1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines structures to encapsulate information gleaned from the 10 // target register and register class definitions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenRegisters.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/IntEqClasses.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/TableGen/Error.h" 29 #include "llvm/TableGen/Record.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <cstdint> 33 #include <iterator> 34 #include <map> 35 #include <queue> 36 #include <set> 37 #include <string> 38 #include <tuple> 39 #include <utility> 40 #include <vector> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "regalloc-emitter" 45 46 //===----------------------------------------------------------------------===// 47 // CodeGenSubRegIndex 48 //===----------------------------------------------------------------------===// 49 50 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 51 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) { 52 Name = std::string(R->getName()); 53 if (R->getValue("Namespace")) 54 Namespace = std::string(R->getValueAsString("Namespace")); 55 Size = R->getValueAsInt("Size"); 56 Offset = R->getValueAsInt("Offset"); 57 } 58 59 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 60 unsigned Enum) 61 : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)), 62 Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true), 63 Artificial(true) {} 64 65 std::string CodeGenSubRegIndex::getQualifiedName() const { 66 std::string N = getNamespace(); 67 if (!N.empty()) 68 N += "::"; 69 N += getName(); 70 return N; 71 } 72 73 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 74 if (!TheDef) 75 return; 76 77 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 78 if (!Comps.empty()) { 79 if (Comps.size() != 2) 80 PrintFatalError(TheDef->getLoc(), 81 "ComposedOf must have exactly two entries"); 82 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 83 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 84 CodeGenSubRegIndex *X = A->addComposite(B, this); 85 if (X) 86 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 87 } 88 89 std::vector<Record*> Parts = 90 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 91 if (!Parts.empty()) { 92 if (Parts.size() < 2) 93 PrintFatalError(TheDef->getLoc(), 94 "CoveredBySubRegs must have two or more entries"); 95 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 96 for (Record *Part : Parts) 97 IdxParts.push_back(RegBank.getSubRegIdx(Part)); 98 setConcatenationOf(IdxParts); 99 } 100 } 101 102 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const { 103 // Already computed? 104 if (LaneMask.any()) 105 return LaneMask; 106 107 // Recursion guard, shouldn't be required. 108 LaneMask = LaneBitmask::getAll(); 109 110 // The lane mask is simply the union of all sub-indices. 111 LaneBitmask M; 112 for (const auto &C : Composed) 113 M |= C.second->computeLaneMask(); 114 assert(M.any() && "Missing lane mask, sub-register cycle?"); 115 LaneMask = M; 116 return LaneMask; 117 } 118 119 void CodeGenSubRegIndex::setConcatenationOf( 120 ArrayRef<CodeGenSubRegIndex*> Parts) { 121 if (ConcatenationOf.empty()) 122 ConcatenationOf.assign(Parts.begin(), Parts.end()); 123 else 124 assert(std::equal(Parts.begin(), Parts.end(), 125 ConcatenationOf.begin()) && "parts consistent"); 126 } 127 128 void CodeGenSubRegIndex::computeConcatTransitiveClosure() { 129 for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator 130 I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) { 131 CodeGenSubRegIndex *SubIdx = *I; 132 SubIdx->computeConcatTransitiveClosure(); 133 #ifndef NDEBUG 134 for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf) 135 assert(SRI->ConcatenationOf.empty() && "No transitive closure?"); 136 #endif 137 138 if (SubIdx->ConcatenationOf.empty()) { 139 ++I; 140 } else { 141 I = ConcatenationOf.erase(I); 142 I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(), 143 SubIdx->ConcatenationOf.end()); 144 I += SubIdx->ConcatenationOf.size(); 145 } 146 } 147 } 148 149 //===----------------------------------------------------------------------===// 150 // CodeGenRegister 151 //===----------------------------------------------------------------------===// 152 153 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 154 : TheDef(R), EnumValue(Enum), 155 CostPerUse(R->getValueAsListOfInts("CostPerUse")), 156 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 157 HasDisjunctSubRegs(false), Constant(R->getValueAsBit("isConstant")), 158 SubRegsComplete(false), SuperRegsComplete(false), TopoSig(~0u) { 159 Artificial = R->getValueAsBit("isArtificial"); 160 } 161 162 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 163 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 164 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 165 166 if (SRIs.size() != SRs.size()) 167 PrintFatalError(TheDef->getLoc(), 168 "SubRegs and SubRegIndices must have the same size"); 169 170 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 171 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 172 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 173 } 174 175 // Also compute leading super-registers. Each register has a list of 176 // covered-by-subregs super-registers where it appears as the first explicit 177 // sub-register. 178 // 179 // This is used by computeSecondarySubRegs() to find candidates. 180 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 181 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 182 183 // Add ad hoc alias links. This is a symmetric relationship between two 184 // registers, so build a symmetric graph by adding links in both ends. 185 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 186 for (Record *Alias : Aliases) { 187 CodeGenRegister *Reg = RegBank.getReg(Alias); 188 ExplicitAliases.push_back(Reg); 189 Reg->ExplicitAliases.push_back(this); 190 } 191 } 192 193 StringRef CodeGenRegister::getName() const { 194 assert(TheDef && "no def"); 195 return TheDef->getName(); 196 } 197 198 namespace { 199 200 // Iterate over all register units in a set of registers. 201 class RegUnitIterator { 202 CodeGenRegister::Vec::const_iterator RegI, RegE; 203 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 204 static CodeGenRegister::RegUnitList Sentinel; 205 206 public: 207 RegUnitIterator(const CodeGenRegister::Vec &Regs): 208 RegI(Regs.begin()), RegE(Regs.end()) { 209 210 if (RegI == RegE) { 211 UnitI = Sentinel.end(); 212 UnitE = Sentinel.end(); 213 } else { 214 UnitI = (*RegI)->getRegUnits().begin(); 215 UnitE = (*RegI)->getRegUnits().end(); 216 advance(); 217 } 218 } 219 220 bool isValid() const { return UnitI != UnitE; } 221 222 unsigned operator* () const { assert(isValid()); return *UnitI; } 223 224 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 225 226 /// Preincrement. Move to the next unit. 227 void operator++() { 228 assert(isValid() && "Cannot advance beyond the last operand"); 229 ++UnitI; 230 advance(); 231 } 232 233 protected: 234 void advance() { 235 while (UnitI == UnitE) { 236 if (++RegI == RegE) 237 break; 238 UnitI = (*RegI)->getRegUnits().begin(); 239 UnitE = (*RegI)->getRegUnits().end(); 240 } 241 } 242 }; 243 244 CodeGenRegister::RegUnitList RegUnitIterator::Sentinel; 245 246 } // end anonymous namespace 247 248 // Return true of this unit appears in RegUnits. 249 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 250 return RegUnits.test(Unit); 251 } 252 253 // Inherit register units from subregisters. 254 // Return true if the RegUnits changed. 255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 256 bool changed = false; 257 for (const auto &SubReg : SubRegs) { 258 CodeGenRegister *SR = SubReg.second; 259 // Merge the subregister's units into this register's RegUnits. 260 changed |= (RegUnits |= SR->RegUnits); 261 } 262 263 return changed; 264 } 265 266 const CodeGenRegister::SubRegMap & 267 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 268 // Only compute this map once. 269 if (SubRegsComplete) 270 return SubRegs; 271 SubRegsComplete = true; 272 273 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; 274 275 // First insert the explicit subregs and make sure they are fully indexed. 276 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 277 CodeGenRegister *SR = ExplicitSubRegs[i]; 278 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 279 if (!SR->Artificial) 280 Idx->Artificial = false; 281 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 282 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 283 " appears twice in Register " + getName()); 284 // Map explicit sub-registers first, so the names take precedence. 285 // The inherited sub-registers are mapped below. 286 SubReg2Idx.insert(std::make_pair(SR, Idx)); 287 } 288 289 // Keep track of inherited subregs and how they can be reached. 290 SmallPtrSet<CodeGenRegister*, 8> Orphans; 291 292 // Clone inherited subregs and place duplicate entries in Orphans. 293 // Here the order is important - earlier subregs take precedence. 294 for (CodeGenRegister *ESR : ExplicitSubRegs) { 295 const SubRegMap &Map = ESR->computeSubRegs(RegBank); 296 HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs; 297 298 for (const auto &SR : Map) { 299 if (!SubRegs.insert(SR).second) 300 Orphans.insert(SR.second); 301 } 302 } 303 304 // Expand any composed subreg indices. 305 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 306 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 307 // expanded subreg indices recursively. 308 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 309 for (unsigned i = 0; i != Indices.size(); ++i) { 310 CodeGenSubRegIndex *Idx = Indices[i]; 311 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 312 CodeGenRegister *SR = SubRegs[Idx]; 313 const SubRegMap &Map = SR->computeSubRegs(RegBank); 314 315 // Look at the possible compositions of Idx. 316 // They may not all be supported by SR. 317 for (auto Comp : Comps) { 318 SubRegMap::const_iterator SRI = Map.find(Comp.first); 319 if (SRI == Map.end()) 320 continue; // Idx + I->first doesn't exist in SR. 321 // Add I->second as a name for the subreg SRI->second, assuming it is 322 // orphaned, and the name isn't already used for something else. 323 if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second)) 324 continue; 325 // We found a new name for the orphaned sub-register. 326 SubRegs.insert(std::make_pair(Comp.second, SRI->second)); 327 Indices.push_back(Comp.second); 328 } 329 } 330 331 // Now Orphans contains the inherited subregisters without a direct index. 332 // Create inferred indexes for all missing entries. 333 // Work backwards in the Indices vector in order to compose subregs bottom-up. 334 // Consider this subreg sequence: 335 // 336 // qsub_1 -> dsub_0 -> ssub_0 337 // 338 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 339 // can be reached in two different ways: 340 // 341 // qsub_1 -> ssub_0 342 // dsub_2 -> ssub_0 343 // 344 // We pick the latter composition because another register may have [dsub_0, 345 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 346 // dsub_2 -> ssub_0 composition can be shared. 347 while (!Indices.empty() && !Orphans.empty()) { 348 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 349 CodeGenRegister *SR = SubRegs[Idx]; 350 const SubRegMap &Map = SR->computeSubRegs(RegBank); 351 for (const auto &SubReg : Map) 352 if (Orphans.erase(SubReg.second)) 353 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second; 354 } 355 356 // Compute the inverse SubReg -> Idx map. 357 for (const auto &SubReg : SubRegs) { 358 if (SubReg.second == this) { 359 ArrayRef<SMLoc> Loc; 360 if (TheDef) 361 Loc = TheDef->getLoc(); 362 PrintFatalError(Loc, "Register " + getName() + 363 " has itself as a sub-register"); 364 } 365 366 // Compute AllSuperRegsCovered. 367 if (!CoveredBySubRegs) 368 SubReg.first->AllSuperRegsCovered = false; 369 370 // Ensure that every sub-register has a unique name. 371 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 372 SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first; 373 if (Ins->second == SubReg.first) 374 continue; 375 // Trouble: Two different names for SubReg.second. 376 ArrayRef<SMLoc> Loc; 377 if (TheDef) 378 Loc = TheDef->getLoc(); 379 PrintFatalError(Loc, "Sub-register can't have two names: " + 380 SubReg.second->getName() + " available as " + 381 SubReg.first->getName() + " and " + Ins->second->getName()); 382 } 383 384 // Derive possible names for sub-register concatenations from any explicit 385 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 386 // that getConcatSubRegIndex() won't invent any concatenated indices that the 387 // user already specified. 388 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 389 CodeGenRegister *SR = ExplicitSubRegs[i]; 390 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 || 391 SR->Artificial) 392 continue; 393 394 // SR is composed of multiple sub-regs. Find their names in this register. 395 SmallVector<CodeGenSubRegIndex*, 8> Parts; 396 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) { 397 CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j]; 398 if (!I.Artificial) 399 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 400 } 401 402 // Offer this as an existing spelling for the concatenation of Parts. 403 CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i]; 404 Idx.setConcatenationOf(Parts); 405 } 406 407 // Initialize RegUnitList. Because getSubRegs is called recursively, this 408 // processes the register hierarchy in postorder. 409 // 410 // Inherit all sub-register units. It is good enough to look at the explicit 411 // sub-registers, the other registers won't contribute any more units. 412 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 413 CodeGenRegister *SR = ExplicitSubRegs[i]; 414 RegUnits |= SR->RegUnits; 415 } 416 417 // Absent any ad hoc aliasing, we create one register unit per leaf register. 418 // These units correspond to the maximal cliques in the register overlap 419 // graph which is optimal. 420 // 421 // When there is ad hoc aliasing, we simply create one unit per edge in the 422 // undirected ad hoc aliasing graph. Technically, we could do better by 423 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 424 // are extremely rare anyway (I've never seen one), so we don't bother with 425 // the added complexity. 426 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 427 CodeGenRegister *AR = ExplicitAliases[i]; 428 // Only visit each edge once. 429 if (AR->SubRegsComplete) 430 continue; 431 // Create a RegUnit representing this alias edge, and add it to both 432 // registers. 433 unsigned Unit = RegBank.newRegUnit(this, AR); 434 RegUnits.set(Unit); 435 AR->RegUnits.set(Unit); 436 } 437 438 // Finally, create units for leaf registers without ad hoc aliases. Note that 439 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 440 // necessary. This means the aliasing leaf registers can share a single unit. 441 if (RegUnits.empty()) 442 RegUnits.set(RegBank.newRegUnit(this)); 443 444 // We have now computed the native register units. More may be adopted later 445 // for balancing purposes. 446 NativeRegUnits = RegUnits; 447 448 return SubRegs; 449 } 450 451 // In a register that is covered by its sub-registers, try to find redundant 452 // sub-registers. For example: 453 // 454 // QQ0 = {Q0, Q1} 455 // Q0 = {D0, D1} 456 // Q1 = {D2, D3} 457 // 458 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 459 // the register definition. 460 // 461 // The explicitly specified registers form a tree. This function discovers 462 // sub-register relationships that would force a DAG. 463 // 464 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 465 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 466 467 std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue; 468 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs) 469 SubRegQueue.push(P); 470 471 // Look at the leading super-registers of each sub-register. Those are the 472 // candidates for new sub-registers, assuming they are fully contained in 473 // this register. 474 while (!SubRegQueue.empty()) { 475 CodeGenSubRegIndex *SubRegIdx; 476 const CodeGenRegister *SubReg; 477 std::tie(SubRegIdx, SubReg) = SubRegQueue.front(); 478 SubRegQueue.pop(); 479 480 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 481 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 482 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 483 // Already got this sub-register? 484 if (Cand == this || getSubRegIndex(Cand)) 485 continue; 486 // Check if each component of Cand is already a sub-register. 487 assert(!Cand->ExplicitSubRegs.empty() && 488 "Super-register has no sub-registers"); 489 if (Cand->ExplicitSubRegs.size() == 1) 490 continue; 491 SmallVector<CodeGenSubRegIndex*, 8> Parts; 492 // We know that the first component is (SubRegIdx,SubReg). However we 493 // may still need to split it into smaller subregister parts. 494 assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct"); 495 assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct"); 496 for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) { 497 if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) { 498 if (SubRegIdx->ConcatenationOf.empty()) 499 Parts.push_back(SubRegIdx); 500 else 501 append_range(Parts, SubRegIdx->ConcatenationOf); 502 } else { 503 // Sub-register doesn't exist. 504 Parts.clear(); 505 break; 506 } 507 } 508 // There is nothing to do if some Cand sub-register is not part of this 509 // register. 510 if (Parts.empty()) 511 continue; 512 513 // Each part of Cand is a sub-register of this. Make the full Cand also 514 // a sub-register with a concatenated sub-register index. 515 CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts); 516 std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg = 517 std::make_pair(Concat, Cand); 518 519 if (!SubRegs.insert(NewSubReg).second) 520 continue; 521 522 // We inserted a new subregister. 523 NewSubRegs.push_back(NewSubReg); 524 SubRegQueue.push(NewSubReg); 525 SubReg2Idx.insert(std::make_pair(Cand, Concat)); 526 } 527 } 528 529 // Create sub-register index composition maps for the synthesized indices. 530 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 531 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 532 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 533 for (auto SubReg : NewSubReg->SubRegs) { 534 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second); 535 if (!SubIdx) 536 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 537 SubReg.second->getName() + 538 " in " + getName()); 539 NewIdx->addComposite(SubReg.first, SubIdx); 540 } 541 } 542 } 543 544 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 545 // Only visit each register once. 546 if (SuperRegsComplete) 547 return; 548 SuperRegsComplete = true; 549 550 // Make sure all sub-registers have been visited first, so the super-reg 551 // lists will be topologically ordered. 552 for (auto SubReg : SubRegs) 553 SubReg.second->computeSuperRegs(RegBank); 554 555 // Now add this as a super-register on all sub-registers. 556 // Also compute the TopoSigId in post-order. 557 TopoSigId Id; 558 for (auto SubReg : SubRegs) { 559 // Topological signature computed from SubIdx, TopoId(SubReg). 560 // Loops and idempotent indices have TopoSig = ~0u. 561 Id.push_back(SubReg.first->EnumValue); 562 Id.push_back(SubReg.second->TopoSig); 563 564 // Don't add duplicate entries. 565 if (!SubReg.second->SuperRegs.empty() && 566 SubReg.second->SuperRegs.back() == this) 567 continue; 568 SubReg.second->SuperRegs.push_back(this); 569 } 570 TopoSig = RegBank.getTopoSig(Id); 571 } 572 573 void 574 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 575 CodeGenRegBank &RegBank) const { 576 assert(SubRegsComplete && "Must precompute sub-registers"); 577 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 578 CodeGenRegister *SR = ExplicitSubRegs[i]; 579 if (OSet.insert(SR)) 580 SR->addSubRegsPreOrder(OSet, RegBank); 581 } 582 // Add any secondary sub-registers that weren't part of the explicit tree. 583 for (auto SubReg : SubRegs) 584 OSet.insert(SubReg.second); 585 } 586 587 // Get the sum of this register's unit weights. 588 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 589 unsigned Weight = 0; 590 for (unsigned RegUnit : RegUnits) { 591 Weight += RegBank.getRegUnit(RegUnit).Weight; 592 } 593 return Weight; 594 } 595 596 //===----------------------------------------------------------------------===// 597 // RegisterTuples 598 //===----------------------------------------------------------------------===// 599 600 // A RegisterTuples def is used to generate pseudo-registers from lists of 601 // sub-registers. We provide a SetTheory expander class that returns the new 602 // registers. 603 namespace { 604 605 struct TupleExpander : SetTheory::Expander { 606 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of 607 // the synthesized definitions for their lifetime. 608 std::vector<std::unique_ptr<Record>> &SynthDefs; 609 610 TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs) 611 : SynthDefs(SynthDefs) {} 612 613 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 614 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 615 unsigned Dim = Indices.size(); 616 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 617 if (Dim != SubRegs->size()) 618 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 619 if (Dim < 2) 620 PrintFatalError(Def->getLoc(), 621 "Tuples must have at least 2 sub-registers"); 622 623 // Evaluate the sub-register lists to be zipped. 624 unsigned Length = ~0u; 625 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 626 for (unsigned i = 0; i != Dim; ++i) { 627 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 628 Length = std::min(Length, unsigned(Lists[i].size())); 629 } 630 631 if (Length == 0) 632 return; 633 634 // Precompute some types. 635 Record *RegisterCl = Def->getRecords().getClass("Register"); 636 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 637 std::vector<StringRef> RegNames = 638 Def->getValueAsListOfStrings("RegAsmNames"); 639 640 // Zip them up. 641 RecordKeeper &RK = Def->getRecords(); 642 for (unsigned n = 0; n != Length; ++n) { 643 std::string Name; 644 Record *Proto = Lists[0][n]; 645 std::vector<Init*> Tuple; 646 for (unsigned i = 0; i != Dim; ++i) { 647 Record *Reg = Lists[i][n]; 648 if (i) Name += '_'; 649 Name += Reg->getName(); 650 Tuple.push_back(DefInit::get(Reg)); 651 } 652 653 // Take the cost list of the first register in the tuple. 654 ListInit *CostList = Proto->getValueAsListInit("CostPerUse"); 655 SmallVector<Init *, 2> CostPerUse; 656 CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end()); 657 658 StringInit *AsmName = StringInit::get(RK, ""); 659 if (!RegNames.empty()) { 660 if (RegNames.size() <= n) 661 PrintFatalError(Def->getLoc(), 662 "Register tuple definition missing name for '" + 663 Name + "'."); 664 AsmName = StringInit::get(RK, RegNames[n]); 665 } 666 667 // Create a new Record representing the synthesized register. This record 668 // is only for consumption by CodeGenRegister, it is not added to the 669 // RecordKeeper. 670 SynthDefs.emplace_back( 671 std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords())); 672 Record *NewReg = SynthDefs.back().get(); 673 Elts.insert(NewReg); 674 675 // Copy Proto super-classes. 676 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses(); 677 for (const auto &SuperPair : Supers) 678 NewReg->addSuperClass(SuperPair.first, SuperPair.second); 679 680 // Copy Proto fields. 681 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 682 RecordVal RV = Proto->getValues()[i]; 683 684 // Skip existing fields, like NAME. 685 if (NewReg->getValue(RV.getNameInit())) 686 continue; 687 688 StringRef Field = RV.getName(); 689 690 // Replace the sub-register list with Tuple. 691 if (Field == "SubRegs") 692 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 693 694 if (Field == "AsmName") 695 RV.setValue(AsmName); 696 697 // CostPerUse is aggregated from all Tuple members. 698 if (Field == "CostPerUse") 699 RV.setValue(ListInit::get(CostPerUse, CostList->getElementType())); 700 701 // Composite registers are always covered by sub-registers. 702 if (Field == "CoveredBySubRegs") 703 RV.setValue(BitInit::get(RK, true)); 704 705 // Copy fields from the RegisterTuples def. 706 if (Field == "SubRegIndices" || 707 Field == "CompositeIndices") { 708 NewReg->addValue(*Def->getValue(Field)); 709 continue; 710 } 711 712 // Some fields get their default uninitialized value. 713 if (Field == "DwarfNumbers" || 714 Field == "DwarfAlias" || 715 Field == "Aliases") { 716 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 717 NewReg->addValue(*DefRV); 718 continue; 719 } 720 721 // Everything else is copied from Proto. 722 NewReg->addValue(RV); 723 } 724 } 725 } 726 }; 727 728 } // end anonymous namespace 729 730 //===----------------------------------------------------------------------===// 731 // CodeGenRegisterClass 732 //===----------------------------------------------------------------------===// 733 734 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 735 llvm::sort(M, deref<std::less<>>()); 736 M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end()); 737 } 738 739 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 740 : TheDef(R), Name(std::string(R->getName())), 741 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), TSFlags(0) { 742 GeneratePressureSet = R->getValueAsBit("GeneratePressureSet"); 743 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 744 if (TypeList.empty()) 745 PrintFatalError(R->getLoc(), "RegTypes list must not be empty!"); 746 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 747 Record *Type = TypeList[i]; 748 if (!Type->isSubClassOf("ValueType")) 749 PrintFatalError(R->getLoc(), 750 "RegTypes list member '" + Type->getName() + 751 "' does not derive from the ValueType class!"); 752 VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes())); 753 } 754 755 // Allocation order 0 is the full set. AltOrders provides others. 756 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 757 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 758 Orders.resize(1 + AltOrders->size()); 759 760 // Default allocation order always contains all registers. 761 Artificial = true; 762 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 763 Orders[0].push_back((*Elements)[i]); 764 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 765 Members.push_back(Reg); 766 Artificial &= Reg->Artificial; 767 TopoSigs.set(Reg->getTopoSig()); 768 } 769 sortAndUniqueRegisters(Members); 770 771 // Alternative allocation orders may be subsets. 772 SetTheory::RecSet Order; 773 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 774 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 775 Orders[1 + i].append(Order.begin(), Order.end()); 776 // Verify that all altorder members are regclass members. 777 while (!Order.empty()) { 778 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 779 Order.pop_back(); 780 if (!contains(Reg)) 781 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 782 " is not a class member"); 783 } 784 } 785 786 Namespace = R->getValueAsString("Namespace"); 787 788 if (const RecordVal *RV = R->getValue("RegInfos")) 789 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) 790 RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes()); 791 unsigned Size = R->getValueAsInt("Size"); 792 assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) && 793 "Impossible to determine register size"); 794 if (!RSI.hasDefault()) { 795 RegSizeInfo RI; 796 RI.RegSize = RI.SpillSize = Size ? Size 797 : VTs[0].getSimple().getSizeInBits(); 798 RI.SpillAlignment = R->getValueAsInt("Alignment"); 799 RSI.insertRegSizeForMode(DefaultMode, RI); 800 } 801 802 CopyCost = R->getValueAsInt("CopyCost"); 803 Allocatable = R->getValueAsBit("isAllocatable"); 804 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 805 int AllocationPriority = R->getValueAsInt("AllocationPriority"); 806 if (!isUInt<5>(AllocationPriority)) 807 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,31]"); 808 this->AllocationPriority = AllocationPriority; 809 810 GlobalPriority = R->getValueAsBit("GlobalPriority"); 811 812 BitsInit *TSF = R->getValueAsBitsInit("TSFlags"); 813 for (unsigned I = 0, E = TSF->getNumBits(); I != E; ++I) { 814 BitInit *Bit = cast<BitInit>(TSF->getBit(I)); 815 TSFlags |= uint8_t(Bit->getValue()) << I; 816 } 817 } 818 819 // Create an inferred register class that was missing from the .td files. 820 // Most properties will be inherited from the closest super-class after the 821 // class structure has been computed. 822 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 823 StringRef Name, Key Props) 824 : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)), 825 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI), 826 CopyCost(0), Allocatable(true), AllocationPriority(0), 827 GlobalPriority(false), TSFlags(0) { 828 Artificial = true; 829 GeneratePressureSet = false; 830 for (const auto R : Members) { 831 TopoSigs.set(R->getTopoSig()); 832 Artificial &= R->Artificial; 833 } 834 } 835 836 // Compute inherited propertied for a synthesized register class. 837 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 838 assert(!getDef() && "Only synthesized classes can inherit properties"); 839 assert(!SuperClasses.empty() && "Synthesized class without super class"); 840 841 // The last super-class is the smallest one. 842 CodeGenRegisterClass &Super = *SuperClasses.back(); 843 844 // Most properties are copied directly. 845 // Exceptions are members, size, and alignment 846 Namespace = Super.Namespace; 847 VTs = Super.VTs; 848 CopyCost = Super.CopyCost; 849 // Check for allocatable superclasses. 850 Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) { 851 return S->Allocatable; 852 }); 853 AltOrderSelect = Super.AltOrderSelect; 854 AllocationPriority = Super.AllocationPriority; 855 GlobalPriority = Super.GlobalPriority; 856 TSFlags = Super.TSFlags; 857 GeneratePressureSet |= Super.GeneratePressureSet; 858 859 // Copy all allocation orders, filter out foreign registers from the larger 860 // super-class. 861 Orders.resize(Super.Orders.size()); 862 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 863 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 864 if (contains(RegBank.getReg(Super.Orders[i][j]))) 865 Orders[i].push_back(Super.Orders[i][j]); 866 } 867 868 bool CodeGenRegisterClass::hasType(const ValueTypeByHwMode &VT) const { 869 if (llvm::is_contained(VTs, VT)) 870 return true; 871 872 // If VT is not identical to any of this class's types, but is a simple 873 // type, check if any of the types for this class contain it under some 874 // mode. 875 // The motivating example came from RISCV, where (likely because of being 876 // guarded by "64-bit" predicate), the type of X5 was {*:[i64]}, but the 877 // type in GRC was {*:[i32], m1:[i64]}. 878 if (VT.isSimple()) { 879 MVT T = VT.getSimple(); 880 for (const ValueTypeByHwMode &OurVT : VTs) { 881 if (llvm::count_if(OurVT, [T](auto &&P) { return P.second == T; })) 882 return true; 883 } 884 } 885 return false; 886 } 887 888 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 889 return std::binary_search(Members.begin(), Members.end(), Reg, 890 deref<std::less<>>()); 891 } 892 893 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const { 894 if (TheDef && !TheDef->isValueUnset("Weight")) 895 return TheDef->getValueAsInt("Weight"); 896 897 if (Members.empty() || Artificial) 898 return 0; 899 900 return (*Members.begin())->getWeight(RegBank); 901 } 902 903 namespace llvm { 904 905 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 906 OS << "{ " << K.RSI; 907 for (const auto R : *K.Members) 908 OS << ", " << R->getName(); 909 return OS << " }"; 910 } 911 912 } // end namespace llvm 913 914 // This is a simple lexicographical order that can be used to search for sets. 915 // It is not the same as the topological order provided by TopoOrderRC. 916 bool CodeGenRegisterClass::Key:: 917 operator<(const CodeGenRegisterClass::Key &B) const { 918 assert(Members && B.Members); 919 return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI); 920 } 921 922 // Returns true if RC is a strict subclass. 923 // RC is a sub-class of this class if it is a valid replacement for any 924 // instruction operand where a register of this classis required. It must 925 // satisfy these conditions: 926 // 927 // 1. All RC registers are also in this. 928 // 2. The RC spill size must not be smaller than our spill size. 929 // 3. RC spill alignment must be compatible with ours. 930 // 931 static bool testSubClass(const CodeGenRegisterClass *A, 932 const CodeGenRegisterClass *B) { 933 return A->RSI.isSubClassOf(B->RSI) && 934 std::includes(A->getMembers().begin(), A->getMembers().end(), 935 B->getMembers().begin(), B->getMembers().end(), 936 deref<std::less<>>()); 937 } 938 939 /// Sorting predicate for register classes. This provides a topological 940 /// ordering that arranges all register classes before their sub-classes. 941 /// 942 /// Register classes with the same registers, spill size, and alignment form a 943 /// clique. They will be ordered alphabetically. 944 /// 945 static bool TopoOrderRC(const CodeGenRegisterClass &PA, 946 const CodeGenRegisterClass &PB) { 947 auto *A = &PA; 948 auto *B = &PB; 949 if (A == B) 950 return false; 951 952 if (A->RSI < B->RSI) 953 return true; 954 if (A->RSI != B->RSI) 955 return false; 956 957 // Order by descending set size. Note that the classes' allocation order may 958 // not have been computed yet. The Members set is always vaild. 959 if (A->getMembers().size() > B->getMembers().size()) 960 return true; 961 if (A->getMembers().size() < B->getMembers().size()) 962 return false; 963 964 // Finally order by name as a tie breaker. 965 return StringRef(A->getName()) < B->getName(); 966 } 967 968 std::string CodeGenRegisterClass::getQualifiedName() const { 969 if (Namespace.empty()) 970 return getName(); 971 else 972 return (Namespace + "::" + getName()).str(); 973 } 974 975 // Compute sub-classes of all register classes. 976 // Assume the classes are ordered topologically. 977 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 978 auto &RegClasses = RegBank.getRegClasses(); 979 980 // Visit backwards so sub-classes are seen first. 981 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 982 CodeGenRegisterClass &RC = *I; 983 RC.SubClasses.resize(RegClasses.size()); 984 RC.SubClasses.set(RC.EnumValue); 985 if (RC.Artificial) 986 continue; 987 988 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 989 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 990 CodeGenRegisterClass &SubRC = *I2; 991 if (RC.SubClasses.test(SubRC.EnumValue)) 992 continue; 993 if (!testSubClass(&RC, &SubRC)) 994 continue; 995 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 996 // check them again. 997 RC.SubClasses |= SubRC.SubClasses; 998 } 999 1000 // Sweep up missed clique members. They will be immediately preceding RC. 1001 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 1002 RC.SubClasses.set(I2->EnumValue); 1003 } 1004 1005 // Compute the SuperClasses lists from the SubClasses vectors. 1006 for (auto &RC : RegClasses) { 1007 const BitVector &SC = RC.getSubClasses(); 1008 auto I = RegClasses.begin(); 1009 for (int s = 0, next_s = SC.find_first(); next_s != -1; 1010 next_s = SC.find_next(s)) { 1011 std::advance(I, next_s - s); 1012 s = next_s; 1013 if (&*I == &RC) 1014 continue; 1015 I->SuperClasses.push_back(&RC); 1016 } 1017 } 1018 1019 // With the class hierarchy in place, let synthesized register classes inherit 1020 // properties from their closest super-class. The iteration order here can 1021 // propagate properties down multiple levels. 1022 for (auto &RC : RegClasses) 1023 if (!RC.getDef()) 1024 RC.inheritProperties(RegBank); 1025 } 1026 1027 std::optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>> 1028 CodeGenRegisterClass::getMatchingSubClassWithSubRegs( 1029 CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const { 1030 auto SizeOrder = [this](const CodeGenRegisterClass *A, 1031 const CodeGenRegisterClass *B) { 1032 // If there are multiple, identical register classes, prefer the original 1033 // register class. 1034 if (A == B) 1035 return false; 1036 if (A->getMembers().size() == B->getMembers().size()) 1037 return A == this; 1038 return A->getMembers().size() > B->getMembers().size(); 1039 }; 1040 1041 auto &RegClasses = RegBank.getRegClasses(); 1042 1043 // Find all the subclasses of this one that fully support the sub-register 1044 // index and order them by size. BiggestSuperRC should always be first. 1045 CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx); 1046 if (!BiggestSuperRegRC) 1047 return std::nullopt; 1048 BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses(); 1049 std::vector<CodeGenRegisterClass *> SuperRegRCs; 1050 for (auto &RC : RegClasses) 1051 if (SuperRegRCsBV[RC.EnumValue]) 1052 SuperRegRCs.emplace_back(&RC); 1053 llvm::stable_sort(SuperRegRCs, SizeOrder); 1054 1055 assert(SuperRegRCs.front() == BiggestSuperRegRC && 1056 "Biggest class wasn't first"); 1057 1058 // Find all the subreg classes and order them by size too. 1059 std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses; 1060 for (auto &RC: RegClasses) { 1061 BitVector SuperRegClassesBV(RegClasses.size()); 1062 RC.getSuperRegClasses(SubIdx, SuperRegClassesBV); 1063 if (SuperRegClassesBV.any()) 1064 SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV)); 1065 } 1066 llvm::sort(SuperRegClasses, 1067 [&](const std::pair<CodeGenRegisterClass *, BitVector> &A, 1068 const std::pair<CodeGenRegisterClass *, BitVector> &B) { 1069 return SizeOrder(A.first, B.first); 1070 }); 1071 1072 // Find the biggest subclass and subreg class such that R:subidx is in the 1073 // subreg class for all R in subclass. 1074 // 1075 // For example: 1076 // All registers in X86's GR64 have a sub_32bit subregister but no class 1077 // exists that contains all the 32-bit subregisters because GR64 contains RIP 1078 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to 1079 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then, 1080 // having excluded RIP, we are able to find a SubRegRC (GR32). 1081 CodeGenRegisterClass *ChosenSuperRegClass = nullptr; 1082 CodeGenRegisterClass *SubRegRC = nullptr; 1083 for (auto *SuperRegRC : SuperRegRCs) { 1084 for (const auto &SuperRegClassPair : SuperRegClasses) { 1085 const BitVector &SuperRegClassBV = SuperRegClassPair.second; 1086 if (SuperRegClassBV[SuperRegRC->EnumValue]) { 1087 SubRegRC = SuperRegClassPair.first; 1088 ChosenSuperRegClass = SuperRegRC; 1089 1090 // If SubRegRC is bigger than SuperRegRC then there are members of 1091 // SubRegRC that don't have super registers via SubIdx. Keep looking to 1092 // find a better fit and fall back on this one if there isn't one. 1093 // 1094 // This is intended to prevent X86 from making odd choices such as 1095 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above. 1096 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that 1097 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1 1098 // mapping. 1099 if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size()) 1100 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1101 } 1102 } 1103 1104 // If we found a fit but it wasn't quite ideal because SubRegRC had excess 1105 // registers, then we're done. 1106 if (ChosenSuperRegClass) 1107 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1108 } 1109 1110 return std::nullopt; 1111 } 1112 1113 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 1114 BitVector &Out) const { 1115 auto FindI = SuperRegClasses.find(SubIdx); 1116 if (FindI == SuperRegClasses.end()) 1117 return; 1118 for (CodeGenRegisterClass *RC : FindI->second) 1119 Out.set(RC->EnumValue); 1120 } 1121 1122 // Populate a unique sorted list of units from a register set. 1123 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank, 1124 std::vector<unsigned> &RegUnits) const { 1125 std::vector<unsigned> TmpUnits; 1126 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) { 1127 const RegUnit &RU = RegBank.getRegUnit(*UnitI); 1128 if (!RU.Artificial) 1129 TmpUnits.push_back(*UnitI); 1130 } 1131 llvm::sort(TmpUnits); 1132 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 1133 std::back_inserter(RegUnits)); 1134 } 1135 1136 //===----------------------------------------------------------------------===// 1137 // CodeGenRegisterCategory 1138 //===----------------------------------------------------------------------===// 1139 1140 CodeGenRegisterCategory::CodeGenRegisterCategory(CodeGenRegBank &RegBank, 1141 Record *R) 1142 : TheDef(R), Name(std::string(R->getName())) { 1143 for (Record *RegClass : R->getValueAsListOfDefs("Classes")) 1144 Classes.push_back(RegBank.getRegClass(RegClass)); 1145 } 1146 1147 //===----------------------------------------------------------------------===// 1148 // CodeGenRegBank 1149 //===----------------------------------------------------------------------===// 1150 1151 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records, 1152 const CodeGenHwModes &Modes) : CGH(Modes) { 1153 // Configure register Sets to understand register classes and tuples. 1154 Sets.addFieldExpander("RegisterClass", "MemberList"); 1155 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 1156 Sets.addExpander("RegisterTuples", 1157 std::make_unique<TupleExpander>(SynthDefs)); 1158 1159 // Read in the user-defined (named) sub-register indices. 1160 // More indices will be synthesized later. 1161 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 1162 llvm::sort(SRIs, LessRecord()); 1163 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 1164 getSubRegIdx(SRIs[i]); 1165 // Build composite maps from ComposedOf fields. 1166 for (auto &Idx : SubRegIndices) 1167 Idx.updateComponents(*this); 1168 1169 // Read in the register definitions. 1170 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 1171 llvm::sort(Regs, LessRecordRegister()); 1172 // Assign the enumeration values. 1173 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 1174 getReg(Regs[i]); 1175 1176 // Expand tuples and number the new registers. 1177 std::vector<Record*> Tups = 1178 Records.getAllDerivedDefinitions("RegisterTuples"); 1179 1180 for (Record *R : Tups) { 1181 std::vector<Record *> TupRegs = *Sets.expand(R); 1182 llvm::sort(TupRegs, LessRecordRegister()); 1183 for (Record *RC : TupRegs) 1184 getReg(RC); 1185 } 1186 1187 // Now all the registers are known. Build the object graph of explicit 1188 // register-register references. 1189 for (auto &Reg : Registers) 1190 Reg.buildObjectGraph(*this); 1191 1192 // Compute register name map. 1193 for (auto &Reg : Registers) 1194 // FIXME: This could just be RegistersByName[name] = register, except that 1195 // causes some failures in MIPS - perhaps they have duplicate register name 1196 // entries? (or maybe there's a reason for it - I don't know much about this 1197 // code, just drive-by refactoring) 1198 RegistersByName.insert( 1199 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 1200 1201 // Precompute all sub-register maps. 1202 // This will create Composite entries for all inferred sub-register indices. 1203 for (auto &Reg : Registers) 1204 Reg.computeSubRegs(*this); 1205 1206 // Compute transitive closure of subregister index ConcatenationOf vectors 1207 // and initialize ConcatIdx map. 1208 for (CodeGenSubRegIndex &SRI : SubRegIndices) { 1209 SRI.computeConcatTransitiveClosure(); 1210 if (!SRI.ConcatenationOf.empty()) 1211 ConcatIdx.insert(std::make_pair( 1212 SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(), 1213 SRI.ConcatenationOf.end()), &SRI)); 1214 } 1215 1216 // Infer even more sub-registers by combining leading super-registers. 1217 for (auto &Reg : Registers) 1218 if (Reg.CoveredBySubRegs) 1219 Reg.computeSecondarySubRegs(*this); 1220 1221 // After the sub-register graph is complete, compute the topologically 1222 // ordered SuperRegs list. 1223 for (auto &Reg : Registers) 1224 Reg.computeSuperRegs(*this); 1225 1226 // For each pair of Reg:SR, if both are non-artificial, mark the 1227 // corresponding sub-register index as non-artificial. 1228 for (auto &Reg : Registers) { 1229 if (Reg.Artificial) 1230 continue; 1231 for (auto P : Reg.getSubRegs()) { 1232 const CodeGenRegister *SR = P.second; 1233 if (!SR->Artificial) 1234 P.first->Artificial = false; 1235 } 1236 } 1237 1238 // Native register units are associated with a leaf register. They've all been 1239 // discovered now. 1240 NumNativeRegUnits = RegUnits.size(); 1241 1242 // Read in register class definitions. 1243 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 1244 if (RCs.empty()) 1245 PrintFatalError("No 'RegisterClass' subclasses defined!"); 1246 1247 // Allocate user-defined register classes. 1248 for (auto *R : RCs) { 1249 RegClasses.emplace_back(*this, R); 1250 CodeGenRegisterClass &RC = RegClasses.back(); 1251 if (!RC.Artificial) 1252 addToMaps(&RC); 1253 } 1254 1255 // Infer missing classes to create a full algebra. 1256 computeInferredRegisterClasses(); 1257 1258 // Order register classes topologically and assign enum values. 1259 RegClasses.sort(TopoOrderRC); 1260 unsigned i = 0; 1261 for (auto &RC : RegClasses) 1262 RC.EnumValue = i++; 1263 CodeGenRegisterClass::computeSubClasses(*this); 1264 1265 // Read in the register category definitions. 1266 std::vector<Record *> RCats = 1267 Records.getAllDerivedDefinitions("RegisterCategory"); 1268 for (auto *R : RCats) 1269 RegCategories.emplace_back(*this, R); 1270 } 1271 1272 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1273 CodeGenSubRegIndex* 1274 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1275 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1276 return &SubRegIndices.back(); 1277 } 1278 1279 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1280 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1281 if (Idx) 1282 return Idx; 1283 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1284 Idx = &SubRegIndices.back(); 1285 return Idx; 1286 } 1287 1288 const CodeGenSubRegIndex * 1289 CodeGenRegBank::findSubRegIdx(const Record* Def) const { 1290 return Def2SubRegIdx.lookup(Def); 1291 } 1292 1293 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1294 CodeGenRegister *&Reg = Def2Reg[Def]; 1295 if (Reg) 1296 return Reg; 1297 Registers.emplace_back(Def, Registers.size() + 1); 1298 Reg = &Registers.back(); 1299 return Reg; 1300 } 1301 1302 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1303 if (Record *Def = RC->getDef()) 1304 Def2RC.insert(std::make_pair(Def, RC)); 1305 1306 // Duplicate classes are rejected by insert(). 1307 // That's OK, we only care about the properties handled by CGRC::Key. 1308 CodeGenRegisterClass::Key K(*RC); 1309 Key2RC.insert(std::make_pair(K, RC)); 1310 } 1311 1312 // Create a synthetic sub-class if it is missing. 1313 CodeGenRegisterClass* 1314 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1315 const CodeGenRegister::Vec *Members, 1316 StringRef Name) { 1317 // Synthetic sub-class has the same size and alignment as RC. 1318 CodeGenRegisterClass::Key K(Members, RC->RSI); 1319 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1320 if (FoundI != Key2RC.end()) 1321 return FoundI->second; 1322 1323 // Sub-class doesn't exist, create a new one. 1324 RegClasses.emplace_back(*this, Name, K); 1325 addToMaps(&RegClasses.back()); 1326 return &RegClasses.back(); 1327 } 1328 1329 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const { 1330 if (CodeGenRegisterClass *RC = Def2RC.lookup(Def)) 1331 return RC; 1332 1333 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1334 } 1335 1336 CodeGenSubRegIndex* 1337 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1338 CodeGenSubRegIndex *B) { 1339 // Look for an existing entry. 1340 CodeGenSubRegIndex *Comp = A->compose(B); 1341 if (Comp) 1342 return Comp; 1343 1344 // None exists, synthesize one. 1345 std::string Name = A->getName() + "_then_" + B->getName(); 1346 Comp = createSubRegIndex(Name, A->getNamespace()); 1347 A->addComposite(B, Comp); 1348 return Comp; 1349 } 1350 1351 CodeGenSubRegIndex *CodeGenRegBank:: 1352 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1353 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1354 #ifndef NDEBUG 1355 for (CodeGenSubRegIndex *Idx : Parts) { 1356 assert(Idx->ConcatenationOf.empty() && "No transitive closure?"); 1357 } 1358 #endif 1359 1360 // Look for an existing entry. 1361 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1362 if (Idx) 1363 return Idx; 1364 1365 // None exists, synthesize one. 1366 std::string Name = Parts.front()->getName(); 1367 // Determine whether all parts are contiguous. 1368 bool isContinuous = true; 1369 unsigned Size = Parts.front()->Size; 1370 unsigned LastOffset = Parts.front()->Offset; 1371 unsigned LastSize = Parts.front()->Size; 1372 unsigned UnknownSize = (uint16_t)-1; 1373 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1374 Name += '_'; 1375 Name += Parts[i]->getName(); 1376 if (Size == UnknownSize || Parts[i]->Size == UnknownSize) 1377 Size = UnknownSize; 1378 else 1379 Size += Parts[i]->Size; 1380 if (LastSize == UnknownSize || Parts[i]->Offset != (LastOffset + LastSize)) 1381 isContinuous = false; 1382 LastOffset = Parts[i]->Offset; 1383 LastSize = Parts[i]->Size; 1384 } 1385 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1386 Idx->Size = Size; 1387 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1388 Idx->ConcatenationOf.assign(Parts.begin(), Parts.end()); 1389 return Idx; 1390 } 1391 1392 void CodeGenRegBank::computeComposites() { 1393 using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>; 1394 1395 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from 1396 // register to (sub)register associated with the action of the left-hand 1397 // side subregister. 1398 std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction; 1399 for (const CodeGenRegister &R : Registers) { 1400 const CodeGenRegister::SubRegMap &SM = R.getSubRegs(); 1401 for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM) 1402 SubRegAction[P.first].insert({&R, P.second}); 1403 } 1404 1405 // Calculate the composition of two subregisters as compositions of their 1406 // associated actions. 1407 auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1, 1408 const CodeGenSubRegIndex *Sub2) { 1409 RegMap C; 1410 const RegMap &Img1 = SubRegAction.at(Sub1); 1411 const RegMap &Img2 = SubRegAction.at(Sub2); 1412 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) { 1413 auto F = Img2.find(P.second); 1414 if (F != Img2.end()) 1415 C.insert({P.first, F->second}); 1416 } 1417 return C; 1418 }; 1419 1420 // Check if the two maps agree on the intersection of their domains. 1421 auto agree = [] (const RegMap &Map1, const RegMap &Map2) { 1422 // Technically speaking, an empty map agrees with any other map, but 1423 // this could flag false positives. We're interested in non-vacuous 1424 // agreements. 1425 if (Map1.empty() || Map2.empty()) 1426 return false; 1427 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) { 1428 auto F = Map2.find(P.first); 1429 if (F == Map2.end() || P.second != F->second) 1430 return false; 1431 } 1432 return true; 1433 }; 1434 1435 using CompositePair = std::pair<const CodeGenSubRegIndex*, 1436 const CodeGenSubRegIndex*>; 1437 SmallSet<CompositePair,4> UserDefined; 1438 for (const CodeGenSubRegIndex &Idx : SubRegIndices) 1439 for (auto P : Idx.getComposites()) 1440 UserDefined.insert(std::make_pair(&Idx, P.first)); 1441 1442 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1443 // and many registers will share TopoSigs on regular architectures. 1444 BitVector TopoSigs(getNumTopoSigs()); 1445 1446 for (const auto &Reg1 : Registers) { 1447 // Skip identical subreg structures already processed. 1448 if (TopoSigs.test(Reg1.getTopoSig())) 1449 continue; 1450 TopoSigs.set(Reg1.getTopoSig()); 1451 1452 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1453 for (auto I1 : SRM1) { 1454 CodeGenSubRegIndex *Idx1 = I1.first; 1455 CodeGenRegister *Reg2 = I1.second; 1456 // Ignore identity compositions. 1457 if (&Reg1 == Reg2) 1458 continue; 1459 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1460 // Try composing Idx1 with another SubRegIndex. 1461 for (auto I2 : SRM2) { 1462 CodeGenSubRegIndex *Idx2 = I2.first; 1463 CodeGenRegister *Reg3 = I2.second; 1464 // Ignore identity compositions. 1465 if (Reg2 == Reg3) 1466 continue; 1467 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1468 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1469 assert(Idx3 && "Sub-register doesn't have an index"); 1470 1471 // Conflicting composition? Emit a warning but allow it. 1472 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) { 1473 // If the composition was not user-defined, always emit a warning. 1474 if (!UserDefined.count({Idx1, Idx2}) || 1475 agree(compose(Idx1, Idx2), SubRegAction.at(Idx3))) 1476 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1477 " and " + Idx2->getQualifiedName() + 1478 " compose ambiguously as " + Prev->getQualifiedName() + 1479 " or " + Idx3->getQualifiedName()); 1480 } 1481 } 1482 } 1483 } 1484 } 1485 1486 // Compute lane masks. This is similar to register units, but at the 1487 // sub-register index level. Each bit in the lane mask is like a register unit 1488 // class, and two lane masks will have a bit in common if two sub-register 1489 // indices overlap in some register. 1490 // 1491 // Conservatively share a lane mask bit if two sub-register indices overlap in 1492 // some registers, but not in others. That shouldn't happen a lot. 1493 void CodeGenRegBank::computeSubRegLaneMasks() { 1494 // First assign individual bits to all the leaf indices. 1495 unsigned Bit = 0; 1496 // Determine mask of lanes that cover their registers. 1497 CoveringLanes = LaneBitmask::getAll(); 1498 for (auto &Idx : SubRegIndices) { 1499 if (Idx.getComposites().empty()) { 1500 if (Bit > LaneBitmask::BitWidth) { 1501 PrintFatalError( 1502 Twine("Ran out of lanemask bits to represent subregister ") 1503 + Idx.getName()); 1504 } 1505 Idx.LaneMask = LaneBitmask::getLane(Bit); 1506 ++Bit; 1507 } else { 1508 Idx.LaneMask = LaneBitmask::getNone(); 1509 } 1510 } 1511 1512 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1513 // here is that for each possible target subregister we look at the leafs 1514 // in the subregister graph that compose for this target and create 1515 // transformation sequences for the lanemasks. Each step in the sequence 1516 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1517 // are usually the same for many subregisters we can easily combine the steps 1518 // by combining the masks. 1519 for (const auto &Idx : SubRegIndices) { 1520 const auto &Composites = Idx.getComposites(); 1521 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1522 1523 if (Composites.empty()) { 1524 // Moving from a class with no subregisters we just had a single lane: 1525 // The subregister must be a leaf subregister and only occupies 1 bit. 1526 // Move the bit from the class without subregisters into that position. 1527 unsigned DstBit = Idx.LaneMask.getHighestLane(); 1528 assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) && 1529 "Must be a leaf subregister"); 1530 MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit }; 1531 LaneTransforms.push_back(MaskRol); 1532 } else { 1533 // Go through all leaf subregisters and find the ones that compose with 1534 // Idx. These make out all possible valid bits in the lane mask we want to 1535 // transform. Looking only at the leafs ensure that only a single bit in 1536 // the mask is set. 1537 unsigned NextBit = 0; 1538 for (auto &Idx2 : SubRegIndices) { 1539 // Skip non-leaf subregisters. 1540 if (!Idx2.getComposites().empty()) 1541 continue; 1542 // Replicate the behaviour from the lane mask generation loop above. 1543 unsigned SrcBit = NextBit; 1544 LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit); 1545 if (NextBit < LaneBitmask::BitWidth-1) 1546 ++NextBit; 1547 assert(Idx2.LaneMask == SrcMask); 1548 1549 // Get the composed subregister if there is any. 1550 auto C = Composites.find(&Idx2); 1551 if (C == Composites.end()) 1552 continue; 1553 const CodeGenSubRegIndex *Composite = C->second; 1554 // The Composed subreg should be a leaf subreg too 1555 assert(Composite->getComposites().empty()); 1556 1557 // Create Mask+Rotate operation and merge with existing ops if possible. 1558 unsigned DstBit = Composite->LaneMask.getHighestLane(); 1559 int Shift = DstBit - SrcBit; 1560 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift 1561 : LaneBitmask::BitWidth + Shift; 1562 for (auto &I : LaneTransforms) { 1563 if (I.RotateLeft == RotateLeft) { 1564 I.Mask |= SrcMask; 1565 SrcMask = LaneBitmask::getNone(); 1566 } 1567 } 1568 if (SrcMask.any()) { 1569 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1570 LaneTransforms.push_back(MaskRol); 1571 } 1572 } 1573 } 1574 1575 // Optimize if the transformation consists of one step only: Set mask to 1576 // 0xffffffff (including some irrelevant invalid bits) so that it should 1577 // merge with more entries later while compressing the table. 1578 if (LaneTransforms.size() == 1) 1579 LaneTransforms[0].Mask = LaneBitmask::getAll(); 1580 1581 // Further compression optimization: For invalid compositions resulting 1582 // in a sequence with 0 entries we can just pick any other. Choose 1583 // Mask 0xffffffff with Rotation 0. 1584 if (LaneTransforms.size() == 0) { 1585 MaskRolPair P = { LaneBitmask::getAll(), 0 }; 1586 LaneTransforms.push_back(P); 1587 } 1588 } 1589 1590 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1591 // by the sub-register graph? This doesn't occur in any known targets. 1592 1593 // Inherit lanes from composites. 1594 for (const auto &Idx : SubRegIndices) { 1595 LaneBitmask Mask = Idx.computeLaneMask(); 1596 // If some super-registers without CoveredBySubRegs use this index, we can 1597 // no longer assume that the lanes are covering their registers. 1598 if (!Idx.AllSuperRegsCovered) 1599 CoveringLanes &= ~Mask; 1600 } 1601 1602 // Compute lane mask combinations for register classes. 1603 for (auto &RegClass : RegClasses) { 1604 LaneBitmask LaneMask; 1605 for (const auto &SubRegIndex : SubRegIndices) { 1606 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) 1607 continue; 1608 LaneMask |= SubRegIndex.LaneMask; 1609 } 1610 1611 // For classes without any subregisters set LaneMask to 1 instead of 0. 1612 // This makes it easier for client code to handle classes uniformly. 1613 if (LaneMask.none()) 1614 LaneMask = LaneBitmask::getLane(0); 1615 1616 RegClass.LaneMask = LaneMask; 1617 } 1618 } 1619 1620 namespace { 1621 1622 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1623 // the transitive closure of the union of overlapping register 1624 // classes. Together, the UberRegSets form a partition of the registers. If we 1625 // consider overlapping register classes to be connected, then each UberRegSet 1626 // is a set of connected components. 1627 // 1628 // An UberRegSet will likely be a horizontal slice of register names of 1629 // the same width. Nontrivial subregisters should then be in a separate 1630 // UberRegSet. But this property isn't required for valid computation of 1631 // register unit weights. 1632 // 1633 // A Weight field caches the max per-register unit weight in each UberRegSet. 1634 // 1635 // A set of SingularDeterminants flags single units of some register in this set 1636 // for which the unit weight equals the set weight. These units should not have 1637 // their weight increased. 1638 struct UberRegSet { 1639 CodeGenRegister::Vec Regs; 1640 unsigned Weight = 0; 1641 CodeGenRegister::RegUnitList SingularDeterminants; 1642 1643 UberRegSet() = default; 1644 }; 1645 1646 } // end anonymous namespace 1647 1648 // Partition registers into UberRegSets, where each set is the transitive 1649 // closure of the union of overlapping register classes. 1650 // 1651 // UberRegSets[0] is a special non-allocatable set. 1652 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1653 std::vector<UberRegSet*> &RegSets, 1654 CodeGenRegBank &RegBank) { 1655 const auto &Registers = RegBank.getRegisters(); 1656 1657 // The Register EnumValue is one greater than its index into Registers. 1658 assert(Registers.size() == Registers.back().EnumValue && 1659 "register enum value mismatch"); 1660 1661 // For simplicitly make the SetID the same as EnumValue. 1662 IntEqClasses UberSetIDs(Registers.size()+1); 1663 std::set<unsigned> AllocatableRegs; 1664 for (auto &RegClass : RegBank.getRegClasses()) { 1665 if (!RegClass.Allocatable) 1666 continue; 1667 1668 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1669 if (Regs.empty()) 1670 continue; 1671 1672 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1673 assert(USetID && "register number 0 is invalid"); 1674 1675 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1676 for (const CodeGenRegister *CGR : llvm::drop_begin(Regs)) { 1677 AllocatableRegs.insert(CGR->EnumValue); 1678 UberSetIDs.join(USetID, CGR->EnumValue); 1679 } 1680 } 1681 // Combine non-allocatable regs. 1682 for (const auto &Reg : Registers) { 1683 unsigned RegNum = Reg.EnumValue; 1684 if (AllocatableRegs.count(RegNum)) 1685 continue; 1686 1687 UberSetIDs.join(0, RegNum); 1688 } 1689 UberSetIDs.compress(); 1690 1691 // Make the first UberSet a special unallocatable set. 1692 unsigned ZeroID = UberSetIDs[0]; 1693 1694 // Insert Registers into the UberSets formed by union-find. 1695 // Do not resize after this. 1696 UberSets.resize(UberSetIDs.getNumClasses()); 1697 unsigned i = 0; 1698 for (const CodeGenRegister &Reg : Registers) { 1699 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1700 if (!USetID) 1701 USetID = ZeroID; 1702 else if (USetID == ZeroID) 1703 USetID = 0; 1704 1705 UberRegSet *USet = &UberSets[USetID]; 1706 USet->Regs.push_back(&Reg); 1707 sortAndUniqueRegisters(USet->Regs); 1708 RegSets[i++] = USet; 1709 } 1710 } 1711 1712 // Recompute each UberSet weight after changing unit weights. 1713 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1714 CodeGenRegBank &RegBank) { 1715 // Skip the first unallocatable set. 1716 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1717 E = UberSets.end(); I != E; ++I) { 1718 1719 // Initialize all unit weights in this set, and remember the max units/reg. 1720 const CodeGenRegister *Reg = nullptr; 1721 unsigned MaxWeight = 0, Weight = 0; 1722 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1723 if (Reg != UnitI.getReg()) { 1724 if (Weight > MaxWeight) 1725 MaxWeight = Weight; 1726 Reg = UnitI.getReg(); 1727 Weight = 0; 1728 } 1729 if (!RegBank.getRegUnit(*UnitI).Artificial) { 1730 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1731 if (!UWeight) { 1732 UWeight = 1; 1733 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1734 } 1735 Weight += UWeight; 1736 } 1737 } 1738 if (Weight > MaxWeight) 1739 MaxWeight = Weight; 1740 if (I->Weight != MaxWeight) { 1741 LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight " 1742 << MaxWeight; 1743 for (auto &Unit 1744 : I->Regs) dbgs() 1745 << " " << Unit->getName(); 1746 dbgs() << "\n"); 1747 // Update the set weight. 1748 I->Weight = MaxWeight; 1749 } 1750 1751 // Find singular determinants. 1752 for (const auto R : I->Regs) { 1753 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1754 I->SingularDeterminants |= R->getRegUnits(); 1755 } 1756 } 1757 } 1758 } 1759 1760 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1761 // a register and its subregisters so that they have the same weight as their 1762 // UberSet. Self-recursion processes the subregister tree in postorder so 1763 // subregisters are normalized first. 1764 // 1765 // Side effects: 1766 // - creates new adopted register units 1767 // - causes superregisters to inherit adopted units 1768 // - increases the weight of "singular" units 1769 // - induces recomputation of UberWeights. 1770 static bool normalizeWeight(CodeGenRegister *Reg, 1771 std::vector<UberRegSet> &UberSets, 1772 std::vector<UberRegSet*> &RegSets, 1773 BitVector &NormalRegs, 1774 CodeGenRegister::RegUnitList &NormalUnits, 1775 CodeGenRegBank &RegBank) { 1776 NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size())); 1777 if (NormalRegs.test(Reg->EnumValue)) 1778 return false; 1779 NormalRegs.set(Reg->EnumValue); 1780 1781 bool Changed = false; 1782 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1783 for (auto SRI : SRM) { 1784 if (SRI.second == Reg) 1785 continue; // self-cycles happen 1786 1787 Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs, 1788 NormalUnits, RegBank); 1789 } 1790 // Postorder register normalization. 1791 1792 // Inherit register units newly adopted by subregisters. 1793 if (Reg->inheritRegUnits(RegBank)) 1794 computeUberWeights(UberSets, RegBank); 1795 1796 // Check if this register is too skinny for its UberRegSet. 1797 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1798 1799 unsigned RegWeight = Reg->getWeight(RegBank); 1800 if (UberSet->Weight > RegWeight) { 1801 // A register unit's weight can be adjusted only if it is the singular unit 1802 // for this register, has not been used to normalize a subregister's set, 1803 // and has not already been used to singularly determine this UberRegSet. 1804 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1805 if (Reg->getRegUnits().count() != 1 1806 || hasRegUnit(NormalUnits, AdjustUnit) 1807 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1808 // We don't have an adjustable unit, so adopt a new one. 1809 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1810 Reg->adoptRegUnit(AdjustUnit); 1811 // Adopting a unit does not immediately require recomputing set weights. 1812 } 1813 else { 1814 // Adjust the existing single unit. 1815 if (!RegBank.getRegUnit(AdjustUnit).Artificial) 1816 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1817 // The unit may be shared among sets and registers within this set. 1818 computeUberWeights(UberSets, RegBank); 1819 } 1820 Changed = true; 1821 } 1822 1823 // Mark these units normalized so superregisters can't change their weights. 1824 NormalUnits |= Reg->getRegUnits(); 1825 1826 return Changed; 1827 } 1828 1829 // Compute a weight for each register unit created during getSubRegs. 1830 // 1831 // The goal is that two registers in the same class will have the same weight, 1832 // where each register's weight is defined as sum of its units' weights. 1833 void CodeGenRegBank::computeRegUnitWeights() { 1834 std::vector<UberRegSet> UberSets; 1835 std::vector<UberRegSet*> RegSets(Registers.size()); 1836 computeUberSets(UberSets, RegSets, *this); 1837 // UberSets and RegSets are now immutable. 1838 1839 computeUberWeights(UberSets, *this); 1840 1841 // Iterate over each Register, normalizing the unit weights until reaching 1842 // a fix point. 1843 unsigned NumIters = 0; 1844 for (bool Changed = true; Changed; ++NumIters) { 1845 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1846 (void) NumIters; 1847 Changed = false; 1848 for (auto &Reg : Registers) { 1849 CodeGenRegister::RegUnitList NormalUnits; 1850 BitVector NormalRegs; 1851 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1852 NormalUnits, *this); 1853 } 1854 } 1855 } 1856 1857 // Find a set in UniqueSets with the same elements as Set. 1858 // Return an iterator into UniqueSets. 1859 static std::vector<RegUnitSet>::const_iterator 1860 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1861 const RegUnitSet &Set) { 1862 std::vector<RegUnitSet>::const_iterator 1863 I = UniqueSets.begin(), E = UniqueSets.end(); 1864 for(;I != E; ++I) { 1865 if (I->Units == Set.Units) 1866 break; 1867 } 1868 return I; 1869 } 1870 1871 // Return true if the RUSubSet is a subset of RUSuperSet. 1872 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1873 const std::vector<unsigned> &RUSuperSet) { 1874 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1875 RUSubSet.begin(), RUSubSet.end()); 1876 } 1877 1878 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1879 /// but with one or two registers removed. We occasionally have registers like 1880 /// APSR and PC thrown in with the general registers. We also see many 1881 /// special-purpose register subsets, such as tail-call and Thumb 1882 /// encodings. Generating all possible overlapping sets is combinatorial and 1883 /// overkill for modeling pressure. Ideally we could fix this statically in 1884 /// tablegen by (1) having the target define register classes that only include 1885 /// the allocatable registers and marking other classes as non-allocatable and 1886 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1887 /// the purpose of pressure. However, we make an attempt to handle targets that 1888 /// are not nicely defined by merging nearly identical register unit sets 1889 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1890 /// set limit by filtering the reserved registers. 1891 /// 1892 /// Merge sets only if the units have the same weight. For example, on ARM, 1893 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1894 /// should not expand the S set to include D regs. 1895 void CodeGenRegBank::pruneUnitSets() { 1896 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1897 1898 // Form an equivalence class of UnitSets with no significant difference. 1899 std::vector<unsigned> SuperSetIDs; 1900 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1901 SubIdx != EndIdx; ++SubIdx) { 1902 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1903 unsigned SuperIdx = 0; 1904 for (; SuperIdx != EndIdx; ++SuperIdx) { 1905 if (SuperIdx == SubIdx) 1906 continue; 1907 1908 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1909 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1910 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1911 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1912 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1913 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1914 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1915 << "\n"); 1916 // We can pick any of the set names for the merged set. Go for the 1917 // shortest one to avoid picking the name of one of the classes that are 1918 // artificially created by tablegen. So "FPR128_lo" instead of 1919 // "QQQQ_with_qsub3_in_FPR128_lo". 1920 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size()) 1921 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name; 1922 break; 1923 } 1924 } 1925 if (SuperIdx == EndIdx) 1926 SuperSetIDs.push_back(SubIdx); 1927 } 1928 // Populate PrunedUnitSets with each equivalence class's superset. 1929 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1930 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1931 unsigned SuperIdx = SuperSetIDs[i]; 1932 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1933 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1934 } 1935 RegUnitSets.swap(PrunedUnitSets); 1936 } 1937 1938 // Create a RegUnitSet for each RegClass that contains all units in the class 1939 // including adopted units that are necessary to model register pressure. Then 1940 // iteratively compute RegUnitSets such that the union of any two overlapping 1941 // RegUnitSets is repreresented. 1942 // 1943 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1944 // RegUnitSet that is a superset of that RegUnitClass. 1945 void CodeGenRegBank::computeRegUnitSets() { 1946 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1947 1948 // Compute a unique RegUnitSet for each RegClass. 1949 auto &RegClasses = getRegClasses(); 1950 for (auto &RC : RegClasses) { 1951 if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet) 1952 continue; 1953 1954 // Speculatively grow the RegUnitSets to hold the new set. 1955 RegUnitSets.resize(RegUnitSets.size() + 1); 1956 RegUnitSets.back().Name = RC.getName(); 1957 1958 // Compute a sorted list of units in this class. 1959 RC.buildRegUnitSet(*this, RegUnitSets.back().Units); 1960 1961 // Find an existing RegUnitSet. 1962 std::vector<RegUnitSet>::const_iterator SetI = 1963 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1964 if (SetI != std::prev(RegUnitSets.end())) 1965 RegUnitSets.pop_back(); 1966 } 1967 1968 if (RegUnitSets.empty()) 1969 PrintFatalError("RegUnitSets cannot be empty!"); 1970 1971 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0, 1972 USEnd = RegUnitSets.size(); 1973 USIdx < USEnd; ++USIdx) { 1974 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1975 for (auto &U : RegUnitSets[USIdx].Units) 1976 printRegUnitName(U); 1977 dbgs() << "\n"; 1978 }); 1979 1980 // Iteratively prune unit sets. 1981 pruneUnitSets(); 1982 1983 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0, 1984 USEnd = RegUnitSets.size(); 1985 USIdx < USEnd; ++USIdx) { 1986 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1987 for (auto &U : RegUnitSets[USIdx].Units) 1988 printRegUnitName(U); 1989 dbgs() << "\n"; 1990 } dbgs() << "\nUnion sets:\n"); 1991 1992 // Iterate over all unit sets, including new ones added by this loop. 1993 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1994 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1995 // In theory, this is combinatorial. In practice, it needs to be bounded 1996 // by a small number of sets for regpressure to be efficient. 1997 // If the assert is hit, we need to implement pruning. 1998 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1999 2000 // Compare new sets with all original classes. 2001 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 2002 SearchIdx != EndIdx; ++SearchIdx) { 2003 std::set<unsigned> Intersection; 2004 std::set_intersection(RegUnitSets[Idx].Units.begin(), 2005 RegUnitSets[Idx].Units.end(), 2006 RegUnitSets[SearchIdx].Units.begin(), 2007 RegUnitSets[SearchIdx].Units.end(), 2008 std::inserter(Intersection, Intersection.begin())); 2009 if (Intersection.empty()) 2010 continue; 2011 2012 // Speculatively grow the RegUnitSets to hold the new set. 2013 RegUnitSets.resize(RegUnitSets.size() + 1); 2014 RegUnitSets.back().Name = 2015 RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name; 2016 2017 std::set_union(RegUnitSets[Idx].Units.begin(), 2018 RegUnitSets[Idx].Units.end(), 2019 RegUnitSets[SearchIdx].Units.begin(), 2020 RegUnitSets[SearchIdx].Units.end(), 2021 std::inserter(RegUnitSets.back().Units, 2022 RegUnitSets.back().Units.begin())); 2023 2024 // Find an existing RegUnitSet, or add the union to the unique sets. 2025 std::vector<RegUnitSet>::const_iterator SetI = 2026 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 2027 if (SetI != std::prev(RegUnitSets.end())) 2028 RegUnitSets.pop_back(); 2029 else { 2030 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " " 2031 << RegUnitSets.back().Name << ":"; 2032 for (auto &U 2033 : RegUnitSets.back().Units) printRegUnitName(U); 2034 dbgs() << "\n";); 2035 } 2036 } 2037 } 2038 2039 // Iteratively prune unit sets after inferring supersets. 2040 pruneUnitSets(); 2041 2042 LLVM_DEBUG( 2043 dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 2044 USIdx < USEnd; ++USIdx) { 2045 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 2046 for (auto &U : RegUnitSets[USIdx].Units) 2047 printRegUnitName(U); 2048 dbgs() << "\n"; 2049 }); 2050 2051 // For each register class, list the UnitSets that are supersets. 2052 RegClassUnitSets.resize(RegClasses.size()); 2053 int RCIdx = -1; 2054 for (auto &RC : RegClasses) { 2055 ++RCIdx; 2056 if (!RC.Allocatable) 2057 continue; 2058 2059 // Recompute the sorted list of units in this class. 2060 std::vector<unsigned> RCRegUnits; 2061 RC.buildRegUnitSet(*this, RCRegUnits); 2062 2063 // Don't increase pressure for unallocatable regclasses. 2064 if (RCRegUnits.empty()) 2065 continue; 2066 2067 LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n"; 2068 for (auto U 2069 : RCRegUnits) printRegUnitName(U); 2070 dbgs() << "\n UnitSetIDs:"); 2071 2072 // Find all supersets. 2073 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 2074 USIdx != USEnd; ++USIdx) { 2075 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 2076 LLVM_DEBUG(dbgs() << " " << USIdx); 2077 RegClassUnitSets[RCIdx].push_back(USIdx); 2078 } 2079 } 2080 LLVM_DEBUG(dbgs() << "\n"); 2081 assert((!RegClassUnitSets[RCIdx].empty() || !RC.GeneratePressureSet) && 2082 "missing unit set for regclass"); 2083 } 2084 2085 // For each register unit, ensure that we have the list of UnitSets that 2086 // contain the unit. Normally, this matches an existing list of UnitSets for a 2087 // register class. If not, we create a new entry in RegClassUnitSets as a 2088 // "fake" register class. 2089 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 2090 UnitIdx < UnitEnd; ++UnitIdx) { 2091 std::vector<unsigned> RUSets; 2092 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 2093 RegUnitSet &RUSet = RegUnitSets[i]; 2094 if (!is_contained(RUSet.Units, UnitIdx)) 2095 continue; 2096 RUSets.push_back(i); 2097 } 2098 unsigned RCUnitSetsIdx = 0; 2099 for (unsigned e = RegClassUnitSets.size(); 2100 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 2101 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 2102 break; 2103 } 2104 } 2105 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 2106 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 2107 // Create a new list of UnitSets as a "fake" register class. 2108 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 2109 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 2110 } 2111 } 2112 } 2113 2114 void CodeGenRegBank::computeRegUnitLaneMasks() { 2115 for (auto &Register : Registers) { 2116 // Create an initial lane mask for all register units. 2117 const auto &RegUnits = Register.getRegUnits(); 2118 CodeGenRegister::RegUnitLaneMaskList 2119 RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone()); 2120 // Iterate through SubRegisters. 2121 typedef CodeGenRegister::SubRegMap SubRegMap; 2122 const SubRegMap &SubRegs = Register.getSubRegs(); 2123 for (auto S : SubRegs) { 2124 CodeGenRegister *SubReg = S.second; 2125 // Ignore non-leaf subregisters, their lane masks are fully covered by 2126 // the leaf subregisters anyway. 2127 if (!SubReg->getSubRegs().empty()) 2128 continue; 2129 CodeGenSubRegIndex *SubRegIndex = S.first; 2130 const CodeGenRegister *SubRegister = S.second; 2131 LaneBitmask LaneMask = SubRegIndex->LaneMask; 2132 // Distribute LaneMask to Register Units touched. 2133 for (unsigned SUI : SubRegister->getRegUnits()) { 2134 bool Found = false; 2135 unsigned u = 0; 2136 for (unsigned RU : RegUnits) { 2137 if (SUI == RU) { 2138 RegUnitLaneMasks[u] |= LaneMask; 2139 assert(!Found); 2140 Found = true; 2141 } 2142 ++u; 2143 } 2144 (void)Found; 2145 assert(Found); 2146 } 2147 } 2148 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 2149 } 2150 } 2151 2152 void CodeGenRegBank::computeDerivedInfo() { 2153 computeComposites(); 2154 computeSubRegLaneMasks(); 2155 2156 // Compute a weight for each register unit created during getSubRegs. 2157 // This may create adopted register units (with unit # >= NumNativeRegUnits). 2158 computeRegUnitWeights(); 2159 2160 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 2161 // supersets for the union of overlapping sets. 2162 computeRegUnitSets(); 2163 2164 computeRegUnitLaneMasks(); 2165 2166 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag. 2167 for (CodeGenRegisterClass &RC : RegClasses) { 2168 RC.HasDisjunctSubRegs = false; 2169 RC.CoveredBySubRegs = true; 2170 for (const CodeGenRegister *Reg : RC.getMembers()) { 2171 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; 2172 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs; 2173 } 2174 } 2175 2176 // Get the weight of each set. 2177 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2178 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 2179 2180 // Find the order of each set. 2181 RegUnitSetOrder.reserve(RegUnitSets.size()); 2182 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2183 RegUnitSetOrder.push_back(Idx); 2184 2185 llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) { 2186 return getRegPressureSet(ID1).Units.size() < 2187 getRegPressureSet(ID2).Units.size(); 2188 }); 2189 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 2190 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 2191 } 2192 } 2193 2194 // 2195 // Synthesize missing register class intersections. 2196 // 2197 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 2198 // returns a maximal register class for all X. 2199 // 2200 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 2201 assert(!RegClasses.empty()); 2202 // Stash the iterator to the last element so that this loop doesn't visit 2203 // elements added by the getOrCreateSubClass call within it. 2204 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 2205 I != std::next(E); ++I) { 2206 CodeGenRegisterClass *RC1 = RC; 2207 CodeGenRegisterClass *RC2 = &*I; 2208 if (RC1 == RC2) 2209 continue; 2210 2211 // Compute the set intersection of RC1 and RC2. 2212 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 2213 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 2214 CodeGenRegister::Vec Intersection; 2215 std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(), 2216 Memb2.end(), 2217 std::inserter(Intersection, Intersection.begin()), 2218 deref<std::less<>>()); 2219 2220 // Skip disjoint class pairs. 2221 if (Intersection.empty()) 2222 continue; 2223 2224 // If RC1 and RC2 have different spill sizes or alignments, use the 2225 // stricter one for sub-classing. If they are equal, prefer RC1. 2226 if (RC2->RSI.hasStricterSpillThan(RC1->RSI)) 2227 std::swap(RC1, RC2); 2228 2229 getOrCreateSubClass(RC1, &Intersection, 2230 RC1->getName() + "_and_" + RC2->getName()); 2231 } 2232 } 2233 2234 // 2235 // Synthesize missing sub-classes for getSubClassWithSubReg(). 2236 // 2237 // Make sure that the set of registers in RC with a given SubIdx sub-register 2238 // form a register class. Update RC->SubClassWithSubReg. 2239 // 2240 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 2241 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 2242 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 2243 deref<std::less<>>> 2244 SubReg2SetMap; 2245 2246 // Compute the set of registers supporting each SubRegIndex. 2247 SubReg2SetMap SRSets; 2248 for (const auto R : RC->getMembers()) { 2249 if (R->Artificial) 2250 continue; 2251 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 2252 for (auto I : SRM) { 2253 if (!I.first->Artificial) 2254 SRSets[I.first].push_back(R); 2255 } 2256 } 2257 2258 for (auto I : SRSets) 2259 sortAndUniqueRegisters(I.second); 2260 2261 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 2262 // numerical order to visit synthetic indices last. 2263 for (const auto &SubIdx : SubRegIndices) { 2264 if (SubIdx.Artificial) 2265 continue; 2266 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 2267 // Unsupported SubRegIndex. Skip it. 2268 if (I == SRSets.end()) 2269 continue; 2270 // In most cases, all RC registers support the SubRegIndex. 2271 if (I->second.size() == RC->getMembers().size()) { 2272 RC->setSubClassWithSubReg(&SubIdx, RC); 2273 continue; 2274 } 2275 // This is a real subset. See if we have a matching class. 2276 CodeGenRegisterClass *SubRC = 2277 getOrCreateSubClass(RC, &I->second, 2278 RC->getName() + "_with_" + I->first->getName()); 2279 RC->setSubClassWithSubReg(&SubIdx, SubRC); 2280 } 2281 } 2282 2283 // 2284 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 2285 // 2286 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 2287 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 2288 // 2289 2290 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 2291 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 2292 SmallVector<std::pair<const CodeGenRegister*, 2293 const CodeGenRegister*>, 16> SSPairs; 2294 BitVector TopoSigs(getNumTopoSigs()); 2295 2296 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 2297 for (auto &SubIdx : SubRegIndices) { 2298 // Skip indexes that aren't fully supported by RC's registers. This was 2299 // computed by inferSubClassWithSubReg() above which should have been 2300 // called first. 2301 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 2302 continue; 2303 2304 // Build list of (Super, Sub) pairs for this SubIdx. 2305 SSPairs.clear(); 2306 TopoSigs.reset(); 2307 for (const auto Super : RC->getMembers()) { 2308 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 2309 assert(Sub && "Missing sub-register"); 2310 SSPairs.push_back(std::make_pair(Super, Sub)); 2311 TopoSigs.set(Sub->getTopoSig()); 2312 } 2313 2314 // Iterate over sub-register class candidates. Ignore classes created by 2315 // this loop. They will never be useful. 2316 // Store an iterator to the last element (not end) so that this loop doesn't 2317 // visit newly inserted elements. 2318 assert(!RegClasses.empty()); 2319 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 2320 I != std::next(E); ++I) { 2321 CodeGenRegisterClass &SubRC = *I; 2322 if (SubRC.Artificial) 2323 continue; 2324 // Topological shortcut: SubRC members have the wrong shape. 2325 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 2326 continue; 2327 // Compute the subset of RC that maps into SubRC. 2328 CodeGenRegister::Vec SubSetVec; 2329 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 2330 if (SubRC.contains(SSPairs[i].second)) 2331 SubSetVec.push_back(SSPairs[i].first); 2332 2333 if (SubSetVec.empty()) 2334 continue; 2335 2336 // RC injects completely into SubRC. 2337 sortAndUniqueRegisters(SubSetVec); 2338 if (SubSetVec.size() == SSPairs.size()) { 2339 SubRC.addSuperRegClass(&SubIdx, RC); 2340 continue; 2341 } 2342 2343 // Only a subset of RC maps into SubRC. Make sure it is represented by a 2344 // class. 2345 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 2346 SubIdx.getName() + "_in_" + 2347 SubRC.getName()); 2348 } 2349 } 2350 } 2351 2352 // 2353 // Infer missing register classes. 2354 // 2355 void CodeGenRegBank::computeInferredRegisterClasses() { 2356 assert(!RegClasses.empty()); 2357 // When this function is called, the register classes have not been sorted 2358 // and assigned EnumValues yet. That means getSubClasses(), 2359 // getSuperClasses(), and hasSubClass() functions are defunct. 2360 2361 // Use one-before-the-end so it doesn't move forward when new elements are 2362 // added. 2363 auto FirstNewRC = std::prev(RegClasses.end()); 2364 2365 // Visit all register classes, including the ones being added by the loop. 2366 // Watch out for iterator invalidation here. 2367 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2368 CodeGenRegisterClass *RC = &*I; 2369 if (RC->Artificial) 2370 continue; 2371 2372 // Synthesize answers for getSubClassWithSubReg(). 2373 inferSubClassWithSubReg(RC); 2374 2375 // Synthesize answers for getCommonSubClass(). 2376 inferCommonSubClass(RC); 2377 2378 // Synthesize answers for getMatchingSuperRegClass(). 2379 inferMatchingSuperRegClass(RC); 2380 2381 // New register classes are created while this loop is running, and we need 2382 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2383 // to match old super-register classes with sub-register classes created 2384 // after inferMatchingSuperRegClass was called. At this point, 2385 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2386 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2387 if (I == FirstNewRC) { 2388 auto NextNewRC = std::prev(RegClasses.end()); 2389 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2390 ++I2) 2391 inferMatchingSuperRegClass(&*I2, E2); 2392 FirstNewRC = NextNewRC; 2393 } 2394 } 2395 } 2396 2397 /// getRegisterClassForRegister - Find the register class that contains the 2398 /// specified physical register. If the register is not in a register class, 2399 /// return null. If the register is in multiple classes, and the classes have a 2400 /// superset-subset relationship and the same set of types, return the 2401 /// superclass. Otherwise return null. 2402 const CodeGenRegisterClass* 2403 CodeGenRegBank::getRegClassForRegister(Record *R) { 2404 const CodeGenRegister *Reg = getReg(R); 2405 const CodeGenRegisterClass *FoundRC = nullptr; 2406 for (const auto &RC : getRegClasses()) { 2407 if (!RC.contains(Reg)) 2408 continue; 2409 2410 // If this is the first class that contains the register, 2411 // make a note of it and go on to the next class. 2412 if (!FoundRC) { 2413 FoundRC = &RC; 2414 continue; 2415 } 2416 2417 // If a register's classes have different types, return null. 2418 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2419 return nullptr; 2420 2421 // Check to see if the previously found class that contains 2422 // the register is a subclass of the current class. If so, 2423 // prefer the superclass. 2424 if (RC.hasSubClass(FoundRC)) { 2425 FoundRC = &RC; 2426 continue; 2427 } 2428 2429 // Check to see if the previously found class that contains 2430 // the register is a superclass of the current class. If so, 2431 // prefer the superclass. 2432 if (FoundRC->hasSubClass(&RC)) 2433 continue; 2434 2435 // Multiple classes, and neither is a superclass of the other. 2436 // Return null. 2437 return nullptr; 2438 } 2439 return FoundRC; 2440 } 2441 2442 const CodeGenRegisterClass * 2443 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord, 2444 ValueTypeByHwMode *VT) { 2445 const CodeGenRegister *Reg = getReg(RegRecord); 2446 const CodeGenRegisterClass *BestRC = nullptr; 2447 for (const auto &RC : getRegClasses()) { 2448 if ((!VT || RC.hasType(*VT)) && 2449 RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC))) 2450 BestRC = &RC; 2451 } 2452 2453 assert(BestRC && "Couldn't find the register class"); 2454 return BestRC; 2455 } 2456 2457 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2458 SetVector<const CodeGenRegister*> Set; 2459 2460 // First add Regs with all sub-registers. 2461 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2462 CodeGenRegister *Reg = getReg(Regs[i]); 2463 if (Set.insert(Reg)) 2464 // Reg is new, add all sub-registers. 2465 // The pre-ordering is not important here. 2466 Reg->addSubRegsPreOrder(Set, *this); 2467 } 2468 2469 // Second, find all super-registers that are completely covered by the set. 2470 for (unsigned i = 0; i != Set.size(); ++i) { 2471 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2472 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2473 const CodeGenRegister *Super = SR[j]; 2474 if (!Super->CoveredBySubRegs || Set.count(Super)) 2475 continue; 2476 // This new super-register is covered by its sub-registers. 2477 bool AllSubsInSet = true; 2478 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2479 for (auto I : SRM) 2480 if (!Set.count(I.second)) { 2481 AllSubsInSet = false; 2482 break; 2483 } 2484 // All sub-registers in Set, add Super as well. 2485 // We will visit Super later to recheck its super-registers. 2486 if (AllSubsInSet) 2487 Set.insert(Super); 2488 } 2489 } 2490 2491 // Convert to BitVector. 2492 BitVector BV(Registers.size() + 1); 2493 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2494 BV.set(Set[i]->EnumValue); 2495 return BV; 2496 } 2497 2498 void CodeGenRegBank::printRegUnitName(unsigned Unit) const { 2499 if (Unit < NumNativeRegUnits) 2500 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName(); 2501 else 2502 dbgs() << " #" << Unit; 2503 } 2504