1 /* 2 * Copyright (c) 1997, 1998 Kenneth D. Merry. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/types.h> 32 #include <sys/sysctl.h> 33 #include <sys/errno.h> 34 #include <sys/dkstat.h> 35 #include <sys/queue.h> 36 37 #include <ctype.h> 38 #include <err.h> 39 #include <fcntl.h> 40 #include <limits.h> 41 #include <stdio.h> 42 #include <stdlib.h> 43 #include <string.h> 44 #include <stdarg.h> 45 #include <kvm.h> 46 47 #include "devstat.h" 48 49 typedef enum { 50 DEVSTAT_ARG_NOTYPE, 51 DEVSTAT_ARG_UINT64, 52 DEVSTAT_ARG_LD, 53 DEVSTAT_ARG_SKIP 54 } devstat_arg_type; 55 56 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE]; 57 58 /* 59 * Table to match descriptive strings with device types. These are in 60 * order from most common to least common to speed search time. 61 */ 62 struct devstat_match_table match_table[] = { 63 {"da", DEVSTAT_TYPE_DIRECT, DEVSTAT_MATCH_TYPE}, 64 {"cd", DEVSTAT_TYPE_CDROM, DEVSTAT_MATCH_TYPE}, 65 {"scsi", DEVSTAT_TYPE_IF_SCSI, DEVSTAT_MATCH_IF}, 66 {"ide", DEVSTAT_TYPE_IF_IDE, DEVSTAT_MATCH_IF}, 67 {"other", DEVSTAT_TYPE_IF_OTHER, DEVSTAT_MATCH_IF}, 68 {"worm", DEVSTAT_TYPE_WORM, DEVSTAT_MATCH_TYPE}, 69 {"sa", DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE}, 70 {"pass", DEVSTAT_TYPE_PASS, DEVSTAT_MATCH_PASS}, 71 {"optical", DEVSTAT_TYPE_OPTICAL, DEVSTAT_MATCH_TYPE}, 72 {"array", DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE}, 73 {"changer", DEVSTAT_TYPE_CHANGER, DEVSTAT_MATCH_TYPE}, 74 {"scanner", DEVSTAT_TYPE_SCANNER, DEVSTAT_MATCH_TYPE}, 75 {"printer", DEVSTAT_TYPE_PRINTER, DEVSTAT_MATCH_TYPE}, 76 {"floppy", DEVSTAT_TYPE_FLOPPY, DEVSTAT_MATCH_TYPE}, 77 {"proc", DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE}, 78 {"comm", DEVSTAT_TYPE_COMM, DEVSTAT_MATCH_TYPE}, 79 {"enclosure", DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE}, 80 {NULL, 0, 0} 81 }; 82 83 struct devstat_args { 84 devstat_metric metric; 85 devstat_arg_type argtype; 86 } devstat_arg_list[] = { 87 { DSM_NONE, DEVSTAT_ARG_NOTYPE }, 88 { DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 }, 89 { DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 }, 90 { DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 }, 91 { DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 }, 92 { DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 }, 93 { DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 }, 94 { DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 }, 95 { DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 }, 96 { DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 }, 97 { DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 }, 98 { DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD }, 99 { DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD }, 100 { DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD }, 101 { DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD }, 102 { DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD }, 103 { DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 104 { DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD }, 105 { DSM_MB_PER_SECOND, DEVSTAT_ARG_LD }, 106 { DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD }, 107 { DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 108 { DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD }, 109 { DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD }, 110 { DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD }, 111 { DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD }, 112 { DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD }, 113 { DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD }, 114 { DSM_SKIP, DEVSTAT_ARG_SKIP } 115 }; 116 117 static char *namelist[] = { 118 #define X_NUMDEVS 0 119 "_devstat_num_devs", 120 #define X_GENERATION 1 121 "_devstat_generation", 122 #define X_VERSION 2 123 "_devstat_version", 124 #define X_DEVICE_STATQ 3 125 "_device_statq", 126 #define X_END 4 127 }; 128 129 /* 130 * Local function declarations. 131 */ 132 static int compare_select(const void *arg1, const void *arg2); 133 static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes); 134 static int readkmem_nl(kvm_t *kd, char *name, void *buf, size_t nbytes); 135 static char *get_devstat_kvm(kvm_t *kd); 136 137 #define KREADNL(kd, var, val) \ 138 readkmem_nl(kd, namelist[var], &val, sizeof(val)) 139 140 int 141 devstat_getnumdevs(kvm_t *kd) 142 { 143 size_t numdevsize; 144 int numdevs; 145 char *func_name = "devstat_getnumdevs"; 146 147 numdevsize = sizeof(int); 148 149 /* 150 * Find out how many devices we have in the system. 151 */ 152 if (kd == NULL) { 153 if (sysctlbyname("kern.devstat.numdevs", &numdevs, 154 &numdevsize, NULL, 0) == -1) { 155 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 156 "%s: error getting number of devices\n" 157 "%s: %s", func_name, func_name, 158 strerror(errno)); 159 return(-1); 160 } else 161 return(numdevs); 162 } else { 163 if (KREADNL(kd, X_NUMDEVS, numdevs) == -1) 164 return(-1); 165 else 166 return(numdevs); 167 } 168 } 169 170 /* 171 * This is an easy way to get the generation number, but the generation is 172 * supplied in a more atmoic manner by the kern.devstat.all sysctl. 173 * Because this generation sysctl is separate from the statistics sysctl, 174 * the device list and the generation could change between the time that 175 * this function is called and the device list is retreived. 176 */ 177 long 178 devstat_getgeneration(kvm_t *kd) 179 { 180 size_t gensize; 181 long generation; 182 char *func_name = "devstat_getgeneration"; 183 184 gensize = sizeof(long); 185 186 /* 187 * Get the current generation number. 188 */ 189 if (kd == NULL) { 190 if (sysctlbyname("kern.devstat.generation", &generation, 191 &gensize, NULL, 0) == -1) { 192 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 193 "%s: error getting devstat generation\n%s: %s", 194 func_name, func_name, strerror(errno)); 195 return(-1); 196 } else 197 return(generation); 198 } else { 199 if (KREADNL(kd, X_GENERATION, generation) == -1) 200 return(-1); 201 else 202 return(generation); 203 } 204 } 205 206 /* 207 * Get the current devstat version. The return value of this function 208 * should be compared with DEVSTAT_VERSION, which is defined in 209 * sys/devicestat.h. This will enable userland programs to determine 210 * whether they are out of sync with the kernel. 211 */ 212 int 213 devstat_getversion(kvm_t *kd) 214 { 215 size_t versize; 216 int version; 217 char *func_name = "devstat_getversion"; 218 219 versize = sizeof(int); 220 221 /* 222 * Get the current devstat version. 223 */ 224 if (kd == NULL) { 225 if (sysctlbyname("kern.devstat.version", &version, &versize, 226 NULL, 0) == -1) { 227 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 228 "%s: error getting devstat version\n%s: %s", 229 func_name, func_name, strerror(errno)); 230 return(-1); 231 } else 232 return(version); 233 } else { 234 if (KREADNL(kd, X_VERSION, version) == -1) 235 return(-1); 236 else 237 return(version); 238 } 239 } 240 241 /* 242 * Check the devstat version we know about against the devstat version the 243 * kernel knows about. If they don't match, print an error into the 244 * devstat error buffer, and return -1. If they match, return 0. 245 */ 246 int 247 devstat_checkversion(kvm_t *kd) 248 { 249 char *func_name = "devstat_checkversion"; 250 int buflen, res, retval = 0, version; 251 252 version = devstat_getversion(kd); 253 254 if (version != DEVSTAT_VERSION) { 255 /* 256 * If getversion() returns an error (i.e. -1), then it 257 * has printed an error message in the buffer. Therefore, 258 * we need to add a \n to the end of that message before we 259 * print our own message in the buffer. 260 */ 261 if (version == -1) 262 buflen = strlen(devstat_errbuf); 263 else 264 buflen = 0; 265 266 res = snprintf(devstat_errbuf + buflen, 267 DEVSTAT_ERRBUF_SIZE - buflen, 268 "%s%s: userland devstat version %d is not " 269 "the same as the kernel\n%s: devstat " 270 "version %d\n", version == -1 ? "\n" : "", 271 func_name, DEVSTAT_VERSION, func_name, version); 272 273 if (res < 0) 274 devstat_errbuf[buflen] = '\0'; 275 276 buflen = strlen(devstat_errbuf); 277 if (version < DEVSTAT_VERSION) 278 res = snprintf(devstat_errbuf + buflen, 279 DEVSTAT_ERRBUF_SIZE - buflen, 280 "%s: libdevstat newer than kernel\n", 281 func_name); 282 else 283 res = snprintf(devstat_errbuf + buflen, 284 DEVSTAT_ERRBUF_SIZE - buflen, 285 "%s: kernel newer than libdevstat\n", 286 func_name); 287 288 if (res < 0) 289 devstat_errbuf[buflen] = '\0'; 290 291 retval = -1; 292 } 293 294 return(retval); 295 } 296 297 /* 298 * Get the current list of devices and statistics, and the current 299 * generation number. 300 * 301 * Return values: 302 * -1 -- error 303 * 0 -- device list is unchanged 304 * 1 -- device list has changed 305 */ 306 int 307 devstat_getdevs(kvm_t *kd, struct statinfo *stats) 308 { 309 int error; 310 size_t dssize; 311 int oldnumdevs; 312 long oldgeneration; 313 int retval = 0; 314 struct devinfo *dinfo; 315 char *func_name = "devstat_getdevs"; 316 317 dinfo = stats->dinfo; 318 319 if (dinfo == NULL) { 320 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 321 "%s: stats->dinfo was NULL", func_name); 322 return(-1); 323 } 324 325 oldnumdevs = dinfo->numdevs; 326 oldgeneration = dinfo->generation; 327 328 /* Get the current time when we get the stats */ 329 gettimeofday(&stats->busy_time, NULL); 330 331 if (kd == NULL) { 332 /* If this is our first time through, mem_ptr will be null. */ 333 if (dinfo->mem_ptr == NULL) { 334 /* 335 * Get the number of devices. If it's negative, it's an 336 * error. Don't bother setting the error string, since 337 * getnumdevs() has already done that for us. 338 */ 339 if ((dinfo->numdevs = getnumdevs()) < 0) 340 return(-1); 341 342 /* 343 * The kern.devstat.all sysctl returns the current 344 * generation number, as well as all the devices. 345 * So we need four bytes more. 346 */ 347 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 348 sizeof(long); 349 dinfo->mem_ptr = (u_int8_t *)malloc(dssize); 350 } else 351 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 352 sizeof(long); 353 354 /* 355 * Request all of the devices. We only really allow for one 356 * ENOMEM failure. It would, of course, be possible to just go 357 * in a loop and keep reallocing the device structure until we 358 * don't get ENOMEM back. I'm not sure it's worth it, though. 359 * If devices are being added to the system that quickly, maybe 360 * the user can just wait until all devices are added. 361 */ 362 if ((error = sysctlbyname("kern.devstat.all", dinfo->mem_ptr, 363 &dssize, NULL, 0)) == -1) { 364 /* 365 * If we get ENOMEM back, that means that there are 366 * more devices now, so we need to allocate more 367 * space for the device array. 368 */ 369 if (errno == ENOMEM) { 370 /* 371 * No need to set the error string here, 372 * getnumdevs() will do that if it fails. 373 */ 374 if ((dinfo->numdevs = getnumdevs()) < 0) 375 return(-1); 376 377 dssize = (dinfo->numdevs * 378 sizeof(struct devstat)) + sizeof(long); 379 dinfo->mem_ptr = (u_int8_t *) 380 realloc(dinfo->mem_ptr, dssize); 381 if ((error = sysctlbyname("kern.devstat.all", 382 dinfo->mem_ptr, &dssize, NULL, 0)) == -1) { 383 snprintf(devstat_errbuf, 384 sizeof(devstat_errbuf), 385 "%s: error getting device " 386 "stats\n%s: %s", func_name, 387 func_name, strerror(errno)); 388 return(-1); 389 } 390 } else { 391 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 392 "%s: error getting device stats\n" 393 "%s: %s", func_name, func_name, 394 strerror(errno)); 395 return(-1); 396 } 397 } 398 399 } else { 400 /* 401 * This is of course non-atomic, but since we are working 402 * on a core dump, the generation is unlikely to change 403 */ 404 if ((dinfo->numdevs = getnumdevs()) == -1) 405 return(-1); 406 if ((dinfo->mem_ptr = get_devstat_kvm(kd)) == NULL) 407 return(-1); 408 } 409 /* 410 * The sysctl spits out the generation as the first four bytes, 411 * then all of the device statistics structures. 412 */ 413 dinfo->generation = *(long *)dinfo->mem_ptr; 414 415 /* 416 * If the generation has changed, and if the current number of 417 * devices is not the same as the number of devices recorded in the 418 * devinfo structure, it is likely that the device list has shrunk. 419 * The reason that it is likely that the device list has shrunk in 420 * this case is that if the device list has grown, the sysctl above 421 * will return an ENOMEM error, and we will reset the number of 422 * devices and reallocate the device array. If the second sysctl 423 * fails, we will return an error and therefore never get to this 424 * point. If the device list has shrunk, the sysctl will not 425 * return an error since we have more space allocated than is 426 * necessary. So, in the shrinkage case, we catch it here and 427 * reallocate the array so that we don't use any more space than is 428 * necessary. 429 */ 430 if (oldgeneration != dinfo->generation) { 431 if (getnumdevs() != dinfo->numdevs) { 432 if ((dinfo->numdevs = getnumdevs()) < 0) 433 return(-1); 434 dssize = (dinfo->numdevs * sizeof(struct devstat)) + 435 sizeof(long); 436 dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr, 437 dssize); 438 } 439 retval = 1; 440 } 441 442 dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long)); 443 444 return(retval); 445 } 446 447 /* 448 * selectdevs(): 449 * 450 * Devices are selected/deselected based upon the following criteria: 451 * - devices specified by the user on the command line 452 * - devices matching any device type expressions given on the command line 453 * - devices with the highest I/O, if 'top' mode is enabled 454 * - the first n unselected devices in the device list, if maxshowdevs 455 * devices haven't already been selected and if the user has not 456 * specified any devices on the command line and if we're in "add" mode. 457 * 458 * Input parameters: 459 * - device selection list (dev_select) 460 * - current number of devices selected (num_selected) 461 * - total number of devices in the selection list (num_selections) 462 * - devstat generation as of the last time selectdevs() was called 463 * (select_generation) 464 * - current devstat generation (current_generation) 465 * - current list of devices and statistics (devices) 466 * - number of devices in the current device list (numdevs) 467 * - compiled version of the command line device type arguments (matches) 468 * - This is optional. If the number of devices is 0, this will be ignored. 469 * - The matching code pays attention to the current selection mode. So 470 * if you pass in a matching expression, it will be evaluated based 471 * upon the selection mode that is passed in. See below for details. 472 * - number of device type matching expressions (num_matches) 473 * - Set to 0 to disable the matching code. 474 * - list of devices specified on the command line by the user (dev_selections) 475 * - number of devices selected on the command line by the user 476 * (num_dev_selections) 477 * - Our selection mode. There are four different selection modes: 478 * - add mode. (DS_SELECT_ADD) Any devices matching devices explicitly 479 * selected by the user or devices matching a pattern given by the 480 * user will be selected in addition to devices that are already 481 * selected. Additional devices will be selected, up to maxshowdevs 482 * number of devices. 483 * - only mode. (DS_SELECT_ONLY) Only devices matching devices 484 * explicitly given by the user or devices matching a pattern 485 * given by the user will be selected. No other devices will be 486 * selected. 487 * - addonly mode. (DS_SELECT_ADDONLY) This is similar to add and 488 * only. Basically, this will not de-select any devices that are 489 * current selected, as only mode would, but it will also not 490 * gratuitously select up to maxshowdevs devices as add mode would. 491 * - remove mode. (DS_SELECT_REMOVE) Any devices matching devices 492 * explicitly selected by the user or devices matching a pattern 493 * given by the user will be de-selected. 494 * - maximum number of devices we can select (maxshowdevs) 495 * - flag indicating whether or not we're in 'top' mode (perf_select) 496 * 497 * Output data: 498 * - the device selection list may be modified and passed back out 499 * - the number of devices selected and the total number of items in the 500 * device selection list may be changed 501 * - the selection generation may be changed to match the current generation 502 * 503 * Return values: 504 * -1 -- error 505 * 0 -- selected devices are unchanged 506 * 1 -- selected devices changed 507 */ 508 int 509 devstat_selectdevs(struct device_selection **dev_select, int *num_selected, 510 int *num_selections, long *select_generation, 511 long current_generation, struct devstat *devices, 512 int numdevs, struct devstat_match *matches, int num_matches, 513 char **dev_selections, int num_dev_selections, 514 devstat_select_mode select_mode, int maxshowdevs, 515 int perf_select) 516 { 517 register int i, j, k; 518 int init_selections = 0, init_selected_var = 0; 519 struct device_selection *old_dev_select = NULL; 520 int old_num_selections = 0, old_num_selected; 521 int selection_number = 0; 522 int changed = 0, found = 0; 523 524 if ((dev_select == NULL) || (devices == NULL) || (numdevs <= 0)) 525 return(-1); 526 527 /* 528 * We always want to make sure that we have as many dev_select 529 * entries as there are devices. 530 */ 531 /* 532 * In this case, we haven't selected devices before. 533 */ 534 if (*dev_select == NULL) { 535 *dev_select = (struct device_selection *)malloc(numdevs * 536 sizeof(struct device_selection)); 537 *select_generation = current_generation; 538 init_selections = 1; 539 changed = 1; 540 /* 541 * In this case, we have selected devices before, but the device 542 * list has changed since we last selected devices, so we need to 543 * either enlarge or reduce the size of the device selection list. 544 */ 545 } else if (*num_selections != numdevs) { 546 *dev_select = (struct device_selection *)realloc(*dev_select, 547 numdevs * sizeof(struct device_selection)); 548 *select_generation = current_generation; 549 init_selections = 1; 550 /* 551 * In this case, we've selected devices before, and the selection 552 * list is the same size as it was the last time, but the device 553 * list has changed. 554 */ 555 } else if (*select_generation < current_generation) { 556 *select_generation = current_generation; 557 init_selections = 1; 558 } 559 560 /* 561 * If we're in "only" mode, we want to clear out the selected 562 * variable since we're going to select exactly what the user wants 563 * this time through. 564 */ 565 if (select_mode == DS_SELECT_ONLY) 566 init_selected_var = 1; 567 568 /* 569 * In all cases, we want to back up the number of selected devices. 570 * It is a quick and accurate way to determine whether the selected 571 * devices have changed. 572 */ 573 old_num_selected = *num_selected; 574 575 /* 576 * We want to make a backup of the current selection list if 577 * the list of devices has changed, or if we're in performance 578 * selection mode. In both cases, we don't want to make a backup 579 * if we already know for sure that the list will be different. 580 * This is certainly the case if this is our first time through the 581 * selection code. 582 */ 583 if (((init_selected_var != 0) || (init_selections != 0) 584 || (perf_select != 0)) && (changed == 0)){ 585 old_dev_select = (struct device_selection *)malloc( 586 *num_selections * sizeof(struct device_selection)); 587 old_num_selections = *num_selections; 588 bcopy(*dev_select, old_dev_select, 589 sizeof(struct device_selection) * *num_selections); 590 } 591 592 if (init_selections != 0) { 593 bzero(*dev_select, sizeof(struct device_selection) * numdevs); 594 595 for (i = 0; i < numdevs; i++) { 596 (*dev_select)[i].device_number = 597 devices[i].device_number; 598 strncpy((*dev_select)[i].device_name, 599 devices[i].device_name, 600 DEVSTAT_NAME_LEN); 601 (*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0'; 602 (*dev_select)[i].unit_number = devices[i].unit_number; 603 (*dev_select)[i].position = i; 604 } 605 *num_selections = numdevs; 606 } else if (init_selected_var != 0) { 607 for (i = 0; i < numdevs; i++) 608 (*dev_select)[i].selected = 0; 609 } 610 611 /* we haven't gotten around to selecting anything yet.. */ 612 if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0) 613 || (init_selected_var != 0)) 614 *num_selected = 0; 615 616 /* 617 * Look through any devices the user specified on the command line 618 * and see if they match known devices. If so, select them. 619 */ 620 for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) { 621 char tmpstr[80]; 622 623 snprintf(tmpstr, sizeof(tmpstr), "%s%d", 624 (*dev_select)[i].device_name, 625 (*dev_select)[i].unit_number); 626 for (j = 0; j < num_dev_selections; j++) { 627 if (strcmp(tmpstr, dev_selections[j]) == 0) { 628 /* 629 * Here we do different things based on the 630 * mode we're in. If we're in add or 631 * addonly mode, we only select this device 632 * if it hasn't already been selected. 633 * Otherwise, we would be unnecessarily 634 * changing the selection order and 635 * incrementing the selection count. If 636 * we're in only mode, we unconditionally 637 * select this device, since in only mode 638 * any previous selections are erased and 639 * manually specified devices are the first 640 * ones to be selected. If we're in remove 641 * mode, we de-select the specified device and 642 * decrement the selection count. 643 */ 644 switch(select_mode) { 645 case DS_SELECT_ADD: 646 case DS_SELECT_ADDONLY: 647 if ((*dev_select)[i].selected) 648 break; 649 /* FALLTHROUGH */ 650 case DS_SELECT_ONLY: 651 (*dev_select)[i].selected = 652 ++selection_number; 653 (*num_selected)++; 654 break; 655 case DS_SELECT_REMOVE: 656 (*dev_select)[i].selected = 0; 657 (*num_selected)--; 658 /* 659 * This isn't passed back out, we 660 * just use it to keep track of 661 * how many devices we've removed. 662 */ 663 num_dev_selections--; 664 break; 665 } 666 break; 667 } 668 } 669 } 670 671 /* 672 * Go through the user's device type expressions and select devices 673 * accordingly. We only do this if the number of devices already 674 * selected is less than the maximum number we can show. 675 */ 676 for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) { 677 /* We should probably indicate some error here */ 678 if ((matches[i].match_fields == DEVSTAT_MATCH_NONE) 679 || (matches[i].num_match_categories <= 0)) 680 continue; 681 682 for (j = 0; j < numdevs; j++) { 683 int num_match_categories; 684 685 num_match_categories = matches[i].num_match_categories; 686 687 /* 688 * Determine whether or not the current device 689 * matches the given matching expression. This if 690 * statement consists of three components: 691 * - the device type check 692 * - the device interface check 693 * - the passthrough check 694 * If a the matching test is successful, it 695 * decrements the number of matching categories, 696 * and if we've reached the last element that 697 * needed to be matched, the if statement succeeds. 698 * 699 */ 700 if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0) 701 && ((devices[j].device_type & DEVSTAT_TYPE_MASK) == 702 (matches[i].device_type & DEVSTAT_TYPE_MASK)) 703 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 704 || (((matches[i].match_fields & 705 DEVSTAT_MATCH_PASS) == 0) 706 && ((devices[j].device_type & 707 DEVSTAT_TYPE_PASS) == 0))) 708 && (--num_match_categories == 0)) 709 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0) 710 && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) == 711 (matches[i].device_type & DEVSTAT_TYPE_IF_MASK)) 712 &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 713 || (((matches[i].match_fields & 714 DEVSTAT_MATCH_PASS) == 0) 715 && ((devices[j].device_type & 716 DEVSTAT_TYPE_PASS) == 0))) 717 && (--num_match_categories == 0)) 718 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0) 719 && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0) 720 && (--num_match_categories == 0))) { 721 722 /* 723 * This is probably a non-optimal solution 724 * to the problem that the devices in the 725 * device list will not be in the same 726 * order as the devices in the selection 727 * array. 728 */ 729 for (k = 0; k < numdevs; k++) { 730 if ((*dev_select)[k].position == j) { 731 found = 1; 732 break; 733 } 734 } 735 736 /* 737 * There shouldn't be a case where a device 738 * in the device list is not in the 739 * selection list...but it could happen. 740 */ 741 if (found != 1) { 742 fprintf(stderr, "selectdevs: couldn't" 743 " find %s%d in selection " 744 "list\n", 745 devices[j].device_name, 746 devices[j].unit_number); 747 break; 748 } 749 750 /* 751 * We do different things based upon the 752 * mode we're in. If we're in add or only 753 * mode, we go ahead and select this device 754 * if it hasn't already been selected. If 755 * it has already been selected, we leave 756 * it alone so we don't mess up the 757 * selection ordering. Manually specified 758 * devices have already been selected, and 759 * they have higher priority than pattern 760 * matched devices. If we're in remove 761 * mode, we de-select the given device and 762 * decrement the selected count. 763 */ 764 switch(select_mode) { 765 case DS_SELECT_ADD: 766 case DS_SELECT_ADDONLY: 767 case DS_SELECT_ONLY: 768 if ((*dev_select)[k].selected != 0) 769 break; 770 (*dev_select)[k].selected = 771 ++selection_number; 772 (*num_selected)++; 773 break; 774 case DS_SELECT_REMOVE: 775 (*dev_select)[k].selected = 0; 776 (*num_selected)--; 777 break; 778 } 779 } 780 } 781 } 782 783 /* 784 * Here we implement "top" mode. Devices are sorted in the 785 * selection array based on two criteria: whether or not they are 786 * selected (not selection number, just the fact that they are 787 * selected!) and the number of bytes in the "bytes" field of the 788 * selection structure. The bytes field generally must be kept up 789 * by the user. In the future, it may be maintained by library 790 * functions, but for now the user has to do the work. 791 * 792 * At first glance, it may seem wrong that we don't go through and 793 * select every device in the case where the user hasn't specified 794 * any devices or patterns. In fact, though, it won't make any 795 * difference in the device sorting. In that particular case (i.e. 796 * when we're in "add" or "only" mode, and the user hasn't 797 * specified anything) the first time through no devices will be 798 * selected, so the only criterion used to sort them will be their 799 * performance. The second time through, and every time thereafter, 800 * all devices will be selected, so again selection won't matter. 801 */ 802 if (perf_select != 0) { 803 804 /* Sort the device array by throughput */ 805 qsort(*dev_select, *num_selections, 806 sizeof(struct device_selection), 807 compare_select); 808 809 if (*num_selected == 0) { 810 /* 811 * Here we select every device in the array, if it 812 * isn't already selected. Because the 'selected' 813 * variable in the selection array entries contains 814 * the selection order, the devstats routine can show 815 * the devices that were selected first. 816 */ 817 for (i = 0; i < *num_selections; i++) { 818 if ((*dev_select)[i].selected == 0) { 819 (*dev_select)[i].selected = 820 ++selection_number; 821 (*num_selected)++; 822 } 823 } 824 } else { 825 selection_number = 0; 826 for (i = 0; i < *num_selections; i++) { 827 if ((*dev_select)[i].selected != 0) { 828 (*dev_select)[i].selected = 829 ++selection_number; 830 } 831 } 832 } 833 } 834 835 /* 836 * If we're in the "add" selection mode and if we haven't already 837 * selected maxshowdevs number of devices, go through the array and 838 * select any unselected devices. If we're in "only" mode, we 839 * obviously don't want to select anything other than what the user 840 * specifies. If we're in "remove" mode, it probably isn't a good 841 * idea to go through and select any more devices, since we might 842 * end up selecting something that the user wants removed. Through 843 * more complicated logic, we could actually figure this out, but 844 * that would probably require combining this loop with the various 845 * selections loops above. 846 */ 847 if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) { 848 for (i = 0; i < *num_selections; i++) 849 if ((*dev_select)[i].selected == 0) { 850 (*dev_select)[i].selected = ++selection_number; 851 (*num_selected)++; 852 } 853 } 854 855 /* 856 * Look at the number of devices that have been selected. If it 857 * has changed, set the changed variable. Otherwise, if we've 858 * made a backup of the selection list, compare it to the current 859 * selection list to see if the selected devices have changed. 860 */ 861 if ((changed == 0) && (old_num_selected != *num_selected)) 862 changed = 1; 863 else if ((changed == 0) && (old_dev_select != NULL)) { 864 /* 865 * Now we go through the selection list and we look at 866 * it three different ways. 867 */ 868 for (i = 0; (i < *num_selections) && (changed == 0) && 869 (i < old_num_selections); i++) { 870 /* 871 * If the device at index i in both the new and old 872 * selection arrays has the same device number and 873 * selection status, it hasn't changed. We 874 * continue on to the next index. 875 */ 876 if (((*dev_select)[i].device_number == 877 old_dev_select[i].device_number) 878 && ((*dev_select)[i].selected == 879 old_dev_select[i].selected)) 880 continue; 881 882 /* 883 * Now, if we're still going through the if 884 * statement, the above test wasn't true. So we 885 * check here to see if the device at index i in 886 * the current array is the same as the device at 887 * index i in the old array. If it is, that means 888 * that its selection number has changed. Set 889 * changed to 1 and exit the loop. 890 */ 891 else if ((*dev_select)[i].device_number == 892 old_dev_select[i].device_number) { 893 changed = 1; 894 break; 895 } 896 /* 897 * If we get here, then the device at index i in 898 * the current array isn't the same device as the 899 * device at index i in the old array. 900 */ 901 else { 902 int found = 0; 903 904 /* 905 * Search through the old selection array 906 * looking for a device with the same 907 * device number as the device at index i 908 * in the current array. If the selection 909 * status is the same, then we mark it as 910 * found. If the selection status isn't 911 * the same, we break out of the loop. 912 * Since found isn't set, changed will be 913 * set to 1 below. 914 */ 915 for (j = 0; j < old_num_selections; j++) { 916 if (((*dev_select)[i].device_number == 917 old_dev_select[j].device_number) 918 && ((*dev_select)[i].selected == 919 old_dev_select[j].selected)){ 920 found = 1; 921 break; 922 } 923 else if ((*dev_select)[i].device_number 924 == old_dev_select[j].device_number) 925 break; 926 } 927 if (found == 0) 928 changed = 1; 929 } 930 } 931 } 932 if (old_dev_select != NULL) 933 free(old_dev_select); 934 935 return(changed); 936 } 937 938 /* 939 * Comparison routine for qsort() above. Note that the comparison here is 940 * backwards -- generally, it should return a value to indicate whether 941 * arg1 is <, =, or > arg2. Instead, it returns the opposite. The reason 942 * it returns the opposite is so that the selection array will be sorted in 943 * order of decreasing performance. We sort on two parameters. The first 944 * sort key is whether or not one or the other of the devices in question 945 * has been selected. If one of them has, and the other one has not, the 946 * selected device is automatically more important than the unselected 947 * device. If neither device is selected, we judge the devices based upon 948 * performance. 949 */ 950 static int 951 compare_select(const void *arg1, const void *arg2) 952 { 953 if ((((struct device_selection *)arg1)->selected) 954 && (((struct device_selection *)arg2)->selected == 0)) 955 return(-1); 956 else if ((((struct device_selection *)arg1)->selected == 0) 957 && (((struct device_selection *)arg2)->selected)) 958 return(1); 959 else if (((struct device_selection *)arg2)->bytes < 960 ((struct device_selection *)arg1)->bytes) 961 return(-1); 962 else if (((struct device_selection *)arg2)->bytes > 963 ((struct device_selection *)arg1)->bytes) 964 return(1); 965 else 966 return(0); 967 } 968 969 /* 970 * Take a string with the general format "arg1,arg2,arg3", and build a 971 * device matching expression from it. 972 */ 973 int 974 devstat_buildmatch(char *match_str, struct devstat_match **matches, 975 int *num_matches) 976 { 977 char *tstr[5]; 978 char **tempstr; 979 int num_args; 980 register int i, j; 981 char *func_name = "devstat_buildmatch"; 982 983 /* We can't do much without a string to parse */ 984 if (match_str == NULL) { 985 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 986 "%s: no match expression", func_name); 987 return(-1); 988 } 989 990 /* 991 * Break the (comma delimited) input string out into separate strings. 992 */ 993 for (tempstr = tstr, num_args = 0; 994 (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5); 995 num_args++) 996 if (**tempstr != '\0') 997 if (++tempstr >= &tstr[5]) 998 break; 999 1000 /* The user gave us too many type arguments */ 1001 if (num_args > 3) { 1002 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1003 "%s: too many type arguments", func_name); 1004 return(-1); 1005 } 1006 1007 /* 1008 * Since you can't realloc a pointer that hasn't been malloced 1009 * first, we malloc first and then realloc. 1010 */ 1011 if (*num_matches == 0) 1012 *matches = (struct devstat_match *)malloc( 1013 sizeof(struct devstat_match)); 1014 else 1015 *matches = (struct devstat_match *)realloc(*matches, 1016 sizeof(struct devstat_match) * (*num_matches + 1)); 1017 1018 /* Make sure the current entry is clear */ 1019 bzero(&matches[0][*num_matches], sizeof(struct devstat_match)); 1020 1021 /* 1022 * Step through the arguments the user gave us and build a device 1023 * matching expression from them. 1024 */ 1025 for (i = 0; i < num_args; i++) { 1026 char *tempstr2, *tempstr3; 1027 1028 /* 1029 * Get rid of leading white space. 1030 */ 1031 tempstr2 = tstr[i]; 1032 while (isspace(*tempstr2) && (*tempstr2 != '\0')) 1033 tempstr2++; 1034 1035 /* 1036 * Get rid of trailing white space. 1037 */ 1038 tempstr3 = &tempstr2[strlen(tempstr2) - 1]; 1039 1040 while ((*tempstr3 != '\0') && (tempstr3 > tempstr2) 1041 && (isspace(*tempstr3))) { 1042 *tempstr3 = '\0'; 1043 tempstr3--; 1044 } 1045 1046 /* 1047 * Go through the match table comparing the user's 1048 * arguments to known device types, interfaces, etc. 1049 */ 1050 for (j = 0; match_table[j].match_str != NULL; j++) { 1051 /* 1052 * We do case-insensitive matching, in case someone 1053 * wants to enter "SCSI" instead of "scsi" or 1054 * something like that. Only compare as many 1055 * characters as are in the string in the match 1056 * table. This should help if someone tries to use 1057 * a super-long match expression. 1058 */ 1059 if (strncasecmp(tempstr2, match_table[j].match_str, 1060 strlen(match_table[j].match_str)) == 0) { 1061 /* 1062 * Make sure the user hasn't specified two 1063 * items of the same type, like "da" and 1064 * "cd". One device cannot be both. 1065 */ 1066 if (((*matches)[*num_matches].match_fields & 1067 match_table[j].match_field) != 0) { 1068 snprintf(devstat_errbuf, 1069 sizeof(devstat_errbuf), 1070 "%s: cannot have more than " 1071 "one match item in a single " 1072 "category", func_name); 1073 return(-1); 1074 } 1075 /* 1076 * If we've gotten this far, we have a 1077 * winner. Set the appropriate fields in 1078 * the match entry. 1079 */ 1080 (*matches)[*num_matches].match_fields |= 1081 match_table[j].match_field; 1082 (*matches)[*num_matches].device_type |= 1083 match_table[j].type; 1084 (*matches)[*num_matches].num_match_categories++; 1085 break; 1086 } 1087 } 1088 /* 1089 * We should have found a match in the above for loop. If 1090 * not, that means the user entered an invalid device type 1091 * or interface. 1092 */ 1093 if ((*matches)[*num_matches].num_match_categories != (i + 1)) { 1094 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1095 "%s: unknown match item \"%s\"", func_name, 1096 tstr[i]); 1097 return(-1); 1098 } 1099 } 1100 1101 (*num_matches)++; 1102 1103 return(0); 1104 } 1105 1106 /* 1107 * Compute a number of device statistics. Only one field is mandatory, and 1108 * that is "current". Everything else is optional. The caller passes in 1109 * pointers to variables to hold the various statistics he desires. If he 1110 * doesn't want a particular staistic, he should pass in a NULL pointer. 1111 * Return values: 1112 * 0 -- success 1113 * -1 -- failure 1114 */ 1115 int 1116 compute_stats(struct devstat *current, struct devstat *previous, 1117 long double etime, u_int64_t *total_bytes, 1118 u_int64_t *total_transfers, u_int64_t *total_blocks, 1119 long double *kb_per_transfer, long double *transfers_per_second, 1120 long double *mb_per_second, long double *blocks_per_second, 1121 long double *ms_per_transaction) 1122 { 1123 return(devstat_compute_statistics(current, previous, etime, 1124 total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP, 1125 total_bytes, 1126 total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP, 1127 total_transfers, 1128 total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP, 1129 total_blocks, 1130 kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP, 1131 kb_per_transfer, 1132 transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP, 1133 transfers_per_second, 1134 mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP, 1135 mb_per_second, 1136 blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP, 1137 blocks_per_second, 1138 ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP, 1139 ms_per_transaction, 1140 DSM_NONE)); 1141 } 1142 1143 long double 1144 devstat_compute_etime(struct timeval cur_time, struct timeval prev_time) 1145 { 1146 struct timeval busy_time; 1147 u_int64_t busy_usec; 1148 long double etime; 1149 1150 timersub(&cur_time, &prev_time, &busy_time); 1151 1152 busy_usec = busy_time.tv_sec; 1153 busy_usec *= 1000000; 1154 busy_usec += busy_time.tv_usec; 1155 etime = busy_usec; 1156 etime /= 1000000; 1157 1158 return(etime); 1159 } 1160 1161 int 1162 devstat_compute_statistics(struct devstat *current, struct devstat *previous, 1163 long double etime, ...) 1164 { 1165 char *func_name = "devstat_compute_statistics"; 1166 u_int64_t totalbytes, totalbytesread, totalbyteswrite; 1167 u_int64_t totaltransfers, totaltransfersread, totaltransferswrite; 1168 u_int64_t totaltransfersother, totalblocks, totalblocksread; 1169 u_int64_t totalblockswrite; 1170 va_list ap; 1171 devstat_metric metric; 1172 u_int64_t *destu64; 1173 long double *destld; 1174 int retval; 1175 1176 retval = 0; 1177 1178 /* 1179 * current is the only mandatory field. 1180 */ 1181 if (current == NULL) { 1182 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1183 "%s: current stats structure was NULL", func_name); 1184 return(-1); 1185 } 1186 1187 totalbytesread = current->bytes_read - 1188 ((previous) ? previous->bytes_read : 0); 1189 totalbyteswrite = current->bytes_written - 1190 ((previous) ? previous->bytes_written : 0); 1191 1192 totalbytes = totalbytesread + totalbyteswrite; 1193 1194 totaltransfersread = current->num_reads - 1195 ((previous) ? previous->num_reads : 0); 1196 1197 totaltransferswrite = current->num_writes - 1198 ((previous) ? previous->num_writes : 0); 1199 1200 totaltransfersother = current->num_other - 1201 ((previous) ? previous->num_other : 0); 1202 1203 totaltransfers = totaltransfersread + totaltransferswrite + 1204 totaltransfersother; 1205 1206 totalblocks = totalbytes; 1207 totalblocksread = totalbytesread; 1208 totalblockswrite = totalbyteswrite; 1209 1210 if (current->block_size > 0) { 1211 totalblocks /= current->block_size; 1212 totalblocksread /= current->block_size; 1213 totalblockswrite /= current->block_size; 1214 } else { 1215 totalblocks /= 512; 1216 totalblocksread /= 512; 1217 totalblockswrite /= 512; 1218 } 1219 1220 va_start(ap, etime); 1221 1222 while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) { 1223 1224 if (metric == DSM_NONE) 1225 break; 1226 1227 if (metric >= DSM_MAX) { 1228 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1229 "%s: metric %d is out of range", func_name, 1230 metric); 1231 retval = -1; 1232 goto bailout; 1233 } 1234 1235 switch (devstat_arg_list[metric].argtype) { 1236 case DEVSTAT_ARG_UINT64: 1237 destu64 = (u_int64_t *)va_arg(ap, u_int64_t *); 1238 break; 1239 case DEVSTAT_ARG_LD: 1240 destld = (long double *)va_arg(ap, long double *); 1241 break; 1242 case DEVSTAT_ARG_SKIP: 1243 destld = (long double *)va_arg(ap, long double *); 1244 break; 1245 default: 1246 retval = -1; 1247 goto bailout; 1248 break; /* NOTREACHED */ 1249 } 1250 1251 if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP) 1252 continue; 1253 1254 switch (metric) { 1255 case DSM_TOTAL_BYTES: 1256 *destu64 = totalbytes; 1257 break; 1258 case DSM_TOTAL_BYTES_READ: 1259 *destu64 = totalbytesread; 1260 break; 1261 case DSM_TOTAL_BYTES_WRITE: 1262 *destu64 = totalbyteswrite; 1263 break; 1264 case DSM_TOTAL_TRANSFERS: 1265 *destu64 = totaltransfers; 1266 break; 1267 case DSM_TOTAL_TRANSFERS_READ: 1268 *destu64 = totaltransfersread; 1269 break; 1270 case DSM_TOTAL_TRANSFERS_WRITE: 1271 *destu64 = totaltransferswrite; 1272 break; 1273 case DSM_TOTAL_TRANSFERS_OTHER: 1274 *destu64 = totaltransfersother; 1275 break; 1276 case DSM_TOTAL_BLOCKS: 1277 *destu64 = totalblocks; 1278 break; 1279 case DSM_TOTAL_BLOCKS_READ: 1280 *destu64 = totalblocksread; 1281 break; 1282 case DSM_TOTAL_BLOCKS_WRITE: 1283 *destu64 = totalblockswrite; 1284 break; 1285 case DSM_KB_PER_TRANSFER: 1286 *destld = totalbytes; 1287 *destld /= 1024; 1288 if (totaltransfers > 0) 1289 *destld /= totaltransfers; 1290 else 1291 *destld = 0.0; 1292 break; 1293 case DSM_KB_PER_TRANSFER_READ: 1294 *destld = totalbytesread; 1295 *destld /= 1024; 1296 if (totaltransfersread > 0) 1297 *destld /= totaltransfersread; 1298 else 1299 *destld = 0.0; 1300 break; 1301 case DSM_KB_PER_TRANSFER_WRITE: 1302 *destld = totalbyteswrite; 1303 *destld /= 1024; 1304 if (totaltransferswrite > 0) 1305 *destld /= totaltransferswrite; 1306 else 1307 *destld = 0.0; 1308 break; 1309 case DSM_TRANSFERS_PER_SECOND: 1310 if (etime > 0.0) { 1311 *destld = totaltransfers; 1312 *destld /= etime; 1313 } else 1314 *destld = 0.0; 1315 break; 1316 case DSM_TRANSFERS_PER_SECOND_READ: 1317 if (etime > 0.0) { 1318 *destld = totaltransfersread; 1319 *destld /= etime; 1320 } else 1321 *destld = 0.0; 1322 break; 1323 case DSM_TRANSFERS_PER_SECOND_WRITE: 1324 if (etime > 0.0) { 1325 *destld = totaltransferswrite; 1326 *destld /= etime; 1327 } else 1328 *destld = 0.0; 1329 break; 1330 case DSM_TRANSFERS_PER_SECOND_OTHER: 1331 if (etime > 0.0) { 1332 *destld = totaltransfersother; 1333 *destld /= etime; 1334 } else 1335 *destld = 0.0; 1336 break; 1337 case DSM_MB_PER_SECOND: 1338 *destld = totalbytes; 1339 *destld /= 1024 * 1024; 1340 if (etime > 0.0) 1341 *destld /= etime; 1342 else 1343 *destld = 0.0; 1344 break; 1345 case DSM_MB_PER_SECOND_READ: 1346 *destld = totalbytesread; 1347 *destld /= 1024 * 1024; 1348 if (etime > 0.0) 1349 *destld /= etime; 1350 else 1351 *destld = 0.0; 1352 break; 1353 case DSM_MB_PER_SECOND_WRITE: 1354 *destld = totalbyteswrite; 1355 *destld /= 1024 * 1024; 1356 if (etime > 0.0) 1357 *destld /= etime; 1358 else 1359 *destld = 0.0; 1360 break; 1361 case DSM_BLOCKS_PER_SECOND: 1362 *destld = totalblocks; 1363 if (etime > 0.0) 1364 *destld /= etime; 1365 else 1366 *destld = 0.0; 1367 break; 1368 case DSM_BLOCKS_PER_SECOND_READ: 1369 *destld = totalblocksread; 1370 if (etime > 0.0) 1371 *destld /= etime; 1372 else 1373 *destld = 0.0; 1374 break; 1375 case DSM_BLOCKS_PER_SECOND_WRITE: 1376 *destld = totalblockswrite; 1377 if (etime > 0.0) 1378 *destld /= etime; 1379 else 1380 *destld = 0.0; 1381 break; 1382 /* 1383 * This calculation is somewhat bogus. It simply divides 1384 * the elapsed time by the total number of transactions 1385 * completed. While that does give the caller a good 1386 * picture of the average rate of transaction completion, 1387 * it doesn't necessarily give the caller a good view of 1388 * how long transactions took to complete on average. 1389 * Those two numbers will be different for a device that 1390 * can handle more than one transaction at a time. e.g. 1391 * SCSI disks doing tagged queueing. 1392 * 1393 * The only way to accurately determine the real average 1394 * time per transaction would be to compute and store the 1395 * time on a per-transaction basis. That currently isn't 1396 * done in the kernel, and would only be desireable if it 1397 * could be implemented in a somewhat non-intrusive and high 1398 * performance way. 1399 */ 1400 case DSM_MS_PER_TRANSACTION: 1401 if (totaltransfers > 0) { 1402 *destld = etime; 1403 *destld /= totaltransfers; 1404 *destld *= 1000; 1405 } else 1406 *destld = 0.0; 1407 break; 1408 /* 1409 * As above, these next two really only give the average 1410 * rate of completion for read and write transactions, not 1411 * the average time the transaction took to complete. 1412 */ 1413 case DSM_MS_PER_TRANSACTION_READ: 1414 if (totaltransfersread > 0) { 1415 *destld = etime; 1416 *destld /= totaltransfersread; 1417 *destld *= 1000; 1418 } else 1419 *destld = 0.0; 1420 break; 1421 case DSM_MS_PER_TRANSACTION_WRITE: 1422 if (totaltransferswrite > 0) { 1423 *destld = etime; 1424 *destld /= totaltransferswrite; 1425 *destld *= 1000; 1426 } else 1427 *destld = 0.0; 1428 break; 1429 default: 1430 /* 1431 * This shouldn't happen, since we should have 1432 * caught any out of range metrics at the top of 1433 * the loop. 1434 */ 1435 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1436 "%s: unknown metric %d", func_name, metric); 1437 retval = -1; 1438 goto bailout; 1439 break; /* NOTREACHED */ 1440 } 1441 } 1442 1443 bailout: 1444 1445 va_end(ap); 1446 return(retval); 1447 } 1448 1449 static int 1450 readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes) 1451 { 1452 char *func_name = "readkmem"; 1453 1454 if (kvm_read(kd, addr, buf, nbytes) == -1) { 1455 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1456 "%s: error reading value (kvm_read): %s", func_name, 1457 kvm_geterr(kd)); 1458 return(-1); 1459 } 1460 return(0); 1461 } 1462 1463 static int 1464 readkmem_nl(kvm_t *kd, char *name, void *buf, size_t nbytes) 1465 { 1466 char *func_name = "readkmem_nl"; 1467 struct nlist nl[2] = { { name }, { NULL } }; 1468 1469 if (kvm_nlist(kd, nl) == -1) { 1470 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1471 "%s: error getting name list (kvm_nlist): %s", 1472 func_name, kvm_geterr(kd)); 1473 return(-1); 1474 } 1475 return(readkmem(kd, nl[0].n_value, buf, nbytes)); 1476 } 1477 1478 /* 1479 * This duplicates the functionality of the kernel sysctl handler for poking 1480 * through crash dumps. 1481 */ 1482 static char * 1483 get_devstat_kvm(kvm_t *kd) 1484 { 1485 int error, i, wp; 1486 long gen; 1487 struct devstat *nds; 1488 struct devstat ds; 1489 struct devstatlist dhead; 1490 int num_devs; 1491 char *rv = NULL; 1492 char *func_name = "get_devstat_kvm"; 1493 1494 if ((num_devs = getnumdevs()) <= 0) 1495 return(NULL); 1496 error = 0; 1497 if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1) 1498 return(NULL); 1499 1500 nds = STAILQ_FIRST(&dhead); 1501 1502 if ((rv = malloc(sizeof(gen))) == NULL) { 1503 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1504 "%s: out of memory (initial malloc failed)", 1505 func_name); 1506 return(NULL); 1507 } 1508 gen = getgeneration(); 1509 memcpy(rv, &gen, sizeof(gen)); 1510 wp = sizeof(gen); 1511 /* 1512 * Now push out all the devices. 1513 */ 1514 for (i = 0; (nds != NULL) && (i < num_devs); 1515 nds = STAILQ_NEXT(nds, dev_links), i++) { 1516 if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) { 1517 free(rv); 1518 return(NULL); 1519 } 1520 nds = &ds; 1521 rv = (char *)reallocf(rv, sizeof(gen) + 1522 sizeof(ds) * (i + 1)); 1523 if (rv == NULL) { 1524 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 1525 "%s: out of memory (malloc failed)", 1526 func_name); 1527 return(NULL); 1528 } 1529 memcpy(rv + wp, &ds, sizeof(ds)); 1530 wp += sizeof(ds); 1531 } 1532 return(rv); 1533 } 1534 1535 /* 1536 * Compatability functions for libdevstat 2. These are deprecated and may 1537 * eventually be removed. 1538 */ 1539 int 1540 getnumdevs(void) 1541 { 1542 return(devstat_getnumdevs(NULL)); 1543 } 1544 1545 long 1546 getgeneration(void) 1547 { 1548 return(devstat_getgeneration(NULL)); 1549 } 1550 1551 int 1552 getversion(void) 1553 { 1554 return(devstat_getversion(NULL)); 1555 } 1556 1557 int 1558 checkversion(void) 1559 { 1560 return(devstat_checkversion(NULL)); 1561 } 1562 1563 int 1564 getdevs(struct statinfo *stats) 1565 { 1566 return(devstat_getdevs(NULL, stats)); 1567 } 1568 1569 int 1570 selectdevs(struct device_selection **dev_select, int *num_selected, 1571 int *num_selections, long *select_generation, 1572 long current_generation, struct devstat *devices, int numdevs, 1573 struct devstat_match *matches, int num_matches, 1574 char **dev_selections, int num_dev_selections, 1575 devstat_select_mode select_mode, int maxshowdevs, 1576 int perf_select) 1577 { 1578 1579 return(devstat_selectdevs(dev_select, num_selected, num_selections, 1580 select_generation, current_generation, devices, numdevs, 1581 matches, num_matches, dev_selections, num_dev_selections, 1582 select_mode, maxshowdevs, perf_select)); 1583 } 1584 1585 int 1586 buildmatch(char *match_str, struct devstat_match **matches, 1587 int *num_matches) 1588 { 1589 return(devstat_buildmatch(match_str, matches, num_matches)); 1590 } 1591 1592 long double 1593 compute_etime(struct timeval cur_time, struct timeval prev_time) 1594 { 1595 return(devstat_compute_etime(cur_time, prev_time)); 1596 } 1597