10b57cec5SDimitry Andric //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file defines common loop utility functions.
100b57cec5SDimitry Andric //
110b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
120b57cec5SDimitry Andric 
130b57cec5SDimitry Andric #include "llvm/Transforms/Utils/LoopUtils.h"
145ffd83dbSDimitry Andric #include "llvm/ADT/DenseSet.h"
155ffd83dbSDimitry Andric #include "llvm/ADT/PriorityWorklist.h"
160b57cec5SDimitry Andric #include "llvm/ADT/ScopeExit.h"
175ffd83dbSDimitry Andric #include "llvm/ADT/SetVector.h"
185ffd83dbSDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
195ffd83dbSDimitry Andric #include "llvm/ADT/SmallVector.h"
200b57cec5SDimitry Andric #include "llvm/Analysis/AliasAnalysis.h"
210b57cec5SDimitry Andric #include "llvm/Analysis/BasicAliasAnalysis.h"
220b57cec5SDimitry Andric #include "llvm/Analysis/DomTreeUpdater.h"
230b57cec5SDimitry Andric #include "llvm/Analysis/GlobalsModRef.h"
2404eeddc0SDimitry Andric #include "llvm/Analysis/InstSimplifyFolder.h"
255ffd83dbSDimitry Andric #include "llvm/Analysis/LoopAccessAnalysis.h"
260b57cec5SDimitry Andric #include "llvm/Analysis/LoopInfo.h"
270b57cec5SDimitry Andric #include "llvm/Analysis/LoopPass.h"
288bcb0991SDimitry Andric #include "llvm/Analysis/MemorySSA.h"
290b57cec5SDimitry Andric #include "llvm/Analysis/MemorySSAUpdater.h"
300b57cec5SDimitry Andric #include "llvm/Analysis/ScalarEvolution.h"
310b57cec5SDimitry Andric #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
320b57cec5SDimitry Andric #include "llvm/Analysis/ScalarEvolutionExpressions.h"
330b57cec5SDimitry Andric #include "llvm/IR/DIBuilder.h"
340b57cec5SDimitry Andric #include "llvm/IR/Dominators.h"
350b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
360b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
375ffd83dbSDimitry Andric #include "llvm/IR/MDBuilder.h"
380b57cec5SDimitry Andric #include "llvm/IR/Module.h"
390b57cec5SDimitry Andric #include "llvm/IR/PatternMatch.h"
40bdd1243dSDimitry Andric #include "llvm/IR/ProfDataUtils.h"
410b57cec5SDimitry Andric #include "llvm/IR/ValueHandle.h"
42480093f4SDimitry Andric #include "llvm/InitializePasses.h"
430b57cec5SDimitry Andric #include "llvm/Pass.h"
440b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
450b57cec5SDimitry Andric #include "llvm/Transforms/Utils/BasicBlockUtils.h"
465ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/Local.h"
475ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
480b57cec5SDimitry Andric 
490b57cec5SDimitry Andric using namespace llvm;
500b57cec5SDimitry Andric using namespace llvm::PatternMatch;
510b57cec5SDimitry Andric 
520b57cec5SDimitry Andric #define DEBUG_TYPE "loop-utils"
530b57cec5SDimitry Andric 
540b57cec5SDimitry Andric static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
558bcb0991SDimitry Andric static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
560b57cec5SDimitry Andric 
formDedicatedExitBlocks(Loop * L,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)570b57cec5SDimitry Andric bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
580b57cec5SDimitry Andric                                    MemorySSAUpdater *MSSAU,
590b57cec5SDimitry Andric                                    bool PreserveLCSSA) {
600b57cec5SDimitry Andric   bool Changed = false;
610b57cec5SDimitry Andric 
620b57cec5SDimitry Andric   // We re-use a vector for the in-loop predecesosrs.
630b57cec5SDimitry Andric   SmallVector<BasicBlock *, 4> InLoopPredecessors;
640b57cec5SDimitry Andric 
650b57cec5SDimitry Andric   auto RewriteExit = [&](BasicBlock *BB) {
660b57cec5SDimitry Andric     assert(InLoopPredecessors.empty() &&
670b57cec5SDimitry Andric            "Must start with an empty predecessors list!");
680b57cec5SDimitry Andric     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
690b57cec5SDimitry Andric 
700b57cec5SDimitry Andric     // See if there are any non-loop predecessors of this exit block and
710b57cec5SDimitry Andric     // keep track of the in-loop predecessors.
720b57cec5SDimitry Andric     bool IsDedicatedExit = true;
730b57cec5SDimitry Andric     for (auto *PredBB : predecessors(BB))
740b57cec5SDimitry Andric       if (L->contains(PredBB)) {
750b57cec5SDimitry Andric         if (isa<IndirectBrInst>(PredBB->getTerminator()))
760b57cec5SDimitry Andric           // We cannot rewrite exiting edges from an indirectbr.
770b57cec5SDimitry Andric           return false;
780b57cec5SDimitry Andric 
790b57cec5SDimitry Andric         InLoopPredecessors.push_back(PredBB);
800b57cec5SDimitry Andric       } else {
810b57cec5SDimitry Andric         IsDedicatedExit = false;
820b57cec5SDimitry Andric       }
830b57cec5SDimitry Andric 
840b57cec5SDimitry Andric     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
850b57cec5SDimitry Andric 
860b57cec5SDimitry Andric     // Nothing to do if this is already a dedicated exit.
870b57cec5SDimitry Andric     if (IsDedicatedExit)
880b57cec5SDimitry Andric       return false;
890b57cec5SDimitry Andric 
900b57cec5SDimitry Andric     auto *NewExitBB = SplitBlockPredecessors(
910b57cec5SDimitry Andric         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
920b57cec5SDimitry Andric 
930b57cec5SDimitry Andric     if (!NewExitBB)
940b57cec5SDimitry Andric       LLVM_DEBUG(
950b57cec5SDimitry Andric           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
960b57cec5SDimitry Andric                  << *L << "\n");
970b57cec5SDimitry Andric     else
980b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
990b57cec5SDimitry Andric                         << NewExitBB->getName() << "\n");
1000b57cec5SDimitry Andric     return true;
1010b57cec5SDimitry Andric   };
1020b57cec5SDimitry Andric 
1030b57cec5SDimitry Andric   // Walk the exit blocks directly rather than building up a data structure for
1040b57cec5SDimitry Andric   // them, but only visit each one once.
1050b57cec5SDimitry Andric   SmallPtrSet<BasicBlock *, 4> Visited;
1060b57cec5SDimitry Andric   for (auto *BB : L->blocks())
1070b57cec5SDimitry Andric     for (auto *SuccBB : successors(BB)) {
1080b57cec5SDimitry Andric       // We're looking for exit blocks so skip in-loop successors.
1090b57cec5SDimitry Andric       if (L->contains(SuccBB))
1100b57cec5SDimitry Andric         continue;
1110b57cec5SDimitry Andric 
1120b57cec5SDimitry Andric       // Visit each exit block exactly once.
1130b57cec5SDimitry Andric       if (!Visited.insert(SuccBB).second)
1140b57cec5SDimitry Andric         continue;
1150b57cec5SDimitry Andric 
1160b57cec5SDimitry Andric       Changed |= RewriteExit(SuccBB);
1170b57cec5SDimitry Andric     }
1180b57cec5SDimitry Andric 
1190b57cec5SDimitry Andric   return Changed;
1200b57cec5SDimitry Andric }
1210b57cec5SDimitry Andric 
1220b57cec5SDimitry Andric /// Returns the instructions that use values defined in the loop.
findDefsUsedOutsideOfLoop(Loop * L)1230b57cec5SDimitry Andric SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
1240b57cec5SDimitry Andric   SmallVector<Instruction *, 8> UsedOutside;
1250b57cec5SDimitry Andric 
1260b57cec5SDimitry Andric   for (auto *Block : L->getBlocks())
1270b57cec5SDimitry Andric     // FIXME: I believe that this could use copy_if if the Inst reference could
1280b57cec5SDimitry Andric     // be adapted into a pointer.
1290b57cec5SDimitry Andric     for (auto &Inst : *Block) {
1300b57cec5SDimitry Andric       auto Users = Inst.users();
1310b57cec5SDimitry Andric       if (any_of(Users, [&](User *U) {
1320b57cec5SDimitry Andric             auto *Use = cast<Instruction>(U);
1330b57cec5SDimitry Andric             return !L->contains(Use->getParent());
1340b57cec5SDimitry Andric           }))
1350b57cec5SDimitry Andric         UsedOutside.push_back(&Inst);
1360b57cec5SDimitry Andric     }
1370b57cec5SDimitry Andric 
1380b57cec5SDimitry Andric   return UsedOutside;
1390b57cec5SDimitry Andric }
1400b57cec5SDimitry Andric 
getLoopAnalysisUsage(AnalysisUsage & AU)1410b57cec5SDimitry Andric void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
1420b57cec5SDimitry Andric   // By definition, all loop passes need the LoopInfo analysis and the
1430b57cec5SDimitry Andric   // Dominator tree it depends on. Because they all participate in the loop
1440b57cec5SDimitry Andric   // pass manager, they must also preserve these.
1450b57cec5SDimitry Andric   AU.addRequired<DominatorTreeWrapperPass>();
1460b57cec5SDimitry Andric   AU.addPreserved<DominatorTreeWrapperPass>();
1470b57cec5SDimitry Andric   AU.addRequired<LoopInfoWrapperPass>();
1480b57cec5SDimitry Andric   AU.addPreserved<LoopInfoWrapperPass>();
1490b57cec5SDimitry Andric 
1500b57cec5SDimitry Andric   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
1510b57cec5SDimitry Andric   // here because users shouldn't directly get them from this header.
1520b57cec5SDimitry Andric   extern char &LoopSimplifyID;
1530b57cec5SDimitry Andric   extern char &LCSSAID;
1540b57cec5SDimitry Andric   AU.addRequiredID(LoopSimplifyID);
1550b57cec5SDimitry Andric   AU.addPreservedID(LoopSimplifyID);
1560b57cec5SDimitry Andric   AU.addRequiredID(LCSSAID);
1570b57cec5SDimitry Andric   AU.addPreservedID(LCSSAID);
1580b57cec5SDimitry Andric   // This is used in the LPPassManager to perform LCSSA verification on passes
1590b57cec5SDimitry Andric   // which preserve lcssa form
1600b57cec5SDimitry Andric   AU.addRequired<LCSSAVerificationPass>();
1610b57cec5SDimitry Andric   AU.addPreserved<LCSSAVerificationPass>();
1620b57cec5SDimitry Andric 
1630b57cec5SDimitry Andric   // Loop passes are designed to run inside of a loop pass manager which means
1640b57cec5SDimitry Andric   // that any function analyses they require must be required by the first loop
1650b57cec5SDimitry Andric   // pass in the manager (so that it is computed before the loop pass manager
1660b57cec5SDimitry Andric   // runs) and preserved by all loop pasess in the manager. To make this
1670b57cec5SDimitry Andric   // reasonably robust, the set needed for most loop passes is maintained here.
1680b57cec5SDimitry Andric   // If your loop pass requires an analysis not listed here, you will need to
1690b57cec5SDimitry Andric   // carefully audit the loop pass manager nesting structure that results.
1700b57cec5SDimitry Andric   AU.addRequired<AAResultsWrapperPass>();
1710b57cec5SDimitry Andric   AU.addPreserved<AAResultsWrapperPass>();
1720b57cec5SDimitry Andric   AU.addPreserved<BasicAAWrapperPass>();
1730b57cec5SDimitry Andric   AU.addPreserved<GlobalsAAWrapperPass>();
1740b57cec5SDimitry Andric   AU.addPreserved<SCEVAAWrapperPass>();
1750b57cec5SDimitry Andric   AU.addRequired<ScalarEvolutionWrapperPass>();
1760b57cec5SDimitry Andric   AU.addPreserved<ScalarEvolutionWrapperPass>();
1778bcb0991SDimitry Andric   // FIXME: When all loop passes preserve MemorySSA, it can be required and
1788bcb0991SDimitry Andric   // preserved here instead of the individual handling in each pass.
1790b57cec5SDimitry Andric }
1800b57cec5SDimitry Andric 
1810b57cec5SDimitry Andric /// Manually defined generic "LoopPass" dependency initialization. This is used
1820b57cec5SDimitry Andric /// to initialize the exact set of passes from above in \c
1830b57cec5SDimitry Andric /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
1840b57cec5SDimitry Andric /// with:
1850b57cec5SDimitry Andric ///
1860b57cec5SDimitry Andric ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
1870b57cec5SDimitry Andric ///
1880b57cec5SDimitry Andric /// As-if "LoopPass" were a pass.
initializeLoopPassPass(PassRegistry & Registry)1890b57cec5SDimitry Andric void llvm::initializeLoopPassPass(PassRegistry &Registry) {
1900b57cec5SDimitry Andric   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1910b57cec5SDimitry Andric   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1920b57cec5SDimitry Andric   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1930b57cec5SDimitry Andric   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
1940b57cec5SDimitry Andric   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1950b57cec5SDimitry Andric   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
1960b57cec5SDimitry Andric   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
1970b57cec5SDimitry Andric   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
1980b57cec5SDimitry Andric   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1998bcb0991SDimitry Andric   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
2008bcb0991SDimitry Andric }
2018bcb0991SDimitry Andric 
2028bcb0991SDimitry Andric /// Create MDNode for input string.
createStringMetadata(Loop * TheLoop,StringRef Name,unsigned V)2038bcb0991SDimitry Andric static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
2048bcb0991SDimitry Andric   LLVMContext &Context = TheLoop->getHeader()->getContext();
2058bcb0991SDimitry Andric   Metadata *MDs[] = {
2068bcb0991SDimitry Andric       MDString::get(Context, Name),
2078bcb0991SDimitry Andric       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
2088bcb0991SDimitry Andric   return MDNode::get(Context, MDs);
2098bcb0991SDimitry Andric }
2108bcb0991SDimitry Andric 
2118bcb0991SDimitry Andric /// Set input string into loop metadata by keeping other values intact.
2128bcb0991SDimitry Andric /// If the string is already in loop metadata update value if it is
2138bcb0991SDimitry Andric /// different.
addStringMetadataToLoop(Loop * TheLoop,const char * StringMD,unsigned V)2148bcb0991SDimitry Andric void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
2158bcb0991SDimitry Andric                                    unsigned V) {
2168bcb0991SDimitry Andric   SmallVector<Metadata *, 4> MDs(1);
2178bcb0991SDimitry Andric   // If the loop already has metadata, retain it.
2188bcb0991SDimitry Andric   MDNode *LoopID = TheLoop->getLoopID();
2198bcb0991SDimitry Andric   if (LoopID) {
2208bcb0991SDimitry Andric     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
2218bcb0991SDimitry Andric       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
2228bcb0991SDimitry Andric       // If it is of form key = value, try to parse it.
2238bcb0991SDimitry Andric       if (Node->getNumOperands() == 2) {
2248bcb0991SDimitry Andric         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
2258bcb0991SDimitry Andric         if (S && S->getString().equals(StringMD)) {
2268bcb0991SDimitry Andric           ConstantInt *IntMD =
2278bcb0991SDimitry Andric               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
2288bcb0991SDimitry Andric           if (IntMD && IntMD->getSExtValue() == V)
2298bcb0991SDimitry Andric             // It is already in place. Do nothing.
2308bcb0991SDimitry Andric             return;
2318bcb0991SDimitry Andric           // We need to update the value, so just skip it here and it will
2328bcb0991SDimitry Andric           // be added after copying other existed nodes.
2338bcb0991SDimitry Andric           continue;
2348bcb0991SDimitry Andric         }
2358bcb0991SDimitry Andric       }
2368bcb0991SDimitry Andric       MDs.push_back(Node);
2378bcb0991SDimitry Andric     }
2388bcb0991SDimitry Andric   }
2398bcb0991SDimitry Andric   // Add new metadata.
2408bcb0991SDimitry Andric   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
2418bcb0991SDimitry Andric   // Replace current metadata node with new one.
2428bcb0991SDimitry Andric   LLVMContext &Context = TheLoop->getHeader()->getContext();
2438bcb0991SDimitry Andric   MDNode *NewLoopID = MDNode::get(Context, MDs);
2448bcb0991SDimitry Andric   // Set operand 0 to refer to the loop id itself.
2458bcb0991SDimitry Andric   NewLoopID->replaceOperandWith(0, NewLoopID);
2468bcb0991SDimitry Andric   TheLoop->setLoopID(NewLoopID);
2470b57cec5SDimitry Andric }
2480b57cec5SDimitry Andric 
249bdd1243dSDimitry Andric std::optional<ElementCount>
getOptionalElementCountLoopAttribute(const Loop * TheLoop)250fe6060f1SDimitry Andric llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
251bdd1243dSDimitry Andric   std::optional<int> Width =
252e8d8bef9SDimitry Andric       getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
253e8d8bef9SDimitry Andric 
25481ad6265SDimitry Andric   if (Width) {
255bdd1243dSDimitry Andric     std::optional<int> IsScalable = getOptionalIntLoopAttribute(
256e8d8bef9SDimitry Andric         TheLoop, "llvm.loop.vectorize.scalable.enable");
25781ad6265SDimitry Andric     return ElementCount::get(*Width, IsScalable.value_or(false));
258e8d8bef9SDimitry Andric   }
259e8d8bef9SDimitry Andric 
260bdd1243dSDimitry Andric   return std::nullopt;
261e8d8bef9SDimitry Andric }
262e8d8bef9SDimitry Andric 
makeFollowupLoopID(MDNode * OrigLoopID,ArrayRef<StringRef> FollowupOptions,const char * InheritOptionsExceptPrefix,bool AlwaysNew)263bdd1243dSDimitry Andric std::optional<MDNode *> llvm::makeFollowupLoopID(
2640b57cec5SDimitry Andric     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
2650b57cec5SDimitry Andric     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
2660b57cec5SDimitry Andric   if (!OrigLoopID) {
2670b57cec5SDimitry Andric     if (AlwaysNew)
2680b57cec5SDimitry Andric       return nullptr;
269bdd1243dSDimitry Andric     return std::nullopt;
2700b57cec5SDimitry Andric   }
2710b57cec5SDimitry Andric 
2720b57cec5SDimitry Andric   assert(OrigLoopID->getOperand(0) == OrigLoopID);
2730b57cec5SDimitry Andric 
2740b57cec5SDimitry Andric   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
2750b57cec5SDimitry Andric   bool InheritSomeAttrs =
2760b57cec5SDimitry Andric       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
2770b57cec5SDimitry Andric   SmallVector<Metadata *, 8> MDs;
2780b57cec5SDimitry Andric   MDs.push_back(nullptr);
2790b57cec5SDimitry Andric 
2800b57cec5SDimitry Andric   bool Changed = false;
2810b57cec5SDimitry Andric   if (InheritAllAttrs || InheritSomeAttrs) {
282e8d8bef9SDimitry Andric     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
2830b57cec5SDimitry Andric       MDNode *Op = cast<MDNode>(Existing.get());
2840b57cec5SDimitry Andric 
2850b57cec5SDimitry Andric       auto InheritThisAttribute = [InheritSomeAttrs,
2860b57cec5SDimitry Andric                                    InheritOptionsExceptPrefix](MDNode *Op) {
2870b57cec5SDimitry Andric         if (!InheritSomeAttrs)
2880b57cec5SDimitry Andric           return false;
2890b57cec5SDimitry Andric 
2900b57cec5SDimitry Andric         // Skip malformatted attribute metadata nodes.
2910b57cec5SDimitry Andric         if (Op->getNumOperands() == 0)
2920b57cec5SDimitry Andric           return true;
2930b57cec5SDimitry Andric         Metadata *NameMD = Op->getOperand(0).get();
2940b57cec5SDimitry Andric         if (!isa<MDString>(NameMD))
2950b57cec5SDimitry Andric           return true;
2960b57cec5SDimitry Andric         StringRef AttrName = cast<MDString>(NameMD)->getString();
2970b57cec5SDimitry Andric 
2980b57cec5SDimitry Andric         // Do not inherit excluded attributes.
299*c9157d92SDimitry Andric         return !AttrName.starts_with(InheritOptionsExceptPrefix);
3000b57cec5SDimitry Andric       };
3010b57cec5SDimitry Andric 
3020b57cec5SDimitry Andric       if (InheritThisAttribute(Op))
3030b57cec5SDimitry Andric         MDs.push_back(Op);
3040b57cec5SDimitry Andric       else
3050b57cec5SDimitry Andric         Changed = true;
3060b57cec5SDimitry Andric     }
3070b57cec5SDimitry Andric   } else {
3080b57cec5SDimitry Andric     // Modified if we dropped at least one attribute.
3090b57cec5SDimitry Andric     Changed = OrigLoopID->getNumOperands() > 1;
3100b57cec5SDimitry Andric   }
3110b57cec5SDimitry Andric 
3120b57cec5SDimitry Andric   bool HasAnyFollowup = false;
3130b57cec5SDimitry Andric   for (StringRef OptionName : FollowupOptions) {
3140b57cec5SDimitry Andric     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
3150b57cec5SDimitry Andric     if (!FollowupNode)
3160b57cec5SDimitry Andric       continue;
3170b57cec5SDimitry Andric 
3180b57cec5SDimitry Andric     HasAnyFollowup = true;
319e8d8bef9SDimitry Andric     for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
3200b57cec5SDimitry Andric       MDs.push_back(Option.get());
3210b57cec5SDimitry Andric       Changed = true;
3220b57cec5SDimitry Andric     }
3230b57cec5SDimitry Andric   }
3240b57cec5SDimitry Andric 
3250b57cec5SDimitry Andric   // Attributes of the followup loop not specified explicity, so signal to the
3260b57cec5SDimitry Andric   // transformation pass to add suitable attributes.
3270b57cec5SDimitry Andric   if (!AlwaysNew && !HasAnyFollowup)
328bdd1243dSDimitry Andric     return std::nullopt;
3290b57cec5SDimitry Andric 
3300b57cec5SDimitry Andric   // If no attributes were added or remove, the previous loop Id can be reused.
3310b57cec5SDimitry Andric   if (!AlwaysNew && !Changed)
3320b57cec5SDimitry Andric     return OrigLoopID;
3330b57cec5SDimitry Andric 
3340b57cec5SDimitry Andric   // No attributes is equivalent to having no !llvm.loop metadata at all.
3350b57cec5SDimitry Andric   if (MDs.size() == 1)
3360b57cec5SDimitry Andric     return nullptr;
3370b57cec5SDimitry Andric 
3380b57cec5SDimitry Andric   // Build the new loop ID.
3390b57cec5SDimitry Andric   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
3400b57cec5SDimitry Andric   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
3410b57cec5SDimitry Andric   return FollowupLoopID;
3420b57cec5SDimitry Andric }
3430b57cec5SDimitry Andric 
hasDisableAllTransformsHint(const Loop * L)3440b57cec5SDimitry Andric bool llvm::hasDisableAllTransformsHint(const Loop *L) {
3450b57cec5SDimitry Andric   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
3460b57cec5SDimitry Andric }
3470b57cec5SDimitry Andric 
hasDisableLICMTransformsHint(const Loop * L)3488bcb0991SDimitry Andric bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
3498bcb0991SDimitry Andric   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
3508bcb0991SDimitry Andric }
3518bcb0991SDimitry Andric 
hasUnrollTransformation(const Loop * L)352fe6060f1SDimitry Andric TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
3530b57cec5SDimitry Andric   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
3540b57cec5SDimitry Andric     return TM_SuppressedByUser;
3550b57cec5SDimitry Andric 
356bdd1243dSDimitry Andric   std::optional<int> Count =
3570b57cec5SDimitry Andric       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
35881ad6265SDimitry Andric   if (Count)
359bdd1243dSDimitry Andric     return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
3600b57cec5SDimitry Andric 
3610b57cec5SDimitry Andric   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
3620b57cec5SDimitry Andric     return TM_ForcedByUser;
3630b57cec5SDimitry Andric 
3640b57cec5SDimitry Andric   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
3650b57cec5SDimitry Andric     return TM_ForcedByUser;
3660b57cec5SDimitry Andric 
3670b57cec5SDimitry Andric   if (hasDisableAllTransformsHint(L))
3680b57cec5SDimitry Andric     return TM_Disable;
3690b57cec5SDimitry Andric 
3700b57cec5SDimitry Andric   return TM_Unspecified;
3710b57cec5SDimitry Andric }
3720b57cec5SDimitry Andric 
hasUnrollAndJamTransformation(const Loop * L)373fe6060f1SDimitry Andric TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
3740b57cec5SDimitry Andric   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
3750b57cec5SDimitry Andric     return TM_SuppressedByUser;
3760b57cec5SDimitry Andric 
377bdd1243dSDimitry Andric   std::optional<int> Count =
3780b57cec5SDimitry Andric       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
37981ad6265SDimitry Andric   if (Count)
380bdd1243dSDimitry Andric     return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
3810b57cec5SDimitry Andric 
3820b57cec5SDimitry Andric   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
3830b57cec5SDimitry Andric     return TM_ForcedByUser;
3840b57cec5SDimitry Andric 
3850b57cec5SDimitry Andric   if (hasDisableAllTransformsHint(L))
3860b57cec5SDimitry Andric     return TM_Disable;
3870b57cec5SDimitry Andric 
3880b57cec5SDimitry Andric   return TM_Unspecified;
3890b57cec5SDimitry Andric }
3900b57cec5SDimitry Andric 
hasVectorizeTransformation(const Loop * L)391fe6060f1SDimitry Andric TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
392bdd1243dSDimitry Andric   std::optional<bool> Enable =
3930b57cec5SDimitry Andric       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
3940b57cec5SDimitry Andric 
3950b57cec5SDimitry Andric   if (Enable == false)
3960b57cec5SDimitry Andric     return TM_SuppressedByUser;
3970b57cec5SDimitry Andric 
398bdd1243dSDimitry Andric   std::optional<ElementCount> VectorizeWidth =
399e8d8bef9SDimitry Andric       getOptionalElementCountLoopAttribute(L);
400bdd1243dSDimitry Andric   std::optional<int> InterleaveCount =
4010b57cec5SDimitry Andric       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
4020b57cec5SDimitry Andric 
4030b57cec5SDimitry Andric   // 'Forcing' vector width and interleave count to one effectively disables
4040b57cec5SDimitry Andric   // this tranformation.
405e8d8bef9SDimitry Andric   if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
406e8d8bef9SDimitry Andric       InterleaveCount == 1)
4070b57cec5SDimitry Andric     return TM_SuppressedByUser;
4080b57cec5SDimitry Andric 
4090b57cec5SDimitry Andric   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
4100b57cec5SDimitry Andric     return TM_Disable;
4110b57cec5SDimitry Andric 
4120b57cec5SDimitry Andric   if (Enable == true)
4130b57cec5SDimitry Andric     return TM_ForcedByUser;
4140b57cec5SDimitry Andric 
415e8d8bef9SDimitry Andric   if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
4160b57cec5SDimitry Andric     return TM_Disable;
4170b57cec5SDimitry Andric 
418e8d8bef9SDimitry Andric   if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
4190b57cec5SDimitry Andric     return TM_Enable;
4200b57cec5SDimitry Andric 
4210b57cec5SDimitry Andric   if (hasDisableAllTransformsHint(L))
4220b57cec5SDimitry Andric     return TM_Disable;
4230b57cec5SDimitry Andric 
4240b57cec5SDimitry Andric   return TM_Unspecified;
4250b57cec5SDimitry Andric }
4260b57cec5SDimitry Andric 
hasDistributeTransformation(const Loop * L)427fe6060f1SDimitry Andric TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
4280b57cec5SDimitry Andric   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
4290b57cec5SDimitry Andric     return TM_ForcedByUser;
4300b57cec5SDimitry Andric 
4310b57cec5SDimitry Andric   if (hasDisableAllTransformsHint(L))
4320b57cec5SDimitry Andric     return TM_Disable;
4330b57cec5SDimitry Andric 
4340b57cec5SDimitry Andric   return TM_Unspecified;
4350b57cec5SDimitry Andric }
4360b57cec5SDimitry Andric 
hasLICMVersioningTransformation(const Loop * L)437fe6060f1SDimitry Andric TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
4380b57cec5SDimitry Andric   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
4390b57cec5SDimitry Andric     return TM_SuppressedByUser;
4400b57cec5SDimitry Andric 
4410b57cec5SDimitry Andric   if (hasDisableAllTransformsHint(L))
4420b57cec5SDimitry Andric     return TM_Disable;
4430b57cec5SDimitry Andric 
4440b57cec5SDimitry Andric   return TM_Unspecified;
4450b57cec5SDimitry Andric }
4460b57cec5SDimitry Andric 
4470b57cec5SDimitry Andric /// Does a BFS from a given node to all of its children inside a given loop.
4480b57cec5SDimitry Andric /// The returned vector of nodes includes the starting point.
4490b57cec5SDimitry Andric SmallVector<DomTreeNode *, 16>
collectChildrenInLoop(DomTreeNode * N,const Loop * CurLoop)4500b57cec5SDimitry Andric llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
4510b57cec5SDimitry Andric   SmallVector<DomTreeNode *, 16> Worklist;
4520b57cec5SDimitry Andric   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
4530b57cec5SDimitry Andric     // Only include subregions in the top level loop.
4540b57cec5SDimitry Andric     BasicBlock *BB = DTN->getBlock();
4550b57cec5SDimitry Andric     if (CurLoop->contains(BB))
4560b57cec5SDimitry Andric       Worklist.push_back(DTN);
4570b57cec5SDimitry Andric   };
4580b57cec5SDimitry Andric 
4590b57cec5SDimitry Andric   AddRegionToWorklist(N);
4600b57cec5SDimitry Andric 
4615ffd83dbSDimitry Andric   for (size_t I = 0; I < Worklist.size(); I++) {
4625ffd83dbSDimitry Andric     for (DomTreeNode *Child : Worklist[I]->children())
4630b57cec5SDimitry Andric       AddRegionToWorklist(Child);
4645ffd83dbSDimitry Andric   }
4650b57cec5SDimitry Andric 
4660b57cec5SDimitry Andric   return Worklist;
4670b57cec5SDimitry Andric }
4680b57cec5SDimitry Andric 
isAlmostDeadIV(PHINode * PN,BasicBlock * LatchBlock,Value * Cond)469fe013be4SDimitry Andric bool llvm::isAlmostDeadIV(PHINode *PN, BasicBlock *LatchBlock, Value *Cond) {
470fe013be4SDimitry Andric   int LatchIdx = PN->getBasicBlockIndex(LatchBlock);
471fe013be4SDimitry Andric   Value *IncV = PN->getIncomingValue(LatchIdx);
472fe013be4SDimitry Andric 
473fe013be4SDimitry Andric   for (User *U : PN->users())
474fe013be4SDimitry Andric     if (U != Cond && U != IncV) return false;
475fe013be4SDimitry Andric 
476fe013be4SDimitry Andric   for (User *U : IncV->users())
477fe013be4SDimitry Andric     if (U != Cond && U != PN) return false;
478fe013be4SDimitry Andric   return true;
479fe013be4SDimitry Andric }
480fe013be4SDimitry Andric 
481fe013be4SDimitry Andric 
deleteDeadLoop(Loop * L,DominatorTree * DT,ScalarEvolution * SE,LoopInfo * LI,MemorySSA * MSSA)4825ffd83dbSDimitry Andric void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
4835ffd83dbSDimitry Andric                           LoopInfo *LI, MemorySSA *MSSA) {
4840b57cec5SDimitry Andric   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
4850b57cec5SDimitry Andric   auto *Preheader = L->getLoopPreheader();
4860b57cec5SDimitry Andric   assert(Preheader && "Preheader should exist!");
4870b57cec5SDimitry Andric 
4885ffd83dbSDimitry Andric   std::unique_ptr<MemorySSAUpdater> MSSAU;
4895ffd83dbSDimitry Andric   if (MSSA)
4905ffd83dbSDimitry Andric     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
4915ffd83dbSDimitry Andric 
4920b57cec5SDimitry Andric   // Now that we know the removal is safe, remove the loop by changing the
4930b57cec5SDimitry Andric   // branch from the preheader to go to the single exit block.
4940b57cec5SDimitry Andric   //
4950b57cec5SDimitry Andric   // Because we're deleting a large chunk of code at once, the sequence in which
4960b57cec5SDimitry Andric   // we remove things is very important to avoid invalidation issues.
4970b57cec5SDimitry Andric 
4980b57cec5SDimitry Andric   // Tell ScalarEvolution that the loop is deleted. Do this before
4990b57cec5SDimitry Andric   // deleting the loop so that ScalarEvolution can look at the loop
5000b57cec5SDimitry Andric   // to determine what it needs to clean up.
501bdd1243dSDimitry Andric   if (SE) {
5020b57cec5SDimitry Andric     SE->forgetLoop(L);
503bdd1243dSDimitry Andric     SE->forgetBlockAndLoopDispositions();
504bdd1243dSDimitry Andric   }
5050b57cec5SDimitry Andric 
50681ad6265SDimitry Andric   Instruction *OldTerm = Preheader->getTerminator();
50781ad6265SDimitry Andric   assert(!OldTerm->mayHaveSideEffects() &&
50881ad6265SDimitry Andric          "Preheader must end with a side-effect-free terminator");
50981ad6265SDimitry Andric   assert(OldTerm->getNumSuccessors() == 1 &&
51081ad6265SDimitry Andric          "Preheader must have a single successor");
5110b57cec5SDimitry Andric   // Connect the preheader to the exit block. Keep the old edge to the header
5120b57cec5SDimitry Andric   // around to perform the dominator tree update in two separate steps
5130b57cec5SDimitry Andric   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
5140b57cec5SDimitry Andric   // preheader -> header.
5150b57cec5SDimitry Andric   //
5160b57cec5SDimitry Andric   //
5170b57cec5SDimitry Andric   // 0.  Preheader          1.  Preheader           2.  Preheader
5180b57cec5SDimitry Andric   //        |                    |   |                   |
5190b57cec5SDimitry Andric   //        V                    |   V                   |
5200b57cec5SDimitry Andric   //      Header <--\            | Header <--\           | Header <--\
5210b57cec5SDimitry Andric   //       |  |     |            |  |  |     |           |  |  |     |
5220b57cec5SDimitry Andric   //       |  V     |            |  |  V     |           |  |  V     |
5230b57cec5SDimitry Andric   //       | Body --/            |  | Body --/           |  | Body --/
5240b57cec5SDimitry Andric   //       V                     V  V                    V  V
5250b57cec5SDimitry Andric   //      Exit                   Exit                    Exit
5260b57cec5SDimitry Andric   //
5270b57cec5SDimitry Andric   // By doing this is two separate steps we can perform the dominator tree
5280b57cec5SDimitry Andric   // update without using the batch update API.
5290b57cec5SDimitry Andric   //
5300b57cec5SDimitry Andric   // Even when the loop is never executed, we cannot remove the edge from the
5310b57cec5SDimitry Andric   // source block to the exit block. Consider the case where the unexecuted loop
5320b57cec5SDimitry Andric   // branches back to an outer loop. If we deleted the loop and removed the edge
5330b57cec5SDimitry Andric   // coming to this inner loop, this will break the outer loop structure (by
5340b57cec5SDimitry Andric   // deleting the backedge of the outer loop). If the outer loop is indeed a
5350b57cec5SDimitry Andric   // non-loop, it will be deleted in a future iteration of loop deletion pass.
53681ad6265SDimitry Andric   IRBuilder<> Builder(OldTerm);
537e8d8bef9SDimitry Andric 
538e8d8bef9SDimitry Andric   auto *ExitBlock = L->getUniqueExitBlock();
539e8d8bef9SDimitry Andric   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
540e8d8bef9SDimitry Andric   if (ExitBlock) {
541e8d8bef9SDimitry Andric     assert(ExitBlock && "Should have a unique exit block!");
542e8d8bef9SDimitry Andric     assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
543e8d8bef9SDimitry Andric 
5440b57cec5SDimitry Andric     Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
5450b57cec5SDimitry Andric     // Remove the old branch. The conditional branch becomes a new terminator.
54681ad6265SDimitry Andric     OldTerm->eraseFromParent();
5470b57cec5SDimitry Andric 
5480b57cec5SDimitry Andric     // Rewrite phis in the exit block to get their inputs from the Preheader
5490b57cec5SDimitry Andric     // instead of the exiting block.
5500b57cec5SDimitry Andric     for (PHINode &P : ExitBlock->phis()) {
5510b57cec5SDimitry Andric       // Set the zero'th element of Phi to be from the preheader and remove all
5520b57cec5SDimitry Andric       // other incoming values. Given the loop has dedicated exits, all other
5530b57cec5SDimitry Andric       // incoming values must be from the exiting blocks.
5540b57cec5SDimitry Andric       int PredIndex = 0;
5550b57cec5SDimitry Andric       P.setIncomingBlock(PredIndex, Preheader);
5560b57cec5SDimitry Andric       // Removes all incoming values from all other exiting blocks (including
5570b57cec5SDimitry Andric       // duplicate values from an exiting block).
5580b57cec5SDimitry Andric       // Nuke all entries except the zero'th entry which is the preheader entry.
559*c9157d92SDimitry Andric       P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; },
560*c9157d92SDimitry Andric                               /* DeletePHIIfEmpty */ false);
5610b57cec5SDimitry Andric 
5620b57cec5SDimitry Andric       assert((P.getNumIncomingValues() == 1 &&
5630b57cec5SDimitry Andric               P.getIncomingBlock(PredIndex) == Preheader) &&
5640b57cec5SDimitry Andric              "Should have exactly one value and that's from the preheader!");
5650b57cec5SDimitry Andric     }
5660b57cec5SDimitry Andric 
5675ffd83dbSDimitry Andric     if (DT) {
5685ffd83dbSDimitry Andric       DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
5695ffd83dbSDimitry Andric       if (MSSA) {
570e8d8bef9SDimitry Andric         MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
571e8d8bef9SDimitry Andric                             *DT);
5725ffd83dbSDimitry Andric         if (VerifyMemorySSA)
5735ffd83dbSDimitry Andric           MSSA->verifyMemorySSA();
5745ffd83dbSDimitry Andric       }
5755ffd83dbSDimitry Andric     }
5765ffd83dbSDimitry Andric 
5770b57cec5SDimitry Andric     // Disconnect the loop body by branching directly to its exit.
5780b57cec5SDimitry Andric     Builder.SetInsertPoint(Preheader->getTerminator());
5790b57cec5SDimitry Andric     Builder.CreateBr(ExitBlock);
5800b57cec5SDimitry Andric     // Remove the old branch.
5810b57cec5SDimitry Andric     Preheader->getTerminator()->eraseFromParent();
582e8d8bef9SDimitry Andric   } else {
583e8d8bef9SDimitry Andric     assert(L->hasNoExitBlocks() &&
584e8d8bef9SDimitry Andric            "Loop should have either zero or one exit blocks.");
585e8d8bef9SDimitry Andric 
58681ad6265SDimitry Andric     Builder.SetInsertPoint(OldTerm);
587e8d8bef9SDimitry Andric     Builder.CreateUnreachable();
588e8d8bef9SDimitry Andric     Preheader->getTerminator()->eraseFromParent();
589e8d8bef9SDimitry Andric   }
5900b57cec5SDimitry Andric 
5910b57cec5SDimitry Andric   if (DT) {
5925ffd83dbSDimitry Andric     DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
5935ffd83dbSDimitry Andric     if (MSSA) {
5945ffd83dbSDimitry Andric       MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
5955ffd83dbSDimitry Andric                           *DT);
5965ffd83dbSDimitry Andric       SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
5975ffd83dbSDimitry Andric                                                    L->block_end());
5985ffd83dbSDimitry Andric       MSSAU->removeBlocks(DeadBlockSet);
5995ffd83dbSDimitry Andric       if (VerifyMemorySSA)
6005ffd83dbSDimitry Andric         MSSA->verifyMemorySSA();
6015ffd83dbSDimitry Andric     }
6020b57cec5SDimitry Andric   }
6030b57cec5SDimitry Andric 
6040b57cec5SDimitry Andric   // Use a map to unique and a vector to guarantee deterministic ordering.
605bdd1243dSDimitry Andric   llvm::SmallDenseSet<DebugVariable, 4> DeadDebugSet;
6060b57cec5SDimitry Andric   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
607*c9157d92SDimitry Andric   llvm::SmallVector<DPValue *, 4> DeadDPValues;
6080b57cec5SDimitry Andric 
609e8d8bef9SDimitry Andric   if (ExitBlock) {
6100b57cec5SDimitry Andric     // Given LCSSA form is satisfied, we should not have users of instructions
6110b57cec5SDimitry Andric     // within the dead loop outside of the loop. However, LCSSA doesn't take
6120b57cec5SDimitry Andric     // unreachable uses into account. We handle them here.
6130b57cec5SDimitry Andric     // We could do it after drop all references (in this case all users in the
6140b57cec5SDimitry Andric     // loop will be already eliminated and we have less work to do but according
6150b57cec5SDimitry Andric     // to API doc of User::dropAllReferences only valid operation after dropping
6160b57cec5SDimitry Andric     // references, is deletion. So let's substitute all usages of
617fcaf7f86SDimitry Andric     // instruction from the loop with poison value of corresponding type first.
6180b57cec5SDimitry Andric     for (auto *Block : L->blocks())
6190b57cec5SDimitry Andric       for (Instruction &I : *Block) {
620fcaf7f86SDimitry Andric         auto *Poison = PoisonValue::get(I.getType());
621349cc55cSDimitry Andric         for (Use &U : llvm::make_early_inc_range(I.uses())) {
6220b57cec5SDimitry Andric           if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
6230b57cec5SDimitry Andric             if (L->contains(Usr->getParent()))
6240b57cec5SDimitry Andric               continue;
6250b57cec5SDimitry Andric           // If we have a DT then we can check that uses outside a loop only in
6260b57cec5SDimitry Andric           // unreachable block.
6270b57cec5SDimitry Andric           if (DT)
6280b57cec5SDimitry Andric             assert(!DT->isReachableFromEntry(U) &&
6290b57cec5SDimitry Andric                    "Unexpected user in reachable block");
630fcaf7f86SDimitry Andric           U.set(Poison);
6310b57cec5SDimitry Andric         }
632*c9157d92SDimitry Andric 
633*c9157d92SDimitry Andric         // RemoveDIs: do the same as below for DPValues.
634*c9157d92SDimitry Andric         if (Block->IsNewDbgInfoFormat) {
635*c9157d92SDimitry Andric           for (DPValue &DPV :
636*c9157d92SDimitry Andric                llvm::make_early_inc_range(I.getDbgValueRange())) {
637*c9157d92SDimitry Andric             DebugVariable Key(DPV.getVariable(), DPV.getExpression(),
638*c9157d92SDimitry Andric                               DPV.getDebugLoc().get());
639*c9157d92SDimitry Andric             if (!DeadDebugSet.insert(Key).second)
640*c9157d92SDimitry Andric               continue;
641*c9157d92SDimitry Andric             // Unlinks the DPV from it's container, for later insertion.
642*c9157d92SDimitry Andric             DPV.removeFromParent();
643*c9157d92SDimitry Andric             DeadDPValues.push_back(&DPV);
644*c9157d92SDimitry Andric           }
645*c9157d92SDimitry Andric         }
646*c9157d92SDimitry Andric 
647*c9157d92SDimitry Andric         // For one of each variable encountered, preserve a debug intrinsic (set
648*c9157d92SDimitry Andric         // to Poison) and transfer it to the loop exit. This terminates any
649*c9157d92SDimitry Andric         // variable locations that were set during the loop.
6500b57cec5SDimitry Andric         auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
6510b57cec5SDimitry Andric         if (!DVI)
6520b57cec5SDimitry Andric           continue;
653bdd1243dSDimitry Andric         if (!DeadDebugSet.insert(DebugVariable(DVI)).second)
6540b57cec5SDimitry Andric           continue;
6550b57cec5SDimitry Andric         DeadDebugInst.push_back(DVI);
6560b57cec5SDimitry Andric       }
6570b57cec5SDimitry Andric 
6580b57cec5SDimitry Andric     // After the loop has been deleted all the values defined and modified
659fe013be4SDimitry Andric     // inside the loop are going to be unavailable. Values computed in the
660fe013be4SDimitry Andric     // loop will have been deleted, automatically causing their debug uses
661fe013be4SDimitry Andric     // be be replaced with undef. Loop invariant values will still be available.
662fe013be4SDimitry Andric     // Move dbg.values out the loop so that earlier location ranges are still
663fe013be4SDimitry Andric     // terminated and loop invariant assignments are preserved.
664*c9157d92SDimitry Andric     DIBuilder DIB(*ExitBlock->getModule());
665*c9157d92SDimitry Andric     BasicBlock::iterator InsertDbgValueBefore =
666*c9157d92SDimitry Andric         ExitBlock->getFirstInsertionPt();
667*c9157d92SDimitry Andric     assert(InsertDbgValueBefore != ExitBlock->end() &&
6680b57cec5SDimitry Andric            "There should be a non-PHI instruction in exit block, else these "
6690b57cec5SDimitry Andric            "instructions will have no parent.");
670*c9157d92SDimitry Andric 
671fe013be4SDimitry Andric     for (auto *DVI : DeadDebugInst)
672*c9157d92SDimitry Andric       DVI->moveBefore(*ExitBlock, InsertDbgValueBefore);
673*c9157d92SDimitry Andric 
674*c9157d92SDimitry Andric     // Due to the "head" bit in BasicBlock::iterator, we're going to insert
675*c9157d92SDimitry Andric     // each DPValue right at the start of the block, wheras dbg.values would be
676*c9157d92SDimitry Andric     // repeatedly inserted before the first instruction. To replicate this
677*c9157d92SDimitry Andric     // behaviour, do it backwards.
678*c9157d92SDimitry Andric     for (DPValue *DPV : llvm::reverse(DeadDPValues))
679*c9157d92SDimitry Andric       ExitBlock->insertDPValueBefore(DPV, InsertDbgValueBefore);
680bdd1243dSDimitry Andric   }
6810b57cec5SDimitry Andric 
6820b57cec5SDimitry Andric   // Remove the block from the reference counting scheme, so that we can
6830b57cec5SDimitry Andric   // delete it freely later.
6840b57cec5SDimitry Andric   for (auto *Block : L->blocks())
6850b57cec5SDimitry Andric     Block->dropAllReferences();
6860b57cec5SDimitry Andric 
6875ffd83dbSDimitry Andric   if (MSSA && VerifyMemorySSA)
6885ffd83dbSDimitry Andric     MSSA->verifyMemorySSA();
6895ffd83dbSDimitry Andric 
6900b57cec5SDimitry Andric   if (LI) {
6910b57cec5SDimitry Andric     // Erase the instructions and the blocks without having to worry
6920b57cec5SDimitry Andric     // about ordering because we already dropped the references.
6930b57cec5SDimitry Andric     // NOTE: This iteration is safe because erasing the block does not remove
6940b57cec5SDimitry Andric     // its entry from the loop's block list.  We do that in the next section.
6955e801ac6SDimitry Andric     for (BasicBlock *BB : L->blocks())
6965e801ac6SDimitry Andric       BB->eraseFromParent();
6970b57cec5SDimitry Andric 
6980b57cec5SDimitry Andric     // Finally, the blocks from loopinfo.  This has to happen late because
6990b57cec5SDimitry Andric     // otherwise our loop iterators won't work.
7000b57cec5SDimitry Andric 
7010b57cec5SDimitry Andric     SmallPtrSet<BasicBlock *, 8> blocks;
7020b57cec5SDimitry Andric     blocks.insert(L->block_begin(), L->block_end());
7030b57cec5SDimitry Andric     for (BasicBlock *BB : blocks)
7040b57cec5SDimitry Andric       LI->removeBlock(BB);
7050b57cec5SDimitry Andric 
7060b57cec5SDimitry Andric     // The last step is to update LoopInfo now that we've eliminated this loop.
707480093f4SDimitry Andric     // Note: LoopInfo::erase remove the given loop and relink its subloops with
708480093f4SDimitry Andric     // its parent. While removeLoop/removeChildLoop remove the given loop but
709480093f4SDimitry Andric     // not relink its subloops, which is what we want.
710480093f4SDimitry Andric     if (Loop *ParentLoop = L->getParentLoop()) {
7115ffd83dbSDimitry Andric       Loop::iterator I = find(*ParentLoop, L);
712480093f4SDimitry Andric       assert(I != ParentLoop->end() && "Couldn't find loop");
713480093f4SDimitry Andric       ParentLoop->removeChildLoop(I);
714480093f4SDimitry Andric     } else {
7155ffd83dbSDimitry Andric       Loop::iterator I = find(*LI, L);
716480093f4SDimitry Andric       assert(I != LI->end() && "Couldn't find loop");
717480093f4SDimitry Andric       LI->removeLoop(I);
718480093f4SDimitry Andric     }
719480093f4SDimitry Andric     LI->destroy(L);
7200b57cec5SDimitry Andric   }
7210b57cec5SDimitry Andric }
7220b57cec5SDimitry Andric 
breakLoopBackedge(Loop * L,DominatorTree & DT,ScalarEvolution & SE,LoopInfo & LI,MemorySSA * MSSA)723e8d8bef9SDimitry Andric void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
724e8d8bef9SDimitry Andric                              LoopInfo &LI, MemorySSA *MSSA) {
725e8d8bef9SDimitry Andric   auto *Latch = L->getLoopLatch();
726e8d8bef9SDimitry Andric   assert(Latch && "multiple latches not yet supported");
727e8d8bef9SDimitry Andric   auto *Header = L->getHeader();
72881ad6265SDimitry Andric   Loop *OutermostLoop = L->getOutermostLoop();
729e8d8bef9SDimitry Andric 
730e8d8bef9SDimitry Andric   SE.forgetLoop(L);
731bdd1243dSDimitry Andric   SE.forgetBlockAndLoopDispositions();
732e8d8bef9SDimitry Andric 
733e8d8bef9SDimitry Andric   std::unique_ptr<MemorySSAUpdater> MSSAU;
734e8d8bef9SDimitry Andric   if (MSSA)
735e8d8bef9SDimitry Andric     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
736e8d8bef9SDimitry Andric 
737349cc55cSDimitry Andric   // Update the CFG and domtree.  We chose to special case a couple of
738349cc55cSDimitry Andric   // of common cases for code quality and test readability reasons.
739349cc55cSDimitry Andric   [&]() -> void {
740349cc55cSDimitry Andric     if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
741349cc55cSDimitry Andric       if (!BI->isConditional()) {
742349cc55cSDimitry Andric         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
743349cc55cSDimitry Andric         (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
744349cc55cSDimitry Andric                                   MSSAU.get());
745349cc55cSDimitry Andric         return;
746349cc55cSDimitry Andric       }
747349cc55cSDimitry Andric 
748349cc55cSDimitry Andric       // Conditional latch/exit - note that latch can be shared by inner
749349cc55cSDimitry Andric       // and outer loop so the other target doesn't need to an exit
750349cc55cSDimitry Andric       if (L->isLoopExiting(Latch)) {
751349cc55cSDimitry Andric         // TODO: Generalize ConstantFoldTerminator so that it can be used
752349cc55cSDimitry Andric         // here without invalidating LCSSA or MemorySSA.  (Tricky case for
753349cc55cSDimitry Andric         // LCSSA: header is an exit block of a preceeding sibling loop w/o
754349cc55cSDimitry Andric         // dedicated exits.)
755349cc55cSDimitry Andric         const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
756349cc55cSDimitry Andric         BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
757349cc55cSDimitry Andric 
758349cc55cSDimitry Andric         DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
759349cc55cSDimitry Andric         Header->removePredecessor(Latch, true);
760349cc55cSDimitry Andric 
761349cc55cSDimitry Andric         IRBuilder<> Builder(BI);
762349cc55cSDimitry Andric         auto *NewBI = Builder.CreateBr(ExitBB);
763349cc55cSDimitry Andric         // Transfer the metadata to the new branch instruction (minus the
764349cc55cSDimitry Andric         // loop info since this is no longer a loop)
765349cc55cSDimitry Andric         NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
766349cc55cSDimitry Andric                                   LLVMContext::MD_annotation});
767349cc55cSDimitry Andric 
768349cc55cSDimitry Andric         BI->eraseFromParent();
769349cc55cSDimitry Andric         DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
770349cc55cSDimitry Andric         if (MSSA)
771349cc55cSDimitry Andric           MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT);
772349cc55cSDimitry Andric         return;
773349cc55cSDimitry Andric       }
774349cc55cSDimitry Andric     }
775349cc55cSDimitry Andric 
776349cc55cSDimitry Andric     // General case.  By splitting the backedge, and then explicitly making it
777349cc55cSDimitry Andric     // unreachable we gracefully handle corner cases such as switch and invoke
778349cc55cSDimitry Andric     // termiantors.
779e8d8bef9SDimitry Andric     auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
780e8d8bef9SDimitry Andric 
781e8d8bef9SDimitry Andric     DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
782fe6060f1SDimitry Andric     (void)changeToUnreachable(BackedgeBB->getTerminator(),
783e8d8bef9SDimitry Andric                               /*PreserveLCSSA*/ true, &DTU, MSSAU.get());
784349cc55cSDimitry Andric   }();
785e8d8bef9SDimitry Andric 
786e8d8bef9SDimitry Andric   // Erase (and destroy) this loop instance.  Handles relinking sub-loops
787e8d8bef9SDimitry Andric   // and blocks within the loop as needed.
788e8d8bef9SDimitry Andric   LI.erase(L);
789e8d8bef9SDimitry Andric 
790e8d8bef9SDimitry Andric   // If the loop we broke had a parent, then changeToUnreachable might have
791e8d8bef9SDimitry Andric   // caused a block to be removed from the parent loop (see loop_nest_lcssa
792e8d8bef9SDimitry Andric   // test case in zero-btc.ll for an example), thus changing the parent's
793e8d8bef9SDimitry Andric   // exit blocks.  If that happened, we need to rebuild LCSSA on the outermost
794e8d8bef9SDimitry Andric   // loop which might have a had a block removed.
795e8d8bef9SDimitry Andric   if (OutermostLoop != L)
796e8d8bef9SDimitry Andric     formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
797e8d8bef9SDimitry Andric }
798e8d8bef9SDimitry Andric 
799e8d8bef9SDimitry Andric 
8000eae32dcSDimitry Andric /// Checks if \p L has an exiting latch branch.  There may also be other
8010eae32dcSDimitry Andric /// exiting blocks.  Returns branch instruction terminating the loop
8025ffd83dbSDimitry Andric /// latch if above check is successful, nullptr otherwise.
getExpectedExitLoopLatchBranch(Loop * L)8035ffd83dbSDimitry Andric static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
8040b57cec5SDimitry Andric   BasicBlock *Latch = L->getLoopLatch();
8050b57cec5SDimitry Andric   if (!Latch)
8065ffd83dbSDimitry Andric     return nullptr;
8075ffd83dbSDimitry Andric 
8080b57cec5SDimitry Andric   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
8090b57cec5SDimitry Andric   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
8105ffd83dbSDimitry Andric     return nullptr;
8110b57cec5SDimitry Andric 
8120b57cec5SDimitry Andric   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
8130b57cec5SDimitry Andric           LatchBR->getSuccessor(1) == L->getHeader()) &&
8140b57cec5SDimitry Andric          "At least one edge out of the latch must go to the header");
8150b57cec5SDimitry Andric 
8165ffd83dbSDimitry Andric   return LatchBR;
8175ffd83dbSDimitry Andric }
8185ffd83dbSDimitry Andric 
8190eae32dcSDimitry Andric /// Return the estimated trip count for any exiting branch which dominates
8200eae32dcSDimitry Andric /// the loop latch.
getEstimatedTripCount(BranchInst * ExitingBranch,Loop * L,uint64_t & OrigExitWeight)821bdd1243dSDimitry Andric static std::optional<uint64_t> getEstimatedTripCount(BranchInst *ExitingBranch,
822bdd1243dSDimitry Andric                                                      Loop *L,
8230eae32dcSDimitry Andric                                                      uint64_t &OrigExitWeight) {
8240eae32dcSDimitry Andric   // To estimate the number of times the loop body was executed, we want to
8250eae32dcSDimitry Andric   // know the number of times the backedge was taken, vs. the number of times
8260eae32dcSDimitry Andric   // we exited the loop.
8270eae32dcSDimitry Andric   uint64_t LoopWeight, ExitWeight;
828bdd1243dSDimitry Andric   if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight))
829bdd1243dSDimitry Andric     return std::nullopt;
8300eae32dcSDimitry Andric 
8310eae32dcSDimitry Andric   if (L->contains(ExitingBranch->getSuccessor(1)))
8320eae32dcSDimitry Andric     std::swap(LoopWeight, ExitWeight);
8330eae32dcSDimitry Andric 
8340eae32dcSDimitry Andric   if (!ExitWeight)
8350eae32dcSDimitry Andric     // Don't have a way to return predicated infinite
836bdd1243dSDimitry Andric     return std::nullopt;
8370eae32dcSDimitry Andric 
8380eae32dcSDimitry Andric   OrigExitWeight = ExitWeight;
8390eae32dcSDimitry Andric 
8400eae32dcSDimitry Andric   // Estimated exit count is a ratio of the loop weight by the weight of the
8410eae32dcSDimitry Andric   // edge exiting the loop, rounded to nearest.
8420eae32dcSDimitry Andric   uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight);
8430eae32dcSDimitry Andric   // Estimated trip count is one plus estimated exit count.
8440eae32dcSDimitry Andric   return ExitCount + 1;
8450eae32dcSDimitry Andric }
8460eae32dcSDimitry Andric 
847bdd1243dSDimitry Andric std::optional<unsigned>
getLoopEstimatedTripCount(Loop * L,unsigned * EstimatedLoopInvocationWeight)8485ffd83dbSDimitry Andric llvm::getLoopEstimatedTripCount(Loop *L,
8495ffd83dbSDimitry Andric                                 unsigned *EstimatedLoopInvocationWeight) {
8500eae32dcSDimitry Andric   // Currently we take the estimate exit count only from the loop latch,
8510eae32dcSDimitry Andric   // ignoring other exiting blocks.  This can overestimate the trip count
8520eae32dcSDimitry Andric   // if we exit through another exit, but can never underestimate it.
8530eae32dcSDimitry Andric   // TODO: incorporate information from other exits
8540eae32dcSDimitry Andric   if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) {
8550eae32dcSDimitry Andric     uint64_t ExitWeight;
856bdd1243dSDimitry Andric     if (std::optional<uint64_t> EstTripCount =
8570eae32dcSDimitry Andric             getEstimatedTripCount(LatchBranch, L, ExitWeight)) {
8585ffd83dbSDimitry Andric       if (EstimatedLoopInvocationWeight)
8590eae32dcSDimitry Andric         *EstimatedLoopInvocationWeight = ExitWeight;
8600eae32dcSDimitry Andric       return *EstTripCount;
8610eae32dcSDimitry Andric     }
8620eae32dcSDimitry Andric   }
863bdd1243dSDimitry Andric   return std::nullopt;
8645ffd83dbSDimitry Andric }
8655ffd83dbSDimitry Andric 
setLoopEstimatedTripCount(Loop * L,unsigned EstimatedTripCount,unsigned EstimatedloopInvocationWeight)8665ffd83dbSDimitry Andric bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
8675ffd83dbSDimitry Andric                                      unsigned EstimatedloopInvocationWeight) {
8680eae32dcSDimitry Andric   // At the moment, we currently support changing the estimate trip count of
8690eae32dcSDimitry Andric   // the latch branch only.  We could extend this API to manipulate estimated
8700eae32dcSDimitry Andric   // trip counts for any exit.
8715ffd83dbSDimitry Andric   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
8725ffd83dbSDimitry Andric   if (!LatchBranch)
8735ffd83dbSDimitry Andric     return false;
8745ffd83dbSDimitry Andric 
8755ffd83dbSDimitry Andric   // Calculate taken and exit weights.
8765ffd83dbSDimitry Andric   unsigned LatchExitWeight = 0;
8775ffd83dbSDimitry Andric   unsigned BackedgeTakenWeight = 0;
8785ffd83dbSDimitry Andric 
8795ffd83dbSDimitry Andric   if (EstimatedTripCount > 0) {
8805ffd83dbSDimitry Andric     LatchExitWeight = EstimatedloopInvocationWeight;
8815ffd83dbSDimitry Andric     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
8825ffd83dbSDimitry Andric   }
8835ffd83dbSDimitry Andric 
8845ffd83dbSDimitry Andric   // Make a swap if back edge is taken when condition is "false".
8855ffd83dbSDimitry Andric   if (LatchBranch->getSuccessor(0) != L->getHeader())
8865ffd83dbSDimitry Andric     std::swap(BackedgeTakenWeight, LatchExitWeight);
8875ffd83dbSDimitry Andric 
8885ffd83dbSDimitry Andric   MDBuilder MDB(LatchBranch->getContext());
8895ffd83dbSDimitry Andric 
8905ffd83dbSDimitry Andric   // Set/Update profile metadata.
8915ffd83dbSDimitry Andric   LatchBranch->setMetadata(
8925ffd83dbSDimitry Andric       LLVMContext::MD_prof,
8935ffd83dbSDimitry Andric       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
8945ffd83dbSDimitry Andric 
8955ffd83dbSDimitry Andric   return true;
8960b57cec5SDimitry Andric }
8970b57cec5SDimitry Andric 
hasIterationCountInvariantInParent(Loop * InnerLoop,ScalarEvolution & SE)8980b57cec5SDimitry Andric bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
8990b57cec5SDimitry Andric                                               ScalarEvolution &SE) {
9000b57cec5SDimitry Andric   Loop *OuterL = InnerLoop->getParentLoop();
9010b57cec5SDimitry Andric   if (!OuterL)
9020b57cec5SDimitry Andric     return true;
9030b57cec5SDimitry Andric 
9040b57cec5SDimitry Andric   // Get the backedge taken count for the inner loop
9050b57cec5SDimitry Andric   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
9060b57cec5SDimitry Andric   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
9070b57cec5SDimitry Andric   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
9080b57cec5SDimitry Andric       !InnerLoopBECountSC->getType()->isIntegerTy())
9090b57cec5SDimitry Andric     return false;
9100b57cec5SDimitry Andric 
9110b57cec5SDimitry Andric   // Get whether count is invariant to the outer loop
9120b57cec5SDimitry Andric   ScalarEvolution::LoopDisposition LD =
9130b57cec5SDimitry Andric       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
9140b57cec5SDimitry Andric   if (LD != ScalarEvolution::LoopInvariant)
9150b57cec5SDimitry Andric     return false;
9160b57cec5SDimitry Andric 
9170b57cec5SDimitry Andric   return true;
9180b57cec5SDimitry Andric }
9190b57cec5SDimitry Andric 
getMinMaxReductionIntrinsicOp(RecurKind RK)920fe013be4SDimitry Andric Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(RecurKind RK) {
921fe013be4SDimitry Andric   switch (RK) {
922fe013be4SDimitry Andric   default:
923fe013be4SDimitry Andric     llvm_unreachable("Unknown min/max recurrence kind");
924fe013be4SDimitry Andric   case RecurKind::UMin:
925fe013be4SDimitry Andric     return Intrinsic::umin;
926fe013be4SDimitry Andric   case RecurKind::UMax:
927fe013be4SDimitry Andric     return Intrinsic::umax;
928fe013be4SDimitry Andric   case RecurKind::SMin:
929fe013be4SDimitry Andric     return Intrinsic::smin;
930fe013be4SDimitry Andric   case RecurKind::SMax:
931fe013be4SDimitry Andric     return Intrinsic::smax;
932fe013be4SDimitry Andric   case RecurKind::FMin:
933fe013be4SDimitry Andric     return Intrinsic::minnum;
934fe013be4SDimitry Andric   case RecurKind::FMax:
935fe013be4SDimitry Andric     return Intrinsic::maxnum;
936fe013be4SDimitry Andric   case RecurKind::FMinimum:
937fe013be4SDimitry Andric     return Intrinsic::minimum;
938fe013be4SDimitry Andric   case RecurKind::FMaximum:
939fe013be4SDimitry Andric     return Intrinsic::maximum;
940fe013be4SDimitry Andric   }
941fe013be4SDimitry Andric }
942fe013be4SDimitry Andric 
getMinMaxReductionPredicate(RecurKind RK)943349cc55cSDimitry Andric CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) {
9440b57cec5SDimitry Andric   switch (RK) {
9450b57cec5SDimitry Andric   default:
9460b57cec5SDimitry Andric     llvm_unreachable("Unknown min/max recurrence kind");
947e8d8bef9SDimitry Andric   case RecurKind::UMin:
948349cc55cSDimitry Andric     return CmpInst::ICMP_ULT;
949e8d8bef9SDimitry Andric   case RecurKind::UMax:
950349cc55cSDimitry Andric     return CmpInst::ICMP_UGT;
951e8d8bef9SDimitry Andric   case RecurKind::SMin:
952349cc55cSDimitry Andric     return CmpInst::ICMP_SLT;
953e8d8bef9SDimitry Andric   case RecurKind::SMax:
954349cc55cSDimitry Andric     return CmpInst::ICMP_SGT;
955e8d8bef9SDimitry Andric   case RecurKind::FMin:
956349cc55cSDimitry Andric     return CmpInst::FCMP_OLT;
957e8d8bef9SDimitry Andric   case RecurKind::FMax:
958349cc55cSDimitry Andric     return CmpInst::FCMP_OGT;
959fe013be4SDimitry Andric   // We do not add FMinimum/FMaximum recurrence kind here since there is no
960fe013be4SDimitry Andric   // equivalent predicate which compares signed zeroes according to the
961fe013be4SDimitry Andric   // semantics of the intrinsics (llvm.minimum/maximum).
962349cc55cSDimitry Andric   }
9630b57cec5SDimitry Andric }
9640b57cec5SDimitry Andric 
createAnyOfOp(IRBuilderBase & Builder,Value * StartVal,RecurKind RK,Value * Left,Value * Right)965*c9157d92SDimitry Andric Value *llvm::createAnyOfOp(IRBuilderBase &Builder, Value *StartVal,
966349cc55cSDimitry Andric                            RecurKind RK, Value *Left, Value *Right) {
967349cc55cSDimitry Andric   if (auto VTy = dyn_cast<VectorType>(Left->getType()))
968349cc55cSDimitry Andric     StartVal = Builder.CreateVectorSplat(VTy->getElementCount(), StartVal);
969349cc55cSDimitry Andric   Value *Cmp =
970349cc55cSDimitry Andric       Builder.CreateCmp(CmpInst::ICMP_NE, Left, StartVal, "rdx.select.cmp");
971349cc55cSDimitry Andric   return Builder.CreateSelect(Cmp, Left, Right, "rdx.select");
972349cc55cSDimitry Andric }
973349cc55cSDimitry Andric 
createMinMaxOp(IRBuilderBase & Builder,RecurKind RK,Value * Left,Value * Right)974349cc55cSDimitry Andric Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
975349cc55cSDimitry Andric                             Value *Right) {
976fe013be4SDimitry Andric   Type *Ty = Left->getType();
977fe013be4SDimitry Andric   if (Ty->isIntOrIntVectorTy() ||
978fe013be4SDimitry Andric       (RK == RecurKind::FMinimum || RK == RecurKind::FMaximum)) {
979fe013be4SDimitry Andric     // TODO: Add float minnum/maxnum support when FMF nnan is set.
980fe013be4SDimitry Andric     Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RK);
981fe013be4SDimitry Andric     return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr,
982fe013be4SDimitry Andric                                    "rdx.minmax");
983fe013be4SDimitry Andric   }
984349cc55cSDimitry Andric   CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK);
985e8d8bef9SDimitry Andric   Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
9860b57cec5SDimitry Andric   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
9870b57cec5SDimitry Andric   return Select;
9880b57cec5SDimitry Andric }
9890b57cec5SDimitry Andric 
9900b57cec5SDimitry Andric // Helper to generate an ordered reduction.
getOrderedReduction(IRBuilderBase & Builder,Value * Acc,Value * Src,unsigned Op,RecurKind RdxKind)991e8d8bef9SDimitry Andric Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
9920eae32dcSDimitry Andric                                  unsigned Op, RecurKind RdxKind) {
9935ffd83dbSDimitry Andric   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
9940b57cec5SDimitry Andric 
9950b57cec5SDimitry Andric   // Extract and apply reduction ops in ascending order:
9960b57cec5SDimitry Andric   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
9970b57cec5SDimitry Andric   Value *Result = Acc;
9980b57cec5SDimitry Andric   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
9990b57cec5SDimitry Andric     Value *Ext =
10000b57cec5SDimitry Andric         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
10010b57cec5SDimitry Andric 
10020b57cec5SDimitry Andric     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
10030b57cec5SDimitry Andric       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
10040b57cec5SDimitry Andric                                    "bin.rdx");
10050b57cec5SDimitry Andric     } else {
1006e8d8bef9SDimitry Andric       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
10070b57cec5SDimitry Andric              "Invalid min/max");
1008e8d8bef9SDimitry Andric       Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
10090b57cec5SDimitry Andric     }
10100b57cec5SDimitry Andric   }
10110b57cec5SDimitry Andric 
10120b57cec5SDimitry Andric   return Result;
10130b57cec5SDimitry Andric }
10140b57cec5SDimitry Andric 
10150b57cec5SDimitry Andric // Helper to generate a log2 shuffle reduction.
getShuffleReduction(IRBuilderBase & Builder,Value * Src,unsigned Op,RecurKind RdxKind)1016e8d8bef9SDimitry Andric Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
10170eae32dcSDimitry Andric                                  unsigned Op, RecurKind RdxKind) {
10185ffd83dbSDimitry Andric   unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
10190b57cec5SDimitry Andric   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
10200b57cec5SDimitry Andric   // and vector ops, reducing the set of values being computed by half each
10210b57cec5SDimitry Andric   // round.
10220b57cec5SDimitry Andric   assert(isPowerOf2_32(VF) &&
10230b57cec5SDimitry Andric          "Reduction emission only supported for pow2 vectors!");
10240eae32dcSDimitry Andric   // Note: fast-math-flags flags are controlled by the builder configuration
10250eae32dcSDimitry Andric   // and are assumed to apply to all generated arithmetic instructions.  Other
10260eae32dcSDimitry Andric   // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
10270eae32dcSDimitry Andric   // of the builder configuration, and since they're not passed explicitly,
10280eae32dcSDimitry Andric   // will never be relevant here.  Note that it would be generally unsound to
10290eae32dcSDimitry Andric   // propagate these from an intrinsic call to the expansion anyways as we/
10300eae32dcSDimitry Andric   // change the order of operations.
10310b57cec5SDimitry Andric   Value *TmpVec = Src;
10325ffd83dbSDimitry Andric   SmallVector<int, 32> ShuffleMask(VF);
10330b57cec5SDimitry Andric   for (unsigned i = VF; i != 1; i >>= 1) {
10340b57cec5SDimitry Andric     // Move the upper half of the vector to the lower half.
10350b57cec5SDimitry Andric     for (unsigned j = 0; j != i / 2; ++j)
10365ffd83dbSDimitry Andric       ShuffleMask[j] = i / 2 + j;
10370b57cec5SDimitry Andric 
10380b57cec5SDimitry Andric     // Fill the rest of the mask with undef.
10395ffd83dbSDimitry Andric     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
10400b57cec5SDimitry Andric 
1041e8d8bef9SDimitry Andric     Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
10420b57cec5SDimitry Andric 
10430b57cec5SDimitry Andric     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
10440b57cec5SDimitry Andric       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
10450b57cec5SDimitry Andric                                    "bin.rdx");
10460b57cec5SDimitry Andric     } else {
1047e8d8bef9SDimitry Andric       assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
10480b57cec5SDimitry Andric              "Invalid min/max");
1049e8d8bef9SDimitry Andric       TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
10500b57cec5SDimitry Andric     }
10510b57cec5SDimitry Andric   }
10520b57cec5SDimitry Andric   // The result is in the first element of the vector.
10530b57cec5SDimitry Andric   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
10540b57cec5SDimitry Andric }
10550b57cec5SDimitry Andric 
createAnyOfTargetReduction(IRBuilderBase & Builder,Value * Src,const RecurrenceDescriptor & Desc,PHINode * OrigPhi)1056*c9157d92SDimitry Andric Value *llvm::createAnyOfTargetReduction(IRBuilderBase &Builder, Value *Src,
1057349cc55cSDimitry Andric                                         const RecurrenceDescriptor &Desc,
1058349cc55cSDimitry Andric                                         PHINode *OrigPhi) {
1059*c9157d92SDimitry Andric   assert(
1060*c9157d92SDimitry Andric       RecurrenceDescriptor::isAnyOfRecurrenceKind(Desc.getRecurrenceKind()) &&
1061349cc55cSDimitry Andric       "Unexpected reduction kind");
1062349cc55cSDimitry Andric   Value *InitVal = Desc.getRecurrenceStartValue();
1063349cc55cSDimitry Andric   Value *NewVal = nullptr;
1064349cc55cSDimitry Andric 
1065349cc55cSDimitry Andric   // First use the original phi to determine the new value we're trying to
1066349cc55cSDimitry Andric   // select from in the loop.
1067349cc55cSDimitry Andric   SelectInst *SI = nullptr;
1068349cc55cSDimitry Andric   for (auto *U : OrigPhi->users()) {
1069349cc55cSDimitry Andric     if ((SI = dyn_cast<SelectInst>(U)))
1070349cc55cSDimitry Andric       break;
1071349cc55cSDimitry Andric   }
1072349cc55cSDimitry Andric   assert(SI && "One user of the original phi should be a select");
1073349cc55cSDimitry Andric 
1074349cc55cSDimitry Andric   if (SI->getTrueValue() == OrigPhi)
1075349cc55cSDimitry Andric     NewVal = SI->getFalseValue();
1076349cc55cSDimitry Andric   else {
1077349cc55cSDimitry Andric     assert(SI->getFalseValue() == OrigPhi &&
1078349cc55cSDimitry Andric            "At least one input to the select should be the original Phi");
1079349cc55cSDimitry Andric     NewVal = SI->getTrueValue();
1080349cc55cSDimitry Andric   }
1081349cc55cSDimitry Andric 
1082349cc55cSDimitry Andric   // Create a splat vector with the new value and compare this to the vector
1083349cc55cSDimitry Andric   // we want to reduce.
1084349cc55cSDimitry Andric   ElementCount EC = cast<VectorType>(Src->getType())->getElementCount();
1085349cc55cSDimitry Andric   Value *Right = Builder.CreateVectorSplat(EC, InitVal);
1086349cc55cSDimitry Andric   Value *Cmp =
1087349cc55cSDimitry Andric       Builder.CreateCmp(CmpInst::ICMP_NE, Src, Right, "rdx.select.cmp");
1088349cc55cSDimitry Andric 
1089349cc55cSDimitry Andric   // If any predicate is true it means that we want to select the new value.
1090349cc55cSDimitry Andric   Cmp = Builder.CreateOrReduce(Cmp);
1091349cc55cSDimitry Andric   return Builder.CreateSelect(Cmp, NewVal, InitVal, "rdx.select");
1092349cc55cSDimitry Andric }
1093349cc55cSDimitry Andric 
createSimpleTargetReduction(IRBuilderBase & Builder,Value * Src,RecurKind RdxKind)1094*c9157d92SDimitry Andric Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, Value *Src,
1095*c9157d92SDimitry Andric                                          RecurKind RdxKind) {
1096e8d8bef9SDimitry Andric   auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
1097e8d8bef9SDimitry Andric   switch (RdxKind) {
1098e8d8bef9SDimitry Andric   case RecurKind::Add:
1099e8d8bef9SDimitry Andric     return Builder.CreateAddReduce(Src);
1100e8d8bef9SDimitry Andric   case RecurKind::Mul:
1101e8d8bef9SDimitry Andric     return Builder.CreateMulReduce(Src);
1102e8d8bef9SDimitry Andric   case RecurKind::And:
1103e8d8bef9SDimitry Andric     return Builder.CreateAndReduce(Src);
1104e8d8bef9SDimitry Andric   case RecurKind::Or:
1105e8d8bef9SDimitry Andric     return Builder.CreateOrReduce(Src);
1106e8d8bef9SDimitry Andric   case RecurKind::Xor:
1107e8d8bef9SDimitry Andric     return Builder.CreateXorReduce(Src);
11084824e7fdSDimitry Andric   case RecurKind::FMulAdd:
1109e8d8bef9SDimitry Andric   case RecurKind::FAdd:
1110e8d8bef9SDimitry Andric     return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
1111e8d8bef9SDimitry Andric                                     Src);
1112e8d8bef9SDimitry Andric   case RecurKind::FMul:
1113e8d8bef9SDimitry Andric     return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
1114e8d8bef9SDimitry Andric   case RecurKind::SMax:
1115e8d8bef9SDimitry Andric     return Builder.CreateIntMaxReduce(Src, true);
1116e8d8bef9SDimitry Andric   case RecurKind::SMin:
1117e8d8bef9SDimitry Andric     return Builder.CreateIntMinReduce(Src, true);
1118e8d8bef9SDimitry Andric   case RecurKind::UMax:
1119e8d8bef9SDimitry Andric     return Builder.CreateIntMaxReduce(Src, false);
1120e8d8bef9SDimitry Andric   case RecurKind::UMin:
1121e8d8bef9SDimitry Andric     return Builder.CreateIntMinReduce(Src, false);
1122e8d8bef9SDimitry Andric   case RecurKind::FMax:
1123e8d8bef9SDimitry Andric     return Builder.CreateFPMaxReduce(Src);
1124e8d8bef9SDimitry Andric   case RecurKind::FMin:
1125e8d8bef9SDimitry Andric     return Builder.CreateFPMinReduce(Src);
1126fe013be4SDimitry Andric   case RecurKind::FMinimum:
1127fe013be4SDimitry Andric     return Builder.CreateFPMinimumReduce(Src);
1128fe013be4SDimitry Andric   case RecurKind::FMaximum:
1129fe013be4SDimitry Andric     return Builder.CreateFPMaximumReduce(Src);
11300b57cec5SDimitry Andric   default:
11310b57cec5SDimitry Andric     llvm_unreachable("Unhandled opcode");
11320b57cec5SDimitry Andric   }
11330b57cec5SDimitry Andric }
11340b57cec5SDimitry Andric 
createTargetReduction(IRBuilderBase & B,const RecurrenceDescriptor & Desc,Value * Src,PHINode * OrigPhi)11355ffd83dbSDimitry Andric Value *llvm::createTargetReduction(IRBuilderBase &B,
1136349cc55cSDimitry Andric                                    const RecurrenceDescriptor &Desc, Value *Src,
1137349cc55cSDimitry Andric                                    PHINode *OrigPhi) {
11380b57cec5SDimitry Andric   // TODO: Support in-order reductions based on the recurrence descriptor.
11390b57cec5SDimitry Andric   // All ops in the reduction inherit fast-math-flags from the recurrence
11400b57cec5SDimitry Andric   // descriptor.
11415ffd83dbSDimitry Andric   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
11420b57cec5SDimitry Andric   B.setFastMathFlags(Desc.getFastMathFlags());
1143349cc55cSDimitry Andric 
1144349cc55cSDimitry Andric   RecurKind RK = Desc.getRecurrenceKind();
1145*c9157d92SDimitry Andric   if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK))
1146*c9157d92SDimitry Andric     return createAnyOfTargetReduction(B, Src, Desc, OrigPhi);
1147349cc55cSDimitry Andric 
1148*c9157d92SDimitry Andric   return createSimpleTargetReduction(B, Src, RK);
11490b57cec5SDimitry Andric }
11500b57cec5SDimitry Andric 
createOrderedReduction(IRBuilderBase & B,const RecurrenceDescriptor & Desc,Value * Src,Value * Start)1151fe6060f1SDimitry Andric Value *llvm::createOrderedReduction(IRBuilderBase &B,
1152fe6060f1SDimitry Andric                                     const RecurrenceDescriptor &Desc,
1153fe6060f1SDimitry Andric                                     Value *Src, Value *Start) {
11544824e7fdSDimitry Andric   assert((Desc.getRecurrenceKind() == RecurKind::FAdd ||
11554824e7fdSDimitry Andric           Desc.getRecurrenceKind() == RecurKind::FMulAdd) &&
1156fe6060f1SDimitry Andric          "Unexpected reduction kind");
1157fe6060f1SDimitry Andric   assert(Src->getType()->isVectorTy() && "Expected a vector type");
1158fe6060f1SDimitry Andric   assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1159fe6060f1SDimitry Andric 
1160fe6060f1SDimitry Andric   return B.CreateFAddReduce(Start, Src);
1161fe6060f1SDimitry Andric }
1162fe6060f1SDimitry Andric 
propagateIRFlags(Value * I,ArrayRef<Value * > VL,Value * OpValue,bool IncludeWrapFlags)116381ad6265SDimitry Andric void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue,
116481ad6265SDimitry Andric                             bool IncludeWrapFlags) {
11650b57cec5SDimitry Andric   auto *VecOp = dyn_cast<Instruction>(I);
11660b57cec5SDimitry Andric   if (!VecOp)
11670b57cec5SDimitry Andric     return;
11680b57cec5SDimitry Andric   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
11690b57cec5SDimitry Andric                                             : dyn_cast<Instruction>(OpValue);
11700b57cec5SDimitry Andric   if (!Intersection)
11710b57cec5SDimitry Andric     return;
11720b57cec5SDimitry Andric   const unsigned Opcode = Intersection->getOpcode();
117381ad6265SDimitry Andric   VecOp->copyIRFlags(Intersection, IncludeWrapFlags);
11740b57cec5SDimitry Andric   for (auto *V : VL) {
11750b57cec5SDimitry Andric     auto *Instr = dyn_cast<Instruction>(V);
11760b57cec5SDimitry Andric     if (!Instr)
11770b57cec5SDimitry Andric       continue;
11780b57cec5SDimitry Andric     if (OpValue == nullptr || Opcode == Instr->getOpcode())
11790b57cec5SDimitry Andric       VecOp->andIRFlags(V);
11800b57cec5SDimitry Andric   }
11810b57cec5SDimitry Andric }
11820b57cec5SDimitry Andric 
isKnownNegativeInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE)11830b57cec5SDimitry Andric bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
11840b57cec5SDimitry Andric                                  ScalarEvolution &SE) {
11850b57cec5SDimitry Andric   const SCEV *Zero = SE.getZero(S->getType());
11860b57cec5SDimitry Andric   return SE.isAvailableAtLoopEntry(S, L) &&
11870b57cec5SDimitry Andric          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
11880b57cec5SDimitry Andric }
11890b57cec5SDimitry Andric 
isKnownNonNegativeInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE)11900b57cec5SDimitry Andric bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
11910b57cec5SDimitry Andric                                     ScalarEvolution &SE) {
11920b57cec5SDimitry Andric   const SCEV *Zero = SE.getZero(S->getType());
11930b57cec5SDimitry Andric   return SE.isAvailableAtLoopEntry(S, L) &&
11940b57cec5SDimitry Andric          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
11950b57cec5SDimitry Andric }
11960b57cec5SDimitry Andric 
isKnownPositiveInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE)1197fe013be4SDimitry Andric bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L,
1198fe013be4SDimitry Andric                                  ScalarEvolution &SE) {
1199fe013be4SDimitry Andric   const SCEV *Zero = SE.getZero(S->getType());
1200fe013be4SDimitry Andric   return SE.isAvailableAtLoopEntry(S, L) &&
1201fe013be4SDimitry Andric          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, S, Zero);
1202fe013be4SDimitry Andric }
1203fe013be4SDimitry Andric 
isKnownNonPositiveInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE)1204fe013be4SDimitry Andric bool llvm::isKnownNonPositiveInLoop(const SCEV *S, const Loop *L,
1205fe013be4SDimitry Andric                                     ScalarEvolution &SE) {
1206fe013be4SDimitry Andric   const SCEV *Zero = SE.getZero(S->getType());
1207fe013be4SDimitry Andric   return SE.isAvailableAtLoopEntry(S, L) &&
1208fe013be4SDimitry Andric          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLE, S, Zero);
1209fe013be4SDimitry Andric }
1210fe013be4SDimitry Andric 
cannotBeMinInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool Signed)12110b57cec5SDimitry Andric bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12120b57cec5SDimitry Andric                              bool Signed) {
12130b57cec5SDimitry Andric   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
12140b57cec5SDimitry Andric   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
12150b57cec5SDimitry Andric     APInt::getMinValue(BitWidth);
12160b57cec5SDimitry Andric   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12170b57cec5SDimitry Andric   return SE.isAvailableAtLoopEntry(S, L) &&
12180b57cec5SDimitry Andric          SE.isLoopEntryGuardedByCond(L, Predicate, S,
12190b57cec5SDimitry Andric                                      SE.getConstant(Min));
12200b57cec5SDimitry Andric }
12210b57cec5SDimitry Andric 
cannotBeMaxInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool Signed)12220b57cec5SDimitry Andric bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12230b57cec5SDimitry Andric                              bool Signed) {
12240b57cec5SDimitry Andric   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
12250b57cec5SDimitry Andric   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
12260b57cec5SDimitry Andric     APInt::getMaxValue(BitWidth);
12270b57cec5SDimitry Andric   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12280b57cec5SDimitry Andric   return SE.isAvailableAtLoopEntry(S, L) &&
12290b57cec5SDimitry Andric          SE.isLoopEntryGuardedByCond(L, Predicate, S,
12300b57cec5SDimitry Andric                                      SE.getConstant(Max));
12310b57cec5SDimitry Andric }
12325ffd83dbSDimitry Andric 
12335ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
12345ffd83dbSDimitry Andric // rewriteLoopExitValues - Optimize IV users outside the loop.
12355ffd83dbSDimitry Andric // As a side effect, reduces the amount of IV processing within the loop.
12365ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
12375ffd83dbSDimitry Andric 
hasHardUserWithinLoop(const Loop * L,const Instruction * I)12385ffd83dbSDimitry Andric static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
12395ffd83dbSDimitry Andric   SmallPtrSet<const Instruction *, 8> Visited;
12405ffd83dbSDimitry Andric   SmallVector<const Instruction *, 8> WorkList;
12415ffd83dbSDimitry Andric   Visited.insert(I);
12425ffd83dbSDimitry Andric   WorkList.push_back(I);
12435ffd83dbSDimitry Andric   while (!WorkList.empty()) {
12445ffd83dbSDimitry Andric     const Instruction *Curr = WorkList.pop_back_val();
12455ffd83dbSDimitry Andric     // This use is outside the loop, nothing to do.
12465ffd83dbSDimitry Andric     if (!L->contains(Curr))
12475ffd83dbSDimitry Andric       continue;
12485ffd83dbSDimitry Andric     // Do we assume it is a "hard" use which will not be eliminated easily?
12495ffd83dbSDimitry Andric     if (Curr->mayHaveSideEffects())
12505ffd83dbSDimitry Andric       return true;
12515ffd83dbSDimitry Andric     // Otherwise, add all its users to worklist.
1252bdd1243dSDimitry Andric     for (const auto *U : Curr->users()) {
12535ffd83dbSDimitry Andric       auto *UI = cast<Instruction>(U);
12545ffd83dbSDimitry Andric       if (Visited.insert(UI).second)
12555ffd83dbSDimitry Andric         WorkList.push_back(UI);
12565ffd83dbSDimitry Andric     }
12575ffd83dbSDimitry Andric   }
12585ffd83dbSDimitry Andric   return false;
12595ffd83dbSDimitry Andric }
12605ffd83dbSDimitry Andric 
12615ffd83dbSDimitry Andric // Collect information about PHI nodes which can be transformed in
12625ffd83dbSDimitry Andric // rewriteLoopExitValues.
12635ffd83dbSDimitry Andric struct RewritePhi {
12645ffd83dbSDimitry Andric   PHINode *PN;               // For which PHI node is this replacement?
12655ffd83dbSDimitry Andric   unsigned Ith;              // For which incoming value?
12665ffd83dbSDimitry Andric   const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
12675ffd83dbSDimitry Andric   Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
12685ffd83dbSDimitry Andric   bool HighCost;               // Is this expansion a high-cost?
12695ffd83dbSDimitry Andric 
RewritePhiRewritePhi12705ffd83dbSDimitry Andric   RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
12715ffd83dbSDimitry Andric              bool H)
12725ffd83dbSDimitry Andric       : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
12735ffd83dbSDimitry Andric         HighCost(H) {}
12745ffd83dbSDimitry Andric };
12755ffd83dbSDimitry Andric 
12765ffd83dbSDimitry Andric // Check whether it is possible to delete the loop after rewriting exit
12775ffd83dbSDimitry Andric // value. If it is possible, ignore ReplaceExitValue and do rewriting
12785ffd83dbSDimitry Andric // aggressively.
canLoopBeDeleted(Loop * L,SmallVector<RewritePhi,8> & RewritePhiSet)12795ffd83dbSDimitry Andric static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
12805ffd83dbSDimitry Andric   BasicBlock *Preheader = L->getLoopPreheader();
12815ffd83dbSDimitry Andric   // If there is no preheader, the loop will not be deleted.
12825ffd83dbSDimitry Andric   if (!Preheader)
12835ffd83dbSDimitry Andric     return false;
12845ffd83dbSDimitry Andric 
12855ffd83dbSDimitry Andric   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
12865ffd83dbSDimitry Andric   // We obviate multiple ExitingBlocks case for simplicity.
12875ffd83dbSDimitry Andric   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
12885ffd83dbSDimitry Andric   // after exit value rewriting, we can enhance the logic here.
12895ffd83dbSDimitry Andric   SmallVector<BasicBlock *, 4> ExitingBlocks;
12905ffd83dbSDimitry Andric   L->getExitingBlocks(ExitingBlocks);
12915ffd83dbSDimitry Andric   SmallVector<BasicBlock *, 8> ExitBlocks;
12925ffd83dbSDimitry Andric   L->getUniqueExitBlocks(ExitBlocks);
12935ffd83dbSDimitry Andric   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
12945ffd83dbSDimitry Andric     return false;
12955ffd83dbSDimitry Andric 
12965ffd83dbSDimitry Andric   BasicBlock *ExitBlock = ExitBlocks[0];
12975ffd83dbSDimitry Andric   BasicBlock::iterator BI = ExitBlock->begin();
12985ffd83dbSDimitry Andric   while (PHINode *P = dyn_cast<PHINode>(BI)) {
12995ffd83dbSDimitry Andric     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
13005ffd83dbSDimitry Andric 
13015ffd83dbSDimitry Andric     // If the Incoming value of P is found in RewritePhiSet, we know it
13025ffd83dbSDimitry Andric     // could be rewritten to use a loop invariant value in transformation
13035ffd83dbSDimitry Andric     // phase later. Skip it in the loop invariant check below.
13045ffd83dbSDimitry Andric     bool found = false;
13055ffd83dbSDimitry Andric     for (const RewritePhi &Phi : RewritePhiSet) {
13065ffd83dbSDimitry Andric       unsigned i = Phi.Ith;
13075ffd83dbSDimitry Andric       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
13085ffd83dbSDimitry Andric         found = true;
13095ffd83dbSDimitry Andric         break;
13105ffd83dbSDimitry Andric       }
13115ffd83dbSDimitry Andric     }
13125ffd83dbSDimitry Andric 
13135ffd83dbSDimitry Andric     Instruction *I;
13145ffd83dbSDimitry Andric     if (!found && (I = dyn_cast<Instruction>(Incoming)))
13155ffd83dbSDimitry Andric       if (!L->hasLoopInvariantOperands(I))
13165ffd83dbSDimitry Andric         return false;
13175ffd83dbSDimitry Andric 
13185ffd83dbSDimitry Andric     ++BI;
13195ffd83dbSDimitry Andric   }
13205ffd83dbSDimitry Andric 
13215ffd83dbSDimitry Andric   for (auto *BB : L->blocks())
13225ffd83dbSDimitry Andric     if (llvm::any_of(*BB, [](Instruction &I) {
13235ffd83dbSDimitry Andric           return I.mayHaveSideEffects();
13245ffd83dbSDimitry Andric         }))
13255ffd83dbSDimitry Andric       return false;
13265ffd83dbSDimitry Andric 
13275ffd83dbSDimitry Andric   return true;
13285ffd83dbSDimitry Andric }
13295ffd83dbSDimitry Andric 
1330753f127fSDimitry Andric /// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi,
1331753f127fSDimitry Andric /// and returns true if this Phi is an induction phi in the loop. When
1332753f127fSDimitry Andric /// isInductionPHI returns true, \p ID will be also be set by isInductionPHI.
checkIsIndPhi(PHINode * Phi,Loop * L,ScalarEvolution * SE,InductionDescriptor & ID)1333753f127fSDimitry Andric static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE,
1334753f127fSDimitry Andric                           InductionDescriptor &ID) {
1335753f127fSDimitry Andric   if (!Phi)
1336753f127fSDimitry Andric     return false;
1337753f127fSDimitry Andric   if (!L->getLoopPreheader())
1338753f127fSDimitry Andric     return false;
1339753f127fSDimitry Andric   if (Phi->getParent() != L->getHeader())
1340753f127fSDimitry Andric     return false;
1341753f127fSDimitry Andric   return InductionDescriptor::isInductionPHI(Phi, L, SE, ID);
1342753f127fSDimitry Andric }
1343753f127fSDimitry Andric 
rewriteLoopExitValues(Loop * L,LoopInfo * LI,TargetLibraryInfo * TLI,ScalarEvolution * SE,const TargetTransformInfo * TTI,SCEVExpander & Rewriter,DominatorTree * DT,ReplaceExitVal ReplaceExitValue,SmallVector<WeakTrackingVH,16> & DeadInsts)13445ffd83dbSDimitry Andric int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
13455ffd83dbSDimitry Andric                                 ScalarEvolution *SE,
13465ffd83dbSDimitry Andric                                 const TargetTransformInfo *TTI,
13475ffd83dbSDimitry Andric                                 SCEVExpander &Rewriter, DominatorTree *DT,
13485ffd83dbSDimitry Andric                                 ReplaceExitVal ReplaceExitValue,
13495ffd83dbSDimitry Andric                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
13505ffd83dbSDimitry Andric   // Check a pre-condition.
13515ffd83dbSDimitry Andric   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
13525ffd83dbSDimitry Andric          "Indvars did not preserve LCSSA!");
13535ffd83dbSDimitry Andric 
13545ffd83dbSDimitry Andric   SmallVector<BasicBlock*, 8> ExitBlocks;
13555ffd83dbSDimitry Andric   L->getUniqueExitBlocks(ExitBlocks);
13565ffd83dbSDimitry Andric 
13575ffd83dbSDimitry Andric   SmallVector<RewritePhi, 8> RewritePhiSet;
13585ffd83dbSDimitry Andric   // Find all values that are computed inside the loop, but used outside of it.
13595ffd83dbSDimitry Andric   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
13605ffd83dbSDimitry Andric   // the exit blocks of the loop to find them.
13615ffd83dbSDimitry Andric   for (BasicBlock *ExitBB : ExitBlocks) {
13625ffd83dbSDimitry Andric     // If there are no PHI nodes in this exit block, then no values defined
13635ffd83dbSDimitry Andric     // inside the loop are used on this path, skip it.
13645ffd83dbSDimitry Andric     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
13655ffd83dbSDimitry Andric     if (!PN) continue;
13665ffd83dbSDimitry Andric 
13675ffd83dbSDimitry Andric     unsigned NumPreds = PN->getNumIncomingValues();
13685ffd83dbSDimitry Andric 
13695ffd83dbSDimitry Andric     // Iterate over all of the PHI nodes.
13705ffd83dbSDimitry Andric     BasicBlock::iterator BBI = ExitBB->begin();
13715ffd83dbSDimitry Andric     while ((PN = dyn_cast<PHINode>(BBI++))) {
13725ffd83dbSDimitry Andric       if (PN->use_empty())
13735ffd83dbSDimitry Andric         continue; // dead use, don't replace it
13745ffd83dbSDimitry Andric 
13755ffd83dbSDimitry Andric       if (!SE->isSCEVable(PN->getType()))
13765ffd83dbSDimitry Andric         continue;
13775ffd83dbSDimitry Andric 
13785ffd83dbSDimitry Andric       // Iterate over all of the values in all the PHI nodes.
13795ffd83dbSDimitry Andric       for (unsigned i = 0; i != NumPreds; ++i) {
13805ffd83dbSDimitry Andric         // If the value being merged in is not integer or is not defined
13815ffd83dbSDimitry Andric         // in the loop, skip it.
13825ffd83dbSDimitry Andric         Value *InVal = PN->getIncomingValue(i);
13835ffd83dbSDimitry Andric         if (!isa<Instruction>(InVal))
13845ffd83dbSDimitry Andric           continue;
13855ffd83dbSDimitry Andric 
13865ffd83dbSDimitry Andric         // If this pred is for a subloop, not L itself, skip it.
13875ffd83dbSDimitry Andric         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
13885ffd83dbSDimitry Andric           continue; // The Block is in a subloop, skip it.
13895ffd83dbSDimitry Andric 
13905ffd83dbSDimitry Andric         // Check that InVal is defined in the loop.
13915ffd83dbSDimitry Andric         Instruction *Inst = cast<Instruction>(InVal);
13925ffd83dbSDimitry Andric         if (!L->contains(Inst))
13935ffd83dbSDimitry Andric           continue;
13945ffd83dbSDimitry Andric 
1395753f127fSDimitry Andric         // Find exit values which are induction variables in the loop, and are
1396753f127fSDimitry Andric         // unused in the loop, with the only use being the exit block PhiNode,
1397753f127fSDimitry Andric         // and the induction variable update binary operator.
1398753f127fSDimitry Andric         // The exit value can be replaced with the final value when it is cheap
1399753f127fSDimitry Andric         // to do so.
1400753f127fSDimitry Andric         if (ReplaceExitValue == UnusedIndVarInLoop) {
1401753f127fSDimitry Andric           InductionDescriptor ID;
1402753f127fSDimitry Andric           PHINode *IndPhi = dyn_cast<PHINode>(Inst);
1403753f127fSDimitry Andric           if (IndPhi) {
1404753f127fSDimitry Andric             if (!checkIsIndPhi(IndPhi, L, SE, ID))
1405753f127fSDimitry Andric               continue;
1406753f127fSDimitry Andric             // This is an induction PHI. Check that the only users are PHI
1407753f127fSDimitry Andric             // nodes, and induction variable update binary operators.
1408753f127fSDimitry Andric             if (llvm::any_of(Inst->users(), [&](User *U) {
1409753f127fSDimitry Andric                   if (!isa<PHINode>(U) && !isa<BinaryOperator>(U))
1410753f127fSDimitry Andric                     return true;
1411753f127fSDimitry Andric                   BinaryOperator *B = dyn_cast<BinaryOperator>(U);
1412753f127fSDimitry Andric                   if (B && B != ID.getInductionBinOp())
1413753f127fSDimitry Andric                     return true;
1414753f127fSDimitry Andric                   return false;
1415753f127fSDimitry Andric                 }))
1416753f127fSDimitry Andric               continue;
1417753f127fSDimitry Andric           } else {
1418753f127fSDimitry Andric             // If it is not an induction phi, it must be an induction update
1419753f127fSDimitry Andric             // binary operator with an induction phi user.
1420753f127fSDimitry Andric             BinaryOperator *B = dyn_cast<BinaryOperator>(Inst);
1421753f127fSDimitry Andric             if (!B)
1422753f127fSDimitry Andric               continue;
1423753f127fSDimitry Andric             if (llvm::any_of(Inst->users(), [&](User *U) {
1424753f127fSDimitry Andric                   PHINode *Phi = dyn_cast<PHINode>(U);
1425753f127fSDimitry Andric                   if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID))
1426753f127fSDimitry Andric                     return true;
1427753f127fSDimitry Andric                   return false;
1428753f127fSDimitry Andric                 }))
1429753f127fSDimitry Andric               continue;
1430753f127fSDimitry Andric             if (B != ID.getInductionBinOp())
1431753f127fSDimitry Andric               continue;
1432753f127fSDimitry Andric           }
1433753f127fSDimitry Andric         }
1434753f127fSDimitry Andric 
14355ffd83dbSDimitry Andric         // Okay, this instruction has a user outside of the current loop
14365ffd83dbSDimitry Andric         // and varies predictably *inside* the loop.  Evaluate the value it
14375ffd83dbSDimitry Andric         // contains when the loop exits, if possible.  We prefer to start with
14385ffd83dbSDimitry Andric         // expressions which are true for all exits (so as to maximize
14395ffd83dbSDimitry Andric         // expression reuse by the SCEVExpander), but resort to per-exit
14405ffd83dbSDimitry Andric         // evaluation if that fails.
14415ffd83dbSDimitry Andric         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
14425ffd83dbSDimitry Andric         if (isa<SCEVCouldNotCompute>(ExitValue) ||
14435ffd83dbSDimitry Andric             !SE->isLoopInvariant(ExitValue, L) ||
1444fcaf7f86SDimitry Andric             !Rewriter.isSafeToExpand(ExitValue)) {
14455ffd83dbSDimitry Andric           // TODO: This should probably be sunk into SCEV in some way; maybe a
14465ffd83dbSDimitry Andric           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
14475ffd83dbSDimitry Andric           // most SCEV expressions and other recurrence types (e.g. shift
14485ffd83dbSDimitry Andric           // recurrences).  Is there existing code we can reuse?
14495ffd83dbSDimitry Andric           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
14505ffd83dbSDimitry Andric           if (isa<SCEVCouldNotCompute>(ExitCount))
14515ffd83dbSDimitry Andric             continue;
14525ffd83dbSDimitry Andric           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
14535ffd83dbSDimitry Andric             if (AddRec->getLoop() == L)
14545ffd83dbSDimitry Andric               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
14555ffd83dbSDimitry Andric           if (isa<SCEVCouldNotCompute>(ExitValue) ||
14565ffd83dbSDimitry Andric               !SE->isLoopInvariant(ExitValue, L) ||
1457fcaf7f86SDimitry Andric               !Rewriter.isSafeToExpand(ExitValue))
14585ffd83dbSDimitry Andric             continue;
14595ffd83dbSDimitry Andric         }
14605ffd83dbSDimitry Andric 
14615ffd83dbSDimitry Andric         // Computing the value outside of the loop brings no benefit if it is
14625ffd83dbSDimitry Andric         // definitely used inside the loop in a way which can not be optimized
14635ffd83dbSDimitry Andric         // away. Avoid doing so unless we know we have a value which computes
14645ffd83dbSDimitry Andric         // the ExitValue already. TODO: This should be merged into SCEV
14655ffd83dbSDimitry Andric         // expander to leverage its knowledge of existing expressions.
14665ffd83dbSDimitry Andric         if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
14675ffd83dbSDimitry Andric             !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
14685ffd83dbSDimitry Andric           continue;
14695ffd83dbSDimitry Andric 
14705ffd83dbSDimitry Andric         // Check if expansions of this SCEV would count as being high cost.
14715ffd83dbSDimitry Andric         bool HighCost = Rewriter.isHighCostExpansion(
14725ffd83dbSDimitry Andric             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
14735ffd83dbSDimitry Andric 
14745ffd83dbSDimitry Andric         // Note that we must not perform expansions until after
14755ffd83dbSDimitry Andric         // we query *all* the costs, because if we perform temporary expansion
14765ffd83dbSDimitry Andric         // inbetween, one that we might not intend to keep, said expansion
1477*c9157d92SDimitry Andric         // *may* affect cost calculation of the next SCEV's we'll query,
14785ffd83dbSDimitry Andric         // and next SCEV may errneously get smaller cost.
14795ffd83dbSDimitry Andric 
14805ffd83dbSDimitry Andric         // Collect all the candidate PHINodes to be rewritten.
1481a4a491e2SDimitry Andric         Instruction *InsertPt =
1482a4a491e2SDimitry Andric           (isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ?
1483a4a491e2SDimitry Andric           &*Inst->getParent()->getFirstInsertionPt() : Inst;
1484a4a491e2SDimitry Andric         RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost);
14855ffd83dbSDimitry Andric       }
14865ffd83dbSDimitry Andric     }
14875ffd83dbSDimitry Andric   }
14885ffd83dbSDimitry Andric 
1489349cc55cSDimitry Andric   // TODO: evaluate whether it is beneficial to change how we calculate
1490349cc55cSDimitry Andric   // high-cost: if we have SCEV 'A' which we know we will expand, should we
1491349cc55cSDimitry Andric   // calculate the cost of other SCEV's after expanding SCEV 'A', thus
1492349cc55cSDimitry Andric   // potentially giving cost bonus to those other SCEV's?
14935ffd83dbSDimitry Andric 
14945ffd83dbSDimitry Andric   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
14955ffd83dbSDimitry Andric   int NumReplaced = 0;
14965ffd83dbSDimitry Andric 
14975ffd83dbSDimitry Andric   // Transformation.
14985ffd83dbSDimitry Andric   for (const RewritePhi &Phi : RewritePhiSet) {
14995ffd83dbSDimitry Andric     PHINode *PN = Phi.PN;
15005ffd83dbSDimitry Andric 
15015ffd83dbSDimitry Andric     // Only do the rewrite when the ExitValue can be expanded cheaply.
15025ffd83dbSDimitry Andric     // If LoopCanBeDel is true, rewrite exit value aggressively.
1503753f127fSDimitry Andric     if ((ReplaceExitValue == OnlyCheapRepl ||
1504753f127fSDimitry Andric          ReplaceExitValue == UnusedIndVarInLoop) &&
1505753f127fSDimitry Andric         !LoopCanBeDel && Phi.HighCost)
15065ffd83dbSDimitry Andric       continue;
1507349cc55cSDimitry Andric 
1508349cc55cSDimitry Andric     Value *ExitVal = Rewriter.expandCodeFor(
1509349cc55cSDimitry Andric         Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
1510349cc55cSDimitry Andric 
1511349cc55cSDimitry Andric     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1512349cc55cSDimitry Andric                       << '\n'
1513349cc55cSDimitry Andric                       << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1514349cc55cSDimitry Andric 
1515349cc55cSDimitry Andric #ifndef NDEBUG
1516349cc55cSDimitry Andric     // If we reuse an instruction from a loop which is neither L nor one of
1517349cc55cSDimitry Andric     // its containing loops, we end up breaking LCSSA form for this loop by
1518349cc55cSDimitry Andric     // creating a new use of its instruction.
1519349cc55cSDimitry Andric     if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
1520349cc55cSDimitry Andric       if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1521349cc55cSDimitry Andric         if (EVL != L)
1522349cc55cSDimitry Andric           assert(EVL->contains(L) && "LCSSA breach detected!");
1523349cc55cSDimitry Andric #endif
15245ffd83dbSDimitry Andric 
15255ffd83dbSDimitry Andric     NumReplaced++;
15265ffd83dbSDimitry Andric     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
15275ffd83dbSDimitry Andric     PN->setIncomingValue(Phi.Ith, ExitVal);
1528349cc55cSDimitry Andric     // It's necessary to tell ScalarEvolution about this explicitly so that
1529349cc55cSDimitry Andric     // it can walk the def-use list and forget all SCEVs, as it may not be
1530349cc55cSDimitry Andric     // watching the PHI itself. Once the new exit value is in place, there
1531349cc55cSDimitry Andric     // may not be a def-use connection between the loop and every instruction
1532349cc55cSDimitry Andric     // which got a SCEVAddRecExpr for that loop.
1533349cc55cSDimitry Andric     SE->forgetValue(PN);
15345ffd83dbSDimitry Andric 
15355ffd83dbSDimitry Andric     // If this instruction is dead now, delete it. Don't do it now to avoid
15365ffd83dbSDimitry Andric     // invalidating iterators.
15375ffd83dbSDimitry Andric     if (isInstructionTriviallyDead(Inst, TLI))
15385ffd83dbSDimitry Andric       DeadInsts.push_back(Inst);
15395ffd83dbSDimitry Andric 
15405ffd83dbSDimitry Andric     // Replace PN with ExitVal if that is legal and does not break LCSSA.
15415ffd83dbSDimitry Andric     if (PN->getNumIncomingValues() == 1 &&
15425ffd83dbSDimitry Andric         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
15435ffd83dbSDimitry Andric       PN->replaceAllUsesWith(ExitVal);
15445ffd83dbSDimitry Andric       PN->eraseFromParent();
15455ffd83dbSDimitry Andric     }
15465ffd83dbSDimitry Andric   }
15475ffd83dbSDimitry Andric 
15485ffd83dbSDimitry Andric   // The insertion point instruction may have been deleted; clear it out
15495ffd83dbSDimitry Andric   // so that the rewriter doesn't trip over it later.
15505ffd83dbSDimitry Andric   Rewriter.clearInsertPoint();
15515ffd83dbSDimitry Andric   return NumReplaced;
15525ffd83dbSDimitry Andric }
15535ffd83dbSDimitry Andric 
15545ffd83dbSDimitry Andric /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
15555ffd83dbSDimitry Andric /// \p OrigLoop.
setProfileInfoAfterUnrolling(Loop * OrigLoop,Loop * UnrolledLoop,Loop * RemainderLoop,uint64_t UF)15565ffd83dbSDimitry Andric void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
15575ffd83dbSDimitry Andric                                         Loop *RemainderLoop, uint64_t UF) {
15585ffd83dbSDimitry Andric   assert(UF > 0 && "Zero unrolled factor is not supported");
15595ffd83dbSDimitry Andric   assert(UnrolledLoop != RemainderLoop &&
15605ffd83dbSDimitry Andric          "Unrolled and Remainder loops are expected to distinct");
15615ffd83dbSDimitry Andric 
15625ffd83dbSDimitry Andric   // Get number of iterations in the original scalar loop.
15635ffd83dbSDimitry Andric   unsigned OrigLoopInvocationWeight = 0;
1564bdd1243dSDimitry Andric   std::optional<unsigned> OrigAverageTripCount =
15655ffd83dbSDimitry Andric       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
15665ffd83dbSDimitry Andric   if (!OrigAverageTripCount)
15675ffd83dbSDimitry Andric     return;
15685ffd83dbSDimitry Andric 
15695ffd83dbSDimitry Andric   // Calculate number of iterations in unrolled loop.
15705ffd83dbSDimitry Andric   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
15715ffd83dbSDimitry Andric   // Calculate number of iterations for remainder loop.
15725ffd83dbSDimitry Andric   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
15735ffd83dbSDimitry Andric 
15745ffd83dbSDimitry Andric   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
15755ffd83dbSDimitry Andric                             OrigLoopInvocationWeight);
15765ffd83dbSDimitry Andric   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
15775ffd83dbSDimitry Andric                             OrigLoopInvocationWeight);
15785ffd83dbSDimitry Andric }
15795ffd83dbSDimitry Andric 
15805ffd83dbSDimitry Andric /// Utility that implements appending of loops onto a worklist.
15815ffd83dbSDimitry Andric /// Loops are added in preorder (analogous for reverse postorder for trees),
15825ffd83dbSDimitry Andric /// and the worklist is processed LIFO.
15835ffd83dbSDimitry Andric template <typename RangeT>
appendReversedLoopsToWorklist(RangeT && Loops,SmallPriorityWorklist<Loop *,4> & Worklist)15845ffd83dbSDimitry Andric void llvm::appendReversedLoopsToWorklist(
15855ffd83dbSDimitry Andric     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
15865ffd83dbSDimitry Andric   // We use an internal worklist to build up the preorder traversal without
15875ffd83dbSDimitry Andric   // recursion.
15885ffd83dbSDimitry Andric   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
15895ffd83dbSDimitry Andric 
15905ffd83dbSDimitry Andric   // We walk the initial sequence of loops in reverse because we generally want
15915ffd83dbSDimitry Andric   // to visit defs before uses and the worklist is LIFO.
15925ffd83dbSDimitry Andric   for (Loop *RootL : Loops) {
15935ffd83dbSDimitry Andric     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
15945ffd83dbSDimitry Andric     assert(PreOrderWorklist.empty() &&
15955ffd83dbSDimitry Andric            "Must start with an empty preorder walk worklist.");
15965ffd83dbSDimitry Andric     PreOrderWorklist.push_back(RootL);
15975ffd83dbSDimitry Andric     do {
15985ffd83dbSDimitry Andric       Loop *L = PreOrderWorklist.pop_back_val();
15995ffd83dbSDimitry Andric       PreOrderWorklist.append(L->begin(), L->end());
16005ffd83dbSDimitry Andric       PreOrderLoops.push_back(L);
16015ffd83dbSDimitry Andric     } while (!PreOrderWorklist.empty());
16025ffd83dbSDimitry Andric 
16035ffd83dbSDimitry Andric     Worklist.insert(std::move(PreOrderLoops));
16045ffd83dbSDimitry Andric     PreOrderLoops.clear();
16055ffd83dbSDimitry Andric   }
16065ffd83dbSDimitry Andric }
16075ffd83dbSDimitry Andric 
16085ffd83dbSDimitry Andric template <typename RangeT>
appendLoopsToWorklist(RangeT && Loops,SmallPriorityWorklist<Loop *,4> & Worklist)16095ffd83dbSDimitry Andric void llvm::appendLoopsToWorklist(RangeT &&Loops,
16105ffd83dbSDimitry Andric                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
16115ffd83dbSDimitry Andric   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
16125ffd83dbSDimitry Andric }
16135ffd83dbSDimitry Andric 
16145ffd83dbSDimitry Andric template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
16155ffd83dbSDimitry Andric     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
16165ffd83dbSDimitry Andric 
16175ffd83dbSDimitry Andric template void
16185ffd83dbSDimitry Andric llvm::appendLoopsToWorklist<Loop &>(Loop &L,
16195ffd83dbSDimitry Andric                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
16205ffd83dbSDimitry Andric 
appendLoopsToWorklist(LoopInfo & LI,SmallPriorityWorklist<Loop *,4> & Worklist)16215ffd83dbSDimitry Andric void llvm::appendLoopsToWorklist(LoopInfo &LI,
16225ffd83dbSDimitry Andric                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
16235ffd83dbSDimitry Andric   appendReversedLoopsToWorklist(LI, Worklist);
16245ffd83dbSDimitry Andric }
16255ffd83dbSDimitry Andric 
cloneLoop(Loop * L,Loop * PL,ValueToValueMapTy & VM,LoopInfo * LI,LPPassManager * LPM)16265ffd83dbSDimitry Andric Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
16275ffd83dbSDimitry Andric                       LoopInfo *LI, LPPassManager *LPM) {
16285ffd83dbSDimitry Andric   Loop &New = *LI->AllocateLoop();
16295ffd83dbSDimitry Andric   if (PL)
16305ffd83dbSDimitry Andric     PL->addChildLoop(&New);
16315ffd83dbSDimitry Andric   else
16325ffd83dbSDimitry Andric     LI->addTopLevelLoop(&New);
16335ffd83dbSDimitry Andric 
16345ffd83dbSDimitry Andric   if (LPM)
16355ffd83dbSDimitry Andric     LPM->addLoop(New);
16365ffd83dbSDimitry Andric 
16375ffd83dbSDimitry Andric   // Add all of the blocks in L to the new loop.
16385e801ac6SDimitry Andric   for (BasicBlock *BB : L->blocks())
16395e801ac6SDimitry Andric     if (LI->getLoopFor(BB) == L)
16405e801ac6SDimitry Andric       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI);
16415ffd83dbSDimitry Andric 
16425ffd83dbSDimitry Andric   // Add all of the subloops to the new loop.
16435ffd83dbSDimitry Andric   for (Loop *I : *L)
16445ffd83dbSDimitry Andric     cloneLoop(I, &New, VM, LI, LPM);
16455ffd83dbSDimitry Andric 
16465ffd83dbSDimitry Andric   return &New;
16475ffd83dbSDimitry Andric }
16485ffd83dbSDimitry Andric 
16495ffd83dbSDimitry Andric /// IR Values for the lower and upper bounds of a pointer evolution.  We
16505ffd83dbSDimitry Andric /// need to use value-handles because SCEV expansion can invalidate previously
16515ffd83dbSDimitry Andric /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
16525ffd83dbSDimitry Andric /// a previous one.
16535ffd83dbSDimitry Andric struct PointerBounds {
16545ffd83dbSDimitry Andric   TrackingVH<Value> Start;
16555ffd83dbSDimitry Andric   TrackingVH<Value> End;
1656*c9157d92SDimitry Andric   Value *StrideToCheck;
16575ffd83dbSDimitry Andric };
16585ffd83dbSDimitry Andric 
16595ffd83dbSDimitry Andric /// Expand code for the lower and upper bound of the pointer group \p CG
16605ffd83dbSDimitry Andric /// in \p TheLoop.  \return the values for the bounds.
expandBounds(const RuntimeCheckingPtrGroup * CG,Loop * TheLoop,Instruction * Loc,SCEVExpander & Exp,bool HoistRuntimeChecks)16615ffd83dbSDimitry Andric static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
16625ffd83dbSDimitry Andric                                   Loop *TheLoop, Instruction *Loc,
1663*c9157d92SDimitry Andric                                   SCEVExpander &Exp, bool HoistRuntimeChecks) {
16645ffd83dbSDimitry Andric   LLVMContext &Ctx = Loc->getContext();
1665*c9157d92SDimitry Andric   Type *PtrArithTy = PointerType::get(Ctx, CG->AddressSpace);
16665ffd83dbSDimitry Andric 
16675ffd83dbSDimitry Andric   Value *Start = nullptr, *End = nullptr;
16685ffd83dbSDimitry Andric   LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1669*c9157d92SDimitry Andric   const SCEV *Low = CG->Low, *High = CG->High, *Stride = nullptr;
1670*c9157d92SDimitry Andric 
1671*c9157d92SDimitry Andric   // If the Low and High values are themselves loop-variant, then we may want
1672*c9157d92SDimitry Andric   // to expand the range to include those covered by the outer loop as well.
1673*c9157d92SDimitry Andric   // There is a trade-off here with the advantage being that creating checks
1674*c9157d92SDimitry Andric   // using the expanded range permits the runtime memory checks to be hoisted
1675*c9157d92SDimitry Andric   // out of the outer loop. This reduces the cost of entering the inner loop,
1676*c9157d92SDimitry Andric   // which can be significant for low trip counts. The disadvantage is that
1677*c9157d92SDimitry Andric   // there is a chance we may now never enter the vectorized inner loop,
1678*c9157d92SDimitry Andric   // whereas using a restricted range check could have allowed us to enter at
1679*c9157d92SDimitry Andric   // least once. This is why the behaviour is not currently the default and is
1680*c9157d92SDimitry Andric   // controlled by the parameter 'HoistRuntimeChecks'.
1681*c9157d92SDimitry Andric   if (HoistRuntimeChecks && TheLoop->getParentLoop() &&
1682*c9157d92SDimitry Andric       isa<SCEVAddRecExpr>(High) && isa<SCEVAddRecExpr>(Low)) {
1683*c9157d92SDimitry Andric     auto *HighAR = cast<SCEVAddRecExpr>(High);
1684*c9157d92SDimitry Andric     auto *LowAR = cast<SCEVAddRecExpr>(Low);
1685*c9157d92SDimitry Andric     const Loop *OuterLoop = TheLoop->getParentLoop();
1686*c9157d92SDimitry Andric     const SCEV *Recur = LowAR->getStepRecurrence(*Exp.getSE());
1687*c9157d92SDimitry Andric     if (Recur == HighAR->getStepRecurrence(*Exp.getSE()) &&
1688*c9157d92SDimitry Andric         HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) {
1689*c9157d92SDimitry Andric       BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1690*c9157d92SDimitry Andric       const SCEV *OuterExitCount =
1691*c9157d92SDimitry Andric           Exp.getSE()->getExitCount(OuterLoop, OuterLoopLatch);
1692*c9157d92SDimitry Andric       if (!isa<SCEVCouldNotCompute>(OuterExitCount) &&
1693*c9157d92SDimitry Andric           OuterExitCount->getType()->isIntegerTy()) {
1694*c9157d92SDimitry Andric         const SCEV *NewHigh = cast<SCEVAddRecExpr>(High)->evaluateAtIteration(
1695*c9157d92SDimitry Andric             OuterExitCount, *Exp.getSE());
1696*c9157d92SDimitry Andric         if (!isa<SCEVCouldNotCompute>(NewHigh)) {
1697*c9157d92SDimitry Andric           LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include "
1698*c9157d92SDimitry Andric                                "outer loop in order to permit hoisting\n");
1699*c9157d92SDimitry Andric           High = NewHigh;
1700*c9157d92SDimitry Andric           Low = cast<SCEVAddRecExpr>(Low)->getStart();
1701*c9157d92SDimitry Andric           // If there is a possibility that the stride is negative then we have
1702*c9157d92SDimitry Andric           // to generate extra checks to ensure the stride is positive.
1703*c9157d92SDimitry Andric           if (!Exp.getSE()->isKnownNonNegative(Recur)) {
1704*c9157d92SDimitry Andric             Stride = Recur;
1705*c9157d92SDimitry Andric             LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is "
1706*c9157d92SDimitry Andric                                  "positive: "
1707*c9157d92SDimitry Andric                               << *Stride << '\n');
1708*c9157d92SDimitry Andric           }
1709*c9157d92SDimitry Andric         }
1710*c9157d92SDimitry Andric       }
1711*c9157d92SDimitry Andric     }
1712*c9157d92SDimitry Andric   }
1713*c9157d92SDimitry Andric 
1714*c9157d92SDimitry Andric   Start = Exp.expandCodeFor(Low, PtrArithTy, Loc);
1715*c9157d92SDimitry Andric   End = Exp.expandCodeFor(High, PtrArithTy, Loc);
171681ad6265SDimitry Andric   if (CG->NeedsFreeze) {
171781ad6265SDimitry Andric     IRBuilder<> Builder(Loc);
171881ad6265SDimitry Andric     Start = Builder.CreateFreeze(Start, Start->getName() + ".fr");
171981ad6265SDimitry Andric     End = Builder.CreateFreeze(End, End->getName() + ".fr");
172081ad6265SDimitry Andric   }
1721*c9157d92SDimitry Andric   Value *StrideVal =
1722*c9157d92SDimitry Andric       Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr;
1723*c9157d92SDimitry Andric   LLVM_DEBUG(dbgs() << "Start: " << *Low << " End: " << *High << "\n");
1724*c9157d92SDimitry Andric   return {Start, End, StrideVal};
17255ffd83dbSDimitry Andric }
17265ffd83dbSDimitry Andric 
17275ffd83dbSDimitry Andric /// Turns a collection of checks into a collection of expanded upper and
17285ffd83dbSDimitry Andric /// lower bounds for both pointers in the check.
17295ffd83dbSDimitry Andric static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
expandBounds(const SmallVectorImpl<RuntimePointerCheck> & PointerChecks,Loop * L,Instruction * Loc,SCEVExpander & Exp,bool HoistRuntimeChecks)17305ffd83dbSDimitry Andric expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1731*c9157d92SDimitry Andric              Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks) {
17325ffd83dbSDimitry Andric   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
17335ffd83dbSDimitry Andric 
17345ffd83dbSDimitry Andric   // Here we're relying on the SCEV Expander's cache to only emit code for the
17355ffd83dbSDimitry Andric   // same bounds once.
17365ffd83dbSDimitry Andric   transform(PointerChecks, std::back_inserter(ChecksWithBounds),
17375ffd83dbSDimitry Andric             [&](const RuntimePointerCheck &Check) {
1738*c9157d92SDimitry Andric               PointerBounds First = expandBounds(Check.first, L, Loc, Exp,
1739*c9157d92SDimitry Andric                                                  HoistRuntimeChecks),
1740*c9157d92SDimitry Andric                             Second = expandBounds(Check.second, L, Loc, Exp,
1741*c9157d92SDimitry Andric                                                   HoistRuntimeChecks);
17425ffd83dbSDimitry Andric               return std::make_pair(First, Second);
17435ffd83dbSDimitry Andric             });
17445ffd83dbSDimitry Andric 
17455ffd83dbSDimitry Andric   return ChecksWithBounds;
17465ffd83dbSDimitry Andric }
17475ffd83dbSDimitry Andric 
addRuntimeChecks(Instruction * Loc,Loop * TheLoop,const SmallVectorImpl<RuntimePointerCheck> & PointerChecks,SCEVExpander & Exp,bool HoistRuntimeChecks)1748349cc55cSDimitry Andric Value *llvm::addRuntimeChecks(
17495ffd83dbSDimitry Andric     Instruction *Loc, Loop *TheLoop,
17505ffd83dbSDimitry Andric     const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1751*c9157d92SDimitry Andric     SCEVExpander &Exp, bool HoistRuntimeChecks) {
17525ffd83dbSDimitry Andric   // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
17535ffd83dbSDimitry Andric   // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
1754*c9157d92SDimitry Andric   auto ExpandedChecks =
1755*c9157d92SDimitry Andric       expandBounds(PointerChecks, TheLoop, Loc, Exp, HoistRuntimeChecks);
17565ffd83dbSDimitry Andric 
17575ffd83dbSDimitry Andric   LLVMContext &Ctx = Loc->getContext();
175804eeddc0SDimitry Andric   IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
175904eeddc0SDimitry Andric                                            Loc->getModule()->getDataLayout());
176004eeddc0SDimitry Andric   ChkBuilder.SetInsertPoint(Loc);
17615ffd83dbSDimitry Andric   // Our instructions might fold to a constant.
17625ffd83dbSDimitry Andric   Value *MemoryRuntimeCheck = nullptr;
17635ffd83dbSDimitry Andric 
17645ffd83dbSDimitry Andric   for (const auto &Check : ExpandedChecks) {
17655ffd83dbSDimitry Andric     const PointerBounds &A = Check.first, &B = Check.second;
17665ffd83dbSDimitry Andric     // Check if two pointers (A and B) conflict where conflict is computed as:
17675ffd83dbSDimitry Andric     // start(A) <= end(B) && start(B) <= end(A)
17685ffd83dbSDimitry Andric 
1769*c9157d92SDimitry Andric     assert((A.Start->getType()->getPointerAddressSpace() ==
1770*c9157d92SDimitry Andric             B.End->getType()->getPointerAddressSpace()) &&
1771*c9157d92SDimitry Andric            (B.Start->getType()->getPointerAddressSpace() ==
1772*c9157d92SDimitry Andric             A.End->getType()->getPointerAddressSpace()) &&
17735ffd83dbSDimitry Andric            "Trying to bounds check pointers with different address spaces");
17745ffd83dbSDimitry Andric 
17755ffd83dbSDimitry Andric     // [A|B].Start points to the first accessed byte under base [A|B].
17765ffd83dbSDimitry Andric     // [A|B].End points to the last accessed byte, plus one.
17775ffd83dbSDimitry Andric     // There is no conflict when the intervals are disjoint:
17785ffd83dbSDimitry Andric     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
17795ffd83dbSDimitry Andric     //
17805ffd83dbSDimitry Andric     // bound0 = (B.Start < A.End)
17815ffd83dbSDimitry Andric     // bound1 = (A.Start < B.End)
17825ffd83dbSDimitry Andric     //  IsConflict = bound0 & bound1
1783*c9157d92SDimitry Andric     Value *Cmp0 = ChkBuilder.CreateICmpULT(A.Start, B.End, "bound0");
1784*c9157d92SDimitry Andric     Value *Cmp1 = ChkBuilder.CreateICmpULT(B.Start, A.End, "bound1");
17855ffd83dbSDimitry Andric     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1786*c9157d92SDimitry Andric     if (A.StrideToCheck) {
1787*c9157d92SDimitry Andric       Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
1788*c9157d92SDimitry Andric           A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0),
1789*c9157d92SDimitry Andric           "stride.check");
1790*c9157d92SDimitry Andric       IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
1791*c9157d92SDimitry Andric     }
1792*c9157d92SDimitry Andric     if (B.StrideToCheck) {
1793*c9157d92SDimitry Andric       Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
1794*c9157d92SDimitry Andric           B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0),
1795*c9157d92SDimitry Andric           "stride.check");
1796*c9157d92SDimitry Andric       IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
1797*c9157d92SDimitry Andric     }
17985ffd83dbSDimitry Andric     if (MemoryRuntimeCheck) {
17995ffd83dbSDimitry Andric       IsConflict =
18005ffd83dbSDimitry Andric           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
18015ffd83dbSDimitry Andric     }
18025ffd83dbSDimitry Andric     MemoryRuntimeCheck = IsConflict;
18035ffd83dbSDimitry Andric   }
18045ffd83dbSDimitry Andric 
1805349cc55cSDimitry Andric   return MemoryRuntimeCheck;
18065ffd83dbSDimitry Andric }
1807fe6060f1SDimitry Andric 
addDiffRuntimeChecks(Instruction * Loc,ArrayRef<PointerDiffInfo> Checks,SCEVExpander & Expander,function_ref<Value * (IRBuilderBase &,unsigned)> GetVF,unsigned IC)180881ad6265SDimitry Andric Value *llvm::addDiffRuntimeChecks(
1809bdd1243dSDimitry Andric     Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander,
181081ad6265SDimitry Andric     function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) {
181181ad6265SDimitry Andric 
181281ad6265SDimitry Andric   LLVMContext &Ctx = Loc->getContext();
181381ad6265SDimitry Andric   IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
181481ad6265SDimitry Andric                                            Loc->getModule()->getDataLayout());
181581ad6265SDimitry Andric   ChkBuilder.SetInsertPoint(Loc);
181681ad6265SDimitry Andric   // Our instructions might fold to a constant.
181781ad6265SDimitry Andric   Value *MemoryRuntimeCheck = nullptr;
181881ad6265SDimitry Andric 
1819*c9157d92SDimitry Andric   auto &SE = *Expander.getSE();
1820*c9157d92SDimitry Andric   // Map to keep track of created compares, The key is the pair of operands for
1821*c9157d92SDimitry Andric   // the compare, to allow detecting and re-using redundant compares.
1822*c9157d92SDimitry Andric   DenseMap<std::pair<Value *, Value *>, Value *> SeenCompares;
1823bdd1243dSDimitry Andric   for (const auto &C : Checks) {
182481ad6265SDimitry Andric     Type *Ty = C.SinkStart->getType();
182581ad6265SDimitry Andric     // Compute VF * IC * AccessSize.
182681ad6265SDimitry Andric     auto *VFTimesUFTimesSize =
182781ad6265SDimitry Andric         ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()),
182881ad6265SDimitry Andric                              ConstantInt::get(Ty, IC * C.AccessSize));
1829*c9157d92SDimitry Andric     Value *Diff = Expander.expandCodeFor(
1830*c9157d92SDimitry Andric         SE.getMinusSCEV(C.SinkStart, C.SrcStart), Ty, Loc);
183181ad6265SDimitry Andric 
1832*c9157d92SDimitry Andric     // Check if the same compare has already been created earlier. In that case,
1833*c9157d92SDimitry Andric     // there is no need to check it again.
1834*c9157d92SDimitry Andric     Value *IsConflict = SeenCompares.lookup({Diff, VFTimesUFTimesSize});
1835*c9157d92SDimitry Andric     if (IsConflict)
1836*c9157d92SDimitry Andric       continue;
1837*c9157d92SDimitry Andric 
1838*c9157d92SDimitry Andric     IsConflict =
1839*c9157d92SDimitry Andric         ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check");
1840*c9157d92SDimitry Andric     SeenCompares.insert({{Diff, VFTimesUFTimesSize}, IsConflict});
1841*c9157d92SDimitry Andric     if (C.NeedsFreeze)
1842*c9157d92SDimitry Andric       IsConflict =
1843*c9157d92SDimitry Andric           ChkBuilder.CreateFreeze(IsConflict, IsConflict->getName() + ".fr");
184481ad6265SDimitry Andric     if (MemoryRuntimeCheck) {
184581ad6265SDimitry Andric       IsConflict =
184681ad6265SDimitry Andric           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
184781ad6265SDimitry Andric     }
184881ad6265SDimitry Andric     MemoryRuntimeCheck = IsConflict;
184981ad6265SDimitry Andric   }
185081ad6265SDimitry Andric 
185181ad6265SDimitry Andric   return MemoryRuntimeCheck;
185281ad6265SDimitry Andric }
185381ad6265SDimitry Andric 
1854bdd1243dSDimitry Andric std::optional<IVConditionInfo>
hasPartialIVCondition(const Loop & L,unsigned MSSAThreshold,const MemorySSA & MSSA,AAResults & AA)1855bdd1243dSDimitry Andric llvm::hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold,
1856bdd1243dSDimitry Andric                             const MemorySSA &MSSA, AAResults &AA) {
1857fe6060f1SDimitry Andric   auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
1858fe6060f1SDimitry Andric   if (!TI || !TI->isConditional())
1859fe6060f1SDimitry Andric     return {};
1860fe6060f1SDimitry Andric 
1861fe6060f1SDimitry Andric   auto *CondI = dyn_cast<CmpInst>(TI->getCondition());
1862fe6060f1SDimitry Andric   // The case with the condition outside the loop should already be handled
1863fe6060f1SDimitry Andric   // earlier.
1864fe6060f1SDimitry Andric   if (!CondI || !L.contains(CondI))
1865fe6060f1SDimitry Andric     return {};
1866fe6060f1SDimitry Andric 
1867fe6060f1SDimitry Andric   SmallVector<Instruction *> InstToDuplicate;
1868fe6060f1SDimitry Andric   InstToDuplicate.push_back(CondI);
1869fe6060f1SDimitry Andric 
1870fe6060f1SDimitry Andric   SmallVector<Value *, 4> WorkList;
1871fe6060f1SDimitry Andric   WorkList.append(CondI->op_begin(), CondI->op_end());
1872fe6060f1SDimitry Andric 
1873fe6060f1SDimitry Andric   SmallVector<MemoryAccess *, 4> AccessesToCheck;
1874fe6060f1SDimitry Andric   SmallVector<MemoryLocation, 4> AccessedLocs;
1875fe6060f1SDimitry Andric   while (!WorkList.empty()) {
1876fe6060f1SDimitry Andric     Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
1877fe6060f1SDimitry Andric     if (!I || !L.contains(I))
1878fe6060f1SDimitry Andric       continue;
1879fe6060f1SDimitry Andric 
1880fe6060f1SDimitry Andric     // TODO: support additional instructions.
1881fe6060f1SDimitry Andric     if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
1882fe6060f1SDimitry Andric       return {};
1883fe6060f1SDimitry Andric 
1884fe6060f1SDimitry Andric     // Do not duplicate volatile and atomic loads.
1885fe6060f1SDimitry Andric     if (auto *LI = dyn_cast<LoadInst>(I))
1886fe6060f1SDimitry Andric       if (LI->isVolatile() || LI->isAtomic())
1887fe6060f1SDimitry Andric         return {};
1888fe6060f1SDimitry Andric 
1889fe6060f1SDimitry Andric     InstToDuplicate.push_back(I);
1890fe6060f1SDimitry Andric     if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
1891fe6060f1SDimitry Andric       if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
1892fe6060f1SDimitry Andric         // Queue the defining access to check for alias checks.
1893fe6060f1SDimitry Andric         AccessesToCheck.push_back(MemUse->getDefiningAccess());
1894fe6060f1SDimitry Andric         AccessedLocs.push_back(MemoryLocation::get(I));
1895fe6060f1SDimitry Andric       } else {
1896fe6060f1SDimitry Andric         // MemoryDefs may clobber the location or may be atomic memory
1897fe6060f1SDimitry Andric         // operations. Bail out.
1898fe6060f1SDimitry Andric         return {};
1899fe6060f1SDimitry Andric       }
1900fe6060f1SDimitry Andric     }
1901fe6060f1SDimitry Andric     WorkList.append(I->op_begin(), I->op_end());
1902fe6060f1SDimitry Andric   }
1903fe6060f1SDimitry Andric 
1904fe6060f1SDimitry Andric   if (InstToDuplicate.empty())
1905fe6060f1SDimitry Andric     return {};
1906fe6060f1SDimitry Andric 
1907fe6060f1SDimitry Andric   SmallVector<BasicBlock *, 4> ExitingBlocks;
1908fe6060f1SDimitry Andric   L.getExitingBlocks(ExitingBlocks);
1909fe6060f1SDimitry Andric   auto HasNoClobbersOnPath =
1910fe6060f1SDimitry Andric       [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
1911fe6060f1SDimitry Andric        MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
1912fe6060f1SDimitry Andric                       SmallVector<MemoryAccess *, 4> AccessesToCheck)
1913bdd1243dSDimitry Andric       -> std::optional<IVConditionInfo> {
1914fe6060f1SDimitry Andric     IVConditionInfo Info;
1915fe6060f1SDimitry Andric     // First, collect all blocks in the loop that are on a patch from Succ
1916fe6060f1SDimitry Andric     // to the header.
1917fe6060f1SDimitry Andric     SmallVector<BasicBlock *, 4> WorkList;
1918fe6060f1SDimitry Andric     WorkList.push_back(Succ);
1919fe6060f1SDimitry Andric     WorkList.push_back(Header);
1920fe6060f1SDimitry Andric     SmallPtrSet<BasicBlock *, 4> Seen;
1921fe6060f1SDimitry Andric     Seen.insert(Header);
1922fe6060f1SDimitry Andric     Info.PathIsNoop &=
1923fe6060f1SDimitry Andric         all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1924fe6060f1SDimitry Andric 
1925fe6060f1SDimitry Andric     while (!WorkList.empty()) {
1926fe6060f1SDimitry Andric       BasicBlock *Current = WorkList.pop_back_val();
1927fe6060f1SDimitry Andric       if (!L.contains(Current))
1928fe6060f1SDimitry Andric         continue;
1929fe6060f1SDimitry Andric       const auto &SeenIns = Seen.insert(Current);
1930fe6060f1SDimitry Andric       if (!SeenIns.second)
1931fe6060f1SDimitry Andric         continue;
1932fe6060f1SDimitry Andric 
1933fe6060f1SDimitry Andric       Info.PathIsNoop &= all_of(
1934fe6060f1SDimitry Andric           *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
1935fe6060f1SDimitry Andric       WorkList.append(succ_begin(Current), succ_end(Current));
1936fe6060f1SDimitry Andric     }
1937fe6060f1SDimitry Andric 
1938fe6060f1SDimitry Andric     // Require at least 2 blocks on a path through the loop. This skips
1939fe6060f1SDimitry Andric     // paths that directly exit the loop.
1940fe6060f1SDimitry Andric     if (Seen.size() < 2)
1941fe6060f1SDimitry Andric       return {};
1942fe6060f1SDimitry Andric 
1943fe6060f1SDimitry Andric     // Next, check if there are any MemoryDefs that are on the path through
1944fe6060f1SDimitry Andric     // the loop (in the Seen set) and they may-alias any of the locations in
1945fe6060f1SDimitry Andric     // AccessedLocs. If that is the case, they may modify the condition and
1946fe6060f1SDimitry Andric     // partial unswitching is not possible.
1947fe6060f1SDimitry Andric     SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
1948fe6060f1SDimitry Andric     while (!AccessesToCheck.empty()) {
1949fe6060f1SDimitry Andric       MemoryAccess *Current = AccessesToCheck.pop_back_val();
1950fe6060f1SDimitry Andric       auto SeenI = SeenAccesses.insert(Current);
1951fe6060f1SDimitry Andric       if (!SeenI.second || !Seen.contains(Current->getBlock()))
1952fe6060f1SDimitry Andric         continue;
1953fe6060f1SDimitry Andric 
1954fe6060f1SDimitry Andric       // Bail out if exceeded the threshold.
1955fe6060f1SDimitry Andric       if (SeenAccesses.size() >= MSSAThreshold)
1956fe6060f1SDimitry Andric         return {};
1957fe6060f1SDimitry Andric 
1958fe6060f1SDimitry Andric       // MemoryUse are read-only accesses.
1959fe6060f1SDimitry Andric       if (isa<MemoryUse>(Current))
1960fe6060f1SDimitry Andric         continue;
1961fe6060f1SDimitry Andric 
1962fe6060f1SDimitry Andric       // For a MemoryDef, check if is aliases any of the location feeding
1963fe6060f1SDimitry Andric       // the original condition.
1964fe6060f1SDimitry Andric       if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
1965fe6060f1SDimitry Andric         if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
1966fe6060f1SDimitry Andric               return isModSet(
1967fe6060f1SDimitry Andric                   AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
1968fe6060f1SDimitry Andric             }))
1969fe6060f1SDimitry Andric           return {};
1970fe6060f1SDimitry Andric       }
1971fe6060f1SDimitry Andric 
1972fe6060f1SDimitry Andric       for (Use &U : Current->uses())
1973fe6060f1SDimitry Andric         AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
1974fe6060f1SDimitry Andric     }
1975fe6060f1SDimitry Andric 
1976fe6060f1SDimitry Andric     // We could also allow loops with known trip counts without mustprogress,
1977fe6060f1SDimitry Andric     // but ScalarEvolution may not be available.
1978fe6060f1SDimitry Andric     Info.PathIsNoop &= isMustProgress(&L);
1979fe6060f1SDimitry Andric 
1980fe6060f1SDimitry Andric     // If the path is considered a no-op so far, check if it reaches a
1981fe6060f1SDimitry Andric     // single exit block without any phis. This ensures no values from the
1982fe6060f1SDimitry Andric     // loop are used outside of the loop.
1983fe6060f1SDimitry Andric     if (Info.PathIsNoop) {
1984fe6060f1SDimitry Andric       for (auto *Exiting : ExitingBlocks) {
1985fe6060f1SDimitry Andric         if (!Seen.contains(Exiting))
1986fe6060f1SDimitry Andric           continue;
1987fe6060f1SDimitry Andric         for (auto *Succ : successors(Exiting)) {
1988fe6060f1SDimitry Andric           if (L.contains(Succ))
1989fe6060f1SDimitry Andric             continue;
1990fe6060f1SDimitry Andric 
1991bdd1243dSDimitry Andric           Info.PathIsNoop &= Succ->phis().empty() &&
1992fe6060f1SDimitry Andric                              (!Info.ExitForPath || Info.ExitForPath == Succ);
1993fe6060f1SDimitry Andric           if (!Info.PathIsNoop)
1994fe6060f1SDimitry Andric             break;
1995fe6060f1SDimitry Andric           assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
1996fe6060f1SDimitry Andric                  "cannot have multiple exit blocks");
1997fe6060f1SDimitry Andric           Info.ExitForPath = Succ;
1998fe6060f1SDimitry Andric         }
1999fe6060f1SDimitry Andric       }
2000fe6060f1SDimitry Andric     }
2001fe6060f1SDimitry Andric     if (!Info.ExitForPath)
2002fe6060f1SDimitry Andric       Info.PathIsNoop = false;
2003fe6060f1SDimitry Andric 
2004fe6060f1SDimitry Andric     Info.InstToDuplicate = InstToDuplicate;
2005fe6060f1SDimitry Andric     return Info;
2006fe6060f1SDimitry Andric   };
2007fe6060f1SDimitry Andric 
2008fe6060f1SDimitry Andric   // If we branch to the same successor, partial unswitching will not be
2009fe6060f1SDimitry Andric   // beneficial.
2010fe6060f1SDimitry Andric   if (TI->getSuccessor(0) == TI->getSuccessor(1))
2011fe6060f1SDimitry Andric     return {};
2012fe6060f1SDimitry Andric 
2013fe6060f1SDimitry Andric   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
2014fe6060f1SDimitry Andric                                       AccessesToCheck)) {
2015fe6060f1SDimitry Andric     Info->KnownValue = ConstantInt::getTrue(TI->getContext());
2016fe6060f1SDimitry Andric     return Info;
2017fe6060f1SDimitry Andric   }
2018fe6060f1SDimitry Andric   if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
2019fe6060f1SDimitry Andric                                       AccessesToCheck)) {
2020fe6060f1SDimitry Andric     Info->KnownValue = ConstantInt::getFalse(TI->getContext());
2021fe6060f1SDimitry Andric     return Info;
2022fe6060f1SDimitry Andric   }
2023fe6060f1SDimitry Andric 
2024fe6060f1SDimitry Andric   return {};
2025fe6060f1SDimitry Andric }
2026