1 /* 2 * Copyright (C) 2011-2012 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 #define NM_BRIDGE 27 28 /* 29 * This module supports memory mapped access to network devices, 30 * see netmap(4). 31 * 32 * The module uses a large, memory pool allocated by the kernel 33 * and accessible as mmapped memory by multiple userspace threads/processes. 34 * The memory pool contains packet buffers and "netmap rings", 35 * i.e. user-accessible copies of the interface's queues. 36 * 37 * Access to the network card works like this: 38 * 1. a process/thread issues one or more open() on /dev/netmap, to create 39 * select()able file descriptor on which events are reported. 40 * 2. on each descriptor, the process issues an ioctl() to identify 41 * the interface that should report events to the file descriptor. 42 * 3. on each descriptor, the process issues an mmap() request to 43 * map the shared memory region within the process' address space. 44 * The list of interesting queues is indicated by a location in 45 * the shared memory region. 46 * 4. using the functions in the netmap(4) userspace API, a process 47 * can look up the occupation state of a queue, access memory buffers, 48 * and retrieve received packets or enqueue packets to transmit. 49 * 5. using some ioctl()s the process can synchronize the userspace view 50 * of the queue with the actual status in the kernel. This includes both 51 * receiving the notification of new packets, and transmitting new 52 * packets on the output interface. 53 * 6. select() or poll() can be used to wait for events on individual 54 * transmit or receive queues (or all queues for a given interface). 55 */ 56 57 #ifdef linux 58 #include "bsd_glue.h" 59 static netdev_tx_t netmap_start_linux(struct sk_buff *skb, struct net_device *dev); 60 #endif /* linux */ 61 #ifdef __APPLE__ 62 #include "osx_glue.h" 63 #endif 64 #ifdef __FreeBSD__ 65 #include <sys/cdefs.h> /* prerequisite */ 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/types.h> 69 #include <sys/module.h> 70 #include <sys/errno.h> 71 #include <sys/param.h> /* defines used in kernel.h */ 72 #include <sys/jail.h> 73 #include <sys/kernel.h> /* types used in module initialization */ 74 #include <sys/conf.h> /* cdevsw struct */ 75 #include <sys/uio.h> /* uio struct */ 76 #include <sys/sockio.h> 77 #include <sys/socketvar.h> /* struct socket */ 78 #include <sys/malloc.h> 79 #include <sys/mman.h> /* PROT_EXEC */ 80 #include <sys/poll.h> 81 #include <sys/proc.h> 82 #include <vm/vm.h> /* vtophys */ 83 #include <vm/pmap.h> /* vtophys */ 84 #include <sys/socket.h> /* sockaddrs */ 85 #include <machine/bus.h> 86 #include <sys/selinfo.h> 87 #include <sys/sysctl.h> 88 #include <net/if.h> 89 #include <net/bpf.h> /* BIOCIMMEDIATE */ 90 #include <net/vnet.h> 91 #include <net/netmap.h> 92 #include <dev/netmap/netmap_kern.h> 93 #include <machine/bus.h> /* bus_dmamap_* */ 94 95 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 96 #endif /* __FreeBSD__ */ 97 98 /* 99 * lock and unlock for the netmap memory allocator 100 */ 101 #define NMA_LOCK() mtx_lock(&nm_mem->nm_mtx); 102 #define NMA_UNLOCK() mtx_unlock(&nm_mem->nm_mtx); 103 struct netmap_mem_d; 104 static struct netmap_mem_d *nm_mem; /* Our memory allocator. */ 105 106 u_int netmap_total_buffers; 107 char *netmap_buffer_base; /* address of an invalid buffer */ 108 109 /* user-controlled variables */ 110 int netmap_verbose; 111 112 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 113 114 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 115 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 116 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 117 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 118 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 119 int netmap_buf_size = 2048; 120 TUNABLE_INT("hw.netmap.buf_size", &netmap_buf_size); 121 SYSCTL_INT(_dev_netmap, OID_AUTO, buf_size, 122 CTLFLAG_RD, &netmap_buf_size, 0, "Size of packet buffers"); 123 int netmap_mitigate = 1; 124 SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, ""); 125 int netmap_no_pendintr = 1; 126 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, 127 CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets."); 128 129 int netmap_drop = 0; /* debugging */ 130 int netmap_flags = 0; /* debug flags */ 131 int netmap_copy = 0; /* debugging, copy content */ 132 133 SYSCTL_INT(_dev_netmap, OID_AUTO, drop, CTLFLAG_RW, &netmap_drop, 0 , ""); 134 SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , ""); 135 SYSCTL_INT(_dev_netmap, OID_AUTO, copy, CTLFLAG_RW, &netmap_copy, 0 , ""); 136 137 #ifdef NM_BRIDGE /* support for netmap bridge */ 138 139 /* 140 * system parameters. 141 * 142 * All switched ports have prefix NM_NAME. 143 * The switch has a max of NM_BDG_MAXPORTS ports (often stored in a bitmap, 144 * so a practical upper bound is 64). 145 * Each tx ring is read-write, whereas rx rings are readonly (XXX not done yet). 146 * The virtual interfaces use per-queue lock instead of core lock. 147 * In the tx loop, we aggregate traffic in batches to make all operations 148 * faster. The batch size is NM_BDG_BATCH 149 */ 150 #define NM_NAME "vale" /* prefix for the interface */ 151 #define NM_BDG_MAXPORTS 16 /* up to 64 ? */ 152 #define NM_BRIDGE_RINGSIZE 1024 /* in the device */ 153 #define NM_BDG_HASH 1024 /* forwarding table entries */ 154 #define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */ 155 #define NM_BRIDGES 4 /* number of bridges */ 156 int netmap_bridge = NM_BDG_BATCH; /* bridge batch size */ 157 SYSCTL_INT(_dev_netmap, OID_AUTO, bridge, CTLFLAG_RW, &netmap_bridge, 0 , ""); 158 #ifdef linux 159 #define ADD_BDG_REF(ifp) (NA(ifp)->if_refcount++) 160 #define DROP_BDG_REF(ifp) (NA(ifp)->if_refcount-- <= 1) 161 #else /* !linux */ 162 #define ADD_BDG_REF(ifp) (ifp)->if_refcount++ 163 #define DROP_BDG_REF(ifp) refcount_release(&(ifp)->if_refcount) 164 #ifdef __FreeBSD__ 165 #include <sys/endian.h> 166 #include <sys/refcount.h> 167 #endif /* __FreeBSD__ */ 168 #endif /* !linux */ 169 170 static void bdg_netmap_attach(struct ifnet *ifp); 171 static int bdg_netmap_reg(struct ifnet *ifp, int onoff); 172 /* per-tx-queue entry */ 173 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 174 void *buf; 175 uint64_t dst; /* dst mask */ 176 uint32_t src; /* src index ? */ 177 uint16_t len; /* src len */ 178 #if 0 179 uint64_t src_mac; /* ignore 2 MSBytes */ 180 uint64_t dst_mac; /* ignore 2 MSBytes */ 181 uint32_t dst_idx; /* dst index in fwd table */ 182 uint32_t dst_buf; /* where we copy to */ 183 #endif 184 }; 185 186 struct nm_hash_ent { 187 uint64_t mac; /* the top 2 bytes are the epoch */ 188 uint64_t ports; 189 }; 190 191 /* 192 * Interfaces for a bridge are all in ports[]. 193 * The array has fixed size, an empty entry does not terminate 194 * the search. 195 */ 196 struct nm_bridge { 197 struct ifnet *bdg_ports[NM_BDG_MAXPORTS]; 198 int n_ports; 199 uint64_t act_ports; 200 int freelist; /* first buffer index */ 201 NM_SELINFO_T si; /* poll/select wait queue */ 202 NM_LOCK_T bdg_lock; /* protect the selinfo ? */ 203 204 /* the forwarding table, MAC+ports */ 205 struct nm_hash_ent ht[NM_BDG_HASH]; 206 207 int namelen; /* 0 means free */ 208 char basename[IFNAMSIZ]; 209 }; 210 211 struct nm_bridge nm_bridges[NM_BRIDGES]; 212 213 #define BDG_LOCK(b) mtx_lock(&(b)->bdg_lock) 214 #define BDG_UNLOCK(b) mtx_unlock(&(b)->bdg_lock) 215 216 /* 217 * NA(ifp)->bdg_port port index 218 */ 219 220 #ifndef linux 221 static inline void prefetch (const void *x) 222 { 223 #if defined(__i386__) || defined(__amd64__) 224 __asm volatile("prefetcht0 %0" :: "m" (*(const unsigned long *)x)); 225 #else 226 (void)x; 227 #endif 228 } 229 #endif /* !linux */ 230 231 // XXX only for multiples of 64 bytes, non overlapped. 232 static inline void 233 pkt_copy(void *_src, void *_dst, int l) 234 { 235 uint64_t *src = _src; 236 uint64_t *dst = _dst; 237 if (unlikely(l >= 1024)) { 238 bcopy(src, dst, l); 239 return; 240 } 241 for (; likely(l > 0); l-=64) { 242 *dst++ = *src++; 243 *dst++ = *src++; 244 *dst++ = *src++; 245 *dst++ = *src++; 246 *dst++ = *src++; 247 *dst++ = *src++; 248 *dst++ = *src++; 249 *dst++ = *src++; 250 } 251 } 252 253 /* 254 * locate a bridge among the existing ones. 255 * a ':' in the name terminates the bridge name. Otherwise, just NM_NAME. 256 * We assume that this is called with a name of at least NM_NAME chars. 257 */ 258 static struct nm_bridge * 259 nm_find_bridge(const char *name) 260 { 261 int i, l, namelen, e; 262 struct nm_bridge *b = NULL; 263 264 namelen = strlen(NM_NAME); /* base length */ 265 l = strlen(name); /* actual length */ 266 for (i = namelen + 1; i < l; i++) { 267 if (name[i] == ':') { 268 namelen = i; 269 break; 270 } 271 } 272 if (namelen >= IFNAMSIZ) 273 namelen = IFNAMSIZ; 274 ND("--- prefix is '%.*s' ---", namelen, name); 275 276 /* use the first entry for locking */ 277 BDG_LOCK(nm_bridges); // XXX do better 278 for (e = -1, i = 1; i < NM_BRIDGES; i++) { 279 b = nm_bridges + i; 280 if (b->namelen == 0) 281 e = i; /* record empty slot */ 282 else if (strncmp(name, b->basename, namelen) == 0) { 283 ND("found '%.*s' at %d", namelen, name, i); 284 break; 285 } 286 } 287 if (i == NM_BRIDGES) { /* all full */ 288 if (e == -1) { /* no empty slot */ 289 b = NULL; 290 } else { 291 b = nm_bridges + e; 292 strncpy(b->basename, name, namelen); 293 b->namelen = namelen; 294 } 295 } 296 BDG_UNLOCK(nm_bridges); 297 return b; 298 } 299 #endif /* NM_BRIDGE */ 300 301 /*------------- memory allocator -----------------*/ 302 #ifdef NETMAP_MEM2 303 #include "netmap_mem2.c" 304 #else /* !NETMAP_MEM2 */ 305 #include "netmap_mem1.c" 306 #endif /* !NETMAP_MEM2 */ 307 /*------------ end of memory allocator ----------*/ 308 309 /* Structure associated to each thread which registered an interface. */ 310 struct netmap_priv_d { 311 struct netmap_if *np_nifp; /* netmap interface descriptor. */ 312 313 struct ifnet *np_ifp; /* device for which we hold a reference */ 314 int np_ringid; /* from the ioctl */ 315 u_int np_qfirst, np_qlast; /* range of rings to scan */ 316 uint16_t np_txpoll; 317 }; 318 319 320 /* 321 * File descriptor's private data destructor. 322 * 323 * Call nm_register(ifp,0) to stop netmap mode on the interface and 324 * revert to normal operation. We expect that np_ifp has not gone. 325 */ 326 static void 327 netmap_dtor_locked(void *data) 328 { 329 struct netmap_priv_d *priv = data; 330 struct ifnet *ifp = priv->np_ifp; 331 struct netmap_adapter *na = NA(ifp); 332 struct netmap_if *nifp = priv->np_nifp; 333 334 na->refcount--; 335 if (na->refcount <= 0) { /* last instance */ 336 u_int i, j, lim; 337 338 D("deleting last netmap instance for %s", ifp->if_xname); 339 /* 340 * there is a race here with *_netmap_task() and 341 * netmap_poll(), which don't run under NETMAP_REG_LOCK. 342 * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP 343 * (aka NETMAP_DELETING(na)) are a unique marker that the 344 * device is dying. 345 * Before destroying stuff we sleep a bit, and then complete 346 * the job. NIOCREG should realize the condition and 347 * loop until they can continue; the other routines 348 * should check the condition at entry and quit if 349 * they cannot run. 350 */ 351 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 352 tsleep(na, 0, "NIOCUNREG", 4); 353 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 354 na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ 355 /* Wake up any sleeping threads. netmap_poll will 356 * then return POLLERR 357 */ 358 for (i = 0; i < na->num_tx_rings + 1; i++) 359 selwakeuppri(&na->tx_rings[i].si, PI_NET); 360 for (i = 0; i < na->num_rx_rings + 1; i++) 361 selwakeuppri(&na->rx_rings[i].si, PI_NET); 362 selwakeuppri(&na->tx_si, PI_NET); 363 selwakeuppri(&na->rx_si, PI_NET); 364 /* release all buffers */ 365 NMA_LOCK(); 366 for (i = 0; i < na->num_tx_rings + 1; i++) { 367 struct netmap_ring *ring = na->tx_rings[i].ring; 368 lim = na->tx_rings[i].nkr_num_slots; 369 for (j = 0; j < lim; j++) 370 netmap_free_buf(nifp, ring->slot[j].buf_idx); 371 } 372 for (i = 0; i < na->num_rx_rings + 1; i++) { 373 struct netmap_ring *ring = na->rx_rings[i].ring; 374 lim = na->rx_rings[i].nkr_num_slots; 375 for (j = 0; j < lim; j++) 376 netmap_free_buf(nifp, ring->slot[j].buf_idx); 377 } 378 NMA_UNLOCK(); 379 netmap_free_rings(na); 380 wakeup(na); 381 } 382 netmap_if_free(nifp); 383 } 384 385 static void 386 nm_if_rele(struct ifnet *ifp) 387 { 388 #ifndef NM_BRIDGE 389 if_rele(ifp); 390 #else /* NM_BRIDGE */ 391 int i, full; 392 struct nm_bridge *b; 393 394 if (strncmp(ifp->if_xname, NM_NAME, sizeof(NM_NAME) - 1)) { 395 if_rele(ifp); 396 return; 397 } 398 if (!DROP_BDG_REF(ifp)) 399 return; 400 b = ifp->if_bridge; 401 BDG_LOCK(nm_bridges); 402 BDG_LOCK(b); 403 ND("want to disconnect %s from the bridge", ifp->if_xname); 404 full = 0; 405 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 406 if (b->bdg_ports[i] == ifp) { 407 b->bdg_ports[i] = NULL; 408 bzero(ifp, sizeof(*ifp)); 409 free(ifp, M_DEVBUF); 410 break; 411 } 412 else if (b->bdg_ports[i] != NULL) 413 full = 1; 414 } 415 BDG_UNLOCK(b); 416 if (full == 0) { 417 ND("freeing bridge %d", b - nm_bridges); 418 b->namelen = 0; 419 } 420 BDG_UNLOCK(nm_bridges); 421 if (i == NM_BDG_MAXPORTS) 422 D("ouch, cannot find ifp to remove"); 423 #endif /* NM_BRIDGE */ 424 } 425 426 static void 427 netmap_dtor(void *data) 428 { 429 struct netmap_priv_d *priv = data; 430 struct ifnet *ifp = priv->np_ifp; 431 struct netmap_adapter *na = NA(ifp); 432 433 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 434 netmap_dtor_locked(data); 435 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 436 437 nm_if_rele(ifp); 438 bzero(priv, sizeof(*priv)); /* XXX for safety */ 439 free(priv, M_DEVBUF); 440 } 441 442 443 /* 444 * mmap(2) support for the "netmap" device. 445 * 446 * Expose all the memory previously allocated by our custom memory 447 * allocator: this way the user has only to issue a single mmap(2), and 448 * can work on all the data structures flawlessly. 449 * 450 * Return 0 on success, -1 otherwise. 451 */ 452 453 #ifdef __FreeBSD__ 454 static int 455 netmap_mmap(__unused struct cdev *dev, 456 #if __FreeBSD_version < 900000 457 vm_offset_t offset, vm_paddr_t *paddr, int nprot 458 #else 459 vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, 460 __unused vm_memattr_t *memattr 461 #endif 462 ) 463 { 464 if (nprot & PROT_EXEC) 465 return (-1); // XXX -1 or EINVAL ? 466 467 ND("request for offset 0x%x", (uint32_t)offset); 468 *paddr = netmap_ofstophys(offset); 469 470 return (0); 471 } 472 #endif /* __FreeBSD__ */ 473 474 475 /* 476 * Handlers for synchronization of the queues from/to the host. 477 * 478 * netmap_sync_to_host() passes packets up. We are called from a 479 * system call in user process context, and the only contention 480 * can be among multiple user threads erroneously calling 481 * this routine concurrently. In principle we should not even 482 * need to lock. 483 */ 484 static void 485 netmap_sync_to_host(struct netmap_adapter *na) 486 { 487 struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings]; 488 struct netmap_ring *ring = kring->ring; 489 struct mbuf *head = NULL, *tail = NULL, *m; 490 u_int k, n, lim = kring->nkr_num_slots - 1; 491 492 k = ring->cur; 493 if (k > lim) { 494 netmap_ring_reinit(kring); 495 return; 496 } 497 // na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 498 499 /* Take packets from hwcur to cur and pass them up. 500 * In case of no buffers we give up. At the end of the loop, 501 * the queue is drained in all cases. 502 */ 503 for (n = kring->nr_hwcur; n != k;) { 504 struct netmap_slot *slot = &ring->slot[n]; 505 506 n = (n == lim) ? 0 : n + 1; 507 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { 508 D("bad pkt at %d len %d", n, slot->len); 509 continue; 510 } 511 m = m_devget(NMB(slot), slot->len, 0, na->ifp, NULL); 512 513 if (m == NULL) 514 break; 515 if (tail) 516 tail->m_nextpkt = m; 517 else 518 head = m; 519 tail = m; 520 m->m_nextpkt = NULL; 521 } 522 kring->nr_hwcur = k; 523 kring->nr_hwavail = ring->avail = lim; 524 // na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 525 526 /* send packets up, outside the lock */ 527 while ((m = head) != NULL) { 528 head = head->m_nextpkt; 529 m->m_nextpkt = NULL; 530 if (netmap_verbose & NM_VERB_HOST) 531 D("sending up pkt %p size %d", m, MBUF_LEN(m)); 532 NM_SEND_UP(na->ifp, m); 533 } 534 } 535 536 /* 537 * rxsync backend for packets coming from the host stack. 538 * They have been put in the queue by netmap_start() so we 539 * need to protect access to the kring using a lock. 540 * 541 * This routine also does the selrecord if called from the poll handler 542 * (we know because td != NULL). 543 */ 544 static void 545 netmap_sync_from_host(struct netmap_adapter *na, struct thread *td) 546 { 547 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 548 struct netmap_ring *ring = kring->ring; 549 u_int j, n, lim = kring->nkr_num_slots; 550 u_int k = ring->cur, resvd = ring->reserved; 551 552 na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); 553 if (k >= lim) { 554 netmap_ring_reinit(kring); 555 return; 556 } 557 /* new packets are already set in nr_hwavail */ 558 /* skip past packets that userspace has released */ 559 j = kring->nr_hwcur; 560 if (resvd > 0) { 561 if (resvd + ring->avail >= lim + 1) { 562 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 563 ring->reserved = resvd = 0; // XXX panic... 564 } 565 k = (k >= resvd) ? k - resvd : k + lim - resvd; 566 } 567 if (j != k) { 568 n = k >= j ? k - j : k + lim - j; 569 kring->nr_hwavail -= n; 570 kring->nr_hwcur = k; 571 } 572 k = ring->avail = kring->nr_hwavail - resvd; 573 if (k == 0 && td) 574 selrecord(td, &kring->si); 575 if (k && (netmap_verbose & NM_VERB_HOST)) 576 D("%d pkts from stack", k); 577 na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); 578 } 579 580 581 /* 582 * get a refcounted reference to an interface. 583 * Return ENXIO if the interface does not exist, EINVAL if netmap 584 * is not supported by the interface. 585 * If successful, hold a reference. 586 */ 587 static int 588 get_ifp(const char *name, struct ifnet **ifp) 589 { 590 #ifdef NM_BRIDGE 591 struct ifnet *iter = NULL; 592 593 do { 594 struct nm_bridge *b; 595 int i, l, cand = -1; 596 597 if (strncmp(name, NM_NAME, sizeof(NM_NAME) - 1)) 598 break; 599 b = nm_find_bridge(name); 600 if (b == NULL) { 601 D("no bridges available for '%s'", name); 602 return (ENXIO); 603 } 604 /* XXX locking */ 605 BDG_LOCK(b); 606 /* lookup in the local list of ports */ 607 for (i = 0; i < NM_BDG_MAXPORTS; i++) { 608 iter = b->bdg_ports[i]; 609 if (iter == NULL) { 610 if (cand == -1) 611 cand = i; /* potential insert point */ 612 continue; 613 } 614 if (!strcmp(iter->if_xname, name)) { 615 ADD_BDG_REF(iter); 616 ND("found existing interface"); 617 BDG_UNLOCK(b); 618 break; 619 } 620 } 621 if (i < NM_BDG_MAXPORTS) /* already unlocked */ 622 break; 623 if (cand == -1) { 624 D("bridge full, cannot create new port"); 625 no_port: 626 BDG_UNLOCK(b); 627 *ifp = NULL; 628 return EINVAL; 629 } 630 ND("create new bridge port %s", name); 631 /* space for forwarding list after the ifnet */ 632 l = sizeof(*iter) + 633 sizeof(struct nm_bdg_fwd)*NM_BDG_BATCH ; 634 iter = malloc(l, M_DEVBUF, M_NOWAIT | M_ZERO); 635 if (!iter) 636 goto no_port; 637 strcpy(iter->if_xname, name); 638 bdg_netmap_attach(iter); 639 b->bdg_ports[cand] = iter; 640 iter->if_bridge = b; 641 ADD_BDG_REF(iter); 642 BDG_UNLOCK(b); 643 ND("attaching virtual bridge %p", b); 644 } while (0); 645 *ifp = iter; 646 if (! *ifp) 647 #endif /* NM_BRIDGE */ 648 *ifp = ifunit_ref(name); 649 if (*ifp == NULL) 650 return (ENXIO); 651 /* can do this if the capability exists and if_pspare[0] 652 * points to the netmap descriptor. 653 */ 654 if ((*ifp)->if_capabilities & IFCAP_NETMAP && NA(*ifp)) 655 return 0; /* valid pointer, we hold the refcount */ 656 nm_if_rele(*ifp); 657 return EINVAL; // not NETMAP capable 658 } 659 660 661 /* 662 * Error routine called when txsync/rxsync detects an error. 663 * Can't do much more than resetting cur = hwcur, avail = hwavail. 664 * Return 1 on reinit. 665 * 666 * This routine is only called by the upper half of the kernel. 667 * It only reads hwcur (which is changed only by the upper half, too) 668 * and hwavail (which may be changed by the lower half, but only on 669 * a tx ring and only to increase it, so any error will be recovered 670 * on the next call). For the above, we don't strictly need to call 671 * it under lock. 672 */ 673 int 674 netmap_ring_reinit(struct netmap_kring *kring) 675 { 676 struct netmap_ring *ring = kring->ring; 677 u_int i, lim = kring->nkr_num_slots - 1; 678 int errors = 0; 679 680 D("called for %s", kring->na->ifp->if_xname); 681 if (ring->cur > lim) 682 errors++; 683 for (i = 0; i <= lim; i++) { 684 u_int idx = ring->slot[i].buf_idx; 685 u_int len = ring->slot[i].len; 686 if (idx < 2 || idx >= netmap_total_buffers) { 687 if (!errors++) 688 D("bad buffer at slot %d idx %d len %d ", i, idx, len); 689 ring->slot[i].buf_idx = 0; 690 ring->slot[i].len = 0; 691 } else if (len > NETMAP_BUF_SIZE) { 692 ring->slot[i].len = 0; 693 if (!errors++) 694 D("bad len %d at slot %d idx %d", 695 len, i, idx); 696 } 697 } 698 if (errors) { 699 int pos = kring - kring->na->tx_rings; 700 int n = kring->na->num_tx_rings + 1; 701 702 D("total %d errors", errors); 703 errors++; 704 D("%s %s[%d] reinit, cur %d -> %d avail %d -> %d", 705 kring->na->ifp->if_xname, 706 pos < n ? "TX" : "RX", pos < n ? pos : pos - n, 707 ring->cur, kring->nr_hwcur, 708 ring->avail, kring->nr_hwavail); 709 ring->cur = kring->nr_hwcur; 710 ring->avail = kring->nr_hwavail; 711 } 712 return (errors ? 1 : 0); 713 } 714 715 716 /* 717 * Set the ring ID. For devices with a single queue, a request 718 * for all rings is the same as a single ring. 719 */ 720 static int 721 netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) 722 { 723 struct ifnet *ifp = priv->np_ifp; 724 struct netmap_adapter *na = NA(ifp); 725 u_int i = ringid & NETMAP_RING_MASK; 726 /* initially (np_qfirst == np_qlast) we don't want to lock */ 727 int need_lock = (priv->np_qfirst != priv->np_qlast); 728 int lim = na->num_rx_rings; 729 730 if (na->num_tx_rings > lim) 731 lim = na->num_tx_rings; 732 if ( (ringid & NETMAP_HW_RING) && i >= lim) { 733 D("invalid ring id %d", i); 734 return (EINVAL); 735 } 736 if (need_lock) 737 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 738 priv->np_ringid = ringid; 739 if (ringid & NETMAP_SW_RING) { 740 priv->np_qfirst = NETMAP_SW_RING; 741 priv->np_qlast = 0; 742 } else if (ringid & NETMAP_HW_RING) { 743 priv->np_qfirst = i; 744 priv->np_qlast = i + 1; 745 } else { 746 priv->np_qfirst = 0; 747 priv->np_qlast = NETMAP_HW_RING ; 748 } 749 priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; 750 if (need_lock) 751 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 752 if (ringid & NETMAP_SW_RING) 753 D("ringid %s set to SW RING", ifp->if_xname); 754 else if (ringid & NETMAP_HW_RING) 755 D("ringid %s set to HW RING %d", ifp->if_xname, 756 priv->np_qfirst); 757 else 758 D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim); 759 return 0; 760 } 761 762 /* 763 * ioctl(2) support for the "netmap" device. 764 * 765 * Following a list of accepted commands: 766 * - NIOCGINFO 767 * - SIOCGIFADDR just for convenience 768 * - NIOCREGIF 769 * - NIOCUNREGIF 770 * - NIOCTXSYNC 771 * - NIOCRXSYNC 772 * 773 * Return 0 on success, errno otherwise. 774 */ 775 static int 776 netmap_ioctl(__unused struct cdev *dev, u_long cmd, caddr_t data, 777 __unused int fflag, struct thread *td) 778 { 779 struct netmap_priv_d *priv = NULL; 780 struct ifnet *ifp; 781 struct nmreq *nmr = (struct nmreq *) data; 782 struct netmap_adapter *na; 783 int error; 784 u_int i, lim; 785 struct netmap_if *nifp; 786 787 #ifdef linux 788 #define devfs_get_cdevpriv(pp) \ 789 ({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \ 790 (*pp ? 0 : ENOENT); }) 791 792 /* devfs_set_cdevpriv cannot fail on linux */ 793 #define devfs_set_cdevpriv(p, fn) \ 794 ({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); }) 795 796 797 #define devfs_clear_cdevpriv() do { \ 798 netmap_dtor(priv); ((struct file *)td)->private_data = 0; \ 799 } while (0) 800 #endif /* linux */ 801 802 CURVNET_SET(TD_TO_VNET(td)); 803 804 error = devfs_get_cdevpriv((void **)&priv); 805 if (error != ENOENT && error != 0) { 806 CURVNET_RESTORE(); 807 return (error); 808 } 809 810 error = 0; /* Could be ENOENT */ 811 nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */ 812 switch (cmd) { 813 case NIOCGINFO: /* return capabilities etc */ 814 /* memsize is always valid */ 815 nmr->nr_memsize = nm_mem->nm_totalsize; 816 nmr->nr_offset = 0; 817 nmr->nr_rx_rings = nmr->nr_tx_rings = 0; 818 nmr->nr_rx_slots = nmr->nr_tx_slots = 0; 819 if (nmr->nr_version != NETMAP_API) { 820 D("API mismatch got %d have %d", 821 nmr->nr_version, NETMAP_API); 822 nmr->nr_version = NETMAP_API; 823 error = EINVAL; 824 break; 825 } 826 if (nmr->nr_name[0] == '\0') /* just get memory info */ 827 break; 828 error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */ 829 if (error) 830 break; 831 na = NA(ifp); /* retrieve netmap_adapter */ 832 nmr->nr_rx_rings = na->num_rx_rings; 833 nmr->nr_tx_rings = na->num_tx_rings; 834 nmr->nr_rx_slots = na->num_rx_desc; 835 nmr->nr_tx_slots = na->num_tx_desc; 836 nm_if_rele(ifp); /* return the refcount */ 837 break; 838 839 case NIOCREGIF: 840 if (nmr->nr_version != NETMAP_API) { 841 nmr->nr_version = NETMAP_API; 842 error = EINVAL; 843 break; 844 } 845 if (priv != NULL) { /* thread already registered */ 846 error = netmap_set_ringid(priv, nmr->nr_ringid); 847 break; 848 } 849 /* find the interface and a reference */ 850 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 851 if (error) 852 break; 853 na = NA(ifp); /* retrieve netmap adapter */ 854 /* 855 * Allocate the private per-thread structure. 856 * XXX perhaps we can use a blocking malloc ? 857 */ 858 priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, 859 M_NOWAIT | M_ZERO); 860 if (priv == NULL) { 861 error = ENOMEM; 862 nm_if_rele(ifp); /* return the refcount */ 863 break; 864 } 865 866 for (i = 10; i > 0; i--) { 867 na->nm_lock(ifp, NETMAP_REG_LOCK, 0); 868 if (!NETMAP_DELETING(na)) 869 break; 870 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 871 tsleep(na, 0, "NIOCREGIF", hz/10); 872 } 873 if (i == 0) { 874 D("too many NIOCREGIF attempts, give up"); 875 error = EINVAL; 876 free(priv, M_DEVBUF); 877 nm_if_rele(ifp); /* return the refcount */ 878 break; 879 } 880 881 priv->np_ifp = ifp; /* store the reference */ 882 error = netmap_set_ringid(priv, nmr->nr_ringid); 883 if (error) 884 goto error; 885 priv->np_nifp = nifp = netmap_if_new(nmr->nr_name, na); 886 if (nifp == NULL) { /* allocation failed */ 887 error = ENOMEM; 888 } else if (ifp->if_capenable & IFCAP_NETMAP) { 889 /* was already set */ 890 } else { 891 /* Otherwise set the card in netmap mode 892 * and make it use the shared buffers. 893 */ 894 for (i = 0 ; i < na->num_tx_rings + 1; i++) 895 mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock", MTX_NETWORK_LOCK, MTX_DEF); 896 for (i = 0 ; i < na->num_rx_rings + 1; i++) { 897 mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock", MTX_NETWORK_LOCK, MTX_DEF); 898 } 899 error = na->nm_register(ifp, 1); /* mode on */ 900 if (error) 901 netmap_dtor_locked(priv); 902 } 903 904 if (error) { /* reg. failed, release priv and ref */ 905 error: 906 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 907 nm_if_rele(ifp); /* return the refcount */ 908 bzero(priv, sizeof(*priv)); 909 free(priv, M_DEVBUF); 910 break; 911 } 912 913 na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); 914 error = devfs_set_cdevpriv(priv, netmap_dtor); 915 916 if (error != 0) { 917 /* could not assign the private storage for the 918 * thread, call the destructor explicitly. 919 */ 920 netmap_dtor(priv); 921 break; 922 } 923 924 /* return the offset of the netmap_if object */ 925 nmr->nr_rx_rings = na->num_rx_rings; 926 nmr->nr_tx_rings = na->num_tx_rings; 927 nmr->nr_rx_slots = na->num_rx_desc; 928 nmr->nr_tx_slots = na->num_tx_desc; 929 nmr->nr_memsize = nm_mem->nm_totalsize; 930 nmr->nr_offset = netmap_if_offset(nifp); 931 break; 932 933 case NIOCUNREGIF: 934 if (priv == NULL) { 935 error = ENXIO; 936 break; 937 } 938 939 /* the interface is unregistered inside the 940 destructor of the private data. */ 941 devfs_clear_cdevpriv(); 942 break; 943 944 case NIOCTXSYNC: 945 case NIOCRXSYNC: 946 if (priv == NULL) { 947 error = ENXIO; 948 break; 949 } 950 ifp = priv->np_ifp; /* we have a reference */ 951 na = NA(ifp); /* retrieve netmap adapter */ 952 if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */ 953 if (cmd == NIOCTXSYNC) 954 netmap_sync_to_host(na); 955 else 956 netmap_sync_from_host(na, NULL); 957 break; 958 } 959 /* find the last ring to scan */ 960 lim = priv->np_qlast; 961 if (lim == NETMAP_HW_RING) 962 lim = (cmd == NIOCTXSYNC) ? 963 na->num_tx_rings : na->num_rx_rings; 964 965 for (i = priv->np_qfirst; i < lim; i++) { 966 if (cmd == NIOCTXSYNC) { 967 struct netmap_kring *kring = &na->tx_rings[i]; 968 if (netmap_verbose & NM_VERB_TXSYNC) 969 D("pre txsync ring %d cur %d hwcur %d", 970 i, kring->ring->cur, 971 kring->nr_hwcur); 972 na->nm_txsync(ifp, i, 1 /* do lock */); 973 if (netmap_verbose & NM_VERB_TXSYNC) 974 D("post txsync ring %d cur %d hwcur %d", 975 i, kring->ring->cur, 976 kring->nr_hwcur); 977 } else { 978 na->nm_rxsync(ifp, i, 1 /* do lock */); 979 microtime(&na->rx_rings[i].ring->ts); 980 } 981 } 982 983 break; 984 985 #ifdef __FreeBSD__ 986 case BIOCIMMEDIATE: 987 case BIOCGHDRCMPLT: 988 case BIOCSHDRCMPLT: 989 case BIOCSSEESENT: 990 D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); 991 break; 992 993 default: /* allow device-specific ioctls */ 994 { 995 struct socket so; 996 bzero(&so, sizeof(so)); 997 error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ 998 if (error) 999 break; 1000 so.so_vnet = ifp->if_vnet; 1001 // so->so_proto not null. 1002 error = ifioctl(&so, cmd, data, td); 1003 nm_if_rele(ifp); 1004 break; 1005 } 1006 1007 #else /* linux */ 1008 default: 1009 error = EOPNOTSUPP; 1010 #endif /* linux */ 1011 } 1012 1013 CURVNET_RESTORE(); 1014 return (error); 1015 } 1016 1017 1018 /* 1019 * select(2) and poll(2) handlers for the "netmap" device. 1020 * 1021 * Can be called for one or more queues. 1022 * Return true the event mask corresponding to ready events. 1023 * If there are no ready events, do a selrecord on either individual 1024 * selfd or on the global one. 1025 * Device-dependent parts (locking and sync of tx/rx rings) 1026 * are done through callbacks. 1027 * 1028 * On linux, pwait is the poll table. 1029 * If pwait == NULL someone else already woke up before. We can report 1030 * events but they are filtered upstream. 1031 * If pwait != NULL, then pwait->key contains the list of events. 1032 */ 1033 static int 1034 netmap_poll(__unused struct cdev *dev, int events, struct thread *td) 1035 { 1036 struct netmap_priv_d *priv = NULL; 1037 struct netmap_adapter *na; 1038 struct ifnet *ifp; 1039 struct netmap_kring *kring; 1040 u_int core_lock, i, check_all, want_tx, want_rx, revents = 0; 1041 u_int lim_tx, lim_rx; 1042 enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */ 1043 1044 if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) 1045 return POLLERR; 1046 1047 ifp = priv->np_ifp; 1048 // XXX check for deleting() ? 1049 if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) 1050 return POLLERR; 1051 1052 if (netmap_verbose & 0x8000) 1053 D("device %s events 0x%x", ifp->if_xname, events); 1054 want_tx = events & (POLLOUT | POLLWRNORM); 1055 want_rx = events & (POLLIN | POLLRDNORM); 1056 1057 na = NA(ifp); /* retrieve netmap adapter */ 1058 1059 lim_tx = na->num_tx_rings; 1060 lim_rx = na->num_rx_rings; 1061 /* how many queues we are scanning */ 1062 if (priv->np_qfirst == NETMAP_SW_RING) { 1063 if (priv->np_txpoll || want_tx) { 1064 /* push any packets up, then we are always ready */ 1065 kring = &na->tx_rings[lim_tx]; 1066 netmap_sync_to_host(na); 1067 revents |= want_tx; 1068 } 1069 if (want_rx) { 1070 kring = &na->rx_rings[lim_rx]; 1071 if (kring->ring->avail == 0) 1072 netmap_sync_from_host(na, td); 1073 if (kring->ring->avail > 0) { 1074 revents |= want_rx; 1075 } 1076 } 1077 return (revents); 1078 } 1079 1080 /* 1081 * check_all is set if the card has more than one queue and 1082 * the client is polling all of them. If true, we sleep on 1083 * the "global" selfd, otherwise we sleep on individual selfd 1084 * (we can only sleep on one of them per direction). 1085 * The interrupt routine in the driver should always wake on 1086 * the individual selfd, and also on the global one if the card 1087 * has more than one ring. 1088 * 1089 * If the card has only one lock, we just use that. 1090 * If the card has separate ring locks, we just use those 1091 * unless we are doing check_all, in which case the whole 1092 * loop is wrapped by the global lock. 1093 * We acquire locks only when necessary: if poll is called 1094 * when buffers are available, we can just return without locks. 1095 * 1096 * rxsync() is only called if we run out of buffers on a POLLIN. 1097 * txsync() is called if we run out of buffers on POLLOUT, or 1098 * there are pending packets to send. The latter can be disabled 1099 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 1100 */ 1101 check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1); 1102 1103 /* 1104 * core_lock indicates what to do with the core lock. 1105 * The core lock is used when either the card has no individual 1106 * locks, or it has individual locks but we are cheking all 1107 * rings so we need the core lock to avoid missing wakeup events. 1108 * 1109 * It has three possible states: 1110 * NO_CL we don't need to use the core lock, e.g. 1111 * because we are protected by individual locks. 1112 * NEED_CL we need the core lock. In this case, when we 1113 * call the lock routine, move to LOCKED_CL 1114 * to remember to release the lock once done. 1115 * LOCKED_CL core lock is set, so we need to release it. 1116 */ 1117 core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL; 1118 #ifdef NM_BRIDGE 1119 /* the bridge uses separate locks */ 1120 if (na->nm_register == bdg_netmap_reg) { 1121 ND("not using core lock for %s", ifp->if_xname); 1122 core_lock = NO_CL; 1123 } 1124 #endif /* NM_BRIDGE */ 1125 if (priv->np_qlast != NETMAP_HW_RING) { 1126 lim_tx = lim_rx = priv->np_qlast; 1127 } 1128 1129 /* 1130 * We start with a lock free round which is good if we have 1131 * data available. If this fails, then lock and call the sync 1132 * routines. 1133 */ 1134 for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) { 1135 kring = &na->rx_rings[i]; 1136 if (kring->ring->avail > 0) { 1137 revents |= want_rx; 1138 want_rx = 0; /* also breaks the loop */ 1139 } 1140 } 1141 for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) { 1142 kring = &na->tx_rings[i]; 1143 if (kring->ring->avail > 0) { 1144 revents |= want_tx; 1145 want_tx = 0; /* also breaks the loop */ 1146 } 1147 } 1148 1149 /* 1150 * If we to push packets out (priv->np_txpoll) or want_tx is 1151 * still set, we do need to run the txsync calls (on all rings, 1152 * to avoid that the tx rings stall). 1153 */ 1154 if (priv->np_txpoll || want_tx) { 1155 for (i = priv->np_qfirst; i < lim_tx; i++) { 1156 kring = &na->tx_rings[i]; 1157 /* 1158 * Skip the current ring if want_tx == 0 1159 * (we have already done a successful sync on 1160 * a previous ring) AND kring->cur == kring->hwcur 1161 * (there are no pending transmissions for this ring). 1162 */ 1163 if (!want_tx && kring->ring->cur == kring->nr_hwcur) 1164 continue; 1165 if (core_lock == NEED_CL) { 1166 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1167 core_lock = LOCKED_CL; 1168 } 1169 if (na->separate_locks) 1170 na->nm_lock(ifp, NETMAP_TX_LOCK, i); 1171 if (netmap_verbose & NM_VERB_TXSYNC) 1172 D("send %d on %s %d", 1173 kring->ring->cur, 1174 ifp->if_xname, i); 1175 if (na->nm_txsync(ifp, i, 0 /* no lock */)) 1176 revents |= POLLERR; 1177 1178 /* Check avail/call selrecord only if called with POLLOUT */ 1179 if (want_tx) { 1180 if (kring->ring->avail > 0) { 1181 /* stop at the first ring. We don't risk 1182 * starvation. 1183 */ 1184 revents |= want_tx; 1185 want_tx = 0; 1186 } else if (!check_all) 1187 selrecord(td, &kring->si); 1188 } 1189 if (na->separate_locks) 1190 na->nm_lock(ifp, NETMAP_TX_UNLOCK, i); 1191 } 1192 } 1193 1194 /* 1195 * now if want_rx is still set we need to lock and rxsync. 1196 * Do it on all rings because otherwise we starve. 1197 */ 1198 if (want_rx) { 1199 for (i = priv->np_qfirst; i < lim_rx; i++) { 1200 kring = &na->rx_rings[i]; 1201 if (core_lock == NEED_CL) { 1202 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1203 core_lock = LOCKED_CL; 1204 } 1205 if (na->separate_locks) 1206 na->nm_lock(ifp, NETMAP_RX_LOCK, i); 1207 1208 if (na->nm_rxsync(ifp, i, 0 /* no lock */)) 1209 revents |= POLLERR; 1210 if (netmap_no_timestamp == 0 || 1211 kring->ring->flags & NR_TIMESTAMP) { 1212 microtime(&kring->ring->ts); 1213 } 1214 1215 if (kring->ring->avail > 0) 1216 revents |= want_rx; 1217 else if (!check_all) 1218 selrecord(td, &kring->si); 1219 if (na->separate_locks) 1220 na->nm_lock(ifp, NETMAP_RX_UNLOCK, i); 1221 } 1222 } 1223 if (check_all && revents == 0) { /* signal on the global queue */ 1224 if (want_tx) 1225 selrecord(td, &na->tx_si); 1226 if (want_rx) 1227 selrecord(td, &na->rx_si); 1228 } 1229 if (core_lock == LOCKED_CL) 1230 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1231 1232 return (revents); 1233 } 1234 1235 /*------- driver support routines ------*/ 1236 1237 /* 1238 * default lock wrapper. 1239 */ 1240 static void 1241 netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid) 1242 { 1243 struct netmap_adapter *na = NA(dev); 1244 1245 switch (what) { 1246 #ifdef linux /* some system do not need lock on register */ 1247 case NETMAP_REG_LOCK: 1248 case NETMAP_REG_UNLOCK: 1249 break; 1250 #endif /* linux */ 1251 1252 case NETMAP_CORE_LOCK: 1253 mtx_lock(&na->core_lock); 1254 break; 1255 1256 case NETMAP_CORE_UNLOCK: 1257 mtx_unlock(&na->core_lock); 1258 break; 1259 1260 case NETMAP_TX_LOCK: 1261 mtx_lock(&na->tx_rings[queueid].q_lock); 1262 break; 1263 1264 case NETMAP_TX_UNLOCK: 1265 mtx_unlock(&na->tx_rings[queueid].q_lock); 1266 break; 1267 1268 case NETMAP_RX_LOCK: 1269 mtx_lock(&na->rx_rings[queueid].q_lock); 1270 break; 1271 1272 case NETMAP_RX_UNLOCK: 1273 mtx_unlock(&na->rx_rings[queueid].q_lock); 1274 break; 1275 } 1276 } 1277 1278 1279 /* 1280 * Initialize a ``netmap_adapter`` object created by driver on attach. 1281 * We allocate a block of memory with room for a struct netmap_adapter 1282 * plus two sets of N+2 struct netmap_kring (where N is the number 1283 * of hardware rings): 1284 * krings 0..N-1 are for the hardware queues. 1285 * kring N is for the host stack queue 1286 * kring N+1 is only used for the selinfo for all queues. 1287 * Return 0 on success, ENOMEM otherwise. 1288 * 1289 * na->num_tx_rings can be set for cards with different tx/rx setups 1290 */ 1291 int 1292 netmap_attach(struct netmap_adapter *na, int num_queues) 1293 { 1294 int n, size; 1295 void *buf; 1296 struct ifnet *ifp = na->ifp; 1297 1298 if (ifp == NULL) { 1299 D("ifp not set, giving up"); 1300 return EINVAL; 1301 } 1302 /* clear other fields ? */ 1303 na->refcount = 0; 1304 if (na->num_tx_rings == 0) 1305 na->num_tx_rings = num_queues; 1306 na->num_rx_rings = num_queues; 1307 /* on each direction we have N+1 resources 1308 * 0..n-1 are the hardware rings 1309 * n is the ring attached to the stack. 1310 */ 1311 n = na->num_rx_rings + na->num_tx_rings + 2; 1312 size = sizeof(*na) + n * sizeof(struct netmap_kring); 1313 1314 buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); 1315 if (buf) { 1316 WNA(ifp) = buf; 1317 na->tx_rings = (void *)((char *)buf + sizeof(*na)); 1318 na->rx_rings = na->tx_rings + na->num_tx_rings + 1; 1319 bcopy(na, buf, sizeof(*na)); 1320 ifp->if_capabilities |= IFCAP_NETMAP; 1321 1322 na = buf; 1323 if (na->nm_lock == NULL) { 1324 ND("using default locks for %s", ifp->if_xname); 1325 na->nm_lock = netmap_lock_wrapper; 1326 /* core lock initialized here. 1327 * others initialized after netmap_if_new 1328 */ 1329 mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK, MTX_DEF); 1330 } 1331 } 1332 #ifdef linux 1333 if (ifp->netdev_ops) { 1334 D("netdev_ops %p", ifp->netdev_ops); 1335 /* prepare a clone of the netdev ops */ 1336 na->nm_ndo = *ifp->netdev_ops; 1337 } 1338 na->nm_ndo.ndo_start_xmit = netmap_start_linux; 1339 #endif 1340 D("%s for %s", buf ? "ok" : "failed", ifp->if_xname); 1341 1342 return (buf ? 0 : ENOMEM); 1343 } 1344 1345 1346 /* 1347 * Free the allocated memory linked to the given ``netmap_adapter`` 1348 * object. 1349 */ 1350 void 1351 netmap_detach(struct ifnet *ifp) 1352 { 1353 u_int i; 1354 struct netmap_adapter *na = NA(ifp); 1355 1356 if (!na) 1357 return; 1358 1359 for (i = 0; i < na->num_tx_rings + 1; i++) { 1360 knlist_destroy(&na->tx_rings[i].si.si_note); 1361 mtx_destroy(&na->tx_rings[i].q_lock); 1362 } 1363 for (i = 0; i < na->num_rx_rings + 1; i++) { 1364 knlist_destroy(&na->rx_rings[i].si.si_note); 1365 mtx_destroy(&na->rx_rings[i].q_lock); 1366 } 1367 knlist_destroy(&na->tx_si.si_note); 1368 knlist_destroy(&na->rx_si.si_note); 1369 bzero(na, sizeof(*na)); 1370 WNA(ifp) = NULL; 1371 free(na, M_DEVBUF); 1372 } 1373 1374 1375 /* 1376 * Intercept packets from the network stack and pass them 1377 * to netmap as incoming packets on the 'software' ring. 1378 * We are not locked when called. 1379 */ 1380 int 1381 netmap_start(struct ifnet *ifp, struct mbuf *m) 1382 { 1383 struct netmap_adapter *na = NA(ifp); 1384 struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; 1385 u_int i, len = MBUF_LEN(m); 1386 int error = EBUSY, lim = kring->nkr_num_slots - 1; 1387 struct netmap_slot *slot; 1388 1389 if (netmap_verbose & NM_VERB_HOST) 1390 D("%s packet %d len %d from the stack", ifp->if_xname, 1391 kring->nr_hwcur + kring->nr_hwavail, len); 1392 na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); 1393 if (kring->nr_hwavail >= lim) { 1394 if (netmap_verbose) 1395 D("stack ring %s full\n", ifp->if_xname); 1396 goto done; /* no space */ 1397 } 1398 if (len > NETMAP_BUF_SIZE) { 1399 D("drop packet size %d > %d", len, NETMAP_BUF_SIZE); 1400 goto done; /* too long for us */ 1401 } 1402 1403 /* compute the insert position */ 1404 i = kring->nr_hwcur + kring->nr_hwavail; 1405 if (i > lim) 1406 i -= lim + 1; 1407 slot = &kring->ring->slot[i]; 1408 m_copydata(m, 0, len, NMB(slot)); 1409 slot->len = len; 1410 kring->nr_hwavail++; 1411 if (netmap_verbose & NM_VERB_HOST) 1412 D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings); 1413 selwakeuppri(&kring->si, PI_NET); 1414 error = 0; 1415 done: 1416 na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); 1417 1418 /* release the mbuf in either cases of success or failure. As an 1419 * alternative, put the mbuf in a free list and free the list 1420 * only when really necessary. 1421 */ 1422 m_freem(m); 1423 1424 return (error); 1425 } 1426 1427 1428 /* 1429 * netmap_reset() is called by the driver routines when reinitializing 1430 * a ring. The driver is in charge of locking to protect the kring. 1431 * If netmap mode is not set just return NULL. 1432 */ 1433 struct netmap_slot * 1434 netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, 1435 u_int new_cur) 1436 { 1437 struct netmap_kring *kring; 1438 int new_hwofs, lim; 1439 1440 if (na == NULL) 1441 return NULL; /* no netmap support here */ 1442 if (!(na->ifp->if_capenable & IFCAP_NETMAP)) 1443 return NULL; /* nothing to reinitialize */ 1444 1445 if (tx == NR_TX) { 1446 kring = na->tx_rings + n; 1447 new_hwofs = kring->nr_hwcur - new_cur; 1448 } else { 1449 kring = na->rx_rings + n; 1450 new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; 1451 } 1452 lim = kring->nkr_num_slots - 1; 1453 if (new_hwofs > lim) 1454 new_hwofs -= lim + 1; 1455 1456 /* Alwayws set the new offset value and realign the ring. */ 1457 kring->nkr_hwofs = new_hwofs; 1458 if (tx == NR_TX) 1459 kring->nr_hwavail = kring->nkr_num_slots - 1; 1460 D("new hwofs %d on %s %s[%d]", 1461 kring->nkr_hwofs, na->ifp->if_xname, 1462 tx == NR_TX ? "TX" : "RX", n); 1463 1464 #if 0 // def linux 1465 /* XXX check that the mappings are correct */ 1466 /* need ring_nr, adapter->pdev, direction */ 1467 buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE); 1468 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1469 D("error mapping rx netmap buffer %d", i); 1470 // XXX fix error handling 1471 } 1472 1473 #endif /* linux */ 1474 /* 1475 * Wakeup on the individual and global lock 1476 * We do the wakeup here, but the ring is not yet reconfigured. 1477 * However, we are under lock so there are no races. 1478 */ 1479 selwakeuppri(&kring->si, PI_NET); 1480 selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET); 1481 return kring->ring->slot; 1482 } 1483 1484 1485 /* 1486 * Default functions to handle rx/tx interrupts 1487 * we have 4 cases: 1488 * 1 ring, single lock: 1489 * lock(core); wake(i=0); unlock(core) 1490 * N rings, single lock: 1491 * lock(core); wake(i); wake(N+1) unlock(core) 1492 * 1 ring, separate locks: (i=0) 1493 * lock(i); wake(i); unlock(i) 1494 * N rings, separate locks: 1495 * lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core) 1496 * work_done is non-null on the RX path. 1497 */ 1498 int 1499 netmap_rx_irq(struct ifnet *ifp, int q, int *work_done) 1500 { 1501 struct netmap_adapter *na; 1502 struct netmap_kring *r; 1503 NM_SELINFO_T *main_wq; 1504 1505 if (!(ifp->if_capenable & IFCAP_NETMAP)) 1506 return 0; 1507 na = NA(ifp); 1508 if (work_done) { /* RX path */ 1509 r = na->rx_rings + q; 1510 r->nr_kflags |= NKR_PENDINTR; 1511 main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL; 1512 } else { /* tx path */ 1513 r = na->tx_rings + q; 1514 main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL; 1515 work_done = &q; /* dummy */ 1516 } 1517 if (na->separate_locks) { 1518 mtx_lock(&r->q_lock); 1519 selwakeuppri(&r->si, PI_NET); 1520 mtx_unlock(&r->q_lock); 1521 if (main_wq) { 1522 mtx_lock(&na->core_lock); 1523 selwakeuppri(main_wq, PI_NET); 1524 mtx_unlock(&na->core_lock); 1525 } 1526 } else { 1527 mtx_lock(&na->core_lock); 1528 selwakeuppri(&r->si, PI_NET); 1529 if (main_wq) 1530 selwakeuppri(main_wq, PI_NET); 1531 mtx_unlock(&na->core_lock); 1532 } 1533 *work_done = 1; /* do not fire napi again */ 1534 return 1; 1535 } 1536 1537 1538 static struct cdevsw netmap_cdevsw = { 1539 .d_version = D_VERSION, 1540 .d_name = "netmap", 1541 .d_mmap = netmap_mmap, 1542 .d_ioctl = netmap_ioctl, 1543 .d_poll = netmap_poll, 1544 }; 1545 1546 #ifdef NM_BRIDGE 1547 /* 1548 *---- support for virtual bridge ----- 1549 */ 1550 1551 /* ----- FreeBSD if_bridge hash function ------- */ 1552 1553 /* 1554 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1555 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1556 * 1557 * http://www.burtleburtle.net/bob/hash/spooky.html 1558 */ 1559 #define mix(a, b, c) \ 1560 do { \ 1561 a -= b; a -= c; a ^= (c >> 13); \ 1562 b -= c; b -= a; b ^= (a << 8); \ 1563 c -= a; c -= b; c ^= (b >> 13); \ 1564 a -= b; a -= c; a ^= (c >> 12); \ 1565 b -= c; b -= a; b ^= (a << 16); \ 1566 c -= a; c -= b; c ^= (b >> 5); \ 1567 a -= b; a -= c; a ^= (c >> 3); \ 1568 b -= c; b -= a; b ^= (a << 10); \ 1569 c -= a; c -= b; c ^= (b >> 15); \ 1570 } while (/*CONSTCOND*/0) 1571 1572 static __inline uint32_t 1573 nm_bridge_rthash(const uint8_t *addr) 1574 { 1575 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key 1576 1577 b += addr[5] << 8; 1578 b += addr[4]; 1579 a += addr[3] << 24; 1580 a += addr[2] << 16; 1581 a += addr[1] << 8; 1582 a += addr[0]; 1583 1584 mix(a, b, c); 1585 #define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1) 1586 return (c & BRIDGE_RTHASH_MASK); 1587 } 1588 1589 #undef mix 1590 1591 1592 static int 1593 bdg_netmap_reg(struct ifnet *ifp, int onoff) 1594 { 1595 int i, err = 0; 1596 struct nm_bridge *b = ifp->if_bridge; 1597 1598 BDG_LOCK(b); 1599 if (onoff) { 1600 /* the interface must be already in the list. 1601 * only need to mark the port as active 1602 */ 1603 ND("should attach %s to the bridge", ifp->if_xname); 1604 for (i=0; i < NM_BDG_MAXPORTS; i++) 1605 if (b->bdg_ports[i] == ifp) 1606 break; 1607 if (i == NM_BDG_MAXPORTS) { 1608 D("no more ports available"); 1609 err = EINVAL; 1610 goto done; 1611 } 1612 ND("setting %s in netmap mode", ifp->if_xname); 1613 ifp->if_capenable |= IFCAP_NETMAP; 1614 NA(ifp)->bdg_port = i; 1615 b->act_ports |= (1<<i); 1616 b->bdg_ports[i] = ifp; 1617 } else { 1618 /* should be in the list, too -- remove from the mask */ 1619 ND("removing %s from netmap mode", ifp->if_xname); 1620 ifp->if_capenable &= ~IFCAP_NETMAP; 1621 i = NA(ifp)->bdg_port; 1622 b->act_ports &= ~(1<<i); 1623 } 1624 done: 1625 BDG_UNLOCK(b); 1626 return err; 1627 } 1628 1629 1630 static int 1631 nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct ifnet *ifp) 1632 { 1633 int i, ifn; 1634 uint64_t all_dst, dst; 1635 uint32_t sh, dh; 1636 uint64_t mysrc = 1 << NA(ifp)->bdg_port; 1637 uint64_t smac, dmac; 1638 struct netmap_slot *slot; 1639 struct nm_bridge *b = ifp->if_bridge; 1640 1641 ND("prepare to send %d packets, act_ports 0x%x", n, b->act_ports); 1642 /* only consider valid destinations */ 1643 all_dst = (b->act_ports & ~mysrc); 1644 /* first pass: hash and find destinations */ 1645 for (i = 0; likely(i < n); i++) { 1646 uint8_t *buf = ft[i].buf; 1647 dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff; 1648 smac = le64toh(*(uint64_t *)(buf + 4)); 1649 smac >>= 16; 1650 if (unlikely(netmap_verbose)) { 1651 uint8_t *s = buf+6, *d = buf; 1652 D("%d len %4d %02x:%02x:%02x:%02x:%02x:%02x -> %02x:%02x:%02x:%02x:%02x:%02x", 1653 i, 1654 ft[i].len, 1655 s[0], s[1], s[2], s[3], s[4], s[5], 1656 d[0], d[1], d[2], d[3], d[4], d[5]); 1657 } 1658 /* 1659 * The hash is somewhat expensive, there might be some 1660 * worthwhile optimizations here. 1661 */ 1662 if ((buf[6] & 1) == 0) { /* valid src */ 1663 uint8_t *s = buf+6; 1664 sh = nm_bridge_rthash(buf+6); // XXX hash of source 1665 /* update source port forwarding entry */ 1666 b->ht[sh].mac = smac; /* XXX expire ? */ 1667 b->ht[sh].ports = mysrc; 1668 if (netmap_verbose) 1669 D("src %02x:%02x:%02x:%02x:%02x:%02x on port %d", 1670 s[0], s[1], s[2], s[3], s[4], s[5], NA(ifp)->bdg_port); 1671 } 1672 dst = 0; 1673 if ( (buf[0] & 1) == 0) { /* unicast */ 1674 uint8_t *d = buf; 1675 dh = nm_bridge_rthash(buf); // XXX hash of dst 1676 if (b->ht[dh].mac == dmac) { /* found dst */ 1677 dst = b->ht[dh].ports; 1678 if (netmap_verbose) 1679 D("dst %02x:%02x:%02x:%02x:%02x:%02x to port %x", 1680 d[0], d[1], d[2], d[3], d[4], d[5], (uint32_t)(dst >> 16)); 1681 } 1682 } 1683 if (dst == 0) 1684 dst = all_dst; 1685 dst &= all_dst; /* only consider valid ports */ 1686 if (unlikely(netmap_verbose)) 1687 D("pkt goes to ports 0x%x", (uint32_t)dst); 1688 ft[i].dst = dst; 1689 } 1690 1691 /* second pass, scan interfaces and forward */ 1692 all_dst = (b->act_ports & ~mysrc); 1693 for (ifn = 0; all_dst; ifn++) { 1694 struct ifnet *dst_ifp = b->bdg_ports[ifn]; 1695 struct netmap_adapter *na; 1696 struct netmap_kring *kring; 1697 struct netmap_ring *ring; 1698 int j, lim, sent, locked; 1699 1700 if (!dst_ifp) 1701 continue; 1702 ND("scan port %d %s", ifn, dst_ifp->if_xname); 1703 dst = 1 << ifn; 1704 if ((dst & all_dst) == 0) /* skip if not set */ 1705 continue; 1706 all_dst &= ~dst; /* clear current node */ 1707 na = NA(dst_ifp); 1708 1709 ring = NULL; 1710 kring = NULL; 1711 lim = sent = locked = 0; 1712 /* inside, scan slots */ 1713 for (i = 0; likely(i < n); i++) { 1714 if ((ft[i].dst & dst) == 0) 1715 continue; /* not here */ 1716 if (!locked) { 1717 kring = &na->rx_rings[0]; 1718 ring = kring->ring; 1719 lim = kring->nkr_num_slots - 1; 1720 na->nm_lock(dst_ifp, NETMAP_RX_LOCK, 0); 1721 locked = 1; 1722 } 1723 if (unlikely(kring->nr_hwavail >= lim)) { 1724 if (netmap_verbose) 1725 D("rx ring full on %s", ifp->if_xname); 1726 break; 1727 } 1728 j = kring->nr_hwcur + kring->nr_hwavail; 1729 if (j > lim) 1730 j -= kring->nkr_num_slots; 1731 slot = &ring->slot[j]; 1732 ND("send %d %d bytes at %s:%d", i, ft[i].len, dst_ifp->if_xname, j); 1733 pkt_copy(ft[i].buf, NMB(slot), ft[i].len); 1734 slot->len = ft[i].len; 1735 kring->nr_hwavail++; 1736 sent++; 1737 } 1738 if (locked) { 1739 ND("sent %d on %s", sent, dst_ifp->if_xname); 1740 if (sent) 1741 selwakeuppri(&kring->si, PI_NET); 1742 na->nm_lock(dst_ifp, NETMAP_RX_UNLOCK, 0); 1743 } 1744 } 1745 return 0; 1746 } 1747 1748 /* 1749 * main dispatch routine 1750 */ 1751 static int 1752 bdg_netmap_txsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 1753 { 1754 struct netmap_adapter *na = NA(ifp); 1755 struct netmap_kring *kring = &na->tx_rings[ring_nr]; 1756 struct netmap_ring *ring = kring->ring; 1757 int i, j, k, lim = kring->nkr_num_slots - 1; 1758 struct nm_bdg_fwd *ft = (struct nm_bdg_fwd *)(ifp + 1); 1759 int ft_i; /* position in the forwarding table */ 1760 1761 k = ring->cur; 1762 if (k > lim) 1763 return netmap_ring_reinit(kring); 1764 if (do_lock) 1765 na->nm_lock(ifp, NETMAP_TX_LOCK, ring_nr); 1766 1767 if (netmap_bridge <= 0) { /* testing only */ 1768 j = k; // used all 1769 goto done; 1770 } 1771 if (netmap_bridge > NM_BDG_BATCH) 1772 netmap_bridge = NM_BDG_BATCH; 1773 1774 ft_i = 0; /* start from 0 */ 1775 for (j = kring->nr_hwcur; likely(j != k); j = unlikely(j == lim) ? 0 : j+1) { 1776 struct netmap_slot *slot = &ring->slot[j]; 1777 int len = ft[ft_i].len = slot->len; 1778 char *buf = ft[ft_i].buf = NMB(slot); 1779 1780 prefetch(buf); 1781 if (unlikely(len < 14)) 1782 continue; 1783 if (unlikely(++ft_i == netmap_bridge)) 1784 ft_i = nm_bdg_flush(ft, ft_i, ifp); 1785 } 1786 if (ft_i) 1787 ft_i = nm_bdg_flush(ft, ft_i, ifp); 1788 /* count how many packets we sent */ 1789 i = k - j; 1790 if (i < 0) 1791 i += kring->nkr_num_slots; 1792 kring->nr_hwavail = kring->nkr_num_slots - 1 - i; 1793 if (j != k) 1794 D("early break at %d/ %d, avail %d", j, k, kring->nr_hwavail); 1795 1796 done: 1797 kring->nr_hwcur = j; 1798 ring->avail = kring->nr_hwavail; 1799 if (do_lock) 1800 na->nm_lock(ifp, NETMAP_TX_UNLOCK, ring_nr); 1801 1802 if (netmap_verbose) 1803 D("%s ring %d lock %d", ifp->if_xname, ring_nr, do_lock); 1804 return 0; 1805 } 1806 1807 static int 1808 bdg_netmap_rxsync(struct ifnet *ifp, u_int ring_nr, int do_lock) 1809 { 1810 struct netmap_adapter *na = NA(ifp); 1811 struct netmap_kring *kring = &na->rx_rings[ring_nr]; 1812 struct netmap_ring *ring = kring->ring; 1813 int j, n, lim = kring->nkr_num_slots - 1; 1814 u_int k = ring->cur, resvd = ring->reserved; 1815 1816 ND("%s ring %d lock %d avail %d", 1817 ifp->if_xname, ring_nr, do_lock, kring->nr_hwavail); 1818 1819 if (k > lim) 1820 return netmap_ring_reinit(kring); 1821 if (do_lock) 1822 na->nm_lock(ifp, NETMAP_RX_LOCK, ring_nr); 1823 1824 /* skip past packets that userspace has released */ 1825 j = kring->nr_hwcur; /* netmap ring index */ 1826 if (resvd > 0) { 1827 if (resvd + ring->avail >= lim + 1) { 1828 D("XXX invalid reserve/avail %d %d", resvd, ring->avail); 1829 ring->reserved = resvd = 0; // XXX panic... 1830 } 1831 k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd; 1832 } 1833 1834 if (j != k) { /* userspace has released some packets. */ 1835 n = k - j; 1836 if (n < 0) 1837 n += kring->nkr_num_slots; 1838 ND("userspace releases %d packets", n); 1839 for (n = 0; likely(j != k); n++) { 1840 struct netmap_slot *slot = &ring->slot[j]; 1841 void *addr = NMB(slot); 1842 1843 if (addr == netmap_buffer_base) { /* bad buf */ 1844 if (do_lock) 1845 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 1846 return netmap_ring_reinit(kring); 1847 } 1848 /* decrease refcount for buffer */ 1849 1850 slot->flags &= ~NS_BUF_CHANGED; 1851 j = unlikely(j == lim) ? 0 : j + 1; 1852 } 1853 kring->nr_hwavail -= n; 1854 kring->nr_hwcur = k; 1855 } 1856 /* tell userspace that there are new packets */ 1857 ring->avail = kring->nr_hwavail - resvd; 1858 1859 if (do_lock) 1860 na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr); 1861 return 0; 1862 } 1863 1864 static void 1865 bdg_netmap_attach(struct ifnet *ifp) 1866 { 1867 struct netmap_adapter na; 1868 1869 ND("attaching virtual bridge"); 1870 bzero(&na, sizeof(na)); 1871 1872 na.ifp = ifp; 1873 na.separate_locks = 1; 1874 na.num_tx_desc = NM_BRIDGE_RINGSIZE; 1875 na.num_rx_desc = NM_BRIDGE_RINGSIZE; 1876 na.nm_txsync = bdg_netmap_txsync; 1877 na.nm_rxsync = bdg_netmap_rxsync; 1878 na.nm_register = bdg_netmap_reg; 1879 netmap_attach(&na, 1); 1880 } 1881 1882 #endif /* NM_BRIDGE */ 1883 1884 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 1885 1886 1887 /* 1888 * Module loader. 1889 * 1890 * Create the /dev/netmap device and initialize all global 1891 * variables. 1892 * 1893 * Return 0 on success, errno on failure. 1894 */ 1895 static int 1896 netmap_init(void) 1897 { 1898 int error; 1899 1900 error = netmap_memory_init(); 1901 if (error != 0) { 1902 printf("netmap: unable to initialize the memory allocator."); 1903 return (error); 1904 } 1905 printf("netmap: loaded module with %d Mbytes\n", 1906 (int)(nm_mem->nm_totalsize >> 20)); 1907 netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, 1908 "netmap"); 1909 1910 #ifdef NM_BRIDGE 1911 { 1912 int i; 1913 for (i = 0; i < NM_BRIDGES; i++) 1914 mtx_init(&nm_bridges[i].bdg_lock, "bdg lock", "bdg_lock", MTX_DEF); 1915 } 1916 #endif 1917 return (error); 1918 } 1919 1920 1921 /* 1922 * Module unloader. 1923 * 1924 * Free all the memory, and destroy the ``/dev/netmap`` device. 1925 */ 1926 static void 1927 netmap_fini(void) 1928 { 1929 destroy_dev(netmap_dev); 1930 netmap_memory_fini(); 1931 printf("netmap: unloaded module.\n"); 1932 } 1933 1934 1935 #ifdef __FreeBSD__ 1936 /* 1937 * Kernel entry point. 1938 * 1939 * Initialize/finalize the module and return. 1940 * 1941 * Return 0 on success, errno on failure. 1942 */ 1943 static int 1944 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1945 { 1946 int error = 0; 1947 1948 switch (event) { 1949 case MOD_LOAD: 1950 error = netmap_init(); 1951 break; 1952 1953 case MOD_UNLOAD: 1954 netmap_fini(); 1955 break; 1956 1957 default: 1958 error = EOPNOTSUPP; 1959 break; 1960 } 1961 1962 return (error); 1963 } 1964 1965 1966 DEV_MODULE(netmap, netmap_loader, NULL); 1967 #endif /* __FreeBSD__ */ 1968