1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2010 iX Systems, Inc.
4  * Copyright (c) 2010 Panasas, Inc.
5  * Copyright (c) 2013-2021 Mellanox Technologies, Ltd.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_stack.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/sysctl.h>
40 #include <sys/proc.h>
41 #include <sys/sglist.h>
42 #include <sys/sleepqueue.h>
43 #include <sys/refcount.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/bus.h>
47 #include <sys/eventhandler.h>
48 #include <sys/fcntl.h>
49 #include <sys/file.h>
50 #include <sys/filio.h>
51 #include <sys/rwlock.h>
52 #include <sys/mman.h>
53 #include <sys/stack.h>
54 #include <sys/sysent.h>
55 #include <sys/time.h>
56 #include <sys/user.h>
57 
58 #include <vm/vm.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_object.h>
61 #include <vm/vm_page.h>
62 #include <vm/vm_pager.h>
63 
64 #include <machine/stdarg.h>
65 
66 #if defined(__i386__) || defined(__amd64__)
67 #include <machine/md_var.h>
68 #endif
69 
70 #include <linux/kobject.h>
71 #include <linux/cpu.h>
72 #include <linux/device.h>
73 #include <linux/slab.h>
74 #include <linux/module.h>
75 #include <linux/moduleparam.h>
76 #include <linux/cdev.h>
77 #include <linux/file.h>
78 #include <linux/sysfs.h>
79 #include <linux/mm.h>
80 #include <linux/io.h>
81 #include <linux/vmalloc.h>
82 #include <linux/netdevice.h>
83 #include <linux/timer.h>
84 #include <linux/interrupt.h>
85 #include <linux/uaccess.h>
86 #include <linux/list.h>
87 #include <linux/kthread.h>
88 #include <linux/kernel.h>
89 #include <linux/compat.h>
90 #include <linux/poll.h>
91 #include <linux/smp.h>
92 #include <linux/wait_bit.h>
93 #include <linux/rcupdate.h>
94 #include <linux/interval_tree.h>
95 #include <linux/interval_tree_generic.h>
96 
97 #if defined(__i386__) || defined(__amd64__)
98 #include <asm/smp.h>
99 #endif
100 
101 SYSCTL_NODE(_compat, OID_AUTO, linuxkpi, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
102     "LinuxKPI parameters");
103 
104 int linuxkpi_debug;
105 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, debug, CTLFLAG_RWTUN,
106     &linuxkpi_debug, 0, "Set to enable pr_debug() prints. Clear to disable.");
107 
108 int linuxkpi_warn_dump_stack = 0;
109 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, warn_dump_stack, CTLFLAG_RWTUN,
110     &linuxkpi_warn_dump_stack, 0,
111     "Set to enable stack traces from WARN_ON(). Clear to disable.");
112 
113 static struct timeval lkpi_net_lastlog;
114 static int lkpi_net_curpps;
115 static int lkpi_net_maxpps = 99;
116 SYSCTL_INT(_compat_linuxkpi, OID_AUTO, net_ratelimit, CTLFLAG_RWTUN,
117     &lkpi_net_maxpps, 0, "Limit number of LinuxKPI net messages per second.");
118 
119 MALLOC_DEFINE(M_KMALLOC, "lkpikmalloc", "Linux kmalloc compat");
120 
121 #include <linux/rbtree.h>
122 /* Undo Linux compat changes. */
123 #undef RB_ROOT
124 #undef file
125 #undef cdev
126 #define	RB_ROOT(head)	(head)->rbh_root
127 
128 static void linux_destroy_dev(struct linux_cdev *);
129 static void linux_cdev_deref(struct linux_cdev *ldev);
130 static struct vm_area_struct *linux_cdev_handle_find(void *handle);
131 
132 cpumask_t cpu_online_mask;
133 struct kobject linux_class_root;
134 struct device linux_root_device;
135 struct class linux_class_misc;
136 struct list_head pci_drivers;
137 struct list_head pci_devices;
138 spinlock_t pci_lock;
139 
140 unsigned long linux_timer_hz_mask;
141 
142 wait_queue_head_t linux_bit_waitq;
143 wait_queue_head_t linux_var_waitq;
144 
145 int
146 panic_cmp(struct rb_node *one, struct rb_node *two)
147 {
148 	panic("no cmp");
149 }
150 
151 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp);
152 
153 #define	START(node)	((node)->start)
154 #define	LAST(node)	((node)->last)
155 
156 INTERVAL_TREE_DEFINE(struct interval_tree_node, rb, unsigned long,, START,
157     LAST,, lkpi_interval_tree)
158 
159 struct kobject *
160 kobject_create(void)
161 {
162 	struct kobject *kobj;
163 
164 	kobj = kzalloc(sizeof(*kobj), GFP_KERNEL);
165 	if (kobj == NULL)
166 		return (NULL);
167 	kobject_init(kobj, &linux_kfree_type);
168 
169 	return (kobj);
170 }
171 
172 
173 int
174 kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list args)
175 {
176 	va_list tmp_va;
177 	int len;
178 	char *old;
179 	char *name;
180 	char dummy;
181 
182 	old = kobj->name;
183 
184 	if (old && fmt == NULL)
185 		return (0);
186 
187 	/* compute length of string */
188 	va_copy(tmp_va, args);
189 	len = vsnprintf(&dummy, 0, fmt, tmp_va);
190 	va_end(tmp_va);
191 
192 	/* account for zero termination */
193 	len++;
194 
195 	/* check for error */
196 	if (len < 1)
197 		return (-EINVAL);
198 
199 	/* allocate memory for string */
200 	name = kzalloc(len, GFP_KERNEL);
201 	if (name == NULL)
202 		return (-ENOMEM);
203 	vsnprintf(name, len, fmt, args);
204 	kobj->name = name;
205 
206 	/* free old string */
207 	kfree(old);
208 
209 	/* filter new string */
210 	for (; *name != '\0'; name++)
211 		if (*name == '/')
212 			*name = '!';
213 	return (0);
214 }
215 
216 int
217 kobject_set_name(struct kobject *kobj, const char *fmt, ...)
218 {
219 	va_list args;
220 	int error;
221 
222 	va_start(args, fmt);
223 	error = kobject_set_name_vargs(kobj, fmt, args);
224 	va_end(args);
225 
226 	return (error);
227 }
228 
229 static int
230 kobject_add_complete(struct kobject *kobj, struct kobject *parent)
231 {
232 	const struct kobj_type *t;
233 	int error;
234 
235 	kobj->parent = parent;
236 	error = sysfs_create_dir(kobj);
237 	if (error == 0 && kobj->ktype && kobj->ktype->default_attrs) {
238 		struct attribute **attr;
239 		t = kobj->ktype;
240 
241 		for (attr = t->default_attrs; *attr != NULL; attr++) {
242 			error = sysfs_create_file(kobj, *attr);
243 			if (error)
244 				break;
245 		}
246 		if (error)
247 			sysfs_remove_dir(kobj);
248 	}
249 	return (error);
250 }
251 
252 int
253 kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)
254 {
255 	va_list args;
256 	int error;
257 
258 	va_start(args, fmt);
259 	error = kobject_set_name_vargs(kobj, fmt, args);
260 	va_end(args);
261 	if (error)
262 		return (error);
263 
264 	return kobject_add_complete(kobj, parent);
265 }
266 
267 void
268 linux_kobject_release(struct kref *kref)
269 {
270 	struct kobject *kobj;
271 	char *name;
272 
273 	kobj = container_of(kref, struct kobject, kref);
274 	sysfs_remove_dir(kobj);
275 	name = kobj->name;
276 	if (kobj->ktype && kobj->ktype->release)
277 		kobj->ktype->release(kobj);
278 	kfree(name);
279 }
280 
281 static void
282 linux_kobject_kfree(struct kobject *kobj)
283 {
284 	kfree(kobj);
285 }
286 
287 static void
288 linux_kobject_kfree_name(struct kobject *kobj)
289 {
290 	if (kobj) {
291 		kfree(kobj->name);
292 	}
293 }
294 
295 const struct kobj_type linux_kfree_type = {
296 	.release = linux_kobject_kfree
297 };
298 
299 static ssize_t
300 lkpi_kobj_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
301 {
302 	struct kobj_attribute *ka =
303 	    container_of(attr, struct kobj_attribute, attr);
304 
305 	if (ka->show == NULL)
306 		return (-EIO);
307 
308 	return (ka->show(kobj, ka, buf));
309 }
310 
311 static ssize_t
312 lkpi_kobj_attr_store(struct kobject *kobj, struct attribute *attr,
313     const char *buf, size_t count)
314 {
315 	struct kobj_attribute *ka =
316 	    container_of(attr, struct kobj_attribute, attr);
317 
318 	if (ka->store == NULL)
319 		return (-EIO);
320 
321 	return (ka->store(kobj, ka, buf, count));
322 }
323 
324 const struct sysfs_ops kobj_sysfs_ops = {
325 	.show	= lkpi_kobj_attr_show,
326 	.store	= lkpi_kobj_attr_store,
327 };
328 
329 static void
330 linux_device_release(struct device *dev)
331 {
332 	pr_debug("linux_device_release: %s\n", dev_name(dev));
333 	kfree(dev);
334 }
335 
336 static ssize_t
337 linux_class_show(struct kobject *kobj, struct attribute *attr, char *buf)
338 {
339 	struct class_attribute *dattr;
340 	ssize_t error;
341 
342 	dattr = container_of(attr, struct class_attribute, attr);
343 	error = -EIO;
344 	if (dattr->show)
345 		error = dattr->show(container_of(kobj, struct class, kobj),
346 		    dattr, buf);
347 	return (error);
348 }
349 
350 static ssize_t
351 linux_class_store(struct kobject *kobj, struct attribute *attr, const char *buf,
352     size_t count)
353 {
354 	struct class_attribute *dattr;
355 	ssize_t error;
356 
357 	dattr = container_of(attr, struct class_attribute, attr);
358 	error = -EIO;
359 	if (dattr->store)
360 		error = dattr->store(container_of(kobj, struct class, kobj),
361 		    dattr, buf, count);
362 	return (error);
363 }
364 
365 static void
366 linux_class_release(struct kobject *kobj)
367 {
368 	struct class *class;
369 
370 	class = container_of(kobj, struct class, kobj);
371 	if (class->class_release)
372 		class->class_release(class);
373 }
374 
375 static const struct sysfs_ops linux_class_sysfs = {
376 	.show  = linux_class_show,
377 	.store = linux_class_store,
378 };
379 
380 const struct kobj_type linux_class_ktype = {
381 	.release = linux_class_release,
382 	.sysfs_ops = &linux_class_sysfs
383 };
384 
385 static void
386 linux_dev_release(struct kobject *kobj)
387 {
388 	struct device *dev;
389 
390 	dev = container_of(kobj, struct device, kobj);
391 	/* This is the precedence defined by linux. */
392 	if (dev->release)
393 		dev->release(dev);
394 	else if (dev->class && dev->class->dev_release)
395 		dev->class->dev_release(dev);
396 }
397 
398 static ssize_t
399 linux_dev_show(struct kobject *kobj, struct attribute *attr, char *buf)
400 {
401 	struct device_attribute *dattr;
402 	ssize_t error;
403 
404 	dattr = container_of(attr, struct device_attribute, attr);
405 	error = -EIO;
406 	if (dattr->show)
407 		error = dattr->show(container_of(kobj, struct device, kobj),
408 		    dattr, buf);
409 	return (error);
410 }
411 
412 static ssize_t
413 linux_dev_store(struct kobject *kobj, struct attribute *attr, const char *buf,
414     size_t count)
415 {
416 	struct device_attribute *dattr;
417 	ssize_t error;
418 
419 	dattr = container_of(attr, struct device_attribute, attr);
420 	error = -EIO;
421 	if (dattr->store)
422 		error = dattr->store(container_of(kobj, struct device, kobj),
423 		    dattr, buf, count);
424 	return (error);
425 }
426 
427 static const struct sysfs_ops linux_dev_sysfs = {
428 	.show  = linux_dev_show,
429 	.store = linux_dev_store,
430 };
431 
432 const struct kobj_type linux_dev_ktype = {
433 	.release = linux_dev_release,
434 	.sysfs_ops = &linux_dev_sysfs
435 };
436 
437 struct device *
438 device_create(struct class *class, struct device *parent, dev_t devt,
439     void *drvdata, const char *fmt, ...)
440 {
441 	struct device *dev;
442 	va_list args;
443 
444 	dev = kzalloc(sizeof(*dev), M_WAITOK);
445 	dev->parent = parent;
446 	dev->class = class;
447 	dev->devt = devt;
448 	dev->driver_data = drvdata;
449 	dev->release = linux_device_release;
450 	va_start(args, fmt);
451 	kobject_set_name_vargs(&dev->kobj, fmt, args);
452 	va_end(args);
453 	device_register(dev);
454 
455 	return (dev);
456 }
457 
458 struct device *
459 device_create_groups_vargs(struct class *class, struct device *parent,
460     dev_t devt, void *drvdata, const struct attribute_group **groups,
461     const char *fmt, va_list args)
462 {
463 	struct device *dev = NULL;
464 	int retval = -ENODEV;
465 
466 	if (class == NULL || IS_ERR(class))
467 		goto error;
468 
469 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
470 	if (!dev) {
471 		retval = -ENOMEM;
472 		goto error;
473 	}
474 
475 	dev->devt = devt;
476 	dev->class = class;
477 	dev->parent = parent;
478 	dev->groups = groups;
479 	dev->release = device_create_release;
480 	/* device_initialize() needs the class and parent to be set */
481 	device_initialize(dev);
482 	dev_set_drvdata(dev, drvdata);
483 
484 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
485 	if (retval)
486 		goto error;
487 
488 	retval = device_add(dev);
489 	if (retval)
490 		goto error;
491 
492 	return dev;
493 
494 error:
495 	put_device(dev);
496 	return ERR_PTR(retval);
497 }
498 
499 struct class *
500 class_create(struct module *owner, const char *name)
501 {
502 	struct class *class;
503 	int error;
504 
505 	class = kzalloc(sizeof(*class), M_WAITOK);
506 	class->owner = owner;
507 	class->name = name;
508 	class->class_release = linux_class_kfree;
509 	error = class_register(class);
510 	if (error) {
511 		kfree(class);
512 		return (NULL);
513 	}
514 
515 	return (class);
516 }
517 
518 int
519 kobject_init_and_add(struct kobject *kobj, const struct kobj_type *ktype,
520     struct kobject *parent, const char *fmt, ...)
521 {
522 	va_list args;
523 	int error;
524 
525 	kobject_init(kobj, ktype);
526 	kobj->ktype = ktype;
527 	kobj->parent = parent;
528 	kobj->name = NULL;
529 
530 	va_start(args, fmt);
531 	error = kobject_set_name_vargs(kobj, fmt, args);
532 	va_end(args);
533 	if (error)
534 		return (error);
535 	return kobject_add_complete(kobj, parent);
536 }
537 
538 static void
539 linux_kq_lock(void *arg)
540 {
541 	spinlock_t *s = arg;
542 
543 	spin_lock(s);
544 }
545 static void
546 linux_kq_unlock(void *arg)
547 {
548 	spinlock_t *s = arg;
549 
550 	spin_unlock(s);
551 }
552 
553 static void
554 linux_kq_assert_lock(void *arg, int what)
555 {
556 #ifdef INVARIANTS
557 	spinlock_t *s = arg;
558 
559 	if (what == LA_LOCKED)
560 		mtx_assert(&s->m, MA_OWNED);
561 	else
562 		mtx_assert(&s->m, MA_NOTOWNED);
563 #endif
564 }
565 
566 static void
567 linux_file_kqfilter_poll(struct linux_file *, int);
568 
569 struct linux_file *
570 linux_file_alloc(void)
571 {
572 	struct linux_file *filp;
573 
574 	filp = kzalloc(sizeof(*filp), GFP_KERNEL);
575 
576 	/* set initial refcount */
577 	filp->f_count = 1;
578 
579 	/* setup fields needed by kqueue support */
580 	spin_lock_init(&filp->f_kqlock);
581 	knlist_init(&filp->f_selinfo.si_note, &filp->f_kqlock,
582 	    linux_kq_lock, linux_kq_unlock, linux_kq_assert_lock);
583 
584 	return (filp);
585 }
586 
587 void
588 linux_file_free(struct linux_file *filp)
589 {
590 	if (filp->_file == NULL) {
591 		if (filp->f_op != NULL && filp->f_op->release != NULL)
592 			filp->f_op->release(filp->f_vnode, filp);
593 		if (filp->f_shmem != NULL)
594 			vm_object_deallocate(filp->f_shmem);
595 		kfree_rcu(filp, rcu);
596 	} else {
597 		/*
598 		 * The close method of the character device or file
599 		 * will free the linux_file structure:
600 		 */
601 		_fdrop(filp->_file, curthread);
602 	}
603 }
604 
605 struct linux_cdev *
606 cdev_alloc(void)
607 {
608 	struct linux_cdev *cdev;
609 
610 	cdev = kzalloc(sizeof(struct linux_cdev), M_WAITOK);
611 	kobject_init(&cdev->kobj, &linux_cdev_ktype);
612 	cdev->refs = 1;
613 	return (cdev);
614 }
615 
616 static int
617 linux_cdev_pager_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
618     vm_page_t *mres)
619 {
620 	struct vm_area_struct *vmap;
621 
622 	vmap = linux_cdev_handle_find(vm_obj->handle);
623 
624 	MPASS(vmap != NULL);
625 	MPASS(vmap->vm_private_data == vm_obj->handle);
626 
627 	if (likely(vmap->vm_ops != NULL && offset < vmap->vm_len)) {
628 		vm_paddr_t paddr = IDX_TO_OFF(vmap->vm_pfn) + offset;
629 		vm_page_t page;
630 
631 		if (((*mres)->flags & PG_FICTITIOUS) != 0) {
632 			/*
633 			 * If the passed in result page is a fake
634 			 * page, update it with the new physical
635 			 * address.
636 			 */
637 			page = *mres;
638 			vm_page_updatefake(page, paddr, vm_obj->memattr);
639 		} else {
640 			/*
641 			 * Replace the passed in "mres" page with our
642 			 * own fake page and free up the all of the
643 			 * original pages.
644 			 */
645 			VM_OBJECT_WUNLOCK(vm_obj);
646 			page = vm_page_getfake(paddr, vm_obj->memattr);
647 			VM_OBJECT_WLOCK(vm_obj);
648 
649 			vm_page_replace(page, vm_obj, (*mres)->pindex, *mres);
650 			*mres = page;
651 		}
652 		vm_page_valid(page);
653 		return (VM_PAGER_OK);
654 	}
655 	return (VM_PAGER_FAIL);
656 }
657 
658 static int
659 linux_cdev_pager_populate(vm_object_t vm_obj, vm_pindex_t pidx, int fault_type,
660     vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
661 {
662 	struct vm_area_struct *vmap;
663 	int err;
664 
665 	/* get VM area structure */
666 	vmap = linux_cdev_handle_find(vm_obj->handle);
667 	MPASS(vmap != NULL);
668 	MPASS(vmap->vm_private_data == vm_obj->handle);
669 
670 	VM_OBJECT_WUNLOCK(vm_obj);
671 
672 	linux_set_current(curthread);
673 
674 	down_write(&vmap->vm_mm->mmap_sem);
675 	if (unlikely(vmap->vm_ops == NULL)) {
676 		err = VM_FAULT_SIGBUS;
677 	} else {
678 		struct vm_fault vmf;
679 
680 		/* fill out VM fault structure */
681 		vmf.virtual_address = (void *)(uintptr_t)IDX_TO_OFF(pidx);
682 		vmf.flags = (fault_type & VM_PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
683 		vmf.pgoff = 0;
684 		vmf.page = NULL;
685 		vmf.vma = vmap;
686 
687 		vmap->vm_pfn_count = 0;
688 		vmap->vm_pfn_pcount = &vmap->vm_pfn_count;
689 		vmap->vm_obj = vm_obj;
690 
691 		err = vmap->vm_ops->fault(&vmf);
692 
693 		while (vmap->vm_pfn_count == 0 && err == VM_FAULT_NOPAGE) {
694 			kern_yield(PRI_USER);
695 			err = vmap->vm_ops->fault(&vmf);
696 		}
697 	}
698 
699 	/* translate return code */
700 	switch (err) {
701 	case VM_FAULT_OOM:
702 		err = VM_PAGER_AGAIN;
703 		break;
704 	case VM_FAULT_SIGBUS:
705 		err = VM_PAGER_BAD;
706 		break;
707 	case VM_FAULT_NOPAGE:
708 		/*
709 		 * By contract the fault handler will return having
710 		 * busied all the pages itself. If pidx is already
711 		 * found in the object, it will simply xbusy the first
712 		 * page and return with vm_pfn_count set to 1.
713 		 */
714 		*first = vmap->vm_pfn_first;
715 		*last = *first + vmap->vm_pfn_count - 1;
716 		err = VM_PAGER_OK;
717 		break;
718 	default:
719 		err = VM_PAGER_ERROR;
720 		break;
721 	}
722 	up_write(&vmap->vm_mm->mmap_sem);
723 	VM_OBJECT_WLOCK(vm_obj);
724 	return (err);
725 }
726 
727 static struct rwlock linux_vma_lock;
728 static TAILQ_HEAD(, vm_area_struct) linux_vma_head =
729     TAILQ_HEAD_INITIALIZER(linux_vma_head);
730 
731 static void
732 linux_cdev_handle_free(struct vm_area_struct *vmap)
733 {
734 	/* Drop reference on vm_file */
735 	if (vmap->vm_file != NULL)
736 		fput(vmap->vm_file);
737 
738 	/* Drop reference on mm_struct */
739 	mmput(vmap->vm_mm);
740 
741 	kfree(vmap);
742 }
743 
744 static void
745 linux_cdev_handle_remove(struct vm_area_struct *vmap)
746 {
747 	rw_wlock(&linux_vma_lock);
748 	TAILQ_REMOVE(&linux_vma_head, vmap, vm_entry);
749 	rw_wunlock(&linux_vma_lock);
750 }
751 
752 static struct vm_area_struct *
753 linux_cdev_handle_find(void *handle)
754 {
755 	struct vm_area_struct *vmap;
756 
757 	rw_rlock(&linux_vma_lock);
758 	TAILQ_FOREACH(vmap, &linux_vma_head, vm_entry) {
759 		if (vmap->vm_private_data == handle)
760 			break;
761 	}
762 	rw_runlock(&linux_vma_lock);
763 	return (vmap);
764 }
765 
766 static int
767 linux_cdev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
768 		      vm_ooffset_t foff, struct ucred *cred, u_short *color)
769 {
770 
771 	MPASS(linux_cdev_handle_find(handle) != NULL);
772 	*color = 0;
773 	return (0);
774 }
775 
776 static void
777 linux_cdev_pager_dtor(void *handle)
778 {
779 	const struct vm_operations_struct *vm_ops;
780 	struct vm_area_struct *vmap;
781 
782 	vmap = linux_cdev_handle_find(handle);
783 	MPASS(vmap != NULL);
784 
785 	/*
786 	 * Remove handle before calling close operation to prevent
787 	 * other threads from reusing the handle pointer.
788 	 */
789 	linux_cdev_handle_remove(vmap);
790 
791 	down_write(&vmap->vm_mm->mmap_sem);
792 	vm_ops = vmap->vm_ops;
793 	if (likely(vm_ops != NULL))
794 		vm_ops->close(vmap);
795 	up_write(&vmap->vm_mm->mmap_sem);
796 
797 	linux_cdev_handle_free(vmap);
798 }
799 
800 static struct cdev_pager_ops linux_cdev_pager_ops[2] = {
801   {
802 	/* OBJT_MGTDEVICE */
803 	.cdev_pg_populate	= linux_cdev_pager_populate,
804 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
805 	.cdev_pg_dtor	= linux_cdev_pager_dtor
806   },
807   {
808 	/* OBJT_DEVICE */
809 	.cdev_pg_fault	= linux_cdev_pager_fault,
810 	.cdev_pg_ctor	= linux_cdev_pager_ctor,
811 	.cdev_pg_dtor	= linux_cdev_pager_dtor
812   },
813 };
814 
815 int
816 zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
817     unsigned long size)
818 {
819 	vm_object_t obj;
820 	vm_page_t m;
821 
822 	obj = vma->vm_obj;
823 	if (obj == NULL || (obj->flags & OBJ_UNMANAGED) != 0)
824 		return (-ENOTSUP);
825 	VM_OBJECT_RLOCK(obj);
826 	for (m = vm_page_find_least(obj, OFF_TO_IDX(address));
827 	    m != NULL && m->pindex < OFF_TO_IDX(address + size);
828 	    m = TAILQ_NEXT(m, listq))
829 		pmap_remove_all(m);
830 	VM_OBJECT_RUNLOCK(obj);
831 	return (0);
832 }
833 
834 static struct file_operations dummy_ldev_ops = {
835 	/* XXXKIB */
836 };
837 
838 static struct linux_cdev dummy_ldev = {
839 	.ops = &dummy_ldev_ops,
840 };
841 
842 #define	LDEV_SI_DTR	0x0001
843 #define	LDEV_SI_REF	0x0002
844 
845 static void
846 linux_get_fop(struct linux_file *filp, const struct file_operations **fop,
847     struct linux_cdev **dev)
848 {
849 	struct linux_cdev *ldev;
850 	u_int siref;
851 
852 	ldev = filp->f_cdev;
853 	*fop = filp->f_op;
854 	if (ldev != NULL) {
855 		if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
856 			refcount_acquire(&ldev->refs);
857 		} else {
858 			for (siref = ldev->siref;;) {
859 				if ((siref & LDEV_SI_DTR) != 0) {
860 					ldev = &dummy_ldev;
861 					*fop = ldev->ops;
862 					siref = ldev->siref;
863 					MPASS((ldev->siref & LDEV_SI_DTR) == 0);
864 				} else if (atomic_fcmpset_int(&ldev->siref,
865 				    &siref, siref + LDEV_SI_REF)) {
866 					break;
867 				}
868 			}
869 		}
870 	}
871 	*dev = ldev;
872 }
873 
874 static void
875 linux_drop_fop(struct linux_cdev *ldev)
876 {
877 
878 	if (ldev == NULL)
879 		return;
880 	if (ldev->kobj.ktype == &linux_cdev_static_ktype) {
881 		linux_cdev_deref(ldev);
882 	} else {
883 		MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
884 		MPASS((ldev->siref & ~LDEV_SI_DTR) != 0);
885 		atomic_subtract_int(&ldev->siref, LDEV_SI_REF);
886 	}
887 }
888 
889 #define	OPW(fp,td,code) ({			\
890 	struct file *__fpop;			\
891 	__typeof(code) __retval;		\
892 						\
893 	__fpop = (td)->td_fpop;			\
894 	(td)->td_fpop = (fp);			\
895 	__retval = (code);			\
896 	(td)->td_fpop = __fpop;			\
897 	__retval;				\
898 })
899 
900 static int
901 linux_dev_fdopen(struct cdev *dev, int fflags, struct thread *td,
902     struct file *file)
903 {
904 	struct linux_cdev *ldev;
905 	struct linux_file *filp;
906 	const struct file_operations *fop;
907 	int error;
908 
909 	ldev = dev->si_drv1;
910 
911 	filp = linux_file_alloc();
912 	filp->f_dentry = &filp->f_dentry_store;
913 	filp->f_op = ldev->ops;
914 	filp->f_mode = file->f_flag;
915 	filp->f_flags = file->f_flag;
916 	filp->f_vnode = file->f_vnode;
917 	filp->_file = file;
918 	refcount_acquire(&ldev->refs);
919 	filp->f_cdev = ldev;
920 
921 	linux_set_current(td);
922 	linux_get_fop(filp, &fop, &ldev);
923 
924 	if (fop->open != NULL) {
925 		error = -fop->open(file->f_vnode, filp);
926 		if (error != 0) {
927 			linux_drop_fop(ldev);
928 			linux_cdev_deref(filp->f_cdev);
929 			kfree(filp);
930 			return (error);
931 		}
932 	}
933 
934 	/* hold on to the vnode - used for fstat() */
935 	vhold(filp->f_vnode);
936 
937 	/* release the file from devfs */
938 	finit(file, filp->f_mode, DTYPE_DEV, filp, &linuxfileops);
939 	linux_drop_fop(ldev);
940 	return (ENXIO);
941 }
942 
943 #define	LINUX_IOCTL_MIN_PTR 0x10000UL
944 #define	LINUX_IOCTL_MAX_PTR (LINUX_IOCTL_MIN_PTR + IOCPARM_MAX)
945 
946 static inline int
947 linux_remap_address(void **uaddr, size_t len)
948 {
949 	uintptr_t uaddr_val = (uintptr_t)(*uaddr);
950 
951 	if (unlikely(uaddr_val >= LINUX_IOCTL_MIN_PTR &&
952 	    uaddr_val < LINUX_IOCTL_MAX_PTR)) {
953 		struct task_struct *pts = current;
954 		if (pts == NULL) {
955 			*uaddr = NULL;
956 			return (1);
957 		}
958 
959 		/* compute data offset */
960 		uaddr_val -= LINUX_IOCTL_MIN_PTR;
961 
962 		/* check that length is within bounds */
963 		if ((len > IOCPARM_MAX) ||
964 		    (uaddr_val + len) > pts->bsd_ioctl_len) {
965 			*uaddr = NULL;
966 			return (1);
967 		}
968 
969 		/* re-add kernel buffer address */
970 		uaddr_val += (uintptr_t)pts->bsd_ioctl_data;
971 
972 		/* update address location */
973 		*uaddr = (void *)uaddr_val;
974 		return (1);
975 	}
976 	return (0);
977 }
978 
979 int
980 linux_copyin(const void *uaddr, void *kaddr, size_t len)
981 {
982 	if (linux_remap_address(__DECONST(void **, &uaddr), len)) {
983 		if (uaddr == NULL)
984 			return (-EFAULT);
985 		memcpy(kaddr, uaddr, len);
986 		return (0);
987 	}
988 	return (-copyin(uaddr, kaddr, len));
989 }
990 
991 int
992 linux_copyout(const void *kaddr, void *uaddr, size_t len)
993 {
994 	if (linux_remap_address(&uaddr, len)) {
995 		if (uaddr == NULL)
996 			return (-EFAULT);
997 		memcpy(uaddr, kaddr, len);
998 		return (0);
999 	}
1000 	return (-copyout(kaddr, uaddr, len));
1001 }
1002 
1003 size_t
1004 linux_clear_user(void *_uaddr, size_t _len)
1005 {
1006 	uint8_t *uaddr = _uaddr;
1007 	size_t len = _len;
1008 
1009 	/* make sure uaddr is aligned before going into the fast loop */
1010 	while (((uintptr_t)uaddr & 7) != 0 && len > 7) {
1011 		if (subyte(uaddr, 0))
1012 			return (_len);
1013 		uaddr++;
1014 		len--;
1015 	}
1016 
1017 	/* zero 8 bytes at a time */
1018 	while (len > 7) {
1019 #ifdef __LP64__
1020 		if (suword64(uaddr, 0))
1021 			return (_len);
1022 #else
1023 		if (suword32(uaddr, 0))
1024 			return (_len);
1025 		if (suword32(uaddr + 4, 0))
1026 			return (_len);
1027 #endif
1028 		uaddr += 8;
1029 		len -= 8;
1030 	}
1031 
1032 	/* zero fill end, if any */
1033 	while (len > 0) {
1034 		if (subyte(uaddr, 0))
1035 			return (_len);
1036 		uaddr++;
1037 		len--;
1038 	}
1039 	return (0);
1040 }
1041 
1042 int
1043 linux_access_ok(const void *uaddr, size_t len)
1044 {
1045 	uintptr_t saddr;
1046 	uintptr_t eaddr;
1047 
1048 	/* get start and end address */
1049 	saddr = (uintptr_t)uaddr;
1050 	eaddr = (uintptr_t)uaddr + len;
1051 
1052 	/* verify addresses are valid for userspace */
1053 	return ((saddr == eaddr) ||
1054 	    (eaddr > saddr && eaddr <= VM_MAXUSER_ADDRESS));
1055 }
1056 
1057 /*
1058  * This function should return either EINTR or ERESTART depending on
1059  * the signal type sent to this thread:
1060  */
1061 static int
1062 linux_get_error(struct task_struct *task, int error)
1063 {
1064 	/* check for signal type interrupt code */
1065 	if (error == EINTR || error == ERESTARTSYS || error == ERESTART) {
1066 		error = -linux_schedule_get_interrupt_value(task);
1067 		if (error == 0)
1068 			error = EINTR;
1069 	}
1070 	return (error);
1071 }
1072 
1073 static int
1074 linux_file_ioctl_sub(struct file *fp, struct linux_file *filp,
1075     const struct file_operations *fop, u_long cmd, caddr_t data,
1076     struct thread *td)
1077 {
1078 	struct task_struct *task = current;
1079 	unsigned size;
1080 	int error;
1081 
1082 	size = IOCPARM_LEN(cmd);
1083 	/* refer to logic in sys_ioctl() */
1084 	if (size > 0) {
1085 		/*
1086 		 * Setup hint for linux_copyin() and linux_copyout().
1087 		 *
1088 		 * Background: Linux code expects a user-space address
1089 		 * while FreeBSD supplies a kernel-space address.
1090 		 */
1091 		task->bsd_ioctl_data = data;
1092 		task->bsd_ioctl_len = size;
1093 		data = (void *)LINUX_IOCTL_MIN_PTR;
1094 	} else {
1095 		/* fetch user-space pointer */
1096 		data = *(void **)data;
1097 	}
1098 #ifdef COMPAT_FREEBSD32
1099 	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1100 		/* try the compat IOCTL handler first */
1101 		if (fop->compat_ioctl != NULL) {
1102 			error = -OPW(fp, td, fop->compat_ioctl(filp,
1103 			    cmd, (u_long)data));
1104 		} else {
1105 			error = ENOTTY;
1106 		}
1107 
1108 		/* fallback to the regular IOCTL handler, if any */
1109 		if (error == ENOTTY && fop->unlocked_ioctl != NULL) {
1110 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
1111 			    cmd, (u_long)data));
1112 		}
1113 	} else
1114 #endif
1115 	{
1116 		if (fop->unlocked_ioctl != NULL) {
1117 			error = -OPW(fp, td, fop->unlocked_ioctl(filp,
1118 			    cmd, (u_long)data));
1119 		} else {
1120 			error = ENOTTY;
1121 		}
1122 	}
1123 	if (size > 0) {
1124 		task->bsd_ioctl_data = NULL;
1125 		task->bsd_ioctl_len = 0;
1126 	}
1127 
1128 	if (error == EWOULDBLOCK) {
1129 		/* update kqfilter status, if any */
1130 		linux_file_kqfilter_poll(filp,
1131 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1132 	} else {
1133 		error = linux_get_error(task, error);
1134 	}
1135 	return (error);
1136 }
1137 
1138 #define	LINUX_POLL_TABLE_NORMAL ((poll_table *)1)
1139 
1140 /*
1141  * This function atomically updates the poll wakeup state and returns
1142  * the previous state at the time of update.
1143  */
1144 static uint8_t
1145 linux_poll_wakeup_state(atomic_t *v, const uint8_t *pstate)
1146 {
1147 	int c, old;
1148 
1149 	c = v->counter;
1150 
1151 	while ((old = atomic_cmpxchg(v, c, pstate[c])) != c)
1152 		c = old;
1153 
1154 	return (c);
1155 }
1156 
1157 static int
1158 linux_poll_wakeup_callback(wait_queue_t *wq, unsigned int wq_state, int flags, void *key)
1159 {
1160 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1161 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT, /* NOP */
1162 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1163 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_READY,
1164 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_READY, /* NOP */
1165 	};
1166 	struct linux_file *filp = container_of(wq, struct linux_file, f_wait_queue.wq);
1167 
1168 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1169 	case LINUX_FWQ_STATE_QUEUED:
1170 		linux_poll_wakeup(filp);
1171 		return (1);
1172 	default:
1173 		return (0);
1174 	}
1175 }
1176 
1177 void
1178 linux_poll_wait(struct linux_file *filp, wait_queue_head_t *wqh, poll_table *p)
1179 {
1180 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1181 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_NOT_READY,
1182 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_NOT_READY, /* NOP */
1183 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_QUEUED, /* NOP */
1184 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_QUEUED,
1185 	};
1186 
1187 	/* check if we are called inside the select system call */
1188 	if (p == LINUX_POLL_TABLE_NORMAL)
1189 		selrecord(curthread, &filp->f_selinfo);
1190 
1191 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1192 	case LINUX_FWQ_STATE_INIT:
1193 		/* NOTE: file handles can only belong to one wait-queue */
1194 		filp->f_wait_queue.wqh = wqh;
1195 		filp->f_wait_queue.wq.func = &linux_poll_wakeup_callback;
1196 		add_wait_queue(wqh, &filp->f_wait_queue.wq);
1197 		atomic_set(&filp->f_wait_queue.state, LINUX_FWQ_STATE_QUEUED);
1198 		break;
1199 	default:
1200 		break;
1201 	}
1202 }
1203 
1204 static void
1205 linux_poll_wait_dequeue(struct linux_file *filp)
1206 {
1207 	static const uint8_t state[LINUX_FWQ_STATE_MAX] = {
1208 		[LINUX_FWQ_STATE_INIT] = LINUX_FWQ_STATE_INIT,	/* NOP */
1209 		[LINUX_FWQ_STATE_NOT_READY] = LINUX_FWQ_STATE_INIT,
1210 		[LINUX_FWQ_STATE_QUEUED] = LINUX_FWQ_STATE_INIT,
1211 		[LINUX_FWQ_STATE_READY] = LINUX_FWQ_STATE_INIT,
1212 	};
1213 
1214 	seldrain(&filp->f_selinfo);
1215 
1216 	switch (linux_poll_wakeup_state(&filp->f_wait_queue.state, state)) {
1217 	case LINUX_FWQ_STATE_NOT_READY:
1218 	case LINUX_FWQ_STATE_QUEUED:
1219 	case LINUX_FWQ_STATE_READY:
1220 		remove_wait_queue(filp->f_wait_queue.wqh, &filp->f_wait_queue.wq);
1221 		break;
1222 	default:
1223 		break;
1224 	}
1225 }
1226 
1227 void
1228 linux_poll_wakeup(struct linux_file *filp)
1229 {
1230 	/* this function should be NULL-safe */
1231 	if (filp == NULL)
1232 		return;
1233 
1234 	selwakeup(&filp->f_selinfo);
1235 
1236 	spin_lock(&filp->f_kqlock);
1237 	filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ |
1238 	    LINUX_KQ_FLAG_NEED_WRITE;
1239 
1240 	/* make sure the "knote" gets woken up */
1241 	KNOTE_LOCKED(&filp->f_selinfo.si_note, 1);
1242 	spin_unlock(&filp->f_kqlock);
1243 }
1244 
1245 static void
1246 linux_file_kqfilter_detach(struct knote *kn)
1247 {
1248 	struct linux_file *filp = kn->kn_hook;
1249 
1250 	spin_lock(&filp->f_kqlock);
1251 	knlist_remove(&filp->f_selinfo.si_note, kn, 1);
1252 	spin_unlock(&filp->f_kqlock);
1253 }
1254 
1255 static int
1256 linux_file_kqfilter_read_event(struct knote *kn, long hint)
1257 {
1258 	struct linux_file *filp = kn->kn_hook;
1259 
1260 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1261 
1262 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_READ) ? 1 : 0);
1263 }
1264 
1265 static int
1266 linux_file_kqfilter_write_event(struct knote *kn, long hint)
1267 {
1268 	struct linux_file *filp = kn->kn_hook;
1269 
1270 	mtx_assert(&filp->f_kqlock.m, MA_OWNED);
1271 
1272 	return ((filp->f_kqflags & LINUX_KQ_FLAG_NEED_WRITE) ? 1 : 0);
1273 }
1274 
1275 static struct filterops linux_dev_kqfiltops_read = {
1276 	.f_isfd = 1,
1277 	.f_detach = linux_file_kqfilter_detach,
1278 	.f_event = linux_file_kqfilter_read_event,
1279 };
1280 
1281 static struct filterops linux_dev_kqfiltops_write = {
1282 	.f_isfd = 1,
1283 	.f_detach = linux_file_kqfilter_detach,
1284 	.f_event = linux_file_kqfilter_write_event,
1285 };
1286 
1287 static void
1288 linux_file_kqfilter_poll(struct linux_file *filp, int kqflags)
1289 {
1290 	struct thread *td;
1291 	const struct file_operations *fop;
1292 	struct linux_cdev *ldev;
1293 	int temp;
1294 
1295 	if ((filp->f_kqflags & kqflags) == 0)
1296 		return;
1297 
1298 	td = curthread;
1299 
1300 	linux_get_fop(filp, &fop, &ldev);
1301 	/* get the latest polling state */
1302 	temp = OPW(filp->_file, td, fop->poll(filp, NULL));
1303 	linux_drop_fop(ldev);
1304 
1305 	spin_lock(&filp->f_kqlock);
1306 	/* clear kqflags */
1307 	filp->f_kqflags &= ~(LINUX_KQ_FLAG_NEED_READ |
1308 	    LINUX_KQ_FLAG_NEED_WRITE);
1309 	/* update kqflags */
1310 	if ((temp & (POLLIN | POLLOUT)) != 0) {
1311 		if ((temp & POLLIN) != 0)
1312 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_READ;
1313 		if ((temp & POLLOUT) != 0)
1314 			filp->f_kqflags |= LINUX_KQ_FLAG_NEED_WRITE;
1315 
1316 		/* make sure the "knote" gets woken up */
1317 		KNOTE_LOCKED(&filp->f_selinfo.si_note, 0);
1318 	}
1319 	spin_unlock(&filp->f_kqlock);
1320 }
1321 
1322 static int
1323 linux_file_kqfilter(struct file *file, struct knote *kn)
1324 {
1325 	struct linux_file *filp;
1326 	struct thread *td;
1327 	int error;
1328 
1329 	td = curthread;
1330 	filp = (struct linux_file *)file->f_data;
1331 	filp->f_flags = file->f_flag;
1332 	if (filp->f_op->poll == NULL)
1333 		return (EINVAL);
1334 
1335 	spin_lock(&filp->f_kqlock);
1336 	switch (kn->kn_filter) {
1337 	case EVFILT_READ:
1338 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_READ;
1339 		kn->kn_fop = &linux_dev_kqfiltops_read;
1340 		kn->kn_hook = filp;
1341 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1342 		error = 0;
1343 		break;
1344 	case EVFILT_WRITE:
1345 		filp->f_kqflags |= LINUX_KQ_FLAG_HAS_WRITE;
1346 		kn->kn_fop = &linux_dev_kqfiltops_write;
1347 		kn->kn_hook = filp;
1348 		knlist_add(&filp->f_selinfo.si_note, kn, 1);
1349 		error = 0;
1350 		break;
1351 	default:
1352 		error = EINVAL;
1353 		break;
1354 	}
1355 	spin_unlock(&filp->f_kqlock);
1356 
1357 	if (error == 0) {
1358 		linux_set_current(td);
1359 
1360 		/* update kqfilter status, if any */
1361 		linux_file_kqfilter_poll(filp,
1362 		    LINUX_KQ_FLAG_HAS_READ | LINUX_KQ_FLAG_HAS_WRITE);
1363 	}
1364 	return (error);
1365 }
1366 
1367 static int
1368 linux_file_mmap_single(struct file *fp, const struct file_operations *fop,
1369     vm_ooffset_t *offset, vm_size_t size, struct vm_object **object,
1370     int nprot, bool is_shared, struct thread *td)
1371 {
1372 	struct task_struct *task;
1373 	struct vm_area_struct *vmap;
1374 	struct mm_struct *mm;
1375 	struct linux_file *filp;
1376 	vm_memattr_t attr;
1377 	int error;
1378 
1379 	filp = (struct linux_file *)fp->f_data;
1380 	filp->f_flags = fp->f_flag;
1381 
1382 	if (fop->mmap == NULL)
1383 		return (EOPNOTSUPP);
1384 
1385 	linux_set_current(td);
1386 
1387 	/*
1388 	 * The same VM object might be shared by multiple processes
1389 	 * and the mm_struct is usually freed when a process exits.
1390 	 *
1391 	 * The atomic reference below makes sure the mm_struct is
1392 	 * available as long as the vmap is in the linux_vma_head.
1393 	 */
1394 	task = current;
1395 	mm = task->mm;
1396 	if (atomic_inc_not_zero(&mm->mm_users) == 0)
1397 		return (EINVAL);
1398 
1399 	vmap = kzalloc(sizeof(*vmap), GFP_KERNEL);
1400 	vmap->vm_start = 0;
1401 	vmap->vm_end = size;
1402 	vmap->vm_pgoff = *offset / PAGE_SIZE;
1403 	vmap->vm_pfn = 0;
1404 	vmap->vm_flags = vmap->vm_page_prot = (nprot & VM_PROT_ALL);
1405 	if (is_shared)
1406 		vmap->vm_flags |= VM_SHARED;
1407 	vmap->vm_ops = NULL;
1408 	vmap->vm_file = get_file(filp);
1409 	vmap->vm_mm = mm;
1410 
1411 	if (unlikely(down_write_killable(&vmap->vm_mm->mmap_sem))) {
1412 		error = linux_get_error(task, EINTR);
1413 	} else {
1414 		error = -OPW(fp, td, fop->mmap(filp, vmap));
1415 		error = linux_get_error(task, error);
1416 		up_write(&vmap->vm_mm->mmap_sem);
1417 	}
1418 
1419 	if (error != 0) {
1420 		linux_cdev_handle_free(vmap);
1421 		return (error);
1422 	}
1423 
1424 	attr = pgprot2cachemode(vmap->vm_page_prot);
1425 
1426 	if (vmap->vm_ops != NULL) {
1427 		struct vm_area_struct *ptr;
1428 		void *vm_private_data;
1429 		bool vm_no_fault;
1430 
1431 		if (vmap->vm_ops->open == NULL ||
1432 		    vmap->vm_ops->close == NULL ||
1433 		    vmap->vm_private_data == NULL) {
1434 			/* free allocated VM area struct */
1435 			linux_cdev_handle_free(vmap);
1436 			return (EINVAL);
1437 		}
1438 
1439 		vm_private_data = vmap->vm_private_data;
1440 
1441 		rw_wlock(&linux_vma_lock);
1442 		TAILQ_FOREACH(ptr, &linux_vma_head, vm_entry) {
1443 			if (ptr->vm_private_data == vm_private_data)
1444 				break;
1445 		}
1446 		/* check if there is an existing VM area struct */
1447 		if (ptr != NULL) {
1448 			/* check if the VM area structure is invalid */
1449 			if (ptr->vm_ops == NULL ||
1450 			    ptr->vm_ops->open == NULL ||
1451 			    ptr->vm_ops->close == NULL) {
1452 				error = ESTALE;
1453 				vm_no_fault = 1;
1454 			} else {
1455 				error = EEXIST;
1456 				vm_no_fault = (ptr->vm_ops->fault == NULL);
1457 			}
1458 		} else {
1459 			/* insert VM area structure into list */
1460 			TAILQ_INSERT_TAIL(&linux_vma_head, vmap, vm_entry);
1461 			error = 0;
1462 			vm_no_fault = (vmap->vm_ops->fault == NULL);
1463 		}
1464 		rw_wunlock(&linux_vma_lock);
1465 
1466 		if (error != 0) {
1467 			/* free allocated VM area struct */
1468 			linux_cdev_handle_free(vmap);
1469 			/* check for stale VM area struct */
1470 			if (error != EEXIST)
1471 				return (error);
1472 		}
1473 
1474 		/* check if there is no fault handler */
1475 		if (vm_no_fault) {
1476 			*object = cdev_pager_allocate(vm_private_data, OBJT_DEVICE,
1477 			    &linux_cdev_pager_ops[1], size, nprot, *offset,
1478 			    td->td_ucred);
1479 		} else {
1480 			*object = cdev_pager_allocate(vm_private_data, OBJT_MGTDEVICE,
1481 			    &linux_cdev_pager_ops[0], size, nprot, *offset,
1482 			    td->td_ucred);
1483 		}
1484 
1485 		/* check if allocating the VM object failed */
1486 		if (*object == NULL) {
1487 			if (error == 0) {
1488 				/* remove VM area struct from list */
1489 				linux_cdev_handle_remove(vmap);
1490 				/* free allocated VM area struct */
1491 				linux_cdev_handle_free(vmap);
1492 			}
1493 			return (EINVAL);
1494 		}
1495 	} else {
1496 		struct sglist *sg;
1497 
1498 		sg = sglist_alloc(1, M_WAITOK);
1499 		sglist_append_phys(sg,
1500 		    (vm_paddr_t)vmap->vm_pfn << PAGE_SHIFT, vmap->vm_len);
1501 
1502 		*object = vm_pager_allocate(OBJT_SG, sg, vmap->vm_len,
1503 		    nprot, 0, td->td_ucred);
1504 
1505 		linux_cdev_handle_free(vmap);
1506 
1507 		if (*object == NULL) {
1508 			sglist_free(sg);
1509 			return (EINVAL);
1510 		}
1511 	}
1512 
1513 	if (attr != VM_MEMATTR_DEFAULT) {
1514 		VM_OBJECT_WLOCK(*object);
1515 		vm_object_set_memattr(*object, attr);
1516 		VM_OBJECT_WUNLOCK(*object);
1517 	}
1518 	*offset = 0;
1519 	return (0);
1520 }
1521 
1522 struct cdevsw linuxcdevsw = {
1523 	.d_version = D_VERSION,
1524 	.d_fdopen = linux_dev_fdopen,
1525 	.d_name = "lkpidev",
1526 };
1527 
1528 static int
1529 linux_file_read(struct file *file, struct uio *uio, struct ucred *active_cred,
1530     int flags, struct thread *td)
1531 {
1532 	struct linux_file *filp;
1533 	const struct file_operations *fop;
1534 	struct linux_cdev *ldev;
1535 	ssize_t bytes;
1536 	int error;
1537 
1538 	error = 0;
1539 	filp = (struct linux_file *)file->f_data;
1540 	filp->f_flags = file->f_flag;
1541 	/* XXX no support for I/O vectors currently */
1542 	if (uio->uio_iovcnt != 1)
1543 		return (EOPNOTSUPP);
1544 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1545 		return (EINVAL);
1546 	linux_set_current(td);
1547 	linux_get_fop(filp, &fop, &ldev);
1548 	if (fop->read != NULL) {
1549 		bytes = OPW(file, td, fop->read(filp,
1550 		    uio->uio_iov->iov_base,
1551 		    uio->uio_iov->iov_len, &uio->uio_offset));
1552 		if (bytes >= 0) {
1553 			uio->uio_iov->iov_base =
1554 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1555 			uio->uio_iov->iov_len -= bytes;
1556 			uio->uio_resid -= bytes;
1557 		} else {
1558 			error = linux_get_error(current, -bytes);
1559 		}
1560 	} else
1561 		error = ENXIO;
1562 
1563 	/* update kqfilter status, if any */
1564 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_READ);
1565 	linux_drop_fop(ldev);
1566 
1567 	return (error);
1568 }
1569 
1570 static int
1571 linux_file_write(struct file *file, struct uio *uio, struct ucred *active_cred,
1572     int flags, struct thread *td)
1573 {
1574 	struct linux_file *filp;
1575 	const struct file_operations *fop;
1576 	struct linux_cdev *ldev;
1577 	ssize_t bytes;
1578 	int error;
1579 
1580 	filp = (struct linux_file *)file->f_data;
1581 	filp->f_flags = file->f_flag;
1582 	/* XXX no support for I/O vectors currently */
1583 	if (uio->uio_iovcnt != 1)
1584 		return (EOPNOTSUPP);
1585 	if (uio->uio_resid > DEVFS_IOSIZE_MAX)
1586 		return (EINVAL);
1587 	linux_set_current(td);
1588 	linux_get_fop(filp, &fop, &ldev);
1589 	if (fop->write != NULL) {
1590 		bytes = OPW(file, td, fop->write(filp,
1591 		    uio->uio_iov->iov_base,
1592 		    uio->uio_iov->iov_len, &uio->uio_offset));
1593 		if (bytes >= 0) {
1594 			uio->uio_iov->iov_base =
1595 			    ((uint8_t *)uio->uio_iov->iov_base) + bytes;
1596 			uio->uio_iov->iov_len -= bytes;
1597 			uio->uio_resid -= bytes;
1598 			error = 0;
1599 		} else {
1600 			error = linux_get_error(current, -bytes);
1601 		}
1602 	} else
1603 		error = ENXIO;
1604 
1605 	/* update kqfilter status, if any */
1606 	linux_file_kqfilter_poll(filp, LINUX_KQ_FLAG_HAS_WRITE);
1607 
1608 	linux_drop_fop(ldev);
1609 
1610 	return (error);
1611 }
1612 
1613 static int
1614 linux_file_poll(struct file *file, int events, struct ucred *active_cred,
1615     struct thread *td)
1616 {
1617 	struct linux_file *filp;
1618 	const struct file_operations *fop;
1619 	struct linux_cdev *ldev;
1620 	int revents;
1621 
1622 	filp = (struct linux_file *)file->f_data;
1623 	filp->f_flags = file->f_flag;
1624 	linux_set_current(td);
1625 	linux_get_fop(filp, &fop, &ldev);
1626 	if (fop->poll != NULL) {
1627 		revents = OPW(file, td, fop->poll(filp,
1628 		    LINUX_POLL_TABLE_NORMAL)) & events;
1629 	} else {
1630 		revents = 0;
1631 	}
1632 	linux_drop_fop(ldev);
1633 	return (revents);
1634 }
1635 
1636 static int
1637 linux_file_close(struct file *file, struct thread *td)
1638 {
1639 	struct linux_file *filp;
1640 	int (*release)(struct inode *, struct linux_file *);
1641 	const struct file_operations *fop;
1642 	struct linux_cdev *ldev;
1643 	int error;
1644 
1645 	filp = (struct linux_file *)file->f_data;
1646 
1647 	KASSERT(file_count(filp) == 0,
1648 	    ("File refcount(%d) is not zero", file_count(filp)));
1649 
1650 	if (td == NULL)
1651 		td = curthread;
1652 
1653 	error = 0;
1654 	filp->f_flags = file->f_flag;
1655 	linux_set_current(td);
1656 	linux_poll_wait_dequeue(filp);
1657 	linux_get_fop(filp, &fop, &ldev);
1658 	/*
1659 	 * Always use the real release function, if any, to avoid
1660 	 * leaking device resources:
1661 	 */
1662 	release = filp->f_op->release;
1663 	if (release != NULL)
1664 		error = -OPW(file, td, release(filp->f_vnode, filp));
1665 	funsetown(&filp->f_sigio);
1666 	if (filp->f_vnode != NULL)
1667 		vdrop(filp->f_vnode);
1668 	linux_drop_fop(ldev);
1669 	ldev = filp->f_cdev;
1670 	if (ldev != NULL)
1671 		linux_cdev_deref(ldev);
1672 	linux_synchronize_rcu(RCU_TYPE_REGULAR);
1673 	kfree(filp);
1674 
1675 	return (error);
1676 }
1677 
1678 static int
1679 linux_file_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *cred,
1680     struct thread *td)
1681 {
1682 	struct linux_file *filp;
1683 	const struct file_operations *fop;
1684 	struct linux_cdev *ldev;
1685 	struct fiodgname_arg *fgn;
1686 	const char *p;
1687 	int error, i;
1688 
1689 	error = 0;
1690 	filp = (struct linux_file *)fp->f_data;
1691 	filp->f_flags = fp->f_flag;
1692 	linux_get_fop(filp, &fop, &ldev);
1693 
1694 	linux_set_current(td);
1695 	switch (cmd) {
1696 	case FIONBIO:
1697 		break;
1698 	case FIOASYNC:
1699 		if (fop->fasync == NULL)
1700 			break;
1701 		error = -OPW(fp, td, fop->fasync(0, filp, fp->f_flag & FASYNC));
1702 		break;
1703 	case FIOSETOWN:
1704 		error = fsetown(*(int *)data, &filp->f_sigio);
1705 		if (error == 0) {
1706 			if (fop->fasync == NULL)
1707 				break;
1708 			error = -OPW(fp, td, fop->fasync(0, filp,
1709 			    fp->f_flag & FASYNC));
1710 		}
1711 		break;
1712 	case FIOGETOWN:
1713 		*(int *)data = fgetown(&filp->f_sigio);
1714 		break;
1715 	case FIODGNAME:
1716 #ifdef	COMPAT_FREEBSD32
1717 	case FIODGNAME_32:
1718 #endif
1719 		if (filp->f_cdev == NULL || filp->f_cdev->cdev == NULL) {
1720 			error = ENXIO;
1721 			break;
1722 		}
1723 		fgn = data;
1724 		p = devtoname(filp->f_cdev->cdev);
1725 		i = strlen(p) + 1;
1726 		if (i > fgn->len) {
1727 			error = EINVAL;
1728 			break;
1729 		}
1730 		error = copyout(p, fiodgname_buf_get_ptr(fgn, cmd), i);
1731 		break;
1732 	default:
1733 		error = linux_file_ioctl_sub(fp, filp, fop, cmd, data, td);
1734 		break;
1735 	}
1736 	linux_drop_fop(ldev);
1737 	return (error);
1738 }
1739 
1740 static int
1741 linux_file_mmap_sub(struct thread *td, vm_size_t objsize, vm_prot_t prot,
1742     vm_prot_t maxprot, int flags, struct file *fp,
1743     vm_ooffset_t *foff, const struct file_operations *fop, vm_object_t *objp)
1744 {
1745 	/*
1746 	 * Character devices do not provide private mappings
1747 	 * of any kind:
1748 	 */
1749 	if ((maxprot & VM_PROT_WRITE) == 0 &&
1750 	    (prot & VM_PROT_WRITE) != 0)
1751 		return (EACCES);
1752 	if ((flags & (MAP_PRIVATE | MAP_COPY)) != 0)
1753 		return (EINVAL);
1754 
1755 	return (linux_file_mmap_single(fp, fop, foff, objsize, objp,
1756 	    (int)prot, (flags & MAP_SHARED) ? true : false, td));
1757 }
1758 
1759 static int
1760 linux_file_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
1761     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
1762     struct thread *td)
1763 {
1764 	struct linux_file *filp;
1765 	const struct file_operations *fop;
1766 	struct linux_cdev *ldev;
1767 	struct mount *mp;
1768 	struct vnode *vp;
1769 	vm_object_t object;
1770 	vm_prot_t maxprot;
1771 	int error;
1772 
1773 	filp = (struct linux_file *)fp->f_data;
1774 
1775 	vp = filp->f_vnode;
1776 	if (vp == NULL)
1777 		return (EOPNOTSUPP);
1778 
1779 	/*
1780 	 * Ensure that file and memory protections are
1781 	 * compatible.
1782 	 */
1783 	mp = vp->v_mount;
1784 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
1785 		maxprot = VM_PROT_NONE;
1786 		if ((prot & VM_PROT_EXECUTE) != 0)
1787 			return (EACCES);
1788 	} else
1789 		maxprot = VM_PROT_EXECUTE;
1790 	if ((fp->f_flag & FREAD) != 0)
1791 		maxprot |= VM_PROT_READ;
1792 	else if ((prot & VM_PROT_READ) != 0)
1793 		return (EACCES);
1794 
1795 	/*
1796 	 * If we are sharing potential changes via MAP_SHARED and we
1797 	 * are trying to get write permission although we opened it
1798 	 * without asking for it, bail out.
1799 	 *
1800 	 * Note that most character devices always share mappings.
1801 	 *
1802 	 * Rely on linux_file_mmap_sub() to fail invalid MAP_PRIVATE
1803 	 * requests rather than doing it here.
1804 	 */
1805 	if ((flags & MAP_SHARED) != 0) {
1806 		if ((fp->f_flag & FWRITE) != 0)
1807 			maxprot |= VM_PROT_WRITE;
1808 		else if ((prot & VM_PROT_WRITE) != 0)
1809 			return (EACCES);
1810 	}
1811 	maxprot &= cap_maxprot;
1812 
1813 	linux_get_fop(filp, &fop, &ldev);
1814 	error = linux_file_mmap_sub(td, size, prot, maxprot, flags, fp,
1815 	    &foff, fop, &object);
1816 	if (error != 0)
1817 		goto out;
1818 
1819 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
1820 	    foff, FALSE, td);
1821 	if (error != 0)
1822 		vm_object_deallocate(object);
1823 out:
1824 	linux_drop_fop(ldev);
1825 	return (error);
1826 }
1827 
1828 static int
1829 linux_file_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
1830 {
1831 	struct linux_file *filp;
1832 	struct vnode *vp;
1833 	int error;
1834 
1835 	filp = (struct linux_file *)fp->f_data;
1836 	if (filp->f_vnode == NULL)
1837 		return (EOPNOTSUPP);
1838 
1839 	vp = filp->f_vnode;
1840 
1841 	vn_lock(vp, LK_SHARED | LK_RETRY);
1842 	error = VOP_STAT(vp, sb, curthread->td_ucred, NOCRED);
1843 	VOP_UNLOCK(vp);
1844 
1845 	return (error);
1846 }
1847 
1848 static int
1849 linux_file_fill_kinfo(struct file *fp, struct kinfo_file *kif,
1850     struct filedesc *fdp)
1851 {
1852 	struct linux_file *filp;
1853 	struct vnode *vp;
1854 	int error;
1855 
1856 	filp = fp->f_data;
1857 	vp = filp->f_vnode;
1858 	if (vp == NULL) {
1859 		error = 0;
1860 		kif->kf_type = KF_TYPE_DEV;
1861 	} else {
1862 		vref(vp);
1863 		FILEDESC_SUNLOCK(fdp);
1864 		error = vn_fill_kinfo_vnode(vp, kif);
1865 		vrele(vp);
1866 		kif->kf_type = KF_TYPE_VNODE;
1867 		FILEDESC_SLOCK(fdp);
1868 	}
1869 	return (error);
1870 }
1871 
1872 unsigned int
1873 linux_iminor(struct inode *inode)
1874 {
1875 	struct linux_cdev *ldev;
1876 
1877 	if (inode == NULL || inode->v_rdev == NULL ||
1878 	    inode->v_rdev->si_devsw != &linuxcdevsw)
1879 		return (-1U);
1880 	ldev = inode->v_rdev->si_drv1;
1881 	if (ldev == NULL)
1882 		return (-1U);
1883 
1884 	return (minor(ldev->dev));
1885 }
1886 
1887 struct fileops linuxfileops = {
1888 	.fo_read = linux_file_read,
1889 	.fo_write = linux_file_write,
1890 	.fo_truncate = invfo_truncate,
1891 	.fo_kqfilter = linux_file_kqfilter,
1892 	.fo_stat = linux_file_stat,
1893 	.fo_fill_kinfo = linux_file_fill_kinfo,
1894 	.fo_poll = linux_file_poll,
1895 	.fo_close = linux_file_close,
1896 	.fo_ioctl = linux_file_ioctl,
1897 	.fo_mmap = linux_file_mmap,
1898 	.fo_chmod = invfo_chmod,
1899 	.fo_chown = invfo_chown,
1900 	.fo_sendfile = invfo_sendfile,
1901 	.fo_flags = DFLAG_PASSABLE,
1902 };
1903 
1904 /*
1905  * Hash of vmmap addresses.  This is infrequently accessed and does not
1906  * need to be particularly large.  This is done because we must store the
1907  * caller's idea of the map size to properly unmap.
1908  */
1909 struct vmmap {
1910 	LIST_ENTRY(vmmap)	vm_next;
1911 	void 			*vm_addr;
1912 	unsigned long		vm_size;
1913 };
1914 
1915 struct vmmaphd {
1916 	struct vmmap *lh_first;
1917 };
1918 #define	VMMAP_HASH_SIZE	64
1919 #define	VMMAP_HASH_MASK	(VMMAP_HASH_SIZE - 1)
1920 #define	VM_HASH(addr)	((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
1921 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
1922 static struct mtx vmmaplock;
1923 
1924 static void
1925 vmmap_add(void *addr, unsigned long size)
1926 {
1927 	struct vmmap *vmmap;
1928 
1929 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
1930 	mtx_lock(&vmmaplock);
1931 	vmmap->vm_size = size;
1932 	vmmap->vm_addr = addr;
1933 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
1934 	mtx_unlock(&vmmaplock);
1935 }
1936 
1937 static struct vmmap *
1938 vmmap_remove(void *addr)
1939 {
1940 	struct vmmap *vmmap;
1941 
1942 	mtx_lock(&vmmaplock);
1943 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
1944 		if (vmmap->vm_addr == addr)
1945 			break;
1946 	if (vmmap)
1947 		LIST_REMOVE(vmmap, vm_next);
1948 	mtx_unlock(&vmmaplock);
1949 
1950 	return (vmmap);
1951 }
1952 
1953 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1954 void *
1955 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
1956 {
1957 	void *addr;
1958 
1959 	addr = pmap_mapdev_attr(phys_addr, size, attr);
1960 	if (addr == NULL)
1961 		return (NULL);
1962 	vmmap_add(addr, size);
1963 
1964 	return (addr);
1965 }
1966 #endif
1967 
1968 void
1969 iounmap(void *addr)
1970 {
1971 	struct vmmap *vmmap;
1972 
1973 	vmmap = vmmap_remove(addr);
1974 	if (vmmap == NULL)
1975 		return;
1976 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
1977 	pmap_unmapdev((vm_offset_t)addr, vmmap->vm_size);
1978 #endif
1979 	kfree(vmmap);
1980 }
1981 
1982 void *
1983 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
1984 {
1985 	vm_offset_t off;
1986 	size_t size;
1987 
1988 	size = count * PAGE_SIZE;
1989 	off = kva_alloc(size);
1990 	if (off == 0)
1991 		return (NULL);
1992 	vmmap_add((void *)off, size);
1993 	pmap_qenter(off, pages, count);
1994 
1995 	return ((void *)off);
1996 }
1997 
1998 void
1999 vunmap(void *addr)
2000 {
2001 	struct vmmap *vmmap;
2002 
2003 	vmmap = vmmap_remove(addr);
2004 	if (vmmap == NULL)
2005 		return;
2006 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
2007 	kva_free((vm_offset_t)addr, vmmap->vm_size);
2008 	kfree(vmmap);
2009 }
2010 
2011 static char *
2012 devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap)
2013 {
2014 	unsigned int len;
2015 	char *p;
2016 	va_list aq;
2017 
2018 	va_copy(aq, ap);
2019 	len = vsnprintf(NULL, 0, fmt, aq);
2020 	va_end(aq);
2021 
2022 	if (dev != NULL)
2023 		p = devm_kmalloc(dev, len + 1, gfp);
2024 	else
2025 		p = kmalloc(len + 1, gfp);
2026 	if (p != NULL)
2027 		vsnprintf(p, len + 1, fmt, ap);
2028 
2029 	return (p);
2030 }
2031 
2032 char *
2033 kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
2034 {
2035 
2036 	return (devm_kvasprintf(NULL, gfp, fmt, ap));
2037 }
2038 
2039 char *
2040 lkpi_devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
2041 {
2042 	va_list ap;
2043 	char *p;
2044 
2045 	va_start(ap, fmt);
2046 	p = devm_kvasprintf(dev, gfp, fmt, ap);
2047 	va_end(ap);
2048 
2049 	return (p);
2050 }
2051 
2052 char *
2053 kasprintf(gfp_t gfp, const char *fmt, ...)
2054 {
2055 	va_list ap;
2056 	char *p;
2057 
2058 	va_start(ap, fmt);
2059 	p = kvasprintf(gfp, fmt, ap);
2060 	va_end(ap);
2061 
2062 	return (p);
2063 }
2064 
2065 static void
2066 linux_timer_callback_wrapper(void *context)
2067 {
2068 	struct timer_list *timer;
2069 
2070 	timer = context;
2071 
2072 	if (linux_set_current_flags(curthread, M_NOWAIT)) {
2073 		/* try again later */
2074 		callout_reset(&timer->callout, 1,
2075 		    &linux_timer_callback_wrapper, timer);
2076 		return;
2077 	}
2078 
2079 	timer->function(timer->data);
2080 }
2081 
2082 int
2083 mod_timer(struct timer_list *timer, int expires)
2084 {
2085 	int ret;
2086 
2087 	timer->expires = expires;
2088 	ret = callout_reset(&timer->callout,
2089 	    linux_timer_jiffies_until(expires),
2090 	    &linux_timer_callback_wrapper, timer);
2091 
2092 	MPASS(ret == 0 || ret == 1);
2093 
2094 	return (ret == 1);
2095 }
2096 
2097 void
2098 add_timer(struct timer_list *timer)
2099 {
2100 
2101 	callout_reset(&timer->callout,
2102 	    linux_timer_jiffies_until(timer->expires),
2103 	    &linux_timer_callback_wrapper, timer);
2104 }
2105 
2106 void
2107 add_timer_on(struct timer_list *timer, int cpu)
2108 {
2109 
2110 	callout_reset_on(&timer->callout,
2111 	    linux_timer_jiffies_until(timer->expires),
2112 	    &linux_timer_callback_wrapper, timer, cpu);
2113 }
2114 
2115 int
2116 del_timer(struct timer_list *timer)
2117 {
2118 
2119 	if (callout_stop(&(timer)->callout) == -1)
2120 		return (0);
2121 	return (1);
2122 }
2123 
2124 int
2125 del_timer_sync(struct timer_list *timer)
2126 {
2127 
2128 	if (callout_drain(&(timer)->callout) == -1)
2129 		return (0);
2130 	return (1);
2131 }
2132 
2133 /* greatest common divisor, Euclid equation */
2134 static uint64_t
2135 lkpi_gcd_64(uint64_t a, uint64_t b)
2136 {
2137 	uint64_t an;
2138 	uint64_t bn;
2139 
2140 	while (b != 0) {
2141 		an = b;
2142 		bn = a % b;
2143 		a = an;
2144 		b = bn;
2145 	}
2146 	return (a);
2147 }
2148 
2149 uint64_t lkpi_nsec2hz_rem;
2150 uint64_t lkpi_nsec2hz_div = 1000000000ULL;
2151 uint64_t lkpi_nsec2hz_max;
2152 
2153 uint64_t lkpi_usec2hz_rem;
2154 uint64_t lkpi_usec2hz_div = 1000000ULL;
2155 uint64_t lkpi_usec2hz_max;
2156 
2157 uint64_t lkpi_msec2hz_rem;
2158 uint64_t lkpi_msec2hz_div = 1000ULL;
2159 uint64_t lkpi_msec2hz_max;
2160 
2161 static void
2162 linux_timer_init(void *arg)
2163 {
2164 	uint64_t gcd;
2165 
2166 	/*
2167 	 * Compute an internal HZ value which can divide 2**32 to
2168 	 * avoid timer rounding problems when the tick value wraps
2169 	 * around 2**32:
2170 	 */
2171 	linux_timer_hz_mask = 1;
2172 	while (linux_timer_hz_mask < (unsigned long)hz)
2173 		linux_timer_hz_mask *= 2;
2174 	linux_timer_hz_mask--;
2175 
2176 	/* compute some internal constants */
2177 
2178 	lkpi_nsec2hz_rem = hz;
2179 	lkpi_usec2hz_rem = hz;
2180 	lkpi_msec2hz_rem = hz;
2181 
2182 	gcd = lkpi_gcd_64(lkpi_nsec2hz_rem, lkpi_nsec2hz_div);
2183 	lkpi_nsec2hz_rem /= gcd;
2184 	lkpi_nsec2hz_div /= gcd;
2185 	lkpi_nsec2hz_max = -1ULL / lkpi_nsec2hz_rem;
2186 
2187 	gcd = lkpi_gcd_64(lkpi_usec2hz_rem, lkpi_usec2hz_div);
2188 	lkpi_usec2hz_rem /= gcd;
2189 	lkpi_usec2hz_div /= gcd;
2190 	lkpi_usec2hz_max = -1ULL / lkpi_usec2hz_rem;
2191 
2192 	gcd = lkpi_gcd_64(lkpi_msec2hz_rem, lkpi_msec2hz_div);
2193 	lkpi_msec2hz_rem /= gcd;
2194 	lkpi_msec2hz_div /= gcd;
2195 	lkpi_msec2hz_max = -1ULL / lkpi_msec2hz_rem;
2196 }
2197 SYSINIT(linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, linux_timer_init, NULL);
2198 
2199 void
2200 linux_complete_common(struct completion *c, int all)
2201 {
2202 	int wakeup_swapper;
2203 
2204 	sleepq_lock(c);
2205 	if (all) {
2206 		c->done = UINT_MAX;
2207 		wakeup_swapper = sleepq_broadcast(c, SLEEPQ_SLEEP, 0, 0);
2208 	} else {
2209 		if (c->done != UINT_MAX)
2210 			c->done++;
2211 		wakeup_swapper = sleepq_signal(c, SLEEPQ_SLEEP, 0, 0);
2212 	}
2213 	sleepq_release(c);
2214 	if (wakeup_swapper)
2215 		kick_proc0();
2216 }
2217 
2218 /*
2219  * Indefinite wait for done != 0 with or without signals.
2220  */
2221 int
2222 linux_wait_for_common(struct completion *c, int flags)
2223 {
2224 	struct task_struct *task;
2225 	int error;
2226 
2227 	if (SCHEDULER_STOPPED())
2228 		return (0);
2229 
2230 	task = current;
2231 
2232 	if (flags != 0)
2233 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2234 	else
2235 		flags = SLEEPQ_SLEEP;
2236 	error = 0;
2237 	for (;;) {
2238 		sleepq_lock(c);
2239 		if (c->done)
2240 			break;
2241 		sleepq_add(c, NULL, "completion", flags, 0);
2242 		if (flags & SLEEPQ_INTERRUPTIBLE) {
2243 			DROP_GIANT();
2244 			error = -sleepq_wait_sig(c, 0);
2245 			PICKUP_GIANT();
2246 			if (error != 0) {
2247 				linux_schedule_save_interrupt_value(task, error);
2248 				error = -ERESTARTSYS;
2249 				goto intr;
2250 			}
2251 		} else {
2252 			DROP_GIANT();
2253 			sleepq_wait(c, 0);
2254 			PICKUP_GIANT();
2255 		}
2256 	}
2257 	if (c->done != UINT_MAX)
2258 		c->done--;
2259 	sleepq_release(c);
2260 
2261 intr:
2262 	return (error);
2263 }
2264 
2265 /*
2266  * Time limited wait for done != 0 with or without signals.
2267  */
2268 int
2269 linux_wait_for_timeout_common(struct completion *c, int timeout, int flags)
2270 {
2271 	struct task_struct *task;
2272 	int end = jiffies + timeout;
2273 	int error;
2274 
2275 	if (SCHEDULER_STOPPED())
2276 		return (0);
2277 
2278 	task = current;
2279 
2280 	if (flags != 0)
2281 		flags = SLEEPQ_INTERRUPTIBLE | SLEEPQ_SLEEP;
2282 	else
2283 		flags = SLEEPQ_SLEEP;
2284 
2285 	for (;;) {
2286 		sleepq_lock(c);
2287 		if (c->done)
2288 			break;
2289 		sleepq_add(c, NULL, "completion", flags, 0);
2290 		sleepq_set_timeout(c, linux_timer_jiffies_until(end));
2291 
2292 		DROP_GIANT();
2293 		if (flags & SLEEPQ_INTERRUPTIBLE)
2294 			error = -sleepq_timedwait_sig(c, 0);
2295 		else
2296 			error = -sleepq_timedwait(c, 0);
2297 		PICKUP_GIANT();
2298 
2299 		if (error != 0) {
2300 			/* check for timeout */
2301 			if (error == -EWOULDBLOCK) {
2302 				error = 0;	/* timeout */
2303 			} else {
2304 				/* signal happened */
2305 				linux_schedule_save_interrupt_value(task, error);
2306 				error = -ERESTARTSYS;
2307 			}
2308 			goto done;
2309 		}
2310 	}
2311 	if (c->done != UINT_MAX)
2312 		c->done--;
2313 	sleepq_release(c);
2314 
2315 	/* return how many jiffies are left */
2316 	error = linux_timer_jiffies_until(end);
2317 done:
2318 	return (error);
2319 }
2320 
2321 int
2322 linux_try_wait_for_completion(struct completion *c)
2323 {
2324 	int isdone;
2325 
2326 	sleepq_lock(c);
2327 	isdone = (c->done != 0);
2328 	if (c->done != 0 && c->done != UINT_MAX)
2329 		c->done--;
2330 	sleepq_release(c);
2331 	return (isdone);
2332 }
2333 
2334 int
2335 linux_completion_done(struct completion *c)
2336 {
2337 	int isdone;
2338 
2339 	sleepq_lock(c);
2340 	isdone = (c->done != 0);
2341 	sleepq_release(c);
2342 	return (isdone);
2343 }
2344 
2345 static void
2346 linux_cdev_deref(struct linux_cdev *ldev)
2347 {
2348 	if (refcount_release(&ldev->refs) &&
2349 	    ldev->kobj.ktype == &linux_cdev_ktype)
2350 		kfree(ldev);
2351 }
2352 
2353 static void
2354 linux_cdev_release(struct kobject *kobj)
2355 {
2356 	struct linux_cdev *cdev;
2357 	struct kobject *parent;
2358 
2359 	cdev = container_of(kobj, struct linux_cdev, kobj);
2360 	parent = kobj->parent;
2361 	linux_destroy_dev(cdev);
2362 	linux_cdev_deref(cdev);
2363 	kobject_put(parent);
2364 }
2365 
2366 static void
2367 linux_cdev_static_release(struct kobject *kobj)
2368 {
2369 	struct cdev *cdev;
2370 	struct linux_cdev *ldev;
2371 
2372 	ldev = container_of(kobj, struct linux_cdev, kobj);
2373 	cdev = ldev->cdev;
2374 	if (cdev != NULL) {
2375 		destroy_dev(cdev);
2376 		ldev->cdev = NULL;
2377 	}
2378 	kobject_put(kobj->parent);
2379 }
2380 
2381 int
2382 linux_cdev_device_add(struct linux_cdev *ldev, struct device *dev)
2383 {
2384 	int ret;
2385 
2386 	if (dev->devt != 0) {
2387 		/* Set parent kernel object. */
2388 		ldev->kobj.parent = &dev->kobj;
2389 
2390 		/*
2391 		 * Unlike Linux we require the kobject of the
2392 		 * character device structure to have a valid name
2393 		 * before calling this function:
2394 		 */
2395 		if (ldev->kobj.name == NULL)
2396 			return (-EINVAL);
2397 
2398 		ret = cdev_add(ldev, dev->devt, 1);
2399 		if (ret)
2400 			return (ret);
2401 	}
2402 	ret = device_add(dev);
2403 	if (ret != 0 && dev->devt != 0)
2404 		cdev_del(ldev);
2405 	return (ret);
2406 }
2407 
2408 void
2409 linux_cdev_device_del(struct linux_cdev *ldev, struct device *dev)
2410 {
2411 	device_del(dev);
2412 
2413 	if (dev->devt != 0)
2414 		cdev_del(ldev);
2415 }
2416 
2417 static void
2418 linux_destroy_dev(struct linux_cdev *ldev)
2419 {
2420 
2421 	if (ldev->cdev == NULL)
2422 		return;
2423 
2424 	MPASS((ldev->siref & LDEV_SI_DTR) == 0);
2425 	MPASS(ldev->kobj.ktype == &linux_cdev_ktype);
2426 
2427 	atomic_set_int(&ldev->siref, LDEV_SI_DTR);
2428 	while ((atomic_load_int(&ldev->siref) & ~LDEV_SI_DTR) != 0)
2429 		pause("ldevdtr", hz / 4);
2430 
2431 	destroy_dev(ldev->cdev);
2432 	ldev->cdev = NULL;
2433 }
2434 
2435 const struct kobj_type linux_cdev_ktype = {
2436 	.release = linux_cdev_release,
2437 };
2438 
2439 const struct kobj_type linux_cdev_static_ktype = {
2440 	.release = linux_cdev_static_release,
2441 };
2442 
2443 static void
2444 linux_handle_ifnet_link_event(void *arg, struct ifnet *ifp, int linkstate)
2445 {
2446 	struct notifier_block *nb;
2447 	struct netdev_notifier_info ni;
2448 
2449 	nb = arg;
2450 	ni.ifp = ifp;
2451 	ni.dev = (struct net_device *)ifp;
2452 	if (linkstate == LINK_STATE_UP)
2453 		nb->notifier_call(nb, NETDEV_UP, &ni);
2454 	else
2455 		nb->notifier_call(nb, NETDEV_DOWN, &ni);
2456 }
2457 
2458 static void
2459 linux_handle_ifnet_arrival_event(void *arg, struct ifnet *ifp)
2460 {
2461 	struct notifier_block *nb;
2462 	struct netdev_notifier_info ni;
2463 
2464 	nb = arg;
2465 	ni.ifp = ifp;
2466 	ni.dev = (struct net_device *)ifp;
2467 	nb->notifier_call(nb, NETDEV_REGISTER, &ni);
2468 }
2469 
2470 static void
2471 linux_handle_ifnet_departure_event(void *arg, struct ifnet *ifp)
2472 {
2473 	struct notifier_block *nb;
2474 	struct netdev_notifier_info ni;
2475 
2476 	nb = arg;
2477 	ni.ifp = ifp;
2478 	ni.dev = (struct net_device *)ifp;
2479 	nb->notifier_call(nb, NETDEV_UNREGISTER, &ni);
2480 }
2481 
2482 static void
2483 linux_handle_iflladdr_event(void *arg, struct ifnet *ifp)
2484 {
2485 	struct notifier_block *nb;
2486 	struct netdev_notifier_info ni;
2487 
2488 	nb = arg;
2489 	ni.ifp = ifp;
2490 	ni.dev = (struct net_device *)ifp;
2491 	nb->notifier_call(nb, NETDEV_CHANGEADDR, &ni);
2492 }
2493 
2494 static void
2495 linux_handle_ifaddr_event(void *arg, struct ifnet *ifp)
2496 {
2497 	struct notifier_block *nb;
2498 	struct netdev_notifier_info ni;
2499 
2500 	nb = arg;
2501 	ni.ifp = ifp;
2502 	ni.dev = (struct net_device *)ifp;
2503 	nb->notifier_call(nb, NETDEV_CHANGEIFADDR, &ni);
2504 }
2505 
2506 int
2507 register_netdevice_notifier(struct notifier_block *nb)
2508 {
2509 
2510 	nb->tags[NETDEV_UP] = EVENTHANDLER_REGISTER(
2511 	    ifnet_link_event, linux_handle_ifnet_link_event, nb, 0);
2512 	nb->tags[NETDEV_REGISTER] = EVENTHANDLER_REGISTER(
2513 	    ifnet_arrival_event, linux_handle_ifnet_arrival_event, nb, 0);
2514 	nb->tags[NETDEV_UNREGISTER] = EVENTHANDLER_REGISTER(
2515 	    ifnet_departure_event, linux_handle_ifnet_departure_event, nb, 0);
2516 	nb->tags[NETDEV_CHANGEADDR] = EVENTHANDLER_REGISTER(
2517 	    iflladdr_event, linux_handle_iflladdr_event, nb, 0);
2518 
2519 	return (0);
2520 }
2521 
2522 int
2523 register_inetaddr_notifier(struct notifier_block *nb)
2524 {
2525 
2526 	nb->tags[NETDEV_CHANGEIFADDR] = EVENTHANDLER_REGISTER(
2527 	    ifaddr_event, linux_handle_ifaddr_event, nb, 0);
2528 	return (0);
2529 }
2530 
2531 int
2532 unregister_netdevice_notifier(struct notifier_block *nb)
2533 {
2534 
2535 	EVENTHANDLER_DEREGISTER(ifnet_link_event,
2536 	    nb->tags[NETDEV_UP]);
2537 	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
2538 	    nb->tags[NETDEV_REGISTER]);
2539 	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
2540 	    nb->tags[NETDEV_UNREGISTER]);
2541 	EVENTHANDLER_DEREGISTER(iflladdr_event,
2542 	    nb->tags[NETDEV_CHANGEADDR]);
2543 
2544 	return (0);
2545 }
2546 
2547 int
2548 unregister_inetaddr_notifier(struct notifier_block *nb)
2549 {
2550 
2551 	EVENTHANDLER_DEREGISTER(ifaddr_event,
2552 	    nb->tags[NETDEV_CHANGEIFADDR]);
2553 
2554 	return (0);
2555 }
2556 
2557 struct list_sort_thunk {
2558 	int (*cmp)(void *, struct list_head *, struct list_head *);
2559 	void *priv;
2560 };
2561 
2562 static inline int
2563 linux_le_cmp(void *priv, const void *d1, const void *d2)
2564 {
2565 	struct list_head *le1, *le2;
2566 	struct list_sort_thunk *thunk;
2567 
2568 	thunk = priv;
2569 	le1 = *(__DECONST(struct list_head **, d1));
2570 	le2 = *(__DECONST(struct list_head **, d2));
2571 	return ((thunk->cmp)(thunk->priv, le1, le2));
2572 }
2573 
2574 void
2575 list_sort(void *priv, struct list_head *head, int (*cmp)(void *priv,
2576     struct list_head *a, struct list_head *b))
2577 {
2578 	struct list_sort_thunk thunk;
2579 	struct list_head **ar, *le;
2580 	size_t count, i;
2581 
2582 	count = 0;
2583 	list_for_each(le, head)
2584 		count++;
2585 	ar = malloc(sizeof(struct list_head *) * count, M_KMALLOC, M_WAITOK);
2586 	i = 0;
2587 	list_for_each(le, head)
2588 		ar[i++] = le;
2589 	thunk.cmp = cmp;
2590 	thunk.priv = priv;
2591 	qsort_r(ar, count, sizeof(struct list_head *), &thunk, linux_le_cmp);
2592 	INIT_LIST_HEAD(head);
2593 	for (i = 0; i < count; i++)
2594 		list_add_tail(ar[i], head);
2595 	free(ar, M_KMALLOC);
2596 }
2597 
2598 #if defined(__i386__) || defined(__amd64__)
2599 int
2600 linux_wbinvd_on_all_cpus(void)
2601 {
2602 
2603 	pmap_invalidate_cache();
2604 	return (0);
2605 }
2606 #endif
2607 
2608 int
2609 linux_on_each_cpu(void callback(void *), void *data)
2610 {
2611 
2612 	smp_rendezvous(smp_no_rendezvous_barrier, callback,
2613 	    smp_no_rendezvous_barrier, data);
2614 	return (0);
2615 }
2616 
2617 int
2618 linux_in_atomic(void)
2619 {
2620 
2621 	return ((curthread->td_pflags & TDP_NOFAULTING) != 0);
2622 }
2623 
2624 struct linux_cdev *
2625 linux_find_cdev(const char *name, unsigned major, unsigned minor)
2626 {
2627 	dev_t dev = MKDEV(major, minor);
2628 	struct cdev *cdev;
2629 
2630 	dev_lock();
2631 	LIST_FOREACH(cdev, &linuxcdevsw.d_devs, si_list) {
2632 		struct linux_cdev *ldev = cdev->si_drv1;
2633 		if (ldev->dev == dev &&
2634 		    strcmp(kobject_name(&ldev->kobj), name) == 0) {
2635 			break;
2636 		}
2637 	}
2638 	dev_unlock();
2639 
2640 	return (cdev != NULL ? cdev->si_drv1 : NULL);
2641 }
2642 
2643 int
2644 __register_chrdev(unsigned int major, unsigned int baseminor,
2645     unsigned int count, const char *name,
2646     const struct file_operations *fops)
2647 {
2648 	struct linux_cdev *cdev;
2649 	int ret = 0;
2650 	int i;
2651 
2652 	for (i = baseminor; i < baseminor + count; i++) {
2653 		cdev = cdev_alloc();
2654 		cdev->ops = fops;
2655 		kobject_set_name(&cdev->kobj, name);
2656 
2657 		ret = cdev_add(cdev, makedev(major, i), 1);
2658 		if (ret != 0)
2659 			break;
2660 	}
2661 	return (ret);
2662 }
2663 
2664 int
2665 __register_chrdev_p(unsigned int major, unsigned int baseminor,
2666     unsigned int count, const char *name,
2667     const struct file_operations *fops, uid_t uid,
2668     gid_t gid, int mode)
2669 {
2670 	struct linux_cdev *cdev;
2671 	int ret = 0;
2672 	int i;
2673 
2674 	for (i = baseminor; i < baseminor + count; i++) {
2675 		cdev = cdev_alloc();
2676 		cdev->ops = fops;
2677 		kobject_set_name(&cdev->kobj, name);
2678 
2679 		ret = cdev_add_ext(cdev, makedev(major, i), uid, gid, mode);
2680 		if (ret != 0)
2681 			break;
2682 	}
2683 	return (ret);
2684 }
2685 
2686 void
2687 __unregister_chrdev(unsigned int major, unsigned int baseminor,
2688     unsigned int count, const char *name)
2689 {
2690 	struct linux_cdev *cdevp;
2691 	int i;
2692 
2693 	for (i = baseminor; i < baseminor + count; i++) {
2694 		cdevp = linux_find_cdev(name, major, i);
2695 		if (cdevp != NULL)
2696 			cdev_del(cdevp);
2697 	}
2698 }
2699 
2700 void
2701 linux_dump_stack(void)
2702 {
2703 #ifdef STACK
2704 	struct stack st;
2705 
2706 	stack_save(&st);
2707 	stack_print(&st);
2708 #endif
2709 }
2710 
2711 int
2712 linuxkpi_net_ratelimit(void)
2713 {
2714 
2715 	return (ppsratecheck(&lkpi_net_lastlog, &lkpi_net_curpps,
2716 	   lkpi_net_maxpps));
2717 }
2718 
2719 #if defined(__i386__) || defined(__amd64__)
2720 bool linux_cpu_has_clflush;
2721 #endif
2722 
2723 static void
2724 linux_compat_init(void *arg)
2725 {
2726 	struct sysctl_oid *rootoid;
2727 	int i;
2728 
2729 #if defined(__i386__) || defined(__amd64__)
2730 	linux_cpu_has_clflush = (cpu_feature & CPUID_CLFSH);
2731 #endif
2732 	rw_init(&linux_vma_lock, "lkpi-vma-lock");
2733 
2734 	rootoid = SYSCTL_ADD_ROOT_NODE(NULL,
2735 	    OID_AUTO, "sys", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "sys");
2736 	kobject_init(&linux_class_root, &linux_class_ktype);
2737 	kobject_set_name(&linux_class_root, "class");
2738 	linux_class_root.oidp = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(rootoid),
2739 	    OID_AUTO, "class", CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, "class");
2740 	kobject_init(&linux_root_device.kobj, &linux_dev_ktype);
2741 	kobject_set_name(&linux_root_device.kobj, "device");
2742 	linux_root_device.kobj.oidp = SYSCTL_ADD_NODE(NULL,
2743 	    SYSCTL_CHILDREN(rootoid), OID_AUTO, "device",
2744 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "device");
2745 	linux_root_device.bsddev = root_bus;
2746 	linux_class_misc.name = "misc";
2747 	class_register(&linux_class_misc);
2748 	INIT_LIST_HEAD(&pci_drivers);
2749 	INIT_LIST_HEAD(&pci_devices);
2750 	spin_lock_init(&pci_lock);
2751 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
2752 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
2753 		LIST_INIT(&vmmaphead[i]);
2754 	init_waitqueue_head(&linux_bit_waitq);
2755 	init_waitqueue_head(&linux_var_waitq);
2756 
2757 	CPU_COPY(&all_cpus, &cpu_online_mask);
2758 }
2759 SYSINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_init, NULL);
2760 
2761 static void
2762 linux_compat_uninit(void *arg)
2763 {
2764 	linux_kobject_kfree_name(&linux_class_root);
2765 	linux_kobject_kfree_name(&linux_root_device.kobj);
2766 	linux_kobject_kfree_name(&linux_class_misc.kobj);
2767 
2768 	mtx_destroy(&vmmaplock);
2769 	spin_lock_destroy(&pci_lock);
2770 	rw_destroy(&linux_vma_lock);
2771 }
2772 SYSUNINIT(linux_compat, SI_SUB_DRIVERS, SI_ORDER_SECOND, linux_compat_uninit, NULL);
2773 
2774 /*
2775  * NOTE: Linux frequently uses "unsigned long" for pointer to integer
2776  * conversion and vice versa, where in FreeBSD "uintptr_t" would be
2777  * used. Assert these types have the same size, else some parts of the
2778  * LinuxKPI may not work like expected:
2779  */
2780 CTASSERT(sizeof(unsigned long) == sizeof(uintptr_t));
2781