != NULL). 659 */ 660 static void 661 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td) 662 { 663 struct netmap_kring *kring = &na->rx_rings[na->num_queues]; 664 struct netmap_ring *ring = kring->ring; 665 int error = 1, delta; 666 u_int k = ring->cur, lim = kring->nkr_num_slots; 667 668 na->nm_lock(na->ifp->if_softc, NETMAP_CORE_LOCK, 0); 669 if (k >= lim) /* bad value */ 670 goto done; 671 delta = k - kring->nr_hwcur; 672 if (delta < 0) 673 delta += lim; 674 kring->nr_hwavail -= delta; 675 if (kring->nr_hwavail < 0) /* error */ 676 goto done; 677 kring->nr_hwcur = k; 678 error = 0; 679 k = ring->avail = kring->nr_hwavail; 680 if (k == 0 && td) 681 selrecord(td, &kring->si); 682 if (k && (netmap_verbose & NM_VERB_HOST)) 683 D("%d pkts from stack", k); 684 done: 685 na->nm_lock(na->ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 686 if (error) 687 netmap_ring_reinit(kring); 688 } 689 690 691 /* 692 * get a refcounted reference to an interface. 693 * Return ENXIO if the interface does not exist, EINVAL if netmap 694 * is not supported by the interface. 695 * If successful, hold a reference. 696 */ 697 static int 698 get_ifp(const char *name, struct ifnet **ifp) 699 { 700 *ifp = ifunit_ref(name); 701 if (*ifp == NULL) 702 return (ENXIO); 703 /* can do this if the capability exists and if_pspare[0] 704 * points to the netmap descriptor. 705 */ 706 if ((*ifp)->if_capabilities & IFCAP_NETMAP && NA(*ifp)) 707 return 0; /* valid pointer, we hold the refcount */ 708 if_rele(*ifp); 709 return EINVAL; // not NETMAP capable 710 } 711 712 713 /* 714 * Error routine called when txsync/rxsync detects an error. 715 * Can't do much more than resetting cur = hwcur, avail = hwavail. 716 * Return 1 on reinit. 717 * 718 * This routine is only called by the upper half of the kernel. 719 * It only reads hwcur (which is changed only by the upper half, too) 720 * and hwavail (which may be changed by the lower half, but only on 721 * a tx ring and only to increase it, so any error will be recovered 722 * on the next call). For the above, we don't strictly need to call 723 * it under lock. 724 */ 725 int 726 netmap_ring_reinit(struct netmap_kring *kring) 727 { 728 struct netmap_ring *ring = kring->ring; 729 u_int i, lim = kring->nkr_num_slots - 1; 730 int errors = 0; 731 732 D("called for %s", kring->na->ifp->if_xname); 733 if (ring->cur > lim) 734 errors++; 735 for (i = 0; i <= lim; i++) { 736 u_int idx = ring->slot[i].buf_idx; 737 u_int len = ring->slot[i].len; 738 if (idx < 2 || idx >= netmap_total_buffers) { 739 if (!errors++) 740 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 741 ring->slot[i].buf_idx = 0; 742 ring->slot[i].len = 0; 743 } else if (len > NETMAP_BUF_SIZE) { 744 ring->slot[i].len = 0; 745 if (!errors++) 746 D("bad len %d at slot %d idx %d", 747 len, i, idx); 748 } 749 } 750 if (errors) { 751 int pos = kring - kring->na->tx_rings; 752 int n = kring->na->num_queues + 2; 753 754 D("total %d errors", errors); 755 errors++; 756 D("%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 757 kring->na->ifp->if_xname, 758 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 759 ring->cur, kring->nr_hwcur, 760 ring->avail, kring->nr_hwavail); 761 ring->cur = kring->nr_hwcur; 762 ring->avail = kring->nr_hwavail; 763 } 764 return (errors ? 1 : 0); 765 } 766 767 768 /* 769 * Set the ring ID. For devices with a single queue, a request 770 * for all rings is the same as a single ring. 771 */ 772 static int 773 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 774 { 775 struct ifnet *ifp = priv->np_ifp; 776 struct netmap_adapter *na = NA(ifp); 777 void *adapter = na->ifp->if_softc; /* shorthand */ 778 u_int i = ringid & NETMAP_RING_MASK; 779 /* first time we don't lock */ 780 int need_lock = (priv->np_qfirst != priv->np_qlast); 781 782 if ( (ringid & NETMAP_HW_RING) && i >= na->num_queues) { 783 D("invalid ring id %d", i); 784 return (EINVAL); 785 } 786 if (need_lock) 787 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 788 priv->np_ringid = ringid; 789 if (ringid & NETMAP_SW_RING) { 790 priv->np_qfirst = na->num_queues; 791 priv->np_qlast = na->num_queues + 1; 792 } else if (ringid & NETMAP_HW_RING) { 793 priv->np_qfirst = i; 794 priv->np_qlast = i + 1; 795 } else { 796 priv->np_qfirst = 0; 797 priv->np_qlast = na->num_queues; 798 } 799 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 800 if (need_lock) 801 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 802 if (ringid & NETMAP_SW_RING) 803 D("ringid %s set to SW RING", ifp->if_xname); 804 else if (ringid & NETMAP_HW_RING) 805 D("ringid %s set to HW RING %d", ifp->if_xname, 806 priv->np_qfirst); 807 else 808 D("ringid %s set to all %d HW RINGS", ifp->if_xname, 809 priv->np_qlast); 810 return 0; 811 } 812 813 /* 814 * ioctl(2) support for the "netmap" device. 815 * 816 * Following a list of accepted commands: 817 * - NIOCGINFO 818 * - SIOCGIFADDR just for convenience 819 * - NIOCREGIF 820 * - NIOCUNREGIF 821 * - NIOCTXSYNC 822 * - NIOCRXSYNC 823 * 824 * Return 0 on success, errno otherwise. 825 */ 826 static int 827 netmap_ioctl(__unused struct cdev *dev, u_long cmd, caddr_t data, 828 __unused int fflag, struct thread *td) 829 { 830 struct netmap_priv_d *priv = NULL; 831 struct ifnet *ifp; 832 struct nmreq *nmr = (struct nmreq *) data; 833 struct netmap_adapter *na; 834 void *adapter; 835 int error; 836 u_int i; 837 struct netmap_if *nifp; 838 839 CURVNET_SET(TD_TO_VNET(td)); 840 841 error = devfs_get_cdevpriv((void **)&priv); 842 if (error != ENOENT && error != 0) { 843 CURVNET_RESTORE(); 844 return (error); 845 } 846 847 error = 0; /* Could be ENOENT */ 848 switch (cmd) { 849 case NIOCGINFO: /* return capabilities etc */ 850 /* memsize is always valid */ 851 nmr->nr_memsize = netmap_mem_d->nm_totalsize; 852 nmr->nr_offset = 0; 853 nmr->nr_numrings = 0; 854 nmr->nr_numslots = 0; 855 if (nmr->nr_name[0] == '\0') /* just get memory info */ 856 break; 857 error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */ 858 if (error) 859 break; 860 na = NA(ifp); /* retrieve netmap_adapter */ 861 nmr->nr_numrings = na->num_queues; 862 nmr->nr_numslots = na->num_tx_desc; 863 if_rele(ifp); /* return the refcount */ 864 break; 865 866 case NIOCREGIF: 867 if (priv != NULL) { /* thread already registered */ 868 error = netmap_set_ringid(priv, nmr->nr_ringid); 869 break; 870 } 871 /* find the interface and a reference */ 872 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 873 if (error) 874 break; 875 na = NA(ifp); /* retrieve netmap adapter */ 876 adapter = na->ifp->if_softc; /* shorthand */ 877 /* 878 * Allocate the private per-thread structure. 879 * XXX perhaps we can use a blocking malloc ? 880 */ 881 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 882 M_NOWAIT | M_ZERO); 883 if (priv == NULL) { 884 error = ENOMEM; 885 if_rele(ifp); /* return the refcount */ 886 break; 887 } 888 889 890 for (i = 10; i > 0; i--) { 891 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 892 if (!NETMAP_DELETING(na)) 893 break; 894 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 895 tsleep(na, 0, "NIOCREGIF", hz/10); 896 } 897 if (i == 0) { 898 D("too many NIOCREGIF attempts, give up"); 899 error = EINVAL; 900 free(priv, M_DEVBUF); 901 if_rele(ifp); /* return the refcount */ 902 break; 903 } 904 905 priv->np_ifp = ifp; /* store the reference */ 906 error = netmap_set_ringid(priv, nmr->nr_ringid); 907 if (error) 908 goto error; 909 priv->np_nifp = nifp = netmap_if_new(nmr->nr_name, na); 910 if (nifp == NULL) { /* allocation failed */ 911 error = ENOMEM; 912 } else if (ifp->if_capenable & IFCAP_NETMAP) { 913 /* was already set */ 914 } else { 915 /* Otherwise set the card in netmap mode 916 * and make it use the shared buffers. 917 */ 918 error = na->nm_register(ifp, 1); /* mode on */ 919 if (error) { 920 /* 921 * do something similar to netmap_dtor(). 922 */ 923 netmap_free_rings(na); 924 // XXX tx_rings is inline, must not be freed. 925 // free(na->tx_rings, M_DEVBUF); // XXX wrong ? 926 na->tx_rings = na->rx_rings = NULL; 927 na->refcount--; 928 netmap_if_free(nifp); 929 nifp = NULL; 930 } 931 } 932 933 if (error) { /* reg. failed, release priv and ref */ 934 error: 935 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 936 free(priv, M_DEVBUF); 937 if_rele(ifp); /* return the refcount */ 938 break; 939 } 940 941 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 942 error = devfs_set_cdevpriv(priv, netmap_dtor); 943 944 if (error != 0) { 945 /* could not assign the private storage for the 946 * thread, call the destructor explicitly. 947 */ 948 netmap_dtor(priv); 949 break; 950 } 951 952 /* return the offset of the netmap_if object */ 953 nmr->nr_numrings = na->num_queues; 954 nmr->nr_numslots = na->num_tx_desc; 955 nmr->nr_memsize = netmap_mem_d->nm_totalsize; 956 nmr->nr_offset = 957 ((char *) nifp - (char *) netmap_mem_d->nm_buffer); 958 break; 959 960 case NIOCUNREGIF: 961 if (priv == NULL) { 962 error = ENXIO; 963 break; 964 } 965 966 /* the interface is unregistered inside the 967 destructor of the private data. */ 968 devfs_clear_cdevpriv(); 969 break; 970 971 case NIOCTXSYNC: 972 case NIOCRXSYNC: 973 if (priv == NULL) { 974 error = ENXIO; 975 break; 976 } 977 ifp = priv->np_ifp; /* we have a reference */ 978 na = NA(ifp); /* retrieve netmap adapter */ 979 adapter = ifp->if_softc; /* shorthand */ 980 981 if (priv->np_qfirst == na->num_queues) { 982 /* queues to/from host */ 983 if (cmd == NIOCTXSYNC) 984 netmap_sync_to_host(na); 985 else 986 netmap_sync_from_host(na, NULL); 987 break; 988 } 989 990 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 991 if (cmd == NIOCTXSYNC) { 992 struct netmap_kring *kring = &na->tx_rings[i]; 993 if (netmap_verbose & NM_VERB_TXSYNC) 994 D("sync tx ring %d cur %d hwcur %d", 995 i, kring->ring->cur, 996 kring->nr_hwcur); 997 na->nm_txsync(adapter, i, 1 /* do lock */); 998 if (netmap_verbose & NM_VERB_TXSYNC) 999 D("after sync tx ring %d cur %d hwcur %d", 1000 i, kring->ring->cur, 1001 kring->nr_hwcur); 1002 } else { 1003 na->nm_rxsync(adapter, i, 1 /* do lock */); 1004 microtime(&na->rx_rings[i].ring->ts); 1005 } 1006 } 1007 1008 break; 1009 1010 case BIOCIMMEDIATE: 1011 case BIOCGHDRCMPLT: 1012 case BIOCSHDRCMPLT: 1013 case BIOCSSEESENT: 1014 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 1015 break; 1016 1017 default: 1018 { 1019 /* 1020 * allow device calls 1021 */ 1022 struct socket so; 1023 bzero(&so, sizeof(so)); 1024 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 1025 if (error) 1026 break; 1027 so.so_vnet = ifp->if_vnet; 1028 // so->so_proto not null. 1029 error = ifioctl(&so, cmd, data, td); 1030 if_rele(ifp); 1031 } 1032 } 1033 1034 CURVNET_RESTORE(); 1035 return (error); 1036 } 1037 1038 1039 /* 1040 * select(2) and poll(2) handlers for the "netmap" device. 1041 * 1042 * Can be called for one or more queues. 1043 * Return true the event mask corresponding to ready events. 1044 * If there are no ready events, do a selrecord on either individual 1045 * selfd or on the global one. 1046 * Device-dependent parts (locking and sync of tx/rx rings) 1047 * are done through callbacks. 1048 */ 1049 static int 1050 netmap_poll(__unused struct cdev *dev, int events, struct thread *td) 1051 { 1052 struct netmap_priv_d *priv = NULL; 1053 struct netmap_adapter *na; 1054 struct ifnet *ifp; 1055 struct netmap_kring *kring; 1056 u_int core_lock, i, check_all, want_tx, want_rx, revents = 0; 1057 void *adapter; 1058 1059 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1060 return POLLERR; 1061 1062 ifp = priv->np_ifp; 1063 // XXX check for deleting() ? 1064 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1065 return POLLERR; 1066 1067 if (netmap_verbose & 0x8000) 1068 D("device %s events 0x%x", ifp->if_xname, events); 1069 want_tx = events & (POLLOUT | POLLWRNORM); 1070 want_rx = events & (POLLIN | POLLRDNORM); 1071 1072 adapter = ifp->if_softc; 1073 na = NA(ifp); /* retrieve netmap adapter */ 1074 1075 /* how many queues we are scanning */ 1076 i = priv->np_qfirst; 1077 if (i == na->num_queues) { /* from/to host */ 1078 if (priv->np_txpoll || want_tx) { 1079 /* push any packets up, then we are always ready */ 1080 kring = &na->tx_rings[i]; 1081 netmap_sync_to_host(na); 1082 revents |= want_tx; 1083 } 1084 if (want_rx) { 1085 kring = &na->rx_rings[i]; 1086 if (kring->ring->avail == 0) 1087 netmap_sync_from_host(na, td); 1088 if (kring->ring->avail > 0) { 1089 revents |= want_rx; 1090 } 1091 } 1092 return (revents); 1093 } 1094 1095 /* 1096 * check_all is set if the card has more than one queue and 1097 * the client is polling all of them. If true, we sleep on 1098 * the "global" selfd, otherwise we sleep on individual selfd 1099 * (we can only sleep on one of them per direction). 1100 * The interrupt routine in the driver should always wake on 1101 * the individual selfd, and also on the global one if the card 1102 * has more than one ring. 1103 * 1104 * If the card has only one lock, we just use that. 1105 * If the card has separate ring locks, we just use those 1106 * unless we are doing check_all, in which case the whole 1107 * loop is wrapped by the global lock. 1108 * We acquire locks only when necessary: if poll is called 1109 * when buffers are available, we can just return without locks. 1110 * 1111 * rxsync() is only called if we run out of buffers on a POLLIN. 1112 * txsync() is called if we run out of buffers on POLLOUT, or 1113 * there are pending packets to send. The latter can be disabled 1114 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1115 */ 1116 check_all = (i + 1 != priv->np_qlast); 1117 1118 /* 1119 * core_lock indicates what to do with the core lock. 1120 * The core lock is used when either the card has no individual 1121 * locks, or it has individual locks but we are cheking all 1122 * rings so we need the core lock to avoid missing wakeup events. 1123 * 1124 * It has three possible states: 1125 * NO_CL we don't need to use the core lock, e.g. 1126 * because we are protected by individual locks. 1127 * NEED_CL we need the core lock. In this case, when we 1128 * call the lock routine, move to LOCKED_CL 1129 * to remember to release the lock once done. 1130 * LOCKED_CL core lock is set, so we need to release it. 1131 */ 1132 enum {NO_CL, NEED_CL, LOCKED_CL }; 1133 core_lock = (check_all || !na->separate_locks) ? NEED_CL:NO_CL; 1134 /* 1135 * We start with a lock free round which is good if we have 1136 * data available. If this fails, then lock and call the sync 1137 * routines. 1138 */ 1139 for (i = priv->np_qfirst; want_rx && i < priv->np_qlast; i++) { 1140 kring = &na->rx_rings[i]; 1141 if (kring->ring->avail > 0) { 1142 revents |= want_rx; 1143 want_rx = 0; /* also breaks the loop */ 1144 } 1145 } 1146 for (i = priv->np_qfirst; want_tx && i < priv->np_qlast; i++) { 1147 kring = &na->tx_rings[i]; 1148 if (kring->ring->avail > 0) { 1149 revents |= want_tx; 1150 want_tx = 0; /* also breaks the loop */ 1151 } 1152 } 1153 1154 /* 1155 * If we to push packets out (priv->np_txpoll) or want_tx is 1156 * still set, we do need to run the txsync calls (on all rings, 1157 * to avoid that the tx rings stall). 1158 */ 1159 if (priv->np_txpoll || want_tx) { 1160 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 1161 kring = &na->tx_rings[i]; 1162 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 1163 continue; 1164 if (core_lock == NEED_CL) { 1165 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 1166 core_lock = LOCKED_CL; 1167 } 1168 if (na->separate_locks) 1169 na->nm_lock(adapter, NETMAP_TX_LOCK, i); 1170 if (netmap_verbose & NM_VERB_TXSYNC) 1171 D("send %d on %s %d", 1172 kring->ring->cur, 1173 ifp->if_xname, i); 1174 if (na->nm_txsync(adapter, i, 0 /* no lock */)) 1175 revents |= POLLERR; 1176 1177 if (want_tx) { 1178 if (kring->ring->avail > 0) { 1179 /* stop at the first ring. We don't risk 1180 * starvation. 1181 */ 1182 revents |= want_tx; 1183 want_tx = 0; 1184 } else if (!check_all) 1185 selrecord(td, &kring->si); 1186 } 1187 if (na->separate_locks) 1188 na->nm_lock(adapter, NETMAP_TX_UNLOCK, i); 1189 } 1190 } 1191 1192 /* 1193 * now if want_rx is still set we need to lock and rxsync. 1194 * Do it on all rings because otherwise we starve. 1195 */ 1196 if (want_rx) { 1197 for (i = priv->np_qfirst; i < priv->np_qlast; i++) { 1198 kring = &na->rx_rings[i]; 1199 if (core_lock == NEED_CL) { 1200 na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); 1201 core_lock = LOCKED_CL; 1202 } 1203 if (na->separate_locks) 1204 na->nm_lock(adapter, NETMAP_RX_LOCK, i); 1205 1206 if (na->nm_rxsync(adapter, i, 0 /* no lock */)) 1207 revents |= POLLERR; 1208 if (no_timestamp == 0 || 1209 kring->ring->flags & NR_TIMESTAMP) 1210 microtime(&kring->ring->ts); 1211 1212 if (kring->ring->avail > 0) 1213 revents |= want_rx; 1214 else if (!check_all) 1215 selrecord(td, &kring->si); 1216 if (na->separate_locks) 1217 na->nm_lock(adapter, NETMAP_RX_UNLOCK, i); 1218 } 1219 } 1220 if (check_all && revents == 0) { 1221 i = na->num_queues + 1; /* the global queue */ 1222 if (want_tx) 1223 selrecord(td, &na->tx_rings[i].si); 1224 if (want_rx) 1225 selrecord(td, &na->rx_rings[i].si); 1226 } 1227 if (core_lock == LOCKED_CL) 1228 na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); 1229 1230 return (revents); 1231 } 1232 1233 /*------- driver support routines ------*/ 1234 1235 /* 1236 * Initialize a ``netmap_adapter`` object created by driver on attach. 1237 * We allocate a block of memory with room for a struct netmap_adapter 1238 * plus two sets of N+2 struct netmap_kring (where N is the number 1239 * of hardware rings): 1240 * krings 0..N-1 are for the hardware queues. 1241 * kring N is for the host stack queue 1242 * kring N+1 is only used for the selinfo for all queues. 1243 * Return 0 on success, ENOMEM otherwise. 1244 */ 1245 int 1246 netmap_attach(struct netmap_adapter *na, int num_queues) 1247 { 1248 int n = num_queues + 2; 1249 int size = sizeof(*na) + 2 * n * sizeof(struct netmap_kring); 1250 void *buf; 1251 struct ifnet *ifp = na->ifp; 1252 1253 if (ifp == NULL) { 1254 D("ifp not set, giving up"); 1255 return EINVAL; 1256 } 1257 na->refcount = 0; 1258 na->num_queues = num_queues; 1259 1260 buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 1261 if (buf) { 1262 WNA(ifp) = buf; 1263 na->tx_rings = (void *)((char *)buf + sizeof(*na)); 1264 na->rx_rings = na->tx_rings + n; 1265 bcopy(na, buf, sizeof(*na)); 1266 ifp->if_capabilities |= IFCAP_NETMAP; 1267 } 1268 D("%s for %s", buf ? "ok" : "failed", ifp->if_xname); 1269 1270 return (buf ? 0 : ENOMEM); 1271 } 1272 1273 1274 /* 1275 * Free the allocated memory linked to the given ``netmap_adapter`` 1276 * object. 1277 */ 1278 void 1279 netmap_detach(struct ifnet *ifp) 1280 { 1281 u_int i; 1282 struct netmap_adapter *na = NA(ifp); 1283 1284 if (!na) 1285 return; 1286 1287 for (i = 0; i < na->num_queues + 2; i++) { 1288 knlist_destroy(&na->tx_rings[i].si.si_note); 1289 knlist_destroy(&na->rx_rings[i].si.si_note); 1290 } 1291 bzero(na, sizeof(*na)); 1292 WNA(ifp) = NULL; 1293 free(na, M_DEVBUF); 1294 } 1295 1296 1297 /* 1298 * Intercept packets from the network stack and pass them 1299 * to netmap as incoming packets on the 'software' ring. 1300 * We are not locked when called. 1301 */ 1302 int 1303 netmap_start(struct ifnet *ifp, struct mbuf *m) 1304 { 1305 struct netmap_adapter *na = NA(ifp); 1306 struct netmap_kring *kring = &na->rx_rings[na->num_queues]; 1307 u_int i, len = m->m_pkthdr.len; 1308 int error = EBUSY, lim = kring->nkr_num_slots - 1; 1309 struct netmap_slot *slot; 1310 1311 if (netmap_verbose & NM_VERB_HOST) 1312 D("%s packet %d len %d from the stack", ifp->if_xname, 1313 kring->nr_hwcur + kring->nr_hwavail, len); 1314 na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); 1315 if (kring->nr_hwavail >= lim) { 1316 D("stack ring %s full\n", ifp->if_xname); 1317 goto done; /* no space */ 1318 } 1319 if (len > na->buff_size) { 1320 D("drop packet size %d > %d", len, na->buff_size); 1321 goto done; /* too long for us */ 1322 } 1323 1324 /* compute the insert position */ 1325 i = kring->nr_hwcur + kring->nr_hwavail; 1326 if (i > lim) 1327 i -= lim + 1; 1328 slot = &kring->ring->slot[i]; 1329 m_copydata(m, 0, len, NMB(slot)); 1330 slot->len = len; 1331 kring->nr_hwavail++; 1332 if (netmap_verbose & NM_VERB_HOST) 1333 D("wake up host ring %s %d", na->ifp->if_xname, na->num_queues); 1334 selwakeuppri(&kring->si, PI_NET); 1335 error = 0; 1336 done: 1337 na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); 1338 1339 /* release the mbuf in either cases of success or failure. As an 1340 * alternative, put the mbuf in a free list and free the list 1341 * only when really necessary. 1342 */ 1343 m_freem(m); 1344 1345 return (error); 1346 } 1347 1348 1349 /* 1350 * netmap_reset() is called by the driver routines when reinitializing 1351 * a ring. The driver is in charge of locking to protect the kring. 1352 * If netmap mode is not set just return NULL. 1353 */ 1354 struct netmap_slot * 1355 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, 1356 u_int new_cur) 1357 { 1358 struct netmap_kring *kring; 1359 struct netmap_ring *ring; 1360 int new_hwofs, lim; 1361 1362 if (na == NULL) 1363 return NULL; /* no netmap support here */ 1364 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) 1365 return NULL; /* nothing to reinitialize */ 1366 kring = tx == NR_TX ? na->tx_rings + n : na->rx_rings + n; 1367 ring = kring->ring; 1368 lim = kring->nkr_num_slots - 1; 1369 1370 if (tx == NR_TX) 1371 new_hwofs = kring->nr_hwcur - new_cur; 1372 else 1373 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; 1374 if (new_hwofs > lim) 1375 new_hwofs -= lim + 1; 1376 1377 /* Alwayws set the new offset value and realign the ring. */ 1378 kring->nkr_hwofs = new_hwofs; 1379 if (tx == NR_TX) 1380 kring->nr_hwavail = kring->nkr_num_slots - 1; 1381 D("new hwofs %d on %s %s[%d]", 1382 kring->nkr_hwofs, na->ifp->if_xname, 1383 tx == NR_TX ? "TX" : "RX", n); 1384 1385 /* 1386 * We do the wakeup here, but the ring is not yet reconfigured. 1387 * However, we are under lock so there are no races. 1388 */ 1389 selwakeuppri(&kring->si, PI_NET); 1390 selwakeuppri(&kring[na->num_queues + 1 - n].si, PI_NET); 1391 return kring->ring->slot; 1392 } 1393 1394 static void 1395 ns_dmamap_cb(__unused void *arg, __unused bus_dma_segment_t * segs, 1396 __unused int nseg, __unused int error) 1397 { 1398 } 1399 1400 /* unload a bus_dmamap and create a new one. Used when the 1401 * buffer in the slot is changed. 1402 * XXX buflen is probably not needed, buffers have constant size. 1403 */ 1404 void 1405 netmap_reload_map(bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1406 { 1407 bus_dmamap_unload(tag, map); 1408 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE, ns_dmamap_cb, 1409 NULL, BUS_DMA_NOWAIT); 1410 } 1411 1412 void 1413 netmap_load_map(bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1414 { 1415 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE, ns_dmamap_cb, 1416 NULL, BUS_DMA_NOWAIT); 1417 } 1418 1419 /*------ netmap memory allocator -------*/ 1420 /* 1421 * Request for a chunk of memory. 1422 * 1423 * Memory objects are arranged into a list, hence we need to walk this 1424 * list until we find an object with the needed amount of data free. 1425 * This sounds like a completely inefficient implementation, but given 1426 * the fact that data allocation is done once, we can handle it 1427 * flawlessly. 1428 * 1429 * Return NULL on failure. 1430 */ 1431 static void * 1432 netmap_malloc(size_t size, __unused const char *msg) 1433 { 1434 struct netmap_mem_obj *mem_obj, *new_mem_obj; 1435 void *ret = NULL; 1436 1437 NMA_LOCK(); 1438 TAILQ_FOREACH(mem_obj, &netmap_mem_d->nm_molist, nmo_next) { 1439 if (mem_obj->nmo_used != 0 || mem_obj->nmo_size < size) 1440 continue; 1441 1442 new_mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP, 1443 M_WAITOK | M_ZERO); 1444 TAILQ_INSERT_BEFORE(mem_obj, new_mem_obj, nmo_next); 1445 1446 new_mem_obj->nmo_used = 1; 1447 new_mem_obj->nmo_size = size; 1448 new_mem_obj->nmo_data = mem_obj->nmo_data; 1449 memset(new_mem_obj->nmo_data, 0, new_mem_obj->nmo_size); 1450 1451 mem_obj->nmo_size -= size; 1452 mem_obj->nmo_data = (char *) mem_obj->nmo_data + size; 1453 if (mem_obj->nmo_size == 0) { 1454 TAILQ_REMOVE(&netmap_mem_d->nm_molist, mem_obj, 1455 nmo_next); 1456 free(mem_obj, M_NETMAP); 1457 } 1458 1459 ret = new_mem_obj->nmo_data; 1460 1461 break; 1462 } 1463 NMA_UNLOCK(); 1464 ND("%s: %d bytes at %p", msg, size, ret); 1465 1466 return (ret); 1467 } 1468 1469 /* 1470 * Return the memory to the allocator. 1471 * 1472 * While freeing a memory object, we try to merge adjacent chunks in 1473 * order to reduce memory fragmentation. 1474 */ 1475 static void 1476 netmap_free(void *addr, const char *msg) 1477 { 1478 size_t size; 1479 struct netmap_mem_obj *cur, *prev, *next; 1480 1481 if (addr == NULL) { 1482 D("NULL addr for %s", msg); 1483 return; 1484 } 1485 1486 NMA_LOCK(); 1487 TAILQ_FOREACH(cur, &netmap_mem_d->nm_molist, nmo_next) { 1488 if (cur->nmo_data == addr && cur->nmo_used) 1489 break; 1490 } 1491 if (cur == NULL) { 1492 NMA_UNLOCK(); 1493 D("invalid addr %s %p", msg, addr); 1494 return; 1495 } 1496 1497 size = cur->nmo_size; 1498 cur->nmo_used = 0; 1499 1500 /* merge current chunk of memory with the previous one, 1501 if present. */ 1502 prev = TAILQ_PREV(cur, netmap_mem_obj_h, nmo_next); 1503 if (prev && prev->nmo_used == 0) { 1504 TAILQ_REMOVE(&netmap_mem_d->nm_molist, cur, nmo_next); 1505 prev->nmo_size += cur->nmo_size; 1506 free(cur, M_NETMAP); 1507 cur = prev; 1508 } 1509 1510 /* merge with the next one */ 1511 next = TAILQ_NEXT(cur, nmo_next); 1512 if (next && next->nmo_used == 0) { 1513 TAILQ_REMOVE(&netmap_mem_d->nm_molist, next, nmo_next); 1514 cur->nmo_size += next->nmo_size; 1515 free(next, M_NETMAP); 1516 } 1517 NMA_UNLOCK(); 1518 ND("freed %s %d bytes at %p", msg, size, addr); 1519 } 1520 1521 1522 /* 1523 * Initialize the memory allocator. 1524 * 1525 * Create the descriptor for the memory , allocate the pool of memory 1526 * and initialize the list of memory objects with a single chunk 1527 * containing the whole pre-allocated memory marked as free. 1528 * 1529 * Start with a large size, then halve as needed if we fail to 1530 * allocate the block. While halving, always add one extra page 1531 * because buffers 0 and 1 are used for special purposes. 1532 * Return 0 on success, errno otherwise. 1533 */ 1534 static int 1535 netmap_memory_init(void) 1536 { 1537 struct netmap_mem_obj *mem_obj; 1538 void *buf = NULL; 1539 int i, n, sz = NETMAP_MEMORY_SIZE; 1540 int extra_sz = 0; // space for rings and two spare buffers 1541 1542 for (; !buf && sz >= 1<<20; sz >>=1) { 1543 extra_sz = sz/200; 1544 extra_sz = (extra_sz + 2*PAGE_SIZE - 1) & ~(PAGE_SIZE-1); 1545 buf = contigmalloc(sz + extra_sz, 1546 M_NETMAP, 1547 M_WAITOK | M_ZERO, 1548 0, /* low address */ 1549 -1UL, /* high address */ 1550 PAGE_SIZE, /* alignment */ 1551 0 /* boundary */ 1552 ); 1553 } 1554 if (buf == NULL) 1555 return (ENOMEM); 1556 sz += extra_sz; 1557 netmap_mem_d = malloc(sizeof(struct netmap_mem_d), M_NETMAP, 1558 M_WAITOK | M_ZERO); 1559 mtx_init(&netmap_mem_d->nm_mtx, "netmap memory allocator lock", NULL, 1560 MTX_DEF); 1561 TAILQ_INIT(&netmap_mem_d->nm_molist); 1562 netmap_mem_d->nm_buffer = buf; 1563 netmap_mem_d->nm_totalsize = sz; 1564 1565 /* 1566 * A buffer takes 2k, a slot takes 8 bytes + ring overhead, 1567 * so the ratio is 200:1. In other words, we can use 1/200 of 1568 * the memory for the rings, and the rest for the buffers, 1569 * and be sure we never run out. 1570 */ 1571 netmap_mem_d->nm_size = sz/200; 1572 netmap_mem_d->nm_buf_start = 1573 (netmap_mem_d->nm_size + PAGE_SIZE - 1) & ~(PAGE_SIZE-1); 1574 netmap_mem_d->nm_buf_len = sz - netmap_mem_d->nm_buf_start; 1575 1576 nm_buf_pool.base = netmap_mem_d->nm_buffer; 1577 nm_buf_pool.base += netmap_mem_d->nm_buf_start; 1578 netmap_buffer_base = nm_buf_pool.base; 1579 D("netmap_buffer_base %p (offset %d)", 1580 netmap_buffer_base, (int)netmap_mem_d->nm_buf_start); 1581 /* number of buffers, they all start as free */ 1582 1583 netmap_total_buffers = nm_buf_pool.total_buffers = 1584 netmap_mem_d->nm_buf_len / NETMAP_BUF_SIZE; 1585 nm_buf_pool.bufsize = NETMAP_BUF_SIZE; 1586 1587 D("Have %d MB, use %dKB for rings, %d buffers at %p", 1588 (sz >> 20), (int)(netmap_mem_d->nm_size >> 10), 1589 nm_buf_pool.total_buffers, nm_buf_pool.base); 1590 1591 /* allocate and initialize the bitmap. Entry 0 is considered 1592 * always busy (used as default when there are no buffers left). 1593 */ 1594 n = (nm_buf_pool.total_buffers + 31) / 32; 1595 nm_buf_pool.bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, 1596 M_WAITOK | M_ZERO); 1597 nm_buf_pool.bitmap[0] = ~3; /* slot 0 and 1 always busy */ 1598 for (i = 1; i < n; i++) 1599 nm_buf_pool.bitmap[i] = ~0; 1600 nm_buf_pool.free = nm_buf_pool.total_buffers - 2; 1601 1602 mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP, 1603 M_WAITOK | M_ZERO); 1604 TAILQ_INSERT_HEAD(&netmap_mem_d->nm_molist, mem_obj, nmo_next); 1605 mem_obj->nmo_used = 0; 1606 mem_obj->nmo_size = netmap_mem_d->nm_size; 1607 mem_obj->nmo_data = netmap_mem_d->nm_buffer; 1608 1609 return (0); 1610 } 1611 1612 1613 /* 1614 * Finalize the memory allocator. 1615 * 1616 * Free all the memory objects contained inside the list, and deallocate 1617 * the pool of memory; finally free the memory allocator descriptor. 1618 */ 1619 static void 1620 netmap_memory_fini(void) 1621 { 1622 struct netmap_mem_obj *mem_obj; 1623 1624 while (!TAILQ_EMPTY(&netmap_mem_d->nm_molist)) { 1625 mem_obj = TAILQ_FIRST(&netmap_mem_d->nm_molist); 1626 TAILQ_REMOVE(&netmap_mem_d->nm_molist, mem_obj, nmo_next); 1627 if (mem_obj->nmo_used == 1) { 1628 printf("netmap: leaked %d bytes at %p\n", 1629 (int)mem_obj->nmo_size, 1630 mem_obj->nmo_data); 1631 } 1632 free(mem_obj, M_NETMAP); 1633 } 1634 contigfree(netmap_mem_d->nm_buffer, netmap_mem_d->nm_totalsize, M_NETMAP); 1635 // XXX mutex_destroy(nm_mtx); 1636 free(netmap_mem_d, M_NETMAP); 1637 } 1638 1639 1640 /* 1641 * Module loader. 1642 * 1643 * Create the /dev/netmap device and initialize all global 1644 * variables. 1645 * 1646 * Return 0 on success, errno on failure. 1647 */ 1648 static int 1649 netmap_init(void) 1650 { 1651 int error; 1652 1653 1654 error = netmap_memory_init(); 1655 if (error != 0) { 1656 printf("netmap: unable to initialize the memory allocator."); 1657 return (error); 1658 } 1659 printf("netmap: loaded module with %d Mbytes\n", 1660 (int)(netmap_mem_d->nm_totalsize >> 20)); 1661 1662 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 1663 "netmap"); 1664 1665 return (0); 1666 } 1667 1668 1669 /* 1670 * Module unloader. 1671 * 1672 * Free all the memory, and destroy the ``/dev/netmap`` device. 1673 */ 1674 static void 1675 netmap_fini(void) 1676 { 1677 destroy_dev(netmap_dev); 1678 1679 netmap_memory_fini(); 1680 1681 printf("netmap: unloaded module.\n"); 1682 } 1683 1684 1685 /* 1686 * Kernel entry point. 1687 * 1688 * Initialize/finalize the module and return. 1689 * 1690 * Return 0 on success, errno on failure. 1691 */ 1692 static int 1693 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1694 { 1695 int error = 0; 1696 1697 switch (event) { 1698 case MOD_LOAD: 1699 error = netmap_init(); 1700 break; 1701 1702 case MOD_UNLOAD: 1703 netmap_fini(); 1704 break; 1705 1706 default: 1707 error = EOPNOTSUPP; 1708 break; 1709 } 1710 1711 return (error); 1712 } 1713 1714 1715 DEV_MODULE(netmap, netmap_loader, NULL); 1716