10b57cec5SDimitry Andric //===- InlineFunction.cpp - Code to perform function inlining -------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file implements inlining of a function into a call site, resolving
100b57cec5SDimitry Andric // parameters and the return value as appropriate.
110b57cec5SDimitry Andric //
120b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
130b57cec5SDimitry Andric
140b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h"
150b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
160b57cec5SDimitry Andric #include "llvm/ADT/SetVector.h"
170b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
180b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
190b57cec5SDimitry Andric #include "llvm/ADT/StringExtras.h"
200b57cec5SDimitry Andric #include "llvm/ADT/iterator_range.h"
210b57cec5SDimitry Andric #include "llvm/Analysis/AliasAnalysis.h"
220b57cec5SDimitry Andric #include "llvm/Analysis/AssumptionCache.h"
230b57cec5SDimitry Andric #include "llvm/Analysis/BlockFrequencyInfo.h"
240b57cec5SDimitry Andric #include "llvm/Analysis/CallGraph.h"
250b57cec5SDimitry Andric #include "llvm/Analysis/CaptureTracking.h"
260b57cec5SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h"
27bdd1243dSDimitry Andric #include "llvm/Analysis/MemoryProfileInfo.h"
28fe6060f1SDimitry Andric #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
29fe6060f1SDimitry Andric #include "llvm/Analysis/ObjCARCUtil.h"
300b57cec5SDimitry Andric #include "llvm/Analysis/ProfileSummaryInfo.h"
310b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
320b57cec5SDimitry Andric #include "llvm/Analysis/VectorUtils.h"
33c9157d92SDimitry Andric #include "llvm/IR/AttributeMask.h"
340b57cec5SDimitry Andric #include "llvm/IR/Argument.h"
350b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h"
360b57cec5SDimitry Andric #include "llvm/IR/CFG.h"
370b57cec5SDimitry Andric #include "llvm/IR/Constant.h"
380b57cec5SDimitry Andric #include "llvm/IR/Constants.h"
390b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h"
401fd87a68SDimitry Andric #include "llvm/IR/DebugInfo.h"
410b57cec5SDimitry Andric #include "llvm/IR/DebugInfoMetadata.h"
420b57cec5SDimitry Andric #include "llvm/IR/DebugLoc.h"
430b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h"
440b57cec5SDimitry Andric #include "llvm/IR/Dominators.h"
45fe013be4SDimitry Andric #include "llvm/IR/EHPersonalities.h"
460b57cec5SDimitry Andric #include "llvm/IR/Function.h"
470b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h"
48fe6060f1SDimitry Andric #include "llvm/IR/InlineAsm.h"
490b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h"
500b57cec5SDimitry Andric #include "llvm/IR/Instruction.h"
510b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
520b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
530b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h"
540b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h"
550b57cec5SDimitry Andric #include "llvm/IR/MDBuilder.h"
560b57cec5SDimitry Andric #include "llvm/IR/Metadata.h"
570b57cec5SDimitry Andric #include "llvm/IR/Module.h"
580b57cec5SDimitry Andric #include "llvm/IR/Type.h"
590b57cec5SDimitry Andric #include "llvm/IR/User.h"
600b57cec5SDimitry Andric #include "llvm/IR/Value.h"
610b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
620b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
630b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h"
645ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
650b57cec5SDimitry Andric #include "llvm/Transforms/Utils/Cloning.h"
66fe6060f1SDimitry Andric #include "llvm/Transforms/Utils/Local.h"
670b57cec5SDimitry Andric #include "llvm/Transforms/Utils/ValueMapper.h"
680b57cec5SDimitry Andric #include <algorithm>
690b57cec5SDimitry Andric #include <cassert>
700b57cec5SDimitry Andric #include <cstdint>
710b57cec5SDimitry Andric #include <iterator>
720b57cec5SDimitry Andric #include <limits>
73bdd1243dSDimitry Andric #include <optional>
740b57cec5SDimitry Andric #include <string>
750b57cec5SDimitry Andric #include <utility>
760b57cec5SDimitry Andric #include <vector>
770b57cec5SDimitry Andric
78bdd1243dSDimitry Andric #define DEBUG_TYPE "inline-function"
79bdd1243dSDimitry Andric
800b57cec5SDimitry Andric using namespace llvm;
81bdd1243dSDimitry Andric using namespace llvm::memprof;
820b57cec5SDimitry Andric using ProfileCount = Function::ProfileCount;
830b57cec5SDimitry Andric
840b57cec5SDimitry Andric static cl::opt<bool>
850b57cec5SDimitry Andric EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
860b57cec5SDimitry Andric cl::Hidden,
870b57cec5SDimitry Andric cl::desc("Convert noalias attributes to metadata during inlining."));
880b57cec5SDimitry Andric
89e8d8bef9SDimitry Andric static cl::opt<bool>
90e8d8bef9SDimitry Andric UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
9181ad6265SDimitry Andric cl::init(true),
92e8d8bef9SDimitry Andric cl::desc("Use the llvm.experimental.noalias.scope.decl "
93e8d8bef9SDimitry Andric "intrinsic during inlining."));
94e8d8bef9SDimitry Andric
955ffd83dbSDimitry Andric // Disabled by default, because the added alignment assumptions may increase
965ffd83dbSDimitry Andric // compile-time and block optimizations. This option is not suitable for use
975ffd83dbSDimitry Andric // with frontends that emit comprehensive parameter alignment annotations.
980b57cec5SDimitry Andric static cl::opt<bool>
990b57cec5SDimitry Andric PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
1005ffd83dbSDimitry Andric cl::init(false), cl::Hidden,
1010b57cec5SDimitry Andric cl::desc("Convert align attributes to assumptions during inlining."));
1020b57cec5SDimitry Andric
1035ffd83dbSDimitry Andric static cl::opt<unsigned> InlinerAttributeWindow(
1045ffd83dbSDimitry Andric "max-inst-checked-for-throw-during-inlining", cl::Hidden,
1055ffd83dbSDimitry Andric cl::desc("the maximum number of instructions analyzed for may throw during "
1065ffd83dbSDimitry Andric "attribute inference in inlined body"),
1075ffd83dbSDimitry Andric cl::init(4));
1080b57cec5SDimitry Andric
1090b57cec5SDimitry Andric namespace {
1100b57cec5SDimitry Andric
1110b57cec5SDimitry Andric /// A class for recording information about inlining a landing pad.
1120b57cec5SDimitry Andric class LandingPadInliningInfo {
1130b57cec5SDimitry Andric /// Destination of the invoke's unwind.
1140b57cec5SDimitry Andric BasicBlock *OuterResumeDest;
1150b57cec5SDimitry Andric
1160b57cec5SDimitry Andric /// Destination for the callee's resume.
1170b57cec5SDimitry Andric BasicBlock *InnerResumeDest = nullptr;
1180b57cec5SDimitry Andric
1190b57cec5SDimitry Andric /// LandingPadInst associated with the invoke.
1200b57cec5SDimitry Andric LandingPadInst *CallerLPad = nullptr;
1210b57cec5SDimitry Andric
1220b57cec5SDimitry Andric /// PHI for EH values from landingpad insts.
1230b57cec5SDimitry Andric PHINode *InnerEHValuesPHI = nullptr;
1240b57cec5SDimitry Andric
1250b57cec5SDimitry Andric SmallVector<Value*, 8> UnwindDestPHIValues;
1260b57cec5SDimitry Andric
1270b57cec5SDimitry Andric public:
LandingPadInliningInfo(InvokeInst * II)1280b57cec5SDimitry Andric LandingPadInliningInfo(InvokeInst *II)
1290b57cec5SDimitry Andric : OuterResumeDest(II->getUnwindDest()) {
1300b57cec5SDimitry Andric // If there are PHI nodes in the unwind destination block, we need to keep
1310b57cec5SDimitry Andric // track of which values came into them from the invoke before removing
1320b57cec5SDimitry Andric // the edge from this block.
1330b57cec5SDimitry Andric BasicBlock *InvokeBB = II->getParent();
1340b57cec5SDimitry Andric BasicBlock::iterator I = OuterResumeDest->begin();
1350b57cec5SDimitry Andric for (; isa<PHINode>(I); ++I) {
1360b57cec5SDimitry Andric // Save the value to use for this edge.
1370b57cec5SDimitry Andric PHINode *PHI = cast<PHINode>(I);
1380b57cec5SDimitry Andric UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
1390b57cec5SDimitry Andric }
1400b57cec5SDimitry Andric
1410b57cec5SDimitry Andric CallerLPad = cast<LandingPadInst>(I);
1420b57cec5SDimitry Andric }
1430b57cec5SDimitry Andric
1440b57cec5SDimitry Andric /// The outer unwind destination is the target of
1450b57cec5SDimitry Andric /// unwind edges introduced for calls within the inlined function.
getOuterResumeDest() const1460b57cec5SDimitry Andric BasicBlock *getOuterResumeDest() const {
1470b57cec5SDimitry Andric return OuterResumeDest;
1480b57cec5SDimitry Andric }
1490b57cec5SDimitry Andric
1500b57cec5SDimitry Andric BasicBlock *getInnerResumeDest();
1510b57cec5SDimitry Andric
getLandingPadInst() const1520b57cec5SDimitry Andric LandingPadInst *getLandingPadInst() const { return CallerLPad; }
1530b57cec5SDimitry Andric
1540b57cec5SDimitry Andric /// Forward the 'resume' instruction to the caller's landing pad block.
1550b57cec5SDimitry Andric /// When the landing pad block has only one predecessor, this is
1560b57cec5SDimitry Andric /// a simple branch. When there is more than one predecessor, we need to
1570b57cec5SDimitry Andric /// split the landing pad block after the landingpad instruction and jump
1580b57cec5SDimitry Andric /// to there.
1590b57cec5SDimitry Andric void forwardResume(ResumeInst *RI,
1600b57cec5SDimitry Andric SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
1610b57cec5SDimitry Andric
1620b57cec5SDimitry Andric /// Add incoming-PHI values to the unwind destination block for the given
1630b57cec5SDimitry Andric /// basic block, using the values for the original invoke's source block.
addIncomingPHIValuesFor(BasicBlock * BB) const1640b57cec5SDimitry Andric void addIncomingPHIValuesFor(BasicBlock *BB) const {
1650b57cec5SDimitry Andric addIncomingPHIValuesForInto(BB, OuterResumeDest);
1660b57cec5SDimitry Andric }
1670b57cec5SDimitry Andric
addIncomingPHIValuesForInto(BasicBlock * src,BasicBlock * dest) const1680b57cec5SDimitry Andric void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
1690b57cec5SDimitry Andric BasicBlock::iterator I = dest->begin();
1700b57cec5SDimitry Andric for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
1710b57cec5SDimitry Andric PHINode *phi = cast<PHINode>(I);
1720b57cec5SDimitry Andric phi->addIncoming(UnwindDestPHIValues[i], src);
1730b57cec5SDimitry Andric }
1740b57cec5SDimitry Andric }
1750b57cec5SDimitry Andric };
1760b57cec5SDimitry Andric
1770b57cec5SDimitry Andric } // end anonymous namespace
1780b57cec5SDimitry Andric
1790b57cec5SDimitry Andric /// Get or create a target for the branch from ResumeInsts.
getInnerResumeDest()1800b57cec5SDimitry Andric BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
1810b57cec5SDimitry Andric if (InnerResumeDest) return InnerResumeDest;
1820b57cec5SDimitry Andric
1830b57cec5SDimitry Andric // Split the landing pad.
1840b57cec5SDimitry Andric BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
1850b57cec5SDimitry Andric InnerResumeDest =
1860b57cec5SDimitry Andric OuterResumeDest->splitBasicBlock(SplitPoint,
1870b57cec5SDimitry Andric OuterResumeDest->getName() + ".body");
1880b57cec5SDimitry Andric
1890b57cec5SDimitry Andric // The number of incoming edges we expect to the inner landing pad.
1900b57cec5SDimitry Andric const unsigned PHICapacity = 2;
1910b57cec5SDimitry Andric
1920b57cec5SDimitry Andric // Create corresponding new PHIs for all the PHIs in the outer landing pad.
193c9157d92SDimitry Andric BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
1940b57cec5SDimitry Andric BasicBlock::iterator I = OuterResumeDest->begin();
1950b57cec5SDimitry Andric for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
1960b57cec5SDimitry Andric PHINode *OuterPHI = cast<PHINode>(I);
1970b57cec5SDimitry Andric PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
198c9157d92SDimitry Andric OuterPHI->getName() + ".lpad-body");
199c9157d92SDimitry Andric InnerPHI->insertBefore(InsertPoint);
2000b57cec5SDimitry Andric OuterPHI->replaceAllUsesWith(InnerPHI);
2010b57cec5SDimitry Andric InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
2020b57cec5SDimitry Andric }
2030b57cec5SDimitry Andric
2040b57cec5SDimitry Andric // Create a PHI for the exception values.
205c9157d92SDimitry Andric InnerEHValuesPHI =
206c9157d92SDimitry Andric PHINode::Create(CallerLPad->getType(), PHICapacity, "eh.lpad-body");
207c9157d92SDimitry Andric InnerEHValuesPHI->insertBefore(InsertPoint);
2080b57cec5SDimitry Andric CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
2090b57cec5SDimitry Andric InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
2100b57cec5SDimitry Andric
2110b57cec5SDimitry Andric // All done.
2120b57cec5SDimitry Andric return InnerResumeDest;
2130b57cec5SDimitry Andric }
2140b57cec5SDimitry Andric
2150b57cec5SDimitry Andric /// Forward the 'resume' instruction to the caller's landing pad block.
2160b57cec5SDimitry Andric /// When the landing pad block has only one predecessor, this is a simple
2170b57cec5SDimitry Andric /// branch. When there is more than one predecessor, we need to split the
2180b57cec5SDimitry Andric /// landing pad block after the landingpad instruction and jump to there.
forwardResume(ResumeInst * RI,SmallPtrSetImpl<LandingPadInst * > & InlinedLPads)2190b57cec5SDimitry Andric void LandingPadInliningInfo::forwardResume(
2200b57cec5SDimitry Andric ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
2210b57cec5SDimitry Andric BasicBlock *Dest = getInnerResumeDest();
2220b57cec5SDimitry Andric BasicBlock *Src = RI->getParent();
2230b57cec5SDimitry Andric
2240b57cec5SDimitry Andric BranchInst::Create(Dest, Src);
2250b57cec5SDimitry Andric
2260b57cec5SDimitry Andric // Update the PHIs in the destination. They were inserted in an order which
2270b57cec5SDimitry Andric // makes this work.
2280b57cec5SDimitry Andric addIncomingPHIValuesForInto(Src, Dest);
2290b57cec5SDimitry Andric
2300b57cec5SDimitry Andric InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
2310b57cec5SDimitry Andric RI->eraseFromParent();
2320b57cec5SDimitry Andric }
2330b57cec5SDimitry Andric
2340b57cec5SDimitry Andric /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
getParentPad(Value * EHPad)2350b57cec5SDimitry Andric static Value *getParentPad(Value *EHPad) {
2360b57cec5SDimitry Andric if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
2370b57cec5SDimitry Andric return FPI->getParentPad();
2380b57cec5SDimitry Andric return cast<CatchSwitchInst>(EHPad)->getParentPad();
2390b57cec5SDimitry Andric }
2400b57cec5SDimitry Andric
2410b57cec5SDimitry Andric using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
2420b57cec5SDimitry Andric
2430b57cec5SDimitry Andric /// Helper for getUnwindDestToken that does the descendant-ward part of
2440b57cec5SDimitry Andric /// the search.
getUnwindDestTokenHelper(Instruction * EHPad,UnwindDestMemoTy & MemoMap)2450b57cec5SDimitry Andric static Value *getUnwindDestTokenHelper(Instruction *EHPad,
2460b57cec5SDimitry Andric UnwindDestMemoTy &MemoMap) {
2470b57cec5SDimitry Andric SmallVector<Instruction *, 8> Worklist(1, EHPad);
2480b57cec5SDimitry Andric
2490b57cec5SDimitry Andric while (!Worklist.empty()) {
2500b57cec5SDimitry Andric Instruction *CurrentPad = Worklist.pop_back_val();
2510b57cec5SDimitry Andric // We only put pads on the worklist that aren't in the MemoMap. When
2520b57cec5SDimitry Andric // we find an unwind dest for a pad we may update its ancestors, but
2530b57cec5SDimitry Andric // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
2540b57cec5SDimitry Andric // so they should never get updated while queued on the worklist.
2550b57cec5SDimitry Andric assert(!MemoMap.count(CurrentPad));
2560b57cec5SDimitry Andric Value *UnwindDestToken = nullptr;
2570b57cec5SDimitry Andric if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
2580b57cec5SDimitry Andric if (CatchSwitch->hasUnwindDest()) {
2590b57cec5SDimitry Andric UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
2600b57cec5SDimitry Andric } else {
2610b57cec5SDimitry Andric // Catchswitch doesn't have a 'nounwind' variant, and one might be
2620b57cec5SDimitry Andric // annotated as "unwinds to caller" when really it's nounwind (see
2630b57cec5SDimitry Andric // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
2640b57cec5SDimitry Andric // parent's unwind dest from this. We can check its catchpads'
2650b57cec5SDimitry Andric // descendants, since they might include a cleanuppad with an
2660b57cec5SDimitry Andric // "unwinds to caller" cleanupret, which can be trusted.
2670b57cec5SDimitry Andric for (auto HI = CatchSwitch->handler_begin(),
2680b57cec5SDimitry Andric HE = CatchSwitch->handler_end();
2690b57cec5SDimitry Andric HI != HE && !UnwindDestToken; ++HI) {
2700b57cec5SDimitry Andric BasicBlock *HandlerBlock = *HI;
2710b57cec5SDimitry Andric auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
2720b57cec5SDimitry Andric for (User *Child : CatchPad->users()) {
2730b57cec5SDimitry Andric // Intentionally ignore invokes here -- since the catchswitch is
2740b57cec5SDimitry Andric // marked "unwind to caller", it would be a verifier error if it
2750b57cec5SDimitry Andric // contained an invoke which unwinds out of it, so any invoke we'd
2760b57cec5SDimitry Andric // encounter must unwind to some child of the catch.
2770b57cec5SDimitry Andric if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
2780b57cec5SDimitry Andric continue;
2790b57cec5SDimitry Andric
2800b57cec5SDimitry Andric Instruction *ChildPad = cast<Instruction>(Child);
2810b57cec5SDimitry Andric auto Memo = MemoMap.find(ChildPad);
2820b57cec5SDimitry Andric if (Memo == MemoMap.end()) {
2830b57cec5SDimitry Andric // Haven't figured out this child pad yet; queue it.
2840b57cec5SDimitry Andric Worklist.push_back(ChildPad);
2850b57cec5SDimitry Andric continue;
2860b57cec5SDimitry Andric }
2870b57cec5SDimitry Andric // We've already checked this child, but might have found that
2880b57cec5SDimitry Andric // it offers no proof either way.
2890b57cec5SDimitry Andric Value *ChildUnwindDestToken = Memo->second;
2900b57cec5SDimitry Andric if (!ChildUnwindDestToken)
2910b57cec5SDimitry Andric continue;
2920b57cec5SDimitry Andric // We already know the child's unwind dest, which can either
2930b57cec5SDimitry Andric // be ConstantTokenNone to indicate unwind to caller, or can
2940b57cec5SDimitry Andric // be another child of the catchpad. Only the former indicates
2950b57cec5SDimitry Andric // the unwind dest of the catchswitch.
2960b57cec5SDimitry Andric if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
2970b57cec5SDimitry Andric UnwindDestToken = ChildUnwindDestToken;
2980b57cec5SDimitry Andric break;
2990b57cec5SDimitry Andric }
3000b57cec5SDimitry Andric assert(getParentPad(ChildUnwindDestToken) == CatchPad);
3010b57cec5SDimitry Andric }
3020b57cec5SDimitry Andric }
3030b57cec5SDimitry Andric }
3040b57cec5SDimitry Andric } else {
3050b57cec5SDimitry Andric auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
3060b57cec5SDimitry Andric for (User *U : CleanupPad->users()) {
3070b57cec5SDimitry Andric if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
3080b57cec5SDimitry Andric if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
3090b57cec5SDimitry Andric UnwindDestToken = RetUnwindDest->getFirstNonPHI();
3100b57cec5SDimitry Andric else
3110b57cec5SDimitry Andric UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
3120b57cec5SDimitry Andric break;
3130b57cec5SDimitry Andric }
3140b57cec5SDimitry Andric Value *ChildUnwindDestToken;
3150b57cec5SDimitry Andric if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
3160b57cec5SDimitry Andric ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
3170b57cec5SDimitry Andric } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
3180b57cec5SDimitry Andric Instruction *ChildPad = cast<Instruction>(U);
3190b57cec5SDimitry Andric auto Memo = MemoMap.find(ChildPad);
3200b57cec5SDimitry Andric if (Memo == MemoMap.end()) {
3210b57cec5SDimitry Andric // Haven't resolved this child yet; queue it and keep searching.
3220b57cec5SDimitry Andric Worklist.push_back(ChildPad);
3230b57cec5SDimitry Andric continue;
3240b57cec5SDimitry Andric }
3250b57cec5SDimitry Andric // We've checked this child, but still need to ignore it if it
3260b57cec5SDimitry Andric // had no proof either way.
3270b57cec5SDimitry Andric ChildUnwindDestToken = Memo->second;
3280b57cec5SDimitry Andric if (!ChildUnwindDestToken)
3290b57cec5SDimitry Andric continue;
3300b57cec5SDimitry Andric } else {
3310b57cec5SDimitry Andric // Not a relevant user of the cleanuppad
3320b57cec5SDimitry Andric continue;
3330b57cec5SDimitry Andric }
3340b57cec5SDimitry Andric // In a well-formed program, the child/invoke must either unwind to
3350b57cec5SDimitry Andric // an(other) child of the cleanup, or exit the cleanup. In the
3360b57cec5SDimitry Andric // first case, continue searching.
3370b57cec5SDimitry Andric if (isa<Instruction>(ChildUnwindDestToken) &&
3380b57cec5SDimitry Andric getParentPad(ChildUnwindDestToken) == CleanupPad)
3390b57cec5SDimitry Andric continue;
3400b57cec5SDimitry Andric UnwindDestToken = ChildUnwindDestToken;
3410b57cec5SDimitry Andric break;
3420b57cec5SDimitry Andric }
3430b57cec5SDimitry Andric }
3440b57cec5SDimitry Andric // If we haven't found an unwind dest for CurrentPad, we may have queued its
3450b57cec5SDimitry Andric // children, so move on to the next in the worklist.
3460b57cec5SDimitry Andric if (!UnwindDestToken)
3470b57cec5SDimitry Andric continue;
3480b57cec5SDimitry Andric
3490b57cec5SDimitry Andric // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
3500b57cec5SDimitry Andric // any ancestors of CurrentPad up to but not including UnwindDestToken's
3510b57cec5SDimitry Andric // parent pad. Record this in the memo map, and check to see if the
3520b57cec5SDimitry Andric // original EHPad being queried is one of the ones exited.
3530b57cec5SDimitry Andric Value *UnwindParent;
3540b57cec5SDimitry Andric if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
3550b57cec5SDimitry Andric UnwindParent = getParentPad(UnwindPad);
3560b57cec5SDimitry Andric else
3570b57cec5SDimitry Andric UnwindParent = nullptr;
3580b57cec5SDimitry Andric bool ExitedOriginalPad = false;
3590b57cec5SDimitry Andric for (Instruction *ExitedPad = CurrentPad;
3600b57cec5SDimitry Andric ExitedPad && ExitedPad != UnwindParent;
3610b57cec5SDimitry Andric ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
3620b57cec5SDimitry Andric // Skip over catchpads since they just follow their catchswitches.
3630b57cec5SDimitry Andric if (isa<CatchPadInst>(ExitedPad))
3640b57cec5SDimitry Andric continue;
3650b57cec5SDimitry Andric MemoMap[ExitedPad] = UnwindDestToken;
3660b57cec5SDimitry Andric ExitedOriginalPad |= (ExitedPad == EHPad);
3670b57cec5SDimitry Andric }
3680b57cec5SDimitry Andric
3690b57cec5SDimitry Andric if (ExitedOriginalPad)
3700b57cec5SDimitry Andric return UnwindDestToken;
3710b57cec5SDimitry Andric
3720b57cec5SDimitry Andric // Continue the search.
3730b57cec5SDimitry Andric }
3740b57cec5SDimitry Andric
3750b57cec5SDimitry Andric // No definitive information is contained within this funclet.
3760b57cec5SDimitry Andric return nullptr;
3770b57cec5SDimitry Andric }
3780b57cec5SDimitry Andric
3790b57cec5SDimitry Andric /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
3800b57cec5SDimitry Andric /// return that pad instruction. If it unwinds to caller, return
3810b57cec5SDimitry Andric /// ConstantTokenNone. If it does not have a definitive unwind destination,
3820b57cec5SDimitry Andric /// return nullptr.
3830b57cec5SDimitry Andric ///
3840b57cec5SDimitry Andric /// This routine gets invoked for calls in funclets in inlinees when inlining
3850b57cec5SDimitry Andric /// an invoke. Since many funclets don't have calls inside them, it's queried
3860b57cec5SDimitry Andric /// on-demand rather than building a map of pads to unwind dests up front.
3870b57cec5SDimitry Andric /// Determining a funclet's unwind dest may require recursively searching its
3880b57cec5SDimitry Andric /// descendants, and also ancestors and cousins if the descendants don't provide
3890b57cec5SDimitry Andric /// an answer. Since most funclets will have their unwind dest immediately
3900b57cec5SDimitry Andric /// available as the unwind dest of a catchswitch or cleanupret, this routine
3910b57cec5SDimitry Andric /// searches top-down from the given pad and then up. To avoid worst-case
3920b57cec5SDimitry Andric /// quadratic run-time given that approach, it uses a memo map to avoid
3930b57cec5SDimitry Andric /// re-processing funclet trees. The callers that rewrite the IR as they go
3940b57cec5SDimitry Andric /// take advantage of this, for correctness, by checking/forcing rewritten
3950b57cec5SDimitry Andric /// pads' entries to match the original callee view.
getUnwindDestToken(Instruction * EHPad,UnwindDestMemoTy & MemoMap)3960b57cec5SDimitry Andric static Value *getUnwindDestToken(Instruction *EHPad,
3970b57cec5SDimitry Andric UnwindDestMemoTy &MemoMap) {
3980b57cec5SDimitry Andric // Catchpads unwind to the same place as their catchswitch;
3990b57cec5SDimitry Andric // redirct any queries on catchpads so the code below can
4000b57cec5SDimitry Andric // deal with just catchswitches and cleanuppads.
4010b57cec5SDimitry Andric if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
4020b57cec5SDimitry Andric EHPad = CPI->getCatchSwitch();
4030b57cec5SDimitry Andric
4040b57cec5SDimitry Andric // Check if we've already determined the unwind dest for this pad.
4050b57cec5SDimitry Andric auto Memo = MemoMap.find(EHPad);
4060b57cec5SDimitry Andric if (Memo != MemoMap.end())
4070b57cec5SDimitry Andric return Memo->second;
4080b57cec5SDimitry Andric
4090b57cec5SDimitry Andric // Search EHPad and, if necessary, its descendants.
4100b57cec5SDimitry Andric Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
4110b57cec5SDimitry Andric assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
4120b57cec5SDimitry Andric if (UnwindDestToken)
4130b57cec5SDimitry Andric return UnwindDestToken;
4140b57cec5SDimitry Andric
4150b57cec5SDimitry Andric // No information is available for this EHPad from itself or any of its
4160b57cec5SDimitry Andric // descendants. An unwind all the way out to a pad in the caller would
4170b57cec5SDimitry Andric // need also to agree with the unwind dest of the parent funclet, so
4180b57cec5SDimitry Andric // search up the chain to try to find a funclet with information. Put
4190b57cec5SDimitry Andric // null entries in the memo map to avoid re-processing as we go up.
4200b57cec5SDimitry Andric MemoMap[EHPad] = nullptr;
4210b57cec5SDimitry Andric #ifndef NDEBUG
4220b57cec5SDimitry Andric SmallPtrSet<Instruction *, 4> TempMemos;
4230b57cec5SDimitry Andric TempMemos.insert(EHPad);
4240b57cec5SDimitry Andric #endif
4250b57cec5SDimitry Andric Instruction *LastUselessPad = EHPad;
4260b57cec5SDimitry Andric Value *AncestorToken;
4270b57cec5SDimitry Andric for (AncestorToken = getParentPad(EHPad);
4280b57cec5SDimitry Andric auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
4290b57cec5SDimitry Andric AncestorToken = getParentPad(AncestorToken)) {
4300b57cec5SDimitry Andric // Skip over catchpads since they just follow their catchswitches.
4310b57cec5SDimitry Andric if (isa<CatchPadInst>(AncestorPad))
4320b57cec5SDimitry Andric continue;
4330b57cec5SDimitry Andric // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
4340b57cec5SDimitry Andric // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
4350b57cec5SDimitry Andric // call to getUnwindDestToken, that would mean that AncestorPad had no
4360b57cec5SDimitry Andric // information in itself, its descendants, or its ancestors. If that
4370b57cec5SDimitry Andric // were the case, then we should also have recorded the lack of information
4380b57cec5SDimitry Andric // for the descendant that we're coming from. So assert that we don't
4390b57cec5SDimitry Andric // find a null entry in the MemoMap for AncestorPad.
4400b57cec5SDimitry Andric assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
4410b57cec5SDimitry Andric auto AncestorMemo = MemoMap.find(AncestorPad);
4420b57cec5SDimitry Andric if (AncestorMemo == MemoMap.end()) {
4430b57cec5SDimitry Andric UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
4440b57cec5SDimitry Andric } else {
4450b57cec5SDimitry Andric UnwindDestToken = AncestorMemo->second;
4460b57cec5SDimitry Andric }
4470b57cec5SDimitry Andric if (UnwindDestToken)
4480b57cec5SDimitry Andric break;
4490b57cec5SDimitry Andric LastUselessPad = AncestorPad;
4500b57cec5SDimitry Andric MemoMap[LastUselessPad] = nullptr;
4510b57cec5SDimitry Andric #ifndef NDEBUG
4520b57cec5SDimitry Andric TempMemos.insert(LastUselessPad);
4530b57cec5SDimitry Andric #endif
4540b57cec5SDimitry Andric }
4550b57cec5SDimitry Andric
4560b57cec5SDimitry Andric // We know that getUnwindDestTokenHelper was called on LastUselessPad and
4570b57cec5SDimitry Andric // returned nullptr (and likewise for EHPad and any of its ancestors up to
4580b57cec5SDimitry Andric // LastUselessPad), so LastUselessPad has no information from below. Since
4590b57cec5SDimitry Andric // getUnwindDestTokenHelper must investigate all downward paths through
4600b57cec5SDimitry Andric // no-information nodes to prove that a node has no information like this,
4610b57cec5SDimitry Andric // and since any time it finds information it records it in the MemoMap for
4620b57cec5SDimitry Andric // not just the immediately-containing funclet but also any ancestors also
4630b57cec5SDimitry Andric // exited, it must be the case that, walking downward from LastUselessPad,
4640b57cec5SDimitry Andric // visiting just those nodes which have not been mapped to an unwind dest
4650b57cec5SDimitry Andric // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
4660b57cec5SDimitry Andric // they are just used to keep getUnwindDestTokenHelper from repeating work),
4670b57cec5SDimitry Andric // any node visited must have been exhaustively searched with no information
4680b57cec5SDimitry Andric // for it found.
4690b57cec5SDimitry Andric SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
4700b57cec5SDimitry Andric while (!Worklist.empty()) {
4710b57cec5SDimitry Andric Instruction *UselessPad = Worklist.pop_back_val();
4720b57cec5SDimitry Andric auto Memo = MemoMap.find(UselessPad);
4730b57cec5SDimitry Andric if (Memo != MemoMap.end() && Memo->second) {
4740b57cec5SDimitry Andric // Here the name 'UselessPad' is a bit of a misnomer, because we've found
4750b57cec5SDimitry Andric // that it is a funclet that does have information about unwinding to
4760b57cec5SDimitry Andric // a particular destination; its parent was a useless pad.
4770b57cec5SDimitry Andric // Since its parent has no information, the unwind edge must not escape
4780b57cec5SDimitry Andric // the parent, and must target a sibling of this pad. This local unwind
4790b57cec5SDimitry Andric // gives us no information about EHPad. Leave it and the subtree rooted
4800b57cec5SDimitry Andric // at it alone.
4810b57cec5SDimitry Andric assert(getParentPad(Memo->second) == getParentPad(UselessPad));
4820b57cec5SDimitry Andric continue;
4830b57cec5SDimitry Andric }
4840b57cec5SDimitry Andric // We know we don't have information for UselesPad. If it has an entry in
4850b57cec5SDimitry Andric // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
4860b57cec5SDimitry Andric // added on this invocation of getUnwindDestToken; if a previous invocation
4870b57cec5SDimitry Andric // recorded nullptr, it would have had to prove that the ancestors of
4880b57cec5SDimitry Andric // UselessPad, which include LastUselessPad, had no information, and that
4890b57cec5SDimitry Andric // in turn would have required proving that the descendants of
4900b57cec5SDimitry Andric // LastUselesPad, which include EHPad, have no information about
4910b57cec5SDimitry Andric // LastUselessPad, which would imply that EHPad was mapped to nullptr in
4920b57cec5SDimitry Andric // the MemoMap on that invocation, which isn't the case if we got here.
4930b57cec5SDimitry Andric assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
4940b57cec5SDimitry Andric // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
4950b57cec5SDimitry Andric // information that we'd be contradicting by making a map entry for it
4960b57cec5SDimitry Andric // (which is something that getUnwindDestTokenHelper must have proved for
4970b57cec5SDimitry Andric // us to get here). Just assert on is direct users here; the checks in
4980b57cec5SDimitry Andric // this downward walk at its descendants will verify that they don't have
4990b57cec5SDimitry Andric // any unwind edges that exit 'UselessPad' either (i.e. they either have no
5000b57cec5SDimitry Andric // unwind edges or unwind to a sibling).
5010b57cec5SDimitry Andric MemoMap[UselessPad] = UnwindDestToken;
5020b57cec5SDimitry Andric if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
5030b57cec5SDimitry Andric assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
5040b57cec5SDimitry Andric for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
5050b57cec5SDimitry Andric auto *CatchPad = HandlerBlock->getFirstNonPHI();
5060b57cec5SDimitry Andric for (User *U : CatchPad->users()) {
5070b57cec5SDimitry Andric assert(
5080b57cec5SDimitry Andric (!isa<InvokeInst>(U) ||
5090b57cec5SDimitry Andric (getParentPad(
5100b57cec5SDimitry Andric cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
5110b57cec5SDimitry Andric CatchPad)) &&
5120b57cec5SDimitry Andric "Expected useless pad");
5130b57cec5SDimitry Andric if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
5140b57cec5SDimitry Andric Worklist.push_back(cast<Instruction>(U));
5150b57cec5SDimitry Andric }
5160b57cec5SDimitry Andric }
5170b57cec5SDimitry Andric } else {
5180b57cec5SDimitry Andric assert(isa<CleanupPadInst>(UselessPad));
5190b57cec5SDimitry Andric for (User *U : UselessPad->users()) {
5200b57cec5SDimitry Andric assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
5210b57cec5SDimitry Andric assert((!isa<InvokeInst>(U) ||
5220b57cec5SDimitry Andric (getParentPad(
5230b57cec5SDimitry Andric cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
5240b57cec5SDimitry Andric UselessPad)) &&
5250b57cec5SDimitry Andric "Expected useless pad");
5260b57cec5SDimitry Andric if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
5270b57cec5SDimitry Andric Worklist.push_back(cast<Instruction>(U));
5280b57cec5SDimitry Andric }
5290b57cec5SDimitry Andric }
5300b57cec5SDimitry Andric }
5310b57cec5SDimitry Andric
5320b57cec5SDimitry Andric return UnwindDestToken;
5330b57cec5SDimitry Andric }
5340b57cec5SDimitry Andric
5350b57cec5SDimitry Andric /// When we inline a basic block into an invoke,
5360b57cec5SDimitry Andric /// we have to turn all of the calls that can throw into invokes.
5370b57cec5SDimitry Andric /// This function analyze BB to see if there are any calls, and if so,
5380b57cec5SDimitry Andric /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
5390b57cec5SDimitry Andric /// nodes in that block with the values specified in InvokeDestPHIValues.
HandleCallsInBlockInlinedThroughInvoke(BasicBlock * BB,BasicBlock * UnwindEdge,UnwindDestMemoTy * FuncletUnwindMap=nullptr)5400b57cec5SDimitry Andric static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
5410b57cec5SDimitry Andric BasicBlock *BB, BasicBlock *UnwindEdge,
5420b57cec5SDimitry Andric UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
543349cc55cSDimitry Andric for (Instruction &I : llvm::make_early_inc_range(*BB)) {
5440b57cec5SDimitry Andric // We only need to check for function calls: inlined invoke
5450b57cec5SDimitry Andric // instructions require no special handling.
546349cc55cSDimitry Andric CallInst *CI = dyn_cast<CallInst>(&I);
5470b57cec5SDimitry Andric
548fe6060f1SDimitry Andric if (!CI || CI->doesNotThrow())
5490b57cec5SDimitry Andric continue;
5500b57cec5SDimitry Andric
5510b57cec5SDimitry Andric // We do not need to (and in fact, cannot) convert possibly throwing calls
5520b57cec5SDimitry Andric // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
5530b57cec5SDimitry Andric // invokes. The caller's "segment" of the deoptimization continuation
5540b57cec5SDimitry Andric // attached to the newly inlined @llvm.experimental_deoptimize
5550b57cec5SDimitry Andric // (resp. @llvm.experimental.guard) call should contain the exception
5560b57cec5SDimitry Andric // handling logic, if any.
5570b57cec5SDimitry Andric if (auto *F = CI->getCalledFunction())
5580b57cec5SDimitry Andric if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
5590b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::experimental_guard)
5600b57cec5SDimitry Andric continue;
5610b57cec5SDimitry Andric
5620b57cec5SDimitry Andric if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
5630b57cec5SDimitry Andric // This call is nested inside a funclet. If that funclet has an unwind
5640b57cec5SDimitry Andric // destination within the inlinee, then unwinding out of this call would
5650b57cec5SDimitry Andric // be UB. Rewriting this call to an invoke which targets the inlined
5660b57cec5SDimitry Andric // invoke's unwind dest would give the call's parent funclet multiple
5670b57cec5SDimitry Andric // unwind destinations, which is something that subsequent EH table
5680b57cec5SDimitry Andric // generation can't handle and that the veirifer rejects. So when we
5690b57cec5SDimitry Andric // see such a call, leave it as a call.
5700b57cec5SDimitry Andric auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
5710b57cec5SDimitry Andric Value *UnwindDestToken =
5720b57cec5SDimitry Andric getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
5730b57cec5SDimitry Andric if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
5740b57cec5SDimitry Andric continue;
5750b57cec5SDimitry Andric #ifndef NDEBUG
5760b57cec5SDimitry Andric Instruction *MemoKey;
5770b57cec5SDimitry Andric if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
5780b57cec5SDimitry Andric MemoKey = CatchPad->getCatchSwitch();
5790b57cec5SDimitry Andric else
5800b57cec5SDimitry Andric MemoKey = FuncletPad;
5810b57cec5SDimitry Andric assert(FuncletUnwindMap->count(MemoKey) &&
5820b57cec5SDimitry Andric (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
5830b57cec5SDimitry Andric "must get memoized to avoid confusing later searches");
5840b57cec5SDimitry Andric #endif // NDEBUG
5850b57cec5SDimitry Andric }
5860b57cec5SDimitry Andric
5870b57cec5SDimitry Andric changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
5880b57cec5SDimitry Andric return BB;
5890b57cec5SDimitry Andric }
5900b57cec5SDimitry Andric return nullptr;
5910b57cec5SDimitry Andric }
5920b57cec5SDimitry Andric
5930b57cec5SDimitry Andric /// If we inlined an invoke site, we need to convert calls
5940b57cec5SDimitry Andric /// in the body of the inlined function into invokes.
5950b57cec5SDimitry Andric ///
5960b57cec5SDimitry Andric /// II is the invoke instruction being inlined. FirstNewBlock is the first
5970b57cec5SDimitry Andric /// block of the inlined code (the last block is the end of the function),
5980b57cec5SDimitry Andric /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedLandingPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)5990b57cec5SDimitry Andric static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
6000b57cec5SDimitry Andric ClonedCodeInfo &InlinedCodeInfo) {
6010b57cec5SDimitry Andric BasicBlock *InvokeDest = II->getUnwindDest();
6020b57cec5SDimitry Andric
6030b57cec5SDimitry Andric Function *Caller = FirstNewBlock->getParent();
6040b57cec5SDimitry Andric
6050b57cec5SDimitry Andric // The inlined code is currently at the end of the function, scan from the
6060b57cec5SDimitry Andric // start of the inlined code to its end, checking for stuff we need to
6070b57cec5SDimitry Andric // rewrite.
6080b57cec5SDimitry Andric LandingPadInliningInfo Invoke(II);
6090b57cec5SDimitry Andric
6100b57cec5SDimitry Andric // Get all of the inlined landing pad instructions.
6110b57cec5SDimitry Andric SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
6120b57cec5SDimitry Andric for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
6130b57cec5SDimitry Andric I != E; ++I)
6140b57cec5SDimitry Andric if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
6150b57cec5SDimitry Andric InlinedLPads.insert(II->getLandingPadInst());
6160b57cec5SDimitry Andric
6170b57cec5SDimitry Andric // Append the clauses from the outer landing pad instruction into the inlined
6180b57cec5SDimitry Andric // landing pad instructions.
6190b57cec5SDimitry Andric LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
6200b57cec5SDimitry Andric for (LandingPadInst *InlinedLPad : InlinedLPads) {
6210b57cec5SDimitry Andric unsigned OuterNum = OuterLPad->getNumClauses();
6220b57cec5SDimitry Andric InlinedLPad->reserveClauses(OuterNum);
6230b57cec5SDimitry Andric for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
6240b57cec5SDimitry Andric InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
6250b57cec5SDimitry Andric if (OuterLPad->isCleanup())
6260b57cec5SDimitry Andric InlinedLPad->setCleanup(true);
6270b57cec5SDimitry Andric }
6280b57cec5SDimitry Andric
6290b57cec5SDimitry Andric for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
6300b57cec5SDimitry Andric BB != E; ++BB) {
6310b57cec5SDimitry Andric if (InlinedCodeInfo.ContainsCalls)
6320b57cec5SDimitry Andric if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
6330b57cec5SDimitry Andric &*BB, Invoke.getOuterResumeDest()))
6340b57cec5SDimitry Andric // Update any PHI nodes in the exceptional block to indicate that there
6350b57cec5SDimitry Andric // is now a new entry in them.
6360b57cec5SDimitry Andric Invoke.addIncomingPHIValuesFor(NewBB);
6370b57cec5SDimitry Andric
6380b57cec5SDimitry Andric // Forward any resumes that are remaining here.
6390b57cec5SDimitry Andric if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
6400b57cec5SDimitry Andric Invoke.forwardResume(RI, InlinedLPads);
6410b57cec5SDimitry Andric }
6420b57cec5SDimitry Andric
6430b57cec5SDimitry Andric // Now that everything is happy, we have one final detail. The PHI nodes in
6440b57cec5SDimitry Andric // the exception destination block still have entries due to the original
6450b57cec5SDimitry Andric // invoke instruction. Eliminate these entries (which might even delete the
6460b57cec5SDimitry Andric // PHI node) now.
6470b57cec5SDimitry Andric InvokeDest->removePredecessor(II->getParent());
6480b57cec5SDimitry Andric }
6490b57cec5SDimitry Andric
6500b57cec5SDimitry Andric /// If we inlined an invoke site, we need to convert calls
6510b57cec5SDimitry Andric /// in the body of the inlined function into invokes.
6520b57cec5SDimitry Andric ///
6530b57cec5SDimitry Andric /// II is the invoke instruction being inlined. FirstNewBlock is the first
6540b57cec5SDimitry Andric /// block of the inlined code (the last block is the end of the function),
6550b57cec5SDimitry Andric /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedEHPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)6560b57cec5SDimitry Andric static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
6570b57cec5SDimitry Andric ClonedCodeInfo &InlinedCodeInfo) {
6580b57cec5SDimitry Andric BasicBlock *UnwindDest = II->getUnwindDest();
6590b57cec5SDimitry Andric Function *Caller = FirstNewBlock->getParent();
6600b57cec5SDimitry Andric
6610b57cec5SDimitry Andric assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
6620b57cec5SDimitry Andric
6630b57cec5SDimitry Andric // If there are PHI nodes in the unwind destination block, we need to keep
6640b57cec5SDimitry Andric // track of which values came into them from the invoke before removing the
6650b57cec5SDimitry Andric // edge from this block.
6660b57cec5SDimitry Andric SmallVector<Value *, 8> UnwindDestPHIValues;
6670b57cec5SDimitry Andric BasicBlock *InvokeBB = II->getParent();
6681fd87a68SDimitry Andric for (PHINode &PHI : UnwindDest->phis()) {
6690b57cec5SDimitry Andric // Save the value to use for this edge.
6701fd87a68SDimitry Andric UnwindDestPHIValues.push_back(PHI.getIncomingValueForBlock(InvokeBB));
6710b57cec5SDimitry Andric }
6720b57cec5SDimitry Andric
6730b57cec5SDimitry Andric // Add incoming-PHI values to the unwind destination block for the given basic
6740b57cec5SDimitry Andric // block, using the values for the original invoke's source block.
6750b57cec5SDimitry Andric auto UpdatePHINodes = [&](BasicBlock *Src) {
6760b57cec5SDimitry Andric BasicBlock::iterator I = UnwindDest->begin();
6770b57cec5SDimitry Andric for (Value *V : UnwindDestPHIValues) {
6780b57cec5SDimitry Andric PHINode *PHI = cast<PHINode>(I);
6790b57cec5SDimitry Andric PHI->addIncoming(V, Src);
6800b57cec5SDimitry Andric ++I;
6810b57cec5SDimitry Andric }
6820b57cec5SDimitry Andric };
6830b57cec5SDimitry Andric
6840b57cec5SDimitry Andric // This connects all the instructions which 'unwind to caller' to the invoke
6850b57cec5SDimitry Andric // destination.
6860b57cec5SDimitry Andric UnwindDestMemoTy FuncletUnwindMap;
6870b57cec5SDimitry Andric for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
6880b57cec5SDimitry Andric BB != E; ++BB) {
6890b57cec5SDimitry Andric if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6900b57cec5SDimitry Andric if (CRI->unwindsToCaller()) {
6910b57cec5SDimitry Andric auto *CleanupPad = CRI->getCleanupPad();
6920b57cec5SDimitry Andric CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
6930b57cec5SDimitry Andric CRI->eraseFromParent();
6940b57cec5SDimitry Andric UpdatePHINodes(&*BB);
6950b57cec5SDimitry Andric // Finding a cleanupret with an unwind destination would confuse
6960b57cec5SDimitry Andric // subsequent calls to getUnwindDestToken, so map the cleanuppad
6970b57cec5SDimitry Andric // to short-circuit any such calls and recognize this as an "unwind
6980b57cec5SDimitry Andric // to caller" cleanup.
6990b57cec5SDimitry Andric assert(!FuncletUnwindMap.count(CleanupPad) ||
7000b57cec5SDimitry Andric isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
7010b57cec5SDimitry Andric FuncletUnwindMap[CleanupPad] =
7020b57cec5SDimitry Andric ConstantTokenNone::get(Caller->getContext());
7030b57cec5SDimitry Andric }
7040b57cec5SDimitry Andric }
7050b57cec5SDimitry Andric
7060b57cec5SDimitry Andric Instruction *I = BB->getFirstNonPHI();
7070b57cec5SDimitry Andric if (!I->isEHPad())
7080b57cec5SDimitry Andric continue;
7090b57cec5SDimitry Andric
7100b57cec5SDimitry Andric Instruction *Replacement = nullptr;
7110b57cec5SDimitry Andric if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
7120b57cec5SDimitry Andric if (CatchSwitch->unwindsToCaller()) {
7130b57cec5SDimitry Andric Value *UnwindDestToken;
7140b57cec5SDimitry Andric if (auto *ParentPad =
7150b57cec5SDimitry Andric dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
7160b57cec5SDimitry Andric // This catchswitch is nested inside another funclet. If that
7170b57cec5SDimitry Andric // funclet has an unwind destination within the inlinee, then
7180b57cec5SDimitry Andric // unwinding out of this catchswitch would be UB. Rewriting this
7190b57cec5SDimitry Andric // catchswitch to unwind to the inlined invoke's unwind dest would
7200b57cec5SDimitry Andric // give the parent funclet multiple unwind destinations, which is
7210b57cec5SDimitry Andric // something that subsequent EH table generation can't handle and
7220b57cec5SDimitry Andric // that the veirifer rejects. So when we see such a call, leave it
7230b57cec5SDimitry Andric // as "unwind to caller".
7240b57cec5SDimitry Andric UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
7250b57cec5SDimitry Andric if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
7260b57cec5SDimitry Andric continue;
7270b57cec5SDimitry Andric } else {
7280b57cec5SDimitry Andric // This catchswitch has no parent to inherit constraints from, and
7290b57cec5SDimitry Andric // none of its descendants can have an unwind edge that exits it and
7300b57cec5SDimitry Andric // targets another funclet in the inlinee. It may or may not have a
7310b57cec5SDimitry Andric // descendant that definitively has an unwind to caller. In either
7320b57cec5SDimitry Andric // case, we'll have to assume that any unwinds out of it may need to
7330b57cec5SDimitry Andric // be routed to the caller, so treat it as though it has a definitive
7340b57cec5SDimitry Andric // unwind to caller.
7350b57cec5SDimitry Andric UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
7360b57cec5SDimitry Andric }
7370b57cec5SDimitry Andric auto *NewCatchSwitch = CatchSwitchInst::Create(
7380b57cec5SDimitry Andric CatchSwitch->getParentPad(), UnwindDest,
7390b57cec5SDimitry Andric CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
7400b57cec5SDimitry Andric CatchSwitch);
7410b57cec5SDimitry Andric for (BasicBlock *PadBB : CatchSwitch->handlers())
7420b57cec5SDimitry Andric NewCatchSwitch->addHandler(PadBB);
7430b57cec5SDimitry Andric // Propagate info for the old catchswitch over to the new one in
7440b57cec5SDimitry Andric // the unwind map. This also serves to short-circuit any subsequent
7450b57cec5SDimitry Andric // checks for the unwind dest of this catchswitch, which would get
7460b57cec5SDimitry Andric // confused if they found the outer handler in the callee.
7470b57cec5SDimitry Andric FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
7480b57cec5SDimitry Andric Replacement = NewCatchSwitch;
7490b57cec5SDimitry Andric }
7500b57cec5SDimitry Andric } else if (!isa<FuncletPadInst>(I)) {
7510b57cec5SDimitry Andric llvm_unreachable("unexpected EHPad!");
7520b57cec5SDimitry Andric }
7530b57cec5SDimitry Andric
7540b57cec5SDimitry Andric if (Replacement) {
7550b57cec5SDimitry Andric Replacement->takeName(I);
7560b57cec5SDimitry Andric I->replaceAllUsesWith(Replacement);
7570b57cec5SDimitry Andric I->eraseFromParent();
7580b57cec5SDimitry Andric UpdatePHINodes(&*BB);
7590b57cec5SDimitry Andric }
7600b57cec5SDimitry Andric }
7610b57cec5SDimitry Andric
7620b57cec5SDimitry Andric if (InlinedCodeInfo.ContainsCalls)
7630b57cec5SDimitry Andric for (Function::iterator BB = FirstNewBlock->getIterator(),
7640b57cec5SDimitry Andric E = Caller->end();
7650b57cec5SDimitry Andric BB != E; ++BB)
7660b57cec5SDimitry Andric if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
7670b57cec5SDimitry Andric &*BB, UnwindDest, &FuncletUnwindMap))
7680b57cec5SDimitry Andric // Update any PHI nodes in the exceptional block to indicate that there
7690b57cec5SDimitry Andric // is now a new entry in them.
7700b57cec5SDimitry Andric UpdatePHINodes(NewBB);
7710b57cec5SDimitry Andric
7720b57cec5SDimitry Andric // Now that everything is happy, we have one final detail. The PHI nodes in
7730b57cec5SDimitry Andric // the exception destination block still have entries due to the original
7740b57cec5SDimitry Andric // invoke instruction. Eliminate these entries (which might even delete the
7750b57cec5SDimitry Andric // PHI node) now.
7760b57cec5SDimitry Andric UnwindDest->removePredecessor(InvokeBB);
7770b57cec5SDimitry Andric }
7780b57cec5SDimitry Andric
haveCommonPrefix(MDNode * MIBStackContext,MDNode * CallsiteStackContext)779bdd1243dSDimitry Andric static bool haveCommonPrefix(MDNode *MIBStackContext,
780bdd1243dSDimitry Andric MDNode *CallsiteStackContext) {
781bdd1243dSDimitry Andric assert(MIBStackContext->getNumOperands() > 0 &&
782bdd1243dSDimitry Andric CallsiteStackContext->getNumOperands() > 0);
783bdd1243dSDimitry Andric // Because of the context trimming performed during matching, the callsite
784bdd1243dSDimitry Andric // context could have more stack ids than the MIB. We match up to the end of
785bdd1243dSDimitry Andric // the shortest stack context.
786bdd1243dSDimitry Andric for (auto MIBStackIter = MIBStackContext->op_begin(),
787bdd1243dSDimitry Andric CallsiteStackIter = CallsiteStackContext->op_begin();
788bdd1243dSDimitry Andric MIBStackIter != MIBStackContext->op_end() &&
789bdd1243dSDimitry Andric CallsiteStackIter != CallsiteStackContext->op_end();
790bdd1243dSDimitry Andric MIBStackIter++, CallsiteStackIter++) {
791bdd1243dSDimitry Andric auto *Val1 = mdconst::dyn_extract<ConstantInt>(*MIBStackIter);
792bdd1243dSDimitry Andric auto *Val2 = mdconst::dyn_extract<ConstantInt>(*CallsiteStackIter);
793bdd1243dSDimitry Andric assert(Val1 && Val2);
794bdd1243dSDimitry Andric if (Val1->getZExtValue() != Val2->getZExtValue())
795bdd1243dSDimitry Andric return false;
796bdd1243dSDimitry Andric }
797bdd1243dSDimitry Andric return true;
798bdd1243dSDimitry Andric }
799bdd1243dSDimitry Andric
removeMemProfMetadata(CallBase * Call)800bdd1243dSDimitry Andric static void removeMemProfMetadata(CallBase *Call) {
801bdd1243dSDimitry Andric Call->setMetadata(LLVMContext::MD_memprof, nullptr);
802bdd1243dSDimitry Andric }
803bdd1243dSDimitry Andric
removeCallsiteMetadata(CallBase * Call)804bdd1243dSDimitry Andric static void removeCallsiteMetadata(CallBase *Call) {
805bdd1243dSDimitry Andric Call->setMetadata(LLVMContext::MD_callsite, nullptr);
806bdd1243dSDimitry Andric }
807bdd1243dSDimitry Andric
updateMemprofMetadata(CallBase * CI,const std::vector<Metadata * > & MIBList)808bdd1243dSDimitry Andric static void updateMemprofMetadata(CallBase *CI,
809bdd1243dSDimitry Andric const std::vector<Metadata *> &MIBList) {
810bdd1243dSDimitry Andric assert(!MIBList.empty());
811bdd1243dSDimitry Andric // Remove existing memprof, which will either be replaced or may not be needed
812bdd1243dSDimitry Andric // if we are able to use a single allocation type function attribute.
813bdd1243dSDimitry Andric removeMemProfMetadata(CI);
814bdd1243dSDimitry Andric CallStackTrie CallStack;
815bdd1243dSDimitry Andric for (Metadata *MIB : MIBList)
816bdd1243dSDimitry Andric CallStack.addCallStack(cast<MDNode>(MIB));
817bdd1243dSDimitry Andric bool MemprofMDAttached = CallStack.buildAndAttachMIBMetadata(CI);
818bdd1243dSDimitry Andric assert(MemprofMDAttached == CI->hasMetadata(LLVMContext::MD_memprof));
819bdd1243dSDimitry Andric if (!MemprofMDAttached)
820bdd1243dSDimitry Andric // If we used a function attribute remove the callsite metadata as well.
821bdd1243dSDimitry Andric removeCallsiteMetadata(CI);
822bdd1243dSDimitry Andric }
823bdd1243dSDimitry Andric
824bdd1243dSDimitry Andric // Update the metadata on the inlined copy ClonedCall of a call OrigCall in the
825bdd1243dSDimitry Andric // inlined callee body, based on the callsite metadata InlinedCallsiteMD from
826bdd1243dSDimitry Andric // the call that was inlined.
propagateMemProfHelper(const CallBase * OrigCall,CallBase * ClonedCall,MDNode * InlinedCallsiteMD)827bdd1243dSDimitry Andric static void propagateMemProfHelper(const CallBase *OrigCall,
828bdd1243dSDimitry Andric CallBase *ClonedCall,
829bdd1243dSDimitry Andric MDNode *InlinedCallsiteMD) {
830bdd1243dSDimitry Andric MDNode *OrigCallsiteMD = ClonedCall->getMetadata(LLVMContext::MD_callsite);
831bdd1243dSDimitry Andric MDNode *ClonedCallsiteMD = nullptr;
832bdd1243dSDimitry Andric // Check if the call originally had callsite metadata, and update it for the
833bdd1243dSDimitry Andric // new call in the inlined body.
834bdd1243dSDimitry Andric if (OrigCallsiteMD) {
835bdd1243dSDimitry Andric // The cloned call's context is now the concatenation of the original call's
836bdd1243dSDimitry Andric // callsite metadata and the callsite metadata on the call where it was
837bdd1243dSDimitry Andric // inlined.
838bdd1243dSDimitry Andric ClonedCallsiteMD = MDNode::concatenate(OrigCallsiteMD, InlinedCallsiteMD);
839bdd1243dSDimitry Andric ClonedCall->setMetadata(LLVMContext::MD_callsite, ClonedCallsiteMD);
840bdd1243dSDimitry Andric }
841bdd1243dSDimitry Andric
842bdd1243dSDimitry Andric // Update any memprof metadata on the cloned call.
843bdd1243dSDimitry Andric MDNode *OrigMemProfMD = ClonedCall->getMetadata(LLVMContext::MD_memprof);
844bdd1243dSDimitry Andric if (!OrigMemProfMD)
845bdd1243dSDimitry Andric return;
846bdd1243dSDimitry Andric // We currently expect that allocations with memprof metadata also have
847bdd1243dSDimitry Andric // callsite metadata for the allocation's part of the context.
848bdd1243dSDimitry Andric assert(OrigCallsiteMD);
849bdd1243dSDimitry Andric
850bdd1243dSDimitry Andric // New call's MIB list.
851bdd1243dSDimitry Andric std::vector<Metadata *> NewMIBList;
852bdd1243dSDimitry Andric
853bdd1243dSDimitry Andric // For each MIB metadata, check if its call stack context starts with the
854bdd1243dSDimitry Andric // new clone's callsite metadata. If so, that MIB goes onto the cloned call in
855bdd1243dSDimitry Andric // the inlined body. If not, it stays on the out-of-line original call.
856bdd1243dSDimitry Andric for (auto &MIBOp : OrigMemProfMD->operands()) {
857bdd1243dSDimitry Andric MDNode *MIB = dyn_cast<MDNode>(MIBOp);
858bdd1243dSDimitry Andric // Stack is first operand of MIB.
859bdd1243dSDimitry Andric MDNode *StackMD = getMIBStackNode(MIB);
860bdd1243dSDimitry Andric assert(StackMD);
861bdd1243dSDimitry Andric // See if the new cloned callsite context matches this profiled context.
862bdd1243dSDimitry Andric if (haveCommonPrefix(StackMD, ClonedCallsiteMD))
863bdd1243dSDimitry Andric // Add it to the cloned call's MIB list.
864bdd1243dSDimitry Andric NewMIBList.push_back(MIB);
865bdd1243dSDimitry Andric }
866bdd1243dSDimitry Andric if (NewMIBList.empty()) {
867bdd1243dSDimitry Andric removeMemProfMetadata(ClonedCall);
868bdd1243dSDimitry Andric removeCallsiteMetadata(ClonedCall);
869bdd1243dSDimitry Andric return;
870bdd1243dSDimitry Andric }
871bdd1243dSDimitry Andric if (NewMIBList.size() < OrigMemProfMD->getNumOperands())
872bdd1243dSDimitry Andric updateMemprofMetadata(ClonedCall, NewMIBList);
873bdd1243dSDimitry Andric }
874bdd1243dSDimitry Andric
875bdd1243dSDimitry Andric // Update memprof related metadata (!memprof and !callsite) based on the
876bdd1243dSDimitry Andric // inlining of Callee into the callsite at CB. The updates include merging the
877bdd1243dSDimitry Andric // inlined callee's callsite metadata with that of the inlined call,
878bdd1243dSDimitry Andric // and moving the subset of any memprof contexts to the inlined callee
879bdd1243dSDimitry Andric // allocations if they match the new inlined call stack.
880bdd1243dSDimitry Andric static void
propagateMemProfMetadata(Function * Callee,CallBase & CB,bool ContainsMemProfMetadata,const ValueMap<const Value *,WeakTrackingVH> & VMap)881bdd1243dSDimitry Andric propagateMemProfMetadata(Function *Callee, CallBase &CB,
882bdd1243dSDimitry Andric bool ContainsMemProfMetadata,
883bdd1243dSDimitry Andric const ValueMap<const Value *, WeakTrackingVH> &VMap) {
884bdd1243dSDimitry Andric MDNode *CallsiteMD = CB.getMetadata(LLVMContext::MD_callsite);
885bdd1243dSDimitry Andric // Only need to update if the inlined callsite had callsite metadata, or if
886bdd1243dSDimitry Andric // there was any memprof metadata inlined.
887bdd1243dSDimitry Andric if (!CallsiteMD && !ContainsMemProfMetadata)
888bdd1243dSDimitry Andric return;
889bdd1243dSDimitry Andric
890bdd1243dSDimitry Andric // Propagate metadata onto the cloned calls in the inlined callee.
891bdd1243dSDimitry Andric for (const auto &Entry : VMap) {
892bdd1243dSDimitry Andric // See if this is a call that has been inlined and remapped, and not
893bdd1243dSDimitry Andric // simplified away in the process.
894bdd1243dSDimitry Andric auto *OrigCall = dyn_cast_or_null<CallBase>(Entry.first);
895bdd1243dSDimitry Andric auto *ClonedCall = dyn_cast_or_null<CallBase>(Entry.second);
896bdd1243dSDimitry Andric if (!OrigCall || !ClonedCall)
897bdd1243dSDimitry Andric continue;
898bdd1243dSDimitry Andric // If the inlined callsite did not have any callsite metadata, then it isn't
899bdd1243dSDimitry Andric // involved in any profiled call contexts, and we can remove any memprof
900bdd1243dSDimitry Andric // metadata on the cloned call.
901bdd1243dSDimitry Andric if (!CallsiteMD) {
902bdd1243dSDimitry Andric removeMemProfMetadata(ClonedCall);
903bdd1243dSDimitry Andric removeCallsiteMetadata(ClonedCall);
904bdd1243dSDimitry Andric continue;
905bdd1243dSDimitry Andric }
906bdd1243dSDimitry Andric propagateMemProfHelper(OrigCall, ClonedCall, CallsiteMD);
907bdd1243dSDimitry Andric }
908bdd1243dSDimitry Andric }
909bdd1243dSDimitry Andric
910e8d8bef9SDimitry Andric /// When inlining a call site that has !llvm.mem.parallel_loop_access,
911e8d8bef9SDimitry Andric /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
912e8d8bef9SDimitry Andric /// be propagated to all memory-accessing cloned instructions.
PropagateCallSiteMetadata(CallBase & CB,Function::iterator FStart,Function::iterator FEnd)91323408297SDimitry Andric static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart,
91423408297SDimitry Andric Function::iterator FEnd) {
915e8d8bef9SDimitry Andric MDNode *MemParallelLoopAccess =
916e8d8bef9SDimitry Andric CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
917e8d8bef9SDimitry Andric MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
918e8d8bef9SDimitry Andric MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
919e8d8bef9SDimitry Andric MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
920e8d8bef9SDimitry Andric if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
9210b57cec5SDimitry Andric return;
9220b57cec5SDimitry Andric
92323408297SDimitry Andric for (BasicBlock &BB : make_range(FStart, FEnd)) {
92423408297SDimitry Andric for (Instruction &I : BB) {
925e8d8bef9SDimitry Andric // This metadata is only relevant for instructions that access memory.
92623408297SDimitry Andric if (!I.mayReadOrWriteMemory())
927e8d8bef9SDimitry Andric continue;
928e8d8bef9SDimitry Andric
929e8d8bef9SDimitry Andric if (MemParallelLoopAccess) {
930e8d8bef9SDimitry Andric // TODO: This probably should not overwrite MemParalleLoopAccess.
931e8d8bef9SDimitry Andric MemParallelLoopAccess = MDNode::concatenate(
93223408297SDimitry Andric I.getMetadata(LLVMContext::MD_mem_parallel_loop_access),
933e8d8bef9SDimitry Andric MemParallelLoopAccess);
93423408297SDimitry Andric I.setMetadata(LLVMContext::MD_mem_parallel_loop_access,
935e8d8bef9SDimitry Andric MemParallelLoopAccess);
936e8d8bef9SDimitry Andric }
937e8d8bef9SDimitry Andric
938e8d8bef9SDimitry Andric if (AccessGroup)
93923408297SDimitry Andric I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
94023408297SDimitry Andric I.getMetadata(LLVMContext::MD_access_group), AccessGroup));
941e8d8bef9SDimitry Andric
942e8d8bef9SDimitry Andric if (AliasScope)
94323408297SDimitry Andric I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
94423408297SDimitry Andric I.getMetadata(LLVMContext::MD_alias_scope), AliasScope));
945e8d8bef9SDimitry Andric
946e8d8bef9SDimitry Andric if (NoAlias)
94723408297SDimitry Andric I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
94823408297SDimitry Andric I.getMetadata(LLVMContext::MD_noalias), NoAlias));
94923408297SDimitry Andric }
9500b57cec5SDimitry Andric }
9510b57cec5SDimitry Andric }
9520b57cec5SDimitry Andric
953972a253aSDimitry Andric /// Bundle operands of the inlined function must be added to inlined call sites.
PropagateOperandBundles(Function::iterator InlinedBB,Instruction * CallSiteEHPad)954972a253aSDimitry Andric static void PropagateOperandBundles(Function::iterator InlinedBB,
955972a253aSDimitry Andric Instruction *CallSiteEHPad) {
956972a253aSDimitry Andric for (Instruction &II : llvm::make_early_inc_range(*InlinedBB)) {
957972a253aSDimitry Andric CallBase *I = dyn_cast<CallBase>(&II);
958972a253aSDimitry Andric if (!I)
959972a253aSDimitry Andric continue;
960972a253aSDimitry Andric // Skip call sites which already have a "funclet" bundle.
961972a253aSDimitry Andric if (I->getOperandBundle(LLVMContext::OB_funclet))
962972a253aSDimitry Andric continue;
963972a253aSDimitry Andric // Skip call sites which are nounwind intrinsics (as long as they don't
964972a253aSDimitry Andric // lower into regular function calls in the course of IR transformations).
965972a253aSDimitry Andric auto *CalledFn =
966972a253aSDimitry Andric dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
967972a253aSDimitry Andric if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow() &&
968972a253aSDimitry Andric !IntrinsicInst::mayLowerToFunctionCall(CalledFn->getIntrinsicID()))
969972a253aSDimitry Andric continue;
970972a253aSDimitry Andric
971972a253aSDimitry Andric SmallVector<OperandBundleDef, 1> OpBundles;
972972a253aSDimitry Andric I->getOperandBundlesAsDefs(OpBundles);
973972a253aSDimitry Andric OpBundles.emplace_back("funclet", CallSiteEHPad);
974972a253aSDimitry Andric
975972a253aSDimitry Andric Instruction *NewInst = CallBase::Create(I, OpBundles, I);
976972a253aSDimitry Andric NewInst->takeName(I);
977972a253aSDimitry Andric I->replaceAllUsesWith(NewInst);
978972a253aSDimitry Andric I->eraseFromParent();
979972a253aSDimitry Andric }
980972a253aSDimitry Andric }
981972a253aSDimitry Andric
982349cc55cSDimitry Andric namespace {
983e8d8bef9SDimitry Andric /// Utility for cloning !noalias and !alias.scope metadata. When a code region
984e8d8bef9SDimitry Andric /// using scoped alias metadata is inlined, the aliasing relationships may not
985e8d8bef9SDimitry Andric /// hold between the two version. It is necessary to create a deep clone of the
986e8d8bef9SDimitry Andric /// metadata, putting the two versions in separate scope domains.
987e8d8bef9SDimitry Andric class ScopedAliasMetadataDeepCloner {
988e8d8bef9SDimitry Andric using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
9890b57cec5SDimitry Andric SetVector<const MDNode *> MD;
990e8d8bef9SDimitry Andric MetadataMap MDMap;
991e8d8bef9SDimitry Andric void addRecursiveMetadataUses();
9920b57cec5SDimitry Andric
993e8d8bef9SDimitry Andric public:
994e8d8bef9SDimitry Andric ScopedAliasMetadataDeepCloner(const Function *F);
9950b57cec5SDimitry Andric
996e8d8bef9SDimitry Andric /// Create a new clone of the scoped alias metadata, which will be used by
997e8d8bef9SDimitry Andric /// subsequent remap() calls.
998e8d8bef9SDimitry Andric void clone();
999e8d8bef9SDimitry Andric
100023408297SDimitry Andric /// Remap instructions in the given range from the original to the cloned
1001e8d8bef9SDimitry Andric /// metadata.
100223408297SDimitry Andric void remap(Function::iterator FStart, Function::iterator FEnd);
1003e8d8bef9SDimitry Andric };
1004349cc55cSDimitry Andric } // namespace
1005e8d8bef9SDimitry Andric
ScopedAliasMetadataDeepCloner(const Function * F)1006e8d8bef9SDimitry Andric ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
1007e8d8bef9SDimitry Andric const Function *F) {
1008e8d8bef9SDimitry Andric for (const BasicBlock &BB : *F) {
1009e8d8bef9SDimitry Andric for (const Instruction &I : BB) {
1010e8d8bef9SDimitry Andric if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
10110b57cec5SDimitry Andric MD.insert(M);
1012e8d8bef9SDimitry Andric if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
10130b57cec5SDimitry Andric MD.insert(M);
1014e8d8bef9SDimitry Andric
1015e8d8bef9SDimitry Andric // We also need to clone the metadata in noalias intrinsics.
1016e8d8bef9SDimitry Andric if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1017e8d8bef9SDimitry Andric MD.insert(Decl->getScopeList());
1018e8d8bef9SDimitry Andric }
1019e8d8bef9SDimitry Andric }
1020e8d8bef9SDimitry Andric addRecursiveMetadataUses();
10210b57cec5SDimitry Andric }
10220b57cec5SDimitry Andric
addRecursiveMetadataUses()1023e8d8bef9SDimitry Andric void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
10240b57cec5SDimitry Andric SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
10250b57cec5SDimitry Andric while (!Queue.empty()) {
10260b57cec5SDimitry Andric const MDNode *M = cast<MDNode>(Queue.pop_back_val());
1027e8d8bef9SDimitry Andric for (const Metadata *Op : M->operands())
1028e8d8bef9SDimitry Andric if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
1029e8d8bef9SDimitry Andric if (MD.insert(OpMD))
1030e8d8bef9SDimitry Andric Queue.push_back(OpMD);
1031e8d8bef9SDimitry Andric }
10320b57cec5SDimitry Andric }
10330b57cec5SDimitry Andric
clone()1034e8d8bef9SDimitry Andric void ScopedAliasMetadataDeepCloner::clone() {
1035e8d8bef9SDimitry Andric assert(MDMap.empty() && "clone() already called ?");
1036e8d8bef9SDimitry Andric
10370b57cec5SDimitry Andric SmallVector<TempMDTuple, 16> DummyNodes;
10380b57cec5SDimitry Andric for (const MDNode *I : MD) {
1039bdd1243dSDimitry Andric DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), std::nullopt));
10400b57cec5SDimitry Andric MDMap[I].reset(DummyNodes.back().get());
10410b57cec5SDimitry Andric }
10420b57cec5SDimitry Andric
10430b57cec5SDimitry Andric // Create new metadata nodes to replace the dummy nodes, replacing old
10440b57cec5SDimitry Andric // metadata references with either a dummy node or an already-created new
10450b57cec5SDimitry Andric // node.
10460b57cec5SDimitry Andric SmallVector<Metadata *, 4> NewOps;
1047e8d8bef9SDimitry Andric for (const MDNode *I : MD) {
1048e8d8bef9SDimitry Andric for (const Metadata *Op : I->operands()) {
1049e8d8bef9SDimitry Andric if (const MDNode *M = dyn_cast<MDNode>(Op))
10500b57cec5SDimitry Andric NewOps.push_back(MDMap[M]);
10510b57cec5SDimitry Andric else
1052e8d8bef9SDimitry Andric NewOps.push_back(const_cast<Metadata *>(Op));
10530b57cec5SDimitry Andric }
10540b57cec5SDimitry Andric
1055e8d8bef9SDimitry Andric MDNode *NewM = MDNode::get(I->getContext(), NewOps);
10560b57cec5SDimitry Andric MDTuple *TempM = cast<MDTuple>(MDMap[I]);
10570b57cec5SDimitry Andric assert(TempM->isTemporary() && "Expected temporary node");
10580b57cec5SDimitry Andric
10590b57cec5SDimitry Andric TempM->replaceAllUsesWith(NewM);
1060e8d8bef9SDimitry Andric NewOps.clear();
1061e8d8bef9SDimitry Andric }
10620b57cec5SDimitry Andric }
10630b57cec5SDimitry Andric
remap(Function::iterator FStart,Function::iterator FEnd)106423408297SDimitry Andric void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart,
106523408297SDimitry Andric Function::iterator FEnd) {
1066e8d8bef9SDimitry Andric if (MDMap.empty())
1067e8d8bef9SDimitry Andric return; // Nothing to do.
1068e8d8bef9SDimitry Andric
106923408297SDimitry Andric for (BasicBlock &BB : make_range(FStart, FEnd)) {
107023408297SDimitry Andric for (Instruction &I : BB) {
107123408297SDimitry Andric // TODO: The null checks for the MDMap.lookup() results should no longer
107223408297SDimitry Andric // be necessary.
107323408297SDimitry Andric if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
1074d409305fSDimitry Andric if (MDNode *MNew = MDMap.lookup(M))
107523408297SDimitry Andric I.setMetadata(LLVMContext::MD_alias_scope, MNew);
10760b57cec5SDimitry Andric
107723408297SDimitry Andric if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
1078d409305fSDimitry Andric if (MDNode *MNew = MDMap.lookup(M))
107923408297SDimitry Andric I.setMetadata(LLVMContext::MD_noalias, MNew);
1080e8d8bef9SDimitry Andric
108123408297SDimitry Andric if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1082d409305fSDimitry Andric if (MDNode *MNew = MDMap.lookup(Decl->getScopeList()))
1083d409305fSDimitry Andric Decl->setScopeList(MNew);
10840b57cec5SDimitry Andric }
10850b57cec5SDimitry Andric }
108623408297SDimitry Andric }
10870b57cec5SDimitry Andric
10880b57cec5SDimitry Andric /// If the inlined function has noalias arguments,
10890b57cec5SDimitry Andric /// then add new alias scopes for each noalias argument, tag the mapped noalias
10900b57cec5SDimitry Andric /// parameters with noalias metadata specifying the new scope, and tag all
10910b57cec5SDimitry Andric /// non-derived loads, stores and memory intrinsics with the new alias scopes.
AddAliasScopeMetadata(CallBase & CB,ValueToValueMapTy & VMap,const DataLayout & DL,AAResults * CalleeAAR,ClonedCodeInfo & InlinedFunctionInfo)10925ffd83dbSDimitry Andric static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
1093fe6060f1SDimitry Andric const DataLayout &DL, AAResults *CalleeAAR,
1094fe6060f1SDimitry Andric ClonedCodeInfo &InlinedFunctionInfo) {
10950b57cec5SDimitry Andric if (!EnableNoAliasConversion)
10960b57cec5SDimitry Andric return;
10970b57cec5SDimitry Andric
10985ffd83dbSDimitry Andric const Function *CalledFunc = CB.getCalledFunction();
10990b57cec5SDimitry Andric SmallVector<const Argument *, 4> NoAliasArgs;
11000b57cec5SDimitry Andric
11010b57cec5SDimitry Andric for (const Argument &Arg : CalledFunc->args())
11025ffd83dbSDimitry Andric if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
11030b57cec5SDimitry Andric NoAliasArgs.push_back(&Arg);
11040b57cec5SDimitry Andric
11050b57cec5SDimitry Andric if (NoAliasArgs.empty())
11060b57cec5SDimitry Andric return;
11070b57cec5SDimitry Andric
11080b57cec5SDimitry Andric // To do a good job, if a noalias variable is captured, we need to know if
11090b57cec5SDimitry Andric // the capture point dominates the particular use we're considering.
11100b57cec5SDimitry Andric DominatorTree DT;
11110b57cec5SDimitry Andric DT.recalculate(const_cast<Function&>(*CalledFunc));
11120b57cec5SDimitry Andric
11130b57cec5SDimitry Andric // noalias indicates that pointer values based on the argument do not alias
11140b57cec5SDimitry Andric // pointer values which are not based on it. So we add a new "scope" for each
11150b57cec5SDimitry Andric // noalias function argument. Accesses using pointers based on that argument
11160b57cec5SDimitry Andric // become part of that alias scope, accesses using pointers not based on that
11170b57cec5SDimitry Andric // argument are tagged as noalias with that scope.
11180b57cec5SDimitry Andric
11190b57cec5SDimitry Andric DenseMap<const Argument *, MDNode *> NewScopes;
11200b57cec5SDimitry Andric MDBuilder MDB(CalledFunc->getContext());
11210b57cec5SDimitry Andric
11220b57cec5SDimitry Andric // Create a new scope domain for this function.
11230b57cec5SDimitry Andric MDNode *NewDomain =
11240b57cec5SDimitry Andric MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
11250b57cec5SDimitry Andric for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
11260b57cec5SDimitry Andric const Argument *A = NoAliasArgs[i];
11270b57cec5SDimitry Andric
11285ffd83dbSDimitry Andric std::string Name = std::string(CalledFunc->getName());
11290b57cec5SDimitry Andric if (A->hasName()) {
11300b57cec5SDimitry Andric Name += ": %";
11310b57cec5SDimitry Andric Name += A->getName();
11320b57cec5SDimitry Andric } else {
11330b57cec5SDimitry Andric Name += ": argument ";
11340b57cec5SDimitry Andric Name += utostr(i);
11350b57cec5SDimitry Andric }
11360b57cec5SDimitry Andric
11370b57cec5SDimitry Andric // Note: We always create a new anonymous root here. This is true regardless
11380b57cec5SDimitry Andric // of the linkage of the callee because the aliasing "scope" is not just a
11390b57cec5SDimitry Andric // property of the callee, but also all control dependencies in the caller.
11400b57cec5SDimitry Andric MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
11410b57cec5SDimitry Andric NewScopes.insert(std::make_pair(A, NewScope));
1142e8d8bef9SDimitry Andric
1143e8d8bef9SDimitry Andric if (UseNoAliasIntrinsic) {
1144e8d8bef9SDimitry Andric // Introduce a llvm.experimental.noalias.scope.decl for the noalias
1145e8d8bef9SDimitry Andric // argument.
1146e8d8bef9SDimitry Andric MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
1147e8d8bef9SDimitry Andric auto *NoAliasDecl =
1148e8d8bef9SDimitry Andric IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
1149e8d8bef9SDimitry Andric // Ignore the result for now. The result will be used when the
1150e8d8bef9SDimitry Andric // llvm.noalias intrinsic is introduced.
1151e8d8bef9SDimitry Andric (void)NoAliasDecl;
1152e8d8bef9SDimitry Andric }
11530b57cec5SDimitry Andric }
11540b57cec5SDimitry Andric
11550b57cec5SDimitry Andric // Iterate over all new instructions in the map; for all memory-access
11560b57cec5SDimitry Andric // instructions, add the alias scope metadata.
11570b57cec5SDimitry Andric for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
11580b57cec5SDimitry Andric VMI != VMIE; ++VMI) {
11590b57cec5SDimitry Andric if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
11600b57cec5SDimitry Andric if (!VMI->second)
11610b57cec5SDimitry Andric continue;
11620b57cec5SDimitry Andric
11630b57cec5SDimitry Andric Instruction *NI = dyn_cast<Instruction>(VMI->second);
1164fe6060f1SDimitry Andric if (!NI || InlinedFunctionInfo.isSimplified(I, NI))
11650b57cec5SDimitry Andric continue;
11660b57cec5SDimitry Andric
11670b57cec5SDimitry Andric bool IsArgMemOnlyCall = false, IsFuncCall = false;
11680b57cec5SDimitry Andric SmallVector<const Value *, 2> PtrArgs;
11690b57cec5SDimitry Andric
11700b57cec5SDimitry Andric if (const LoadInst *LI = dyn_cast<LoadInst>(I))
11710b57cec5SDimitry Andric PtrArgs.push_back(LI->getPointerOperand());
11720b57cec5SDimitry Andric else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
11730b57cec5SDimitry Andric PtrArgs.push_back(SI->getPointerOperand());
11740b57cec5SDimitry Andric else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
11750b57cec5SDimitry Andric PtrArgs.push_back(VAAI->getPointerOperand());
11760b57cec5SDimitry Andric else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
11770b57cec5SDimitry Andric PtrArgs.push_back(CXI->getPointerOperand());
11780b57cec5SDimitry Andric else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
11790b57cec5SDimitry Andric PtrArgs.push_back(RMWI->getPointerOperand());
11800b57cec5SDimitry Andric else if (const auto *Call = dyn_cast<CallBase>(I)) {
11810b57cec5SDimitry Andric // If we know that the call does not access memory, then we'll still
11820b57cec5SDimitry Andric // know that about the inlined clone of this call site, and we don't
11830b57cec5SDimitry Andric // need to add metadata.
11840b57cec5SDimitry Andric if (Call->doesNotAccessMemory())
11850b57cec5SDimitry Andric continue;
11860b57cec5SDimitry Andric
11870b57cec5SDimitry Andric IsFuncCall = true;
11880b57cec5SDimitry Andric if (CalleeAAR) {
1189bdd1243dSDimitry Andric MemoryEffects ME = CalleeAAR->getMemoryEffects(Call);
1190fe6060f1SDimitry Andric
1191fe6060f1SDimitry Andric // We'll retain this knowledge without additional metadata.
1192bdd1243dSDimitry Andric if (ME.onlyAccessesInaccessibleMem())
1193fe6060f1SDimitry Andric continue;
1194fe6060f1SDimitry Andric
1195bdd1243dSDimitry Andric if (ME.onlyAccessesArgPointees())
11960b57cec5SDimitry Andric IsArgMemOnlyCall = true;
11970b57cec5SDimitry Andric }
11980b57cec5SDimitry Andric
11990b57cec5SDimitry Andric for (Value *Arg : Call->args()) {
120081ad6265SDimitry Andric // Only care about pointer arguments. If a noalias argument is
120181ad6265SDimitry Andric // accessed through a non-pointer argument, it must be captured
120281ad6265SDimitry Andric // first (e.g. via ptrtoint), and we protect against captures below.
120381ad6265SDimitry Andric if (!Arg->getType()->isPointerTy())
12040b57cec5SDimitry Andric continue;
12050b57cec5SDimitry Andric
12060b57cec5SDimitry Andric PtrArgs.push_back(Arg);
12070b57cec5SDimitry Andric }
12080b57cec5SDimitry Andric }
12090b57cec5SDimitry Andric
12100b57cec5SDimitry Andric // If we found no pointers, then this instruction is not suitable for
12110b57cec5SDimitry Andric // pairing with an instruction to receive aliasing metadata.
12120b57cec5SDimitry Andric // However, if this is a call, this we might just alias with none of the
12130b57cec5SDimitry Andric // noalias arguments.
12140b57cec5SDimitry Andric if (PtrArgs.empty() && !IsFuncCall)
12150b57cec5SDimitry Andric continue;
12160b57cec5SDimitry Andric
12170b57cec5SDimitry Andric // It is possible that there is only one underlying object, but you
12180b57cec5SDimitry Andric // need to go through several PHIs to see it, and thus could be
12190b57cec5SDimitry Andric // repeated in the Objects list.
12200b57cec5SDimitry Andric SmallPtrSet<const Value *, 4> ObjSet;
12210b57cec5SDimitry Andric SmallVector<Metadata *, 4> Scopes, NoAliases;
12220b57cec5SDimitry Andric
12230b57cec5SDimitry Andric SmallSetVector<const Argument *, 4> NAPtrArgs;
12240b57cec5SDimitry Andric for (const Value *V : PtrArgs) {
12250b57cec5SDimitry Andric SmallVector<const Value *, 4> Objects;
1226e8d8bef9SDimitry Andric getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
12270b57cec5SDimitry Andric
12280b57cec5SDimitry Andric for (const Value *O : Objects)
12290b57cec5SDimitry Andric ObjSet.insert(O);
12300b57cec5SDimitry Andric }
12310b57cec5SDimitry Andric
12320b57cec5SDimitry Andric // Figure out if we're derived from anything that is not a noalias
12330b57cec5SDimitry Andric // argument.
123481ad6265SDimitry Andric bool RequiresNoCaptureBefore = false, UsesAliasingPtr = false,
123581ad6265SDimitry Andric UsesUnknownObject = false;
12360b57cec5SDimitry Andric for (const Value *V : ObjSet) {
12370b57cec5SDimitry Andric // Is this value a constant that cannot be derived from any pointer
12380b57cec5SDimitry Andric // value (we need to exclude constant expressions, for example, that
12390b57cec5SDimitry Andric // are formed from arithmetic on global symbols).
12400b57cec5SDimitry Andric bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
12410b57cec5SDimitry Andric isa<ConstantPointerNull>(V) ||
12420b57cec5SDimitry Andric isa<ConstantDataVector>(V) || isa<UndefValue>(V);
12430b57cec5SDimitry Andric if (IsNonPtrConst)
12440b57cec5SDimitry Andric continue;
12450b57cec5SDimitry Andric
12460b57cec5SDimitry Andric // If this is anything other than a noalias argument, then we cannot
12470b57cec5SDimitry Andric // completely describe the aliasing properties using alias.scope
12480b57cec5SDimitry Andric // metadata (and, thus, won't add any).
12490b57cec5SDimitry Andric if (const Argument *A = dyn_cast<Argument>(V)) {
12505ffd83dbSDimitry Andric if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
12510b57cec5SDimitry Andric UsesAliasingPtr = true;
12520b57cec5SDimitry Andric } else {
12530b57cec5SDimitry Andric UsesAliasingPtr = true;
12540b57cec5SDimitry Andric }
12550b57cec5SDimitry Andric
125681ad6265SDimitry Andric if (isEscapeSource(V)) {
125781ad6265SDimitry Andric // An escape source can only alias with a noalias argument if it has
125881ad6265SDimitry Andric // been captured beforehand.
125981ad6265SDimitry Andric RequiresNoCaptureBefore = true;
126081ad6265SDimitry Andric } else if (!isa<Argument>(V) && !isIdentifiedObject(V)) {
126181ad6265SDimitry Andric // If this is neither an escape source, nor some identified object
126281ad6265SDimitry Andric // (which cannot directly alias a noalias argument), nor some other
126381ad6265SDimitry Andric // argument (which, by definition, also cannot alias a noalias
126481ad6265SDimitry Andric // argument), conservatively do not make any assumptions.
126581ad6265SDimitry Andric UsesUnknownObject = true;
12660b57cec5SDimitry Andric }
126781ad6265SDimitry Andric }
126881ad6265SDimitry Andric
126981ad6265SDimitry Andric // Nothing we can do if the used underlying object cannot be reliably
127081ad6265SDimitry Andric // determined.
127181ad6265SDimitry Andric if (UsesUnknownObject)
127281ad6265SDimitry Andric continue;
12730b57cec5SDimitry Andric
12740b57cec5SDimitry Andric // A function call can always get captured noalias pointers (via other
12750b57cec5SDimitry Andric // parameters, globals, etc.).
12760b57cec5SDimitry Andric if (IsFuncCall && !IsArgMemOnlyCall)
127781ad6265SDimitry Andric RequiresNoCaptureBefore = true;
12780b57cec5SDimitry Andric
12790b57cec5SDimitry Andric // First, we want to figure out all of the sets with which we definitely
12800b57cec5SDimitry Andric // don't alias. Iterate over all noalias set, and add those for which:
12810b57cec5SDimitry Andric // 1. The noalias argument is not in the set of objects from which we
12820b57cec5SDimitry Andric // definitely derive.
12830b57cec5SDimitry Andric // 2. The noalias argument has not yet been captured.
12840b57cec5SDimitry Andric // An arbitrary function that might load pointers could see captured
12850b57cec5SDimitry Andric // noalias arguments via other noalias arguments or globals, and so we
12860b57cec5SDimitry Andric // must always check for prior capture.
12870b57cec5SDimitry Andric for (const Argument *A : NoAliasArgs) {
128881ad6265SDimitry Andric if (ObjSet.contains(A))
128981ad6265SDimitry Andric continue; // May be based on a noalias argument.
129081ad6265SDimitry Andric
129181ad6265SDimitry Andric // It might be tempting to skip the PointerMayBeCapturedBefore check if
129281ad6265SDimitry Andric // A->hasNoCaptureAttr() is true, but this is incorrect because
129381ad6265SDimitry Andric // nocapture only guarantees that no copies outlive the function, not
12940b57cec5SDimitry Andric // that the value cannot be locally captured.
129581ad6265SDimitry Andric if (!RequiresNoCaptureBefore ||
129681ad6265SDimitry Andric !PointerMayBeCapturedBefore(A, /* ReturnCaptures */ false,
129781ad6265SDimitry Andric /* StoreCaptures */ false, I, &DT))
12980b57cec5SDimitry Andric NoAliases.push_back(NewScopes[A]);
12990b57cec5SDimitry Andric }
13000b57cec5SDimitry Andric
13010b57cec5SDimitry Andric if (!NoAliases.empty())
13020b57cec5SDimitry Andric NI->setMetadata(LLVMContext::MD_noalias,
13030b57cec5SDimitry Andric MDNode::concatenate(
13040b57cec5SDimitry Andric NI->getMetadata(LLVMContext::MD_noalias),
13050b57cec5SDimitry Andric MDNode::get(CalledFunc->getContext(), NoAliases)));
13060b57cec5SDimitry Andric
13070b57cec5SDimitry Andric // Next, we want to figure out all of the sets to which we might belong.
13080b57cec5SDimitry Andric // We might belong to a set if the noalias argument is in the set of
13090b57cec5SDimitry Andric // underlying objects. If there is some non-noalias argument in our list
13100b57cec5SDimitry Andric // of underlying objects, then we cannot add a scope because the fact
13110b57cec5SDimitry Andric // that some access does not alias with any set of our noalias arguments
13120b57cec5SDimitry Andric // cannot itself guarantee that it does not alias with this access
13130b57cec5SDimitry Andric // (because there is some pointer of unknown origin involved and the
13140b57cec5SDimitry Andric // other access might also depend on this pointer). We also cannot add
13150b57cec5SDimitry Andric // scopes to arbitrary functions unless we know they don't access any
13160b57cec5SDimitry Andric // non-parameter pointer-values.
13170b57cec5SDimitry Andric bool CanAddScopes = !UsesAliasingPtr;
13180b57cec5SDimitry Andric if (CanAddScopes && IsFuncCall)
13190b57cec5SDimitry Andric CanAddScopes = IsArgMemOnlyCall;
13200b57cec5SDimitry Andric
13210b57cec5SDimitry Andric if (CanAddScopes)
13220b57cec5SDimitry Andric for (const Argument *A : NoAliasArgs) {
13230b57cec5SDimitry Andric if (ObjSet.count(A))
13240b57cec5SDimitry Andric Scopes.push_back(NewScopes[A]);
13250b57cec5SDimitry Andric }
13260b57cec5SDimitry Andric
13270b57cec5SDimitry Andric if (!Scopes.empty())
13280b57cec5SDimitry Andric NI->setMetadata(
13290b57cec5SDimitry Andric LLVMContext::MD_alias_scope,
13300b57cec5SDimitry Andric MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
13310b57cec5SDimitry Andric MDNode::get(CalledFunc->getContext(), Scopes)));
13320b57cec5SDimitry Andric }
13330b57cec5SDimitry Andric }
13340b57cec5SDimitry Andric }
13350b57cec5SDimitry Andric
MayContainThrowingOrExitingCallAfterCB(CallBase * Begin,ReturnInst * End)1336c9157d92SDimitry Andric static bool MayContainThrowingOrExitingCallAfterCB(CallBase *Begin,
1337c9157d92SDimitry Andric ReturnInst *End) {
13385ffd83dbSDimitry Andric
13395ffd83dbSDimitry Andric assert(Begin->getParent() == End->getParent() &&
13405ffd83dbSDimitry Andric "Expected to be in same basic block!");
1341c9157d92SDimitry Andric auto BeginIt = Begin->getIterator();
1342c9157d92SDimitry Andric assert(BeginIt != End->getIterator() && "Non-empty BB has empty iterator");
1343349cc55cSDimitry Andric return !llvm::isGuaranteedToTransferExecutionToSuccessor(
1344c9157d92SDimitry Andric ++BeginIt, End->getIterator(), InlinerAttributeWindow + 1);
13455ffd83dbSDimitry Andric }
13465ffd83dbSDimitry Andric
13475ffd83dbSDimitry Andric // Only allow these white listed attributes to be propagated back to the
13485ffd83dbSDimitry Andric // callee. This is because other attributes may only be valid on the call
13495ffd83dbSDimitry Andric // itself, i.e. attributes such as signext and zeroext.
1350c9157d92SDimitry Andric
1351c9157d92SDimitry Andric // Attributes that are always okay to propagate as if they are violated its
1352c9157d92SDimitry Andric // immediate UB.
IdentifyValidUBGeneratingAttributes(CallBase & CB)1353c9157d92SDimitry Andric static AttrBuilder IdentifyValidUBGeneratingAttributes(CallBase &CB) {
1354c9157d92SDimitry Andric AttrBuilder Valid(CB.getContext());
1355c9157d92SDimitry Andric if (auto DerefBytes = CB.getRetDereferenceableBytes())
13565ffd83dbSDimitry Andric Valid.addDereferenceableAttr(DerefBytes);
1357c9157d92SDimitry Andric if (auto DerefOrNullBytes = CB.getRetDereferenceableOrNullBytes())
13585ffd83dbSDimitry Andric Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
1359c9157d92SDimitry Andric if (CB.hasRetAttr(Attribute::NoAlias))
13605ffd83dbSDimitry Andric Valid.addAttribute(Attribute::NoAlias);
1361c9157d92SDimitry Andric if (CB.hasRetAttr(Attribute::NoUndef))
1362c9157d92SDimitry Andric Valid.addAttribute(Attribute::NoUndef);
1363c9157d92SDimitry Andric return Valid;
1364c9157d92SDimitry Andric }
1365c9157d92SDimitry Andric
1366c9157d92SDimitry Andric // Attributes that need additional checks as propagating them may change
1367c9157d92SDimitry Andric // behavior or cause new UB.
IdentifyValidPoisonGeneratingAttributes(CallBase & CB)1368c9157d92SDimitry Andric static AttrBuilder IdentifyValidPoisonGeneratingAttributes(CallBase &CB) {
1369c9157d92SDimitry Andric AttrBuilder Valid(CB.getContext());
1370c9157d92SDimitry Andric if (CB.hasRetAttr(Attribute::NonNull))
13715ffd83dbSDimitry Andric Valid.addAttribute(Attribute::NonNull);
1372c9157d92SDimitry Andric if (CB.hasRetAttr(Attribute::Alignment))
1373c9157d92SDimitry Andric Valid.addAlignmentAttr(CB.getRetAlign());
13745ffd83dbSDimitry Andric return Valid;
13755ffd83dbSDimitry Andric }
13765ffd83dbSDimitry Andric
AddReturnAttributes(CallBase & CB,ValueToValueMapTy & VMap)13775ffd83dbSDimitry Andric static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
1378c9157d92SDimitry Andric AttrBuilder ValidUB = IdentifyValidUBGeneratingAttributes(CB);
1379c9157d92SDimitry Andric AttrBuilder ValidPG = IdentifyValidPoisonGeneratingAttributes(CB);
1380c9157d92SDimitry Andric if (!ValidUB.hasAttributes() && !ValidPG.hasAttributes())
13815ffd83dbSDimitry Andric return;
13825ffd83dbSDimitry Andric auto *CalledFunction = CB.getCalledFunction();
13835ffd83dbSDimitry Andric auto &Context = CalledFunction->getContext();
13845ffd83dbSDimitry Andric
13855ffd83dbSDimitry Andric for (auto &BB : *CalledFunction) {
13865ffd83dbSDimitry Andric auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
13875ffd83dbSDimitry Andric if (!RI || !isa<CallBase>(RI->getOperand(0)))
13885ffd83dbSDimitry Andric continue;
13895ffd83dbSDimitry Andric auto *RetVal = cast<CallBase>(RI->getOperand(0));
13904824e7fdSDimitry Andric // Check that the cloned RetVal exists and is a call, otherwise we cannot
13914824e7fdSDimitry Andric // add the attributes on the cloned RetVal. Simplification during inlining
13924824e7fdSDimitry Andric // could have transformed the cloned instruction.
13935ffd83dbSDimitry Andric auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
13945ffd83dbSDimitry Andric if (!NewRetVal)
13955ffd83dbSDimitry Andric continue;
13965ffd83dbSDimitry Andric // Backward propagation of attributes to the returned value may be incorrect
13975ffd83dbSDimitry Andric // if it is control flow dependent.
13985ffd83dbSDimitry Andric // Consider:
13995ffd83dbSDimitry Andric // @callee {
14005ffd83dbSDimitry Andric // %rv = call @foo()
14015ffd83dbSDimitry Andric // %rv2 = call @bar()
14025ffd83dbSDimitry Andric // if (%rv2 != null)
14035ffd83dbSDimitry Andric // return %rv2
14045ffd83dbSDimitry Andric // if (%rv == null)
14055ffd83dbSDimitry Andric // exit()
14065ffd83dbSDimitry Andric // return %rv
14075ffd83dbSDimitry Andric // }
14085ffd83dbSDimitry Andric // caller() {
14095ffd83dbSDimitry Andric // %val = call nonnull @callee()
14105ffd83dbSDimitry Andric // }
14115ffd83dbSDimitry Andric // Here we cannot add the nonnull attribute on either foo or bar. So, we
14125ffd83dbSDimitry Andric // limit the check to both RetVal and RI are in the same basic block and
14135ffd83dbSDimitry Andric // there are no throwing/exiting instructions between these instructions.
14145ffd83dbSDimitry Andric if (RI->getParent() != RetVal->getParent() ||
1415c9157d92SDimitry Andric MayContainThrowingOrExitingCallAfterCB(RetVal, RI))
14165ffd83dbSDimitry Andric continue;
14175ffd83dbSDimitry Andric // Add to the existing attributes of NewRetVal, i.e. the cloned call
14185ffd83dbSDimitry Andric // instruction.
14195ffd83dbSDimitry Andric // NB! When we have the same attribute already existing on NewRetVal, but
14205ffd83dbSDimitry Andric // with a differing value, the AttributeList's merge API honours the already
14215ffd83dbSDimitry Andric // existing attribute value (i.e. attributes such as dereferenceable,
14225ffd83dbSDimitry Andric // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
14235ffd83dbSDimitry Andric AttributeList AL = NewRetVal->getAttributes();
1424c9157d92SDimitry Andric if (ValidUB.getDereferenceableBytes() < AL.getRetDereferenceableBytes())
1425c9157d92SDimitry Andric ValidUB.removeAttribute(Attribute::Dereferenceable);
1426c9157d92SDimitry Andric if (ValidUB.getDereferenceableOrNullBytes() <
1427c9157d92SDimitry Andric AL.getRetDereferenceableOrNullBytes())
1428c9157d92SDimitry Andric ValidUB.removeAttribute(Attribute::DereferenceableOrNull);
1429c9157d92SDimitry Andric AttributeList NewAL = AL.addRetAttributes(Context, ValidUB);
1430c9157d92SDimitry Andric // Attributes that may generate poison returns are a bit tricky. If we
1431c9157d92SDimitry Andric // propagate them, other uses of the callsite might have their behavior
1432c9157d92SDimitry Andric // change or cause UB (if they have noundef) b.c of the new potential
1433c9157d92SDimitry Andric // poison.
1434c9157d92SDimitry Andric // Take the following three cases:
1435c9157d92SDimitry Andric //
1436c9157d92SDimitry Andric // 1)
1437c9157d92SDimitry Andric // define nonnull ptr @foo() {
1438c9157d92SDimitry Andric // %p = call ptr @bar()
1439c9157d92SDimitry Andric // call void @use(ptr %p) willreturn nounwind
1440c9157d92SDimitry Andric // ret ptr %p
1441c9157d92SDimitry Andric // }
1442c9157d92SDimitry Andric //
1443c9157d92SDimitry Andric // 2)
1444c9157d92SDimitry Andric // define noundef nonnull ptr @foo() {
1445c9157d92SDimitry Andric // %p = call ptr @bar()
1446c9157d92SDimitry Andric // call void @use(ptr %p) willreturn nounwind
1447c9157d92SDimitry Andric // ret ptr %p
1448c9157d92SDimitry Andric // }
1449c9157d92SDimitry Andric //
1450c9157d92SDimitry Andric // 3)
1451c9157d92SDimitry Andric // define nonnull ptr @foo() {
1452c9157d92SDimitry Andric // %p = call noundef ptr @bar()
1453c9157d92SDimitry Andric // ret ptr %p
1454c9157d92SDimitry Andric // }
1455c9157d92SDimitry Andric //
1456c9157d92SDimitry Andric // In case 1, we can't propagate nonnull because poison value in @use may
1457c9157d92SDimitry Andric // change behavior or trigger UB.
1458c9157d92SDimitry Andric // In case 2, we don't need to be concerned about propagating nonnull, as
1459c9157d92SDimitry Andric // any new poison at @use will trigger UB anyways.
1460c9157d92SDimitry Andric // In case 3, we can never propagate nonnull because it may create UB due to
1461c9157d92SDimitry Andric // the noundef on @bar.
1462c9157d92SDimitry Andric if (ValidPG.getAlignment().valueOrOne() < AL.getRetAlignment().valueOrOne())
1463c9157d92SDimitry Andric ValidPG.removeAttribute(Attribute::Alignment);
1464c9157d92SDimitry Andric if (ValidPG.hasAttributes()) {
1465c9157d92SDimitry Andric // Three checks.
1466c9157d92SDimitry Andric // If the callsite has `noundef`, then a poison due to violating the
1467c9157d92SDimitry Andric // return attribute will create UB anyways so we can always propagate.
1468c9157d92SDimitry Andric // Otherwise, if the return value (callee to be inlined) has `noundef`, we
1469c9157d92SDimitry Andric // can't propagate as a new poison return will cause UB.
1470c9157d92SDimitry Andric // Finally, check if the return value has no uses whose behavior may
1471c9157d92SDimitry Andric // change/may cause UB if we potentially return poison. At the moment this
1472c9157d92SDimitry Andric // is implemented overly conservatively with a single-use check.
1473c9157d92SDimitry Andric // TODO: Update the single-use check to iterate through uses and only bail
1474c9157d92SDimitry Andric // if we have a potentially dangerous use.
1475c9157d92SDimitry Andric
1476c9157d92SDimitry Andric if (CB.hasRetAttr(Attribute::NoUndef) ||
1477c9157d92SDimitry Andric (RetVal->hasOneUse() && !RetVal->hasRetAttr(Attribute::NoUndef)))
1478c9157d92SDimitry Andric NewAL = NewAL.addRetAttributes(Context, ValidPG);
1479c9157d92SDimitry Andric }
14805ffd83dbSDimitry Andric NewRetVal->setAttributes(NewAL);
14815ffd83dbSDimitry Andric }
14825ffd83dbSDimitry Andric }
14835ffd83dbSDimitry Andric
14840b57cec5SDimitry Andric /// If the inlined function has non-byval align arguments, then
14850b57cec5SDimitry Andric /// add @llvm.assume-based alignment assumptions to preserve this information.
AddAlignmentAssumptions(CallBase & CB,InlineFunctionInfo & IFI)14865ffd83dbSDimitry Andric static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
14870b57cec5SDimitry Andric if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
14880b57cec5SDimitry Andric return;
14890b57cec5SDimitry Andric
14905ffd83dbSDimitry Andric AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
14915ffd83dbSDimitry Andric auto &DL = CB.getCaller()->getParent()->getDataLayout();
14920b57cec5SDimitry Andric
14930b57cec5SDimitry Andric // To avoid inserting redundant assumptions, we should check for assumptions
14940b57cec5SDimitry Andric // already in the caller. To do this, we might need a DT of the caller.
14950b57cec5SDimitry Andric DominatorTree DT;
14960b57cec5SDimitry Andric bool DTCalculated = false;
14970b57cec5SDimitry Andric
14985ffd83dbSDimitry Andric Function *CalledFunc = CB.getCalledFunction();
14990b57cec5SDimitry Andric for (Argument &Arg : CalledFunc->args()) {
1500bdd1243dSDimitry Andric if (!Arg.getType()->isPointerTy() || Arg.hasPassPointeeByValueCopyAttr() ||
1501bdd1243dSDimitry Andric Arg.hasNUses(0))
1502bdd1243dSDimitry Andric continue;
1503bdd1243dSDimitry Andric MaybeAlign Alignment = Arg.getParamAlign();
1504bdd1243dSDimitry Andric if (!Alignment)
1505bdd1243dSDimitry Andric continue;
1506bdd1243dSDimitry Andric
15070b57cec5SDimitry Andric if (!DTCalculated) {
15085ffd83dbSDimitry Andric DT.recalculate(*CB.getCaller());
15090b57cec5SDimitry Andric DTCalculated = true;
15100b57cec5SDimitry Andric }
15110b57cec5SDimitry Andric // If we can already prove the asserted alignment in the context of the
15120b57cec5SDimitry Andric // caller, then don't bother inserting the assumption.
15135ffd83dbSDimitry Andric Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
1514bdd1243dSDimitry Andric if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= *Alignment)
15150b57cec5SDimitry Andric continue;
15160b57cec5SDimitry Andric
1517bdd1243dSDimitry Andric CallInst *NewAsmp = IRBuilder<>(&CB).CreateAlignmentAssumption(
1518bdd1243dSDimitry Andric DL, ArgVal, Alignment->value());
1519fe6060f1SDimitry Andric AC->registerAssumption(cast<AssumeInst>(NewAsmp));
15200b57cec5SDimitry Andric }
15210b57cec5SDimitry Andric }
15220b57cec5SDimitry Andric
HandleByValArgumentInit(Type * ByValType,Value * Dst,Value * Src,Module * M,BasicBlock * InsertBlock,InlineFunctionInfo & IFI,Function * CalledFunc)1523349cc55cSDimitry Andric static void HandleByValArgumentInit(Type *ByValType, Value *Dst, Value *Src,
1524349cc55cSDimitry Andric Module *M, BasicBlock *InsertBlock,
1525fe013be4SDimitry Andric InlineFunctionInfo &IFI,
1526fe013be4SDimitry Andric Function *CalledFunc) {
15270b57cec5SDimitry Andric IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
15280b57cec5SDimitry Andric
1529349cc55cSDimitry Andric Value *Size =
1530349cc55cSDimitry Andric Builder.getInt64(M->getDataLayout().getTypeStoreSize(ByValType));
15310b57cec5SDimitry Andric
15320b57cec5SDimitry Andric // Always generate a memcpy of alignment 1 here because we don't know
15330b57cec5SDimitry Andric // the alignment of the src pointer. Other optimizations can infer
15340b57cec5SDimitry Andric // better alignment.
1535fe013be4SDimitry Andric CallInst *CI = Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
15365ffd83dbSDimitry Andric /*SrcAlign*/ Align(1), Size);
1537fe013be4SDimitry Andric
1538fe013be4SDimitry Andric // The verifier requires that all calls of debug-info-bearing functions
1539fe013be4SDimitry Andric // from debug-info-bearing functions have a debug location (for inlining
1540fe013be4SDimitry Andric // purposes). Assign a dummy location to satisfy the constraint.
1541fe013be4SDimitry Andric if (!CI->getDebugLoc() && InsertBlock->getParent()->getSubprogram())
1542fe013be4SDimitry Andric if (DISubprogram *SP = CalledFunc->getSubprogram())
1543fe013be4SDimitry Andric CI->setDebugLoc(DILocation::get(SP->getContext(), 0, 0, SP));
15440b57cec5SDimitry Andric }
15450b57cec5SDimitry Andric
15460b57cec5SDimitry Andric /// When inlining a call site that has a byval argument,
15470b57cec5SDimitry Andric /// we have to make the implicit memcpy explicit by adding it.
HandleByValArgument(Type * ByValType,Value * Arg,Instruction * TheCall,const Function * CalledFunc,InlineFunctionInfo & IFI,MaybeAlign ByValAlignment)1548349cc55cSDimitry Andric static Value *HandleByValArgument(Type *ByValType, Value *Arg,
1549349cc55cSDimitry Andric Instruction *TheCall,
15500b57cec5SDimitry Andric const Function *CalledFunc,
15510b57cec5SDimitry Andric InlineFunctionInfo &IFI,
1552bdd1243dSDimitry Andric MaybeAlign ByValAlignment) {
15530b57cec5SDimitry Andric Function *Caller = TheCall->getFunction();
15540b57cec5SDimitry Andric const DataLayout &DL = Caller->getParent()->getDataLayout();
15550b57cec5SDimitry Andric
15560b57cec5SDimitry Andric // If the called function is readonly, then it could not mutate the caller's
15570b57cec5SDimitry Andric // copy of the byval'd memory. In this case, it is safe to elide the copy and
15580b57cec5SDimitry Andric // temporary.
15590b57cec5SDimitry Andric if (CalledFunc->onlyReadsMemory()) {
15600b57cec5SDimitry Andric // If the byval argument has a specified alignment that is greater than the
15610b57cec5SDimitry Andric // passed in pointer, then we either have to round up the input pointer or
15620b57cec5SDimitry Andric // give up on this transformation.
1563bdd1243dSDimitry Andric if (ByValAlignment.valueOrOne() == 1)
15640b57cec5SDimitry Andric return Arg;
15650b57cec5SDimitry Andric
15660b57cec5SDimitry Andric AssumptionCache *AC =
15675ffd83dbSDimitry Andric IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
15680b57cec5SDimitry Andric
15690b57cec5SDimitry Andric // If the pointer is already known to be sufficiently aligned, or if we can
15700b57cec5SDimitry Andric // round it up to a larger alignment, then we don't need a temporary.
1571bdd1243dSDimitry Andric if (getOrEnforceKnownAlignment(Arg, *ByValAlignment, DL, TheCall, AC) >=
1572bdd1243dSDimitry Andric *ByValAlignment)
15730b57cec5SDimitry Andric return Arg;
15740b57cec5SDimitry Andric
15750b57cec5SDimitry Andric // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
15760b57cec5SDimitry Andric // for code quality, but rarely happens and is required for correctness.
15770b57cec5SDimitry Andric }
15780b57cec5SDimitry Andric
15790b57cec5SDimitry Andric // Create the alloca. If we have DataLayout, use nice alignment.
1580bdd1243dSDimitry Andric Align Alignment = DL.getPrefTypeAlign(ByValType);
15810b57cec5SDimitry Andric
15820b57cec5SDimitry Andric // If the byval had an alignment specified, we *must* use at least that
15830b57cec5SDimitry Andric // alignment, as it is required by the byval argument (and uses of the
15840b57cec5SDimitry Andric // pointer inside the callee).
1585bdd1243dSDimitry Andric if (ByValAlignment)
1586bdd1243dSDimitry Andric Alignment = std::max(Alignment, *ByValAlignment);
15870b57cec5SDimitry Andric
1588c9157d92SDimitry Andric AllocaInst *NewAlloca = new AllocaInst(ByValType, DL.getAllocaAddrSpace(),
1589c9157d92SDimitry Andric nullptr, Alignment, Arg->getName());
1590c9157d92SDimitry Andric NewAlloca->insertBefore(Caller->begin()->begin());
1591c9157d92SDimitry Andric IFI.StaticAllocas.push_back(NewAlloca);
15920b57cec5SDimitry Andric
15930b57cec5SDimitry Andric // Uses of the argument in the function should use our new alloca
15940b57cec5SDimitry Andric // instead.
15950b57cec5SDimitry Andric return NewAlloca;
15960b57cec5SDimitry Andric }
15970b57cec5SDimitry Andric
15980b57cec5SDimitry Andric // Check whether this Value is used by a lifetime intrinsic.
isUsedByLifetimeMarker(Value * V)15990b57cec5SDimitry Andric static bool isUsedByLifetimeMarker(Value *V) {
16000b57cec5SDimitry Andric for (User *U : V->users())
16010b57cec5SDimitry Andric if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
16020b57cec5SDimitry Andric if (II->isLifetimeStartOrEnd())
16030b57cec5SDimitry Andric return true;
16040b57cec5SDimitry Andric return false;
16050b57cec5SDimitry Andric }
16060b57cec5SDimitry Andric
16070b57cec5SDimitry Andric // Check whether the given alloca already has
16080b57cec5SDimitry Andric // lifetime.start or lifetime.end intrinsics.
hasLifetimeMarkers(AllocaInst * AI)16090b57cec5SDimitry Andric static bool hasLifetimeMarkers(AllocaInst *AI) {
16100b57cec5SDimitry Andric Type *Ty = AI->getType();
1611c9157d92SDimitry Andric Type *Int8PtrTy =
1612c9157d92SDimitry Andric PointerType::get(Ty->getContext(), Ty->getPointerAddressSpace());
16130b57cec5SDimitry Andric if (Ty == Int8PtrTy)
16140b57cec5SDimitry Andric return isUsedByLifetimeMarker(AI);
16150b57cec5SDimitry Andric
16160b57cec5SDimitry Andric // Do a scan to find all the casts to i8*.
16170b57cec5SDimitry Andric for (User *U : AI->users()) {
16180b57cec5SDimitry Andric if (U->getType() != Int8PtrTy) continue;
16190b57cec5SDimitry Andric if (U->stripPointerCasts() != AI) continue;
16200b57cec5SDimitry Andric if (isUsedByLifetimeMarker(U))
16210b57cec5SDimitry Andric return true;
16220b57cec5SDimitry Andric }
16230b57cec5SDimitry Andric return false;
16240b57cec5SDimitry Andric }
16250b57cec5SDimitry Andric
16260b57cec5SDimitry Andric /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
16270b57cec5SDimitry Andric /// block. Allocas used in inalloca calls and allocas of dynamic array size
16280b57cec5SDimitry Andric /// cannot be static.
allocaWouldBeStaticInEntry(const AllocaInst * AI)16290b57cec5SDimitry Andric static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
16300b57cec5SDimitry Andric return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
16310b57cec5SDimitry Andric }
16320b57cec5SDimitry Andric
16330b57cec5SDimitry Andric /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
16340b57cec5SDimitry Andric /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
inlineDebugLoc(DebugLoc OrigDL,DILocation * InlinedAt,LLVMContext & Ctx,DenseMap<const MDNode *,MDNode * > & IANodes)16350b57cec5SDimitry Andric static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
16360b57cec5SDimitry Andric LLVMContext &Ctx,
16370b57cec5SDimitry Andric DenseMap<const MDNode *, MDNode *> &IANodes) {
16380b57cec5SDimitry Andric auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1639e8d8bef9SDimitry Andric return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
1640e8d8bef9SDimitry Andric OrigDL.getScope(), IA);
16410b57cec5SDimitry Andric }
16420b57cec5SDimitry Andric
16430b57cec5SDimitry Andric /// Update inlined instructions' line numbers to
16440b57cec5SDimitry Andric /// to encode location where these instructions are inlined.
fixupLineNumbers(Function * Fn,Function::iterator FI,Instruction * TheCall,bool CalleeHasDebugInfo)16450b57cec5SDimitry Andric static void fixupLineNumbers(Function *Fn, Function::iterator FI,
16460b57cec5SDimitry Andric Instruction *TheCall, bool CalleeHasDebugInfo) {
16470b57cec5SDimitry Andric const DebugLoc &TheCallDL = TheCall->getDebugLoc();
16480b57cec5SDimitry Andric if (!TheCallDL)
16490b57cec5SDimitry Andric return;
16500b57cec5SDimitry Andric
16510b57cec5SDimitry Andric auto &Ctx = Fn->getContext();
16520b57cec5SDimitry Andric DILocation *InlinedAtNode = TheCallDL;
16530b57cec5SDimitry Andric
16540b57cec5SDimitry Andric // Create a unique call site, not to be confused with any other call from the
16550b57cec5SDimitry Andric // same location.
16560b57cec5SDimitry Andric InlinedAtNode = DILocation::getDistinct(
16570b57cec5SDimitry Andric Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
16580b57cec5SDimitry Andric InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
16590b57cec5SDimitry Andric
16600b57cec5SDimitry Andric // Cache the inlined-at nodes as they're built so they are reused, without
16610b57cec5SDimitry Andric // this every instruction's inlined-at chain would become distinct from each
16620b57cec5SDimitry Andric // other.
16630b57cec5SDimitry Andric DenseMap<const MDNode *, MDNode *> IANodes;
16640b57cec5SDimitry Andric
1665480093f4SDimitry Andric // Check if we are not generating inline line tables and want to use
1666480093f4SDimitry Andric // the call site location instead.
1667480093f4SDimitry Andric bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1668480093f4SDimitry Andric
1669c9157d92SDimitry Andric // Helper-util for updating the metadata attached to an instruction.
1670c9157d92SDimitry Andric auto UpdateInst = [&](Instruction &I) {
16710b57cec5SDimitry Andric // Loop metadata needs to be updated so that the start and end locs
16720b57cec5SDimitry Andric // reference inlined-at locations.
1673fe6060f1SDimitry Andric auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode,
1674fe6060f1SDimitry Andric &IANodes](Metadata *MD) -> Metadata * {
1675fe6060f1SDimitry Andric if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1676fe6060f1SDimitry Andric return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get();
1677fe6060f1SDimitry Andric return MD;
16785ffd83dbSDimitry Andric };
1679c9157d92SDimitry Andric updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
16800b57cec5SDimitry Andric
1681480093f4SDimitry Andric if (!NoInlineLineTables)
1682c9157d92SDimitry Andric if (DebugLoc DL = I.getDebugLoc()) {
16830b57cec5SDimitry Andric DebugLoc IDL =
1684c9157d92SDimitry Andric inlineDebugLoc(DL, InlinedAtNode, I.getContext(), IANodes);
1685c9157d92SDimitry Andric I.setDebugLoc(IDL);
1686c9157d92SDimitry Andric return;
16870b57cec5SDimitry Andric }
16880b57cec5SDimitry Andric
1689480093f4SDimitry Andric if (CalleeHasDebugInfo && !NoInlineLineTables)
1690c9157d92SDimitry Andric return;
16910b57cec5SDimitry Andric
1692480093f4SDimitry Andric // If the inlined instruction has no line number, or if inline info
1693480093f4SDimitry Andric // is not being generated, make it look as if it originates from the call
1694480093f4SDimitry Andric // location. This is important for ((__always_inline, __nodebug__))
1695480093f4SDimitry Andric // functions which must use caller location for all instructions in their
1696480093f4SDimitry Andric // function body.
16970b57cec5SDimitry Andric
16980b57cec5SDimitry Andric // Don't update static allocas, as they may get moved later.
1699c9157d92SDimitry Andric if (auto *AI = dyn_cast<AllocaInst>(&I))
17000b57cec5SDimitry Andric if (allocaWouldBeStaticInEntry(AI))
1701c9157d92SDimitry Andric return;
17020b57cec5SDimitry Andric
1703fe013be4SDimitry Andric // Do not force a debug loc for pseudo probes, since they do not need to
1704fe013be4SDimitry Andric // be debuggable, and also they are expected to have a zero/null dwarf
1705fe013be4SDimitry Andric // discriminator at this point which could be violated otherwise.
1706c9157d92SDimitry Andric if (isa<PseudoProbeInst>(I))
1707c9157d92SDimitry Andric return;
1708fe013be4SDimitry Andric
1709c9157d92SDimitry Andric I.setDebugLoc(TheCallDL);
1710c9157d92SDimitry Andric };
1711c9157d92SDimitry Andric
1712c9157d92SDimitry Andric // Helper-util for updating debug-info records attached to instructions.
1713c9157d92SDimitry Andric auto UpdateDPV = [&](DPValue *DPV) {
1714c9157d92SDimitry Andric assert(DPV->getDebugLoc() && "Debug Value must have debug loc");
1715c9157d92SDimitry Andric if (NoInlineLineTables) {
1716c9157d92SDimitry Andric DPV->setDebugLoc(TheCallDL);
1717c9157d92SDimitry Andric return;
1718c9157d92SDimitry Andric }
1719c9157d92SDimitry Andric DebugLoc DL = DPV->getDebugLoc();
1720c9157d92SDimitry Andric DebugLoc IDL =
1721c9157d92SDimitry Andric inlineDebugLoc(DL, InlinedAtNode,
1722c9157d92SDimitry Andric DPV->getMarker()->getParent()->getContext(), IANodes);
1723c9157d92SDimitry Andric DPV->setDebugLoc(IDL);
1724c9157d92SDimitry Andric };
1725c9157d92SDimitry Andric
1726c9157d92SDimitry Andric // Iterate over all instructions, updating metadata and debug-info records.
1727c9157d92SDimitry Andric for (; FI != Fn->end(); ++FI) {
1728c9157d92SDimitry Andric for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE;
1729c9157d92SDimitry Andric ++BI) {
1730c9157d92SDimitry Andric UpdateInst(*BI);
1731c9157d92SDimitry Andric for (DPValue &DPV : BI->getDbgValueRange()) {
1732c9157d92SDimitry Andric UpdateDPV(&DPV);
1733c9157d92SDimitry Andric }
17340b57cec5SDimitry Andric }
1735480093f4SDimitry Andric
1736480093f4SDimitry Andric // Remove debug info intrinsics if we're not keeping inline info.
1737480093f4SDimitry Andric if (NoInlineLineTables) {
1738480093f4SDimitry Andric BasicBlock::iterator BI = FI->begin();
1739480093f4SDimitry Andric while (BI != FI->end()) {
1740480093f4SDimitry Andric if (isa<DbgInfoIntrinsic>(BI)) {
1741480093f4SDimitry Andric BI = BI->eraseFromParent();
1742480093f4SDimitry Andric continue;
1743c9157d92SDimitry Andric } else {
1744c9157d92SDimitry Andric BI->dropDbgValues();
1745480093f4SDimitry Andric }
1746480093f4SDimitry Andric ++BI;
1747480093f4SDimitry Andric }
1748480093f4SDimitry Andric }
17490b57cec5SDimitry Andric }
17500b57cec5SDimitry Andric }
17510b57cec5SDimitry Andric
1752bdd1243dSDimitry Andric #undef DEBUG_TYPE
1753bdd1243dSDimitry Andric #define DEBUG_TYPE "assignment-tracking"
1754bdd1243dSDimitry Andric /// Find Alloca and linked DbgAssignIntrinsic for locals escaped by \p CB.
collectEscapedLocals(const DataLayout & DL,const CallBase & CB)1755bdd1243dSDimitry Andric static at::StorageToVarsMap collectEscapedLocals(const DataLayout &DL,
1756bdd1243dSDimitry Andric const CallBase &CB) {
1757bdd1243dSDimitry Andric at::StorageToVarsMap EscapedLocals;
1758bdd1243dSDimitry Andric SmallPtrSet<const Value *, 4> SeenBases;
1759bdd1243dSDimitry Andric
1760bdd1243dSDimitry Andric LLVM_DEBUG(
1761bdd1243dSDimitry Andric errs() << "# Finding caller local variables escaped by callee\n");
1762bdd1243dSDimitry Andric for (const Value *Arg : CB.args()) {
1763bdd1243dSDimitry Andric LLVM_DEBUG(errs() << "INSPECT: " << *Arg << "\n");
1764bdd1243dSDimitry Andric if (!Arg->getType()->isPointerTy()) {
1765bdd1243dSDimitry Andric LLVM_DEBUG(errs() << " | SKIP: Not a pointer\n");
1766bdd1243dSDimitry Andric continue;
1767bdd1243dSDimitry Andric }
1768bdd1243dSDimitry Andric
1769bdd1243dSDimitry Andric const Instruction *I = dyn_cast<Instruction>(Arg);
1770bdd1243dSDimitry Andric if (!I) {
1771bdd1243dSDimitry Andric LLVM_DEBUG(errs() << " | SKIP: Not result of instruction\n");
1772bdd1243dSDimitry Andric continue;
1773bdd1243dSDimitry Andric }
1774bdd1243dSDimitry Andric
1775bdd1243dSDimitry Andric // Walk back to the base storage.
1776bdd1243dSDimitry Andric assert(Arg->getType()->isPtrOrPtrVectorTy());
1777bdd1243dSDimitry Andric APInt TmpOffset(DL.getIndexTypeSizeInBits(Arg->getType()), 0, false);
1778bdd1243dSDimitry Andric const AllocaInst *Base = dyn_cast<AllocaInst>(
1779bdd1243dSDimitry Andric Arg->stripAndAccumulateConstantOffsets(DL, TmpOffset, true));
1780bdd1243dSDimitry Andric if (!Base) {
1781bdd1243dSDimitry Andric LLVM_DEBUG(errs() << " | SKIP: Couldn't walk back to base storage\n");
1782bdd1243dSDimitry Andric continue;
1783bdd1243dSDimitry Andric }
1784bdd1243dSDimitry Andric
1785bdd1243dSDimitry Andric assert(Base);
1786bdd1243dSDimitry Andric LLVM_DEBUG(errs() << " | BASE: " << *Base << "\n");
1787bdd1243dSDimitry Andric // We only need to process each base address once - skip any duplicates.
1788bdd1243dSDimitry Andric if (!SeenBases.insert(Base).second)
1789bdd1243dSDimitry Andric continue;
1790bdd1243dSDimitry Andric
1791bdd1243dSDimitry Andric // Find all local variables associated with the backing storage.
1792*a58f00eaSDimitry Andric auto CollectAssignsForStorage = [&](auto *DbgAssign) {
1793bdd1243dSDimitry Andric // Skip variables from inlined functions - they are not local variables.
1794*a58f00eaSDimitry Andric if (DbgAssign->getDebugLoc().getInlinedAt())
1795*a58f00eaSDimitry Andric return;
1796*a58f00eaSDimitry Andric LLVM_DEBUG(errs() << " > DEF : " << *DbgAssign << "\n");
1797*a58f00eaSDimitry Andric EscapedLocals[Base].insert(at::VarRecord(DbgAssign));
1798*a58f00eaSDimitry Andric };
1799*a58f00eaSDimitry Andric for_each(at::getAssignmentMarkers(Base), CollectAssignsForStorage);
1800*a58f00eaSDimitry Andric for_each(at::getDPVAssignmentMarkers(Base), CollectAssignsForStorage);
1801bdd1243dSDimitry Andric }
1802bdd1243dSDimitry Andric return EscapedLocals;
1803bdd1243dSDimitry Andric }
1804bdd1243dSDimitry Andric
trackInlinedStores(Function::iterator Start,Function::iterator End,const CallBase & CB)1805bdd1243dSDimitry Andric static void trackInlinedStores(Function::iterator Start, Function::iterator End,
1806bdd1243dSDimitry Andric const CallBase &CB) {
1807bdd1243dSDimitry Andric LLVM_DEBUG(errs() << "trackInlinedStores into "
1808bdd1243dSDimitry Andric << Start->getParent()->getName() << " from "
1809bdd1243dSDimitry Andric << CB.getCalledFunction()->getName() << "\n");
1810bdd1243dSDimitry Andric std::unique_ptr<DataLayout> DL = std::make_unique<DataLayout>(CB.getModule());
1811bdd1243dSDimitry Andric at::trackAssignments(Start, End, collectEscapedLocals(*DL, CB), *DL);
1812bdd1243dSDimitry Andric }
1813bdd1243dSDimitry Andric
1814bdd1243dSDimitry Andric /// Update inlined instructions' DIAssignID metadata. We need to do this
1815bdd1243dSDimitry Andric /// otherwise a function inlined more than once into the same function
1816bdd1243dSDimitry Andric /// will cause DIAssignID to be shared by many instructions.
fixupAssignments(Function::iterator Start,Function::iterator End)1817bdd1243dSDimitry Andric static void fixupAssignments(Function::iterator Start, Function::iterator End) {
1818bdd1243dSDimitry Andric // Map {Old, New} metadata. Not used directly - use GetNewID.
1819bdd1243dSDimitry Andric DenseMap<DIAssignID *, DIAssignID *> Map;
1820bdd1243dSDimitry Andric auto GetNewID = [&Map](Metadata *Old) {
1821bdd1243dSDimitry Andric DIAssignID *OldID = cast<DIAssignID>(Old);
1822bdd1243dSDimitry Andric if (DIAssignID *NewID = Map.lookup(OldID))
1823bdd1243dSDimitry Andric return NewID;
1824bdd1243dSDimitry Andric DIAssignID *NewID = DIAssignID::getDistinct(OldID->getContext());
1825bdd1243dSDimitry Andric Map[OldID] = NewID;
1826bdd1243dSDimitry Andric return NewID;
1827bdd1243dSDimitry Andric };
1828bdd1243dSDimitry Andric // Loop over all the inlined instructions. If we find a DIAssignID
1829bdd1243dSDimitry Andric // attachment or use, replace it with a new version.
1830bdd1243dSDimitry Andric for (auto BBI = Start; BBI != End; ++BBI) {
1831bdd1243dSDimitry Andric for (Instruction &I : *BBI) {
1832*a58f00eaSDimitry Andric for (DPValue &DPV : I.getDbgValueRange()) {
1833*a58f00eaSDimitry Andric if (DPV.isDbgAssign())
1834*a58f00eaSDimitry Andric DPV.setAssignId(GetNewID(DPV.getAssignID()));
1835*a58f00eaSDimitry Andric }
1836bdd1243dSDimitry Andric if (auto *ID = I.getMetadata(LLVMContext::MD_DIAssignID))
1837bdd1243dSDimitry Andric I.setMetadata(LLVMContext::MD_DIAssignID, GetNewID(ID));
1838bdd1243dSDimitry Andric else if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I))
1839bdd1243dSDimitry Andric DAI->setAssignId(GetNewID(DAI->getAssignID()));
1840bdd1243dSDimitry Andric }
1841bdd1243dSDimitry Andric }
1842bdd1243dSDimitry Andric }
1843bdd1243dSDimitry Andric #undef DEBUG_TYPE
1844bdd1243dSDimitry Andric #define DEBUG_TYPE "inline-function"
1845bdd1243dSDimitry Andric
18460b57cec5SDimitry Andric /// Update the block frequencies of the caller after a callee has been inlined.
18470b57cec5SDimitry Andric ///
18480b57cec5SDimitry Andric /// Each block cloned into the caller has its block frequency scaled by the
18490b57cec5SDimitry Andric /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
18500b57cec5SDimitry Andric /// callee's entry block gets the same frequency as the callsite block and the
18510b57cec5SDimitry Andric /// relative frequencies of all cloned blocks remain the same after cloning.
updateCallerBFI(BasicBlock * CallSiteBlock,const ValueToValueMapTy & VMap,BlockFrequencyInfo * CallerBFI,BlockFrequencyInfo * CalleeBFI,const BasicBlock & CalleeEntryBlock)18520b57cec5SDimitry Andric static void updateCallerBFI(BasicBlock *CallSiteBlock,
18530b57cec5SDimitry Andric const ValueToValueMapTy &VMap,
18540b57cec5SDimitry Andric BlockFrequencyInfo *CallerBFI,
18550b57cec5SDimitry Andric BlockFrequencyInfo *CalleeBFI,
18560b57cec5SDimitry Andric const BasicBlock &CalleeEntryBlock) {
18570b57cec5SDimitry Andric SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1858480093f4SDimitry Andric for (auto Entry : VMap) {
18590b57cec5SDimitry Andric if (!isa<BasicBlock>(Entry.first) || !Entry.second)
18600b57cec5SDimitry Andric continue;
18610b57cec5SDimitry Andric auto *OrigBB = cast<BasicBlock>(Entry.first);
18620b57cec5SDimitry Andric auto *ClonedBB = cast<BasicBlock>(Entry.second);
1863c9157d92SDimitry Andric BlockFrequency Freq = CalleeBFI->getBlockFreq(OrigBB);
18640b57cec5SDimitry Andric if (!ClonedBBs.insert(ClonedBB).second) {
18650b57cec5SDimitry Andric // Multiple blocks in the callee might get mapped to one cloned block in
18660b57cec5SDimitry Andric // the caller since we prune the callee as we clone it. When that happens,
18670b57cec5SDimitry Andric // we want to use the maximum among the original blocks' frequencies.
1868c9157d92SDimitry Andric BlockFrequency NewFreq = CallerBFI->getBlockFreq(ClonedBB);
18690b57cec5SDimitry Andric if (NewFreq > Freq)
18700b57cec5SDimitry Andric Freq = NewFreq;
18710b57cec5SDimitry Andric }
18720b57cec5SDimitry Andric CallerBFI->setBlockFreq(ClonedBB, Freq);
18730b57cec5SDimitry Andric }
18740b57cec5SDimitry Andric BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
18750b57cec5SDimitry Andric CallerBFI->setBlockFreqAndScale(
1876c9157d92SDimitry Andric EntryClone, CallerBFI->getBlockFreq(CallSiteBlock), ClonedBBs);
18770b57cec5SDimitry Andric }
18780b57cec5SDimitry Andric
18790b57cec5SDimitry Andric /// Update the branch metadata for cloned call instructions.
updateCallProfile(Function * Callee,const ValueToValueMapTy & VMap,const ProfileCount & CalleeEntryCount,const CallBase & TheCall,ProfileSummaryInfo * PSI,BlockFrequencyInfo * CallerBFI)18800b57cec5SDimitry Andric static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
18810b57cec5SDimitry Andric const ProfileCount &CalleeEntryCount,
18825ffd83dbSDimitry Andric const CallBase &TheCall, ProfileSummaryInfo *PSI,
18830b57cec5SDimitry Andric BlockFrequencyInfo *CallerBFI) {
1884349cc55cSDimitry Andric if (CalleeEntryCount.isSynthetic() || CalleeEntryCount.getCount() < 1)
18850b57cec5SDimitry Andric return;
1886bdd1243dSDimitry Andric auto CallSiteCount =
1887bdd1243dSDimitry Andric PSI ? PSI->getProfileCount(TheCall, CallerBFI) : std::nullopt;
18880b57cec5SDimitry Andric int64_t CallCount =
188981ad6265SDimitry Andric std::min(CallSiteCount.value_or(0), CalleeEntryCount.getCount());
18900b57cec5SDimitry Andric updateProfileCallee(Callee, -CallCount, &VMap);
18910b57cec5SDimitry Andric }
18920b57cec5SDimitry Andric
updateProfileCallee(Function * Callee,int64_t EntryDelta,const ValueMap<const Value *,WeakTrackingVH> * VMap)18930b57cec5SDimitry Andric void llvm::updateProfileCallee(
1894349cc55cSDimitry Andric Function *Callee, int64_t EntryDelta,
18950b57cec5SDimitry Andric const ValueMap<const Value *, WeakTrackingVH> *VMap) {
18960b57cec5SDimitry Andric auto CalleeCount = Callee->getEntryCount();
189781ad6265SDimitry Andric if (!CalleeCount)
18980b57cec5SDimitry Andric return;
18990b57cec5SDimitry Andric
1900349cc55cSDimitry Andric const uint64_t PriorEntryCount = CalleeCount->getCount();
19010b57cec5SDimitry Andric
19020b57cec5SDimitry Andric // Since CallSiteCount is an estimate, it could exceed the original callee
19030b57cec5SDimitry Andric // count and has to be set to 0 so guard against underflow.
1904349cc55cSDimitry Andric const uint64_t NewEntryCount =
1905349cc55cSDimitry Andric (EntryDelta < 0 && static_cast<uint64_t>(-EntryDelta) > PriorEntryCount)
1906349cc55cSDimitry Andric ? 0
1907349cc55cSDimitry Andric : PriorEntryCount + EntryDelta;
19080b57cec5SDimitry Andric
19090b57cec5SDimitry Andric // During inlining ?
19100b57cec5SDimitry Andric if (VMap) {
1911349cc55cSDimitry Andric uint64_t CloneEntryCount = PriorEntryCount - NewEntryCount;
1912480093f4SDimitry Andric for (auto Entry : *VMap)
19130b57cec5SDimitry Andric if (isa<CallInst>(Entry.first))
19140b57cec5SDimitry Andric if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1915349cc55cSDimitry Andric CI->updateProfWeight(CloneEntryCount, PriorEntryCount);
19160b57cec5SDimitry Andric }
1917480093f4SDimitry Andric
1918349cc55cSDimitry Andric if (EntryDelta) {
1919349cc55cSDimitry Andric Callee->setEntryCount(NewEntryCount);
1920480093f4SDimitry Andric
19210b57cec5SDimitry Andric for (BasicBlock &BB : *Callee)
19220b57cec5SDimitry Andric // No need to update the callsite if it is pruned during inlining.
19230b57cec5SDimitry Andric if (!VMap || VMap->count(&BB))
19240b57cec5SDimitry Andric for (Instruction &I : BB)
19250b57cec5SDimitry Andric if (CallInst *CI = dyn_cast<CallInst>(&I))
1926349cc55cSDimitry Andric CI->updateProfWeight(NewEntryCount, PriorEntryCount);
19270b57cec5SDimitry Andric }
1928480093f4SDimitry Andric }
19290b57cec5SDimitry Andric
1930fe6060f1SDimitry Andric /// An operand bundle "clang.arc.attachedcall" on a call indicates the call
1931fe6060f1SDimitry Andric /// result is implicitly consumed by a call to retainRV or claimRV immediately
1932fe6060f1SDimitry Andric /// after the call. This function inlines the retainRV/claimRV calls.
1933fe6060f1SDimitry Andric ///
1934fe6060f1SDimitry Andric /// There are three cases to consider:
1935fe6060f1SDimitry Andric ///
1936fe6060f1SDimitry Andric /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
1937fe6060f1SDimitry Andric /// object in the callee return block, the autoreleaseRV call and the
1938fe6060f1SDimitry Andric /// retainRV/claimRV call in the caller cancel out. If the call in the caller
1939fe6060f1SDimitry Andric /// is a claimRV call, a call to objc_release is emitted.
1940fe6060f1SDimitry Andric ///
1941fe6060f1SDimitry Andric /// 2. If there is a call in the callee return block that doesn't have operand
1942fe6060f1SDimitry Andric /// bundle "clang.arc.attachedcall", the operand bundle on the original call
1943fe6060f1SDimitry Andric /// is transferred to the call in the callee.
1944fe6060f1SDimitry Andric ///
1945fe6060f1SDimitry Andric /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
1946fe6060f1SDimitry Andric /// a retainRV call.
1947fe6060f1SDimitry Andric static void
inlineRetainOrClaimRVCalls(CallBase & CB,objcarc::ARCInstKind RVCallKind,const SmallVectorImpl<ReturnInst * > & Returns)1948349cc55cSDimitry Andric inlineRetainOrClaimRVCalls(CallBase &CB, objcarc::ARCInstKind RVCallKind,
1949fe6060f1SDimitry Andric const SmallVectorImpl<ReturnInst *> &Returns) {
1950fe6060f1SDimitry Andric Module *Mod = CB.getModule();
1951349cc55cSDimitry Andric assert(objcarc::isRetainOrClaimRV(RVCallKind) && "unexpected ARC function");
1952349cc55cSDimitry Andric bool IsRetainRV = RVCallKind == objcarc::ARCInstKind::RetainRV,
195304eeddc0SDimitry Andric IsUnsafeClaimRV = !IsRetainRV;
1954fe6060f1SDimitry Andric
1955fe6060f1SDimitry Andric for (auto *RI : Returns) {
1956fe6060f1SDimitry Andric Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0));
1957fe6060f1SDimitry Andric bool InsertRetainCall = IsRetainRV;
1958fe6060f1SDimitry Andric IRBuilder<> Builder(RI->getContext());
1959fe6060f1SDimitry Andric
1960fe6060f1SDimitry Andric // Walk backwards through the basic block looking for either a matching
1961fe6060f1SDimitry Andric // autoreleaseRV call or an unannotated call.
1962349cc55cSDimitry Andric auto InstRange = llvm::make_range(++(RI->getIterator().getReverse()),
1963349cc55cSDimitry Andric RI->getParent()->rend());
1964349cc55cSDimitry Andric for (Instruction &I : llvm::make_early_inc_range(InstRange)) {
1965fe6060f1SDimitry Andric // Ignore casts.
1966349cc55cSDimitry Andric if (isa<CastInst>(I))
1967fe6060f1SDimitry Andric continue;
1968fe6060f1SDimitry Andric
1969349cc55cSDimitry Andric if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1970349cc55cSDimitry Andric if (II->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue ||
1971349cc55cSDimitry Andric !II->hasNUses(0) ||
1972349cc55cSDimitry Andric objcarc::GetRCIdentityRoot(II->getOperand(0)) != RetOpnd)
1973349cc55cSDimitry Andric break;
1974349cc55cSDimitry Andric
1975fe6060f1SDimitry Andric // If we've found a matching authoreleaseRV call:
1976fe6060f1SDimitry Andric // - If claimRV is attached to the call, insert a call to objc_release
1977fe6060f1SDimitry Andric // and erase the autoreleaseRV call.
1978fe6060f1SDimitry Andric // - If retainRV is attached to the call, just erase the autoreleaseRV
1979fe6060f1SDimitry Andric // call.
198004eeddc0SDimitry Andric if (IsUnsafeClaimRV) {
1981fe6060f1SDimitry Andric Builder.SetInsertPoint(II);
1982fe6060f1SDimitry Andric Function *IFn =
1983fe6060f1SDimitry Andric Intrinsic::getDeclaration(Mod, Intrinsic::objc_release);
1984c9157d92SDimitry Andric Builder.CreateCall(IFn, RetOpnd, "");
1985fe6060f1SDimitry Andric }
1986fe6060f1SDimitry Andric II->eraseFromParent();
1987fe6060f1SDimitry Andric InsertRetainCall = false;
1988349cc55cSDimitry Andric break;
1989fe6060f1SDimitry Andric }
1990349cc55cSDimitry Andric
1991349cc55cSDimitry Andric auto *CI = dyn_cast<CallInst>(&I);
1992349cc55cSDimitry Andric
1993349cc55cSDimitry Andric if (!CI)
1994349cc55cSDimitry Andric break;
1995349cc55cSDimitry Andric
1996349cc55cSDimitry Andric if (objcarc::GetRCIdentityRoot(CI) != RetOpnd ||
1997349cc55cSDimitry Andric objcarc::hasAttachedCallOpBundle(CI))
1998349cc55cSDimitry Andric break;
1999349cc55cSDimitry Andric
2000fe6060f1SDimitry Andric // If we've found an unannotated call that defines RetOpnd, add a
2001fe6060f1SDimitry Andric // "clang.arc.attachedcall" operand bundle.
2002349cc55cSDimitry Andric Value *BundleArgs[] = {*objcarc::getAttachedARCFunction(&CB)};
2003fe6060f1SDimitry Andric OperandBundleDef OB("clang.arc.attachedcall", BundleArgs);
2004fe6060f1SDimitry Andric auto *NewCall = CallBase::addOperandBundle(
2005fe6060f1SDimitry Andric CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI);
2006fe6060f1SDimitry Andric NewCall->copyMetadata(*CI);
2007fe6060f1SDimitry Andric CI->replaceAllUsesWith(NewCall);
2008fe6060f1SDimitry Andric CI->eraseFromParent();
2009fe6060f1SDimitry Andric InsertRetainCall = false;
2010fe6060f1SDimitry Andric break;
2011fe6060f1SDimitry Andric }
2012fe6060f1SDimitry Andric
2013fe6060f1SDimitry Andric if (InsertRetainCall) {
2014fe6060f1SDimitry Andric // The retainRV is attached to the call and we've failed to find a
2015fe6060f1SDimitry Andric // matching autoreleaseRV or an annotated call in the callee. Emit a call
2016fe6060f1SDimitry Andric // to objc_retain.
2017fe6060f1SDimitry Andric Builder.SetInsertPoint(RI);
2018fe6060f1SDimitry Andric Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain);
2019c9157d92SDimitry Andric Builder.CreateCall(IFn, RetOpnd, "");
2020fe6060f1SDimitry Andric }
2021fe6060f1SDimitry Andric }
2022fe6060f1SDimitry Andric }
2023fe6060f1SDimitry Andric
20240b57cec5SDimitry Andric /// This function inlines the called function into the basic block of the
20250b57cec5SDimitry Andric /// caller. This returns false if it is not possible to inline this call.
20260b57cec5SDimitry Andric /// The program is still in a well defined state if this occurs though.
20270b57cec5SDimitry Andric ///
20280b57cec5SDimitry Andric /// Note that this only does one level of inlining. For example, if the
20290b57cec5SDimitry Andric /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
20300b57cec5SDimitry Andric /// exists in the instruction stream. Similarly this will inline a recursive
20310b57cec5SDimitry Andric /// function by one level.
InlineFunction(CallBase & CB,InlineFunctionInfo & IFI,bool MergeAttributes,AAResults * CalleeAAR,bool InsertLifetime,Function * ForwardVarArgsTo)20325ffd83dbSDimitry Andric llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
2033bdd1243dSDimitry Andric bool MergeAttributes,
20340b57cec5SDimitry Andric AAResults *CalleeAAR,
20350b57cec5SDimitry Andric bool InsertLifetime,
20360b57cec5SDimitry Andric Function *ForwardVarArgsTo) {
20375ffd83dbSDimitry Andric assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
20380b57cec5SDimitry Andric
20390b57cec5SDimitry Andric // FIXME: we don't inline callbr yet.
20405ffd83dbSDimitry Andric if (isa<CallBrInst>(CB))
20415ffd83dbSDimitry Andric return InlineResult::failure("We don't inline callbr yet.");
20420b57cec5SDimitry Andric
20430b57cec5SDimitry Andric // If IFI has any state in it, zap it before we fill it in.
20440b57cec5SDimitry Andric IFI.reset();
20450b57cec5SDimitry Andric
20465ffd83dbSDimitry Andric Function *CalledFunc = CB.getCalledFunction();
20470b57cec5SDimitry Andric if (!CalledFunc || // Can't inline external function or indirect
20480b57cec5SDimitry Andric CalledFunc->isDeclaration()) // call!
20495ffd83dbSDimitry Andric return InlineResult::failure("external or indirect");
20500b57cec5SDimitry Andric
20510b57cec5SDimitry Andric // The inliner does not know how to inline through calls with operand bundles
20520b57cec5SDimitry Andric // in general ...
2053c9157d92SDimitry Andric Value *ConvergenceControlToken = nullptr;
20545ffd83dbSDimitry Andric if (CB.hasOperandBundles()) {
20555ffd83dbSDimitry Andric for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
2056c9157d92SDimitry Andric auto OBUse = CB.getOperandBundleAt(i);
2057c9157d92SDimitry Andric uint32_t Tag = OBUse.getTagID();
20580b57cec5SDimitry Andric // ... but it knows how to inline through "deopt" operand bundles ...
20590b57cec5SDimitry Andric if (Tag == LLVMContext::OB_deopt)
20600b57cec5SDimitry Andric continue;
20610b57cec5SDimitry Andric // ... and "funclet" operand bundles.
20620b57cec5SDimitry Andric if (Tag == LLVMContext::OB_funclet)
20630b57cec5SDimitry Andric continue;
2064fe6060f1SDimitry Andric if (Tag == LLVMContext::OB_clang_arc_attachedcall)
2065fe6060f1SDimitry Andric continue;
2066bdd1243dSDimitry Andric if (Tag == LLVMContext::OB_kcfi)
2067bdd1243dSDimitry Andric continue;
2068c9157d92SDimitry Andric if (Tag == LLVMContext::OB_convergencectrl) {
2069c9157d92SDimitry Andric ConvergenceControlToken = OBUse.Inputs[0].get();
2070c9157d92SDimitry Andric continue;
2071c9157d92SDimitry Andric }
20720b57cec5SDimitry Andric
20735ffd83dbSDimitry Andric return InlineResult::failure("unsupported operand bundle");
20740b57cec5SDimitry Andric }
20750b57cec5SDimitry Andric }
20760b57cec5SDimitry Andric
2077c9157d92SDimitry Andric // FIXME: The check below is redundant and incomplete. According to spec, if a
2078c9157d92SDimitry Andric // convergent call is missing a token, then the caller is using uncontrolled
2079c9157d92SDimitry Andric // convergence. If the callee has an entry intrinsic, then the callee is using
2080c9157d92SDimitry Andric // controlled convergence, and the call cannot be inlined. A proper
2081c9157d92SDimitry Andric // implemenation of this check requires a whole new analysis that identifies
2082c9157d92SDimitry Andric // convergence in every function. For now, we skip that and just do this one
2083c9157d92SDimitry Andric // cursory check. The underlying assumption is that in a compiler flow that
2084c9157d92SDimitry Andric // fully implements convergence control tokens, there is no mixing of
2085c9157d92SDimitry Andric // controlled and uncontrolled convergent operations in the whole program.
2086c9157d92SDimitry Andric if (CB.isConvergent()) {
2087c9157d92SDimitry Andric auto *I = CalledFunc->getEntryBlock().getFirstNonPHI();
2088c9157d92SDimitry Andric if (auto *IntrinsicCall = dyn_cast<IntrinsicInst>(I)) {
2089c9157d92SDimitry Andric if (IntrinsicCall->getIntrinsicID() ==
2090c9157d92SDimitry Andric Intrinsic::experimental_convergence_entry) {
2091c9157d92SDimitry Andric if (!ConvergenceControlToken) {
2092c9157d92SDimitry Andric return InlineResult::failure(
2093c9157d92SDimitry Andric "convergent call needs convergencectrl operand");
2094c9157d92SDimitry Andric }
2095c9157d92SDimitry Andric }
2096c9157d92SDimitry Andric }
2097c9157d92SDimitry Andric }
2098c9157d92SDimitry Andric
20990b57cec5SDimitry Andric // If the call to the callee cannot throw, set the 'nounwind' flag on any
21000b57cec5SDimitry Andric // calls that we inline.
21015ffd83dbSDimitry Andric bool MarkNoUnwind = CB.doesNotThrow();
21020b57cec5SDimitry Andric
21035ffd83dbSDimitry Andric BasicBlock *OrigBB = CB.getParent();
21040b57cec5SDimitry Andric Function *Caller = OrigBB->getParent();
21050b57cec5SDimitry Andric
210681ad6265SDimitry Andric // Do not inline strictfp function into non-strictfp one. It would require
210781ad6265SDimitry Andric // conversion of all FP operations in host function to constrained intrinsics.
210881ad6265SDimitry Andric if (CalledFunc->getAttributes().hasFnAttr(Attribute::StrictFP) &&
210981ad6265SDimitry Andric !Caller->getAttributes().hasFnAttr(Attribute::StrictFP)) {
211081ad6265SDimitry Andric return InlineResult::failure("incompatible strictfp attributes");
211181ad6265SDimitry Andric }
211281ad6265SDimitry Andric
21130b57cec5SDimitry Andric // GC poses two hazards to inlining, which only occur when the callee has GC:
21140b57cec5SDimitry Andric // 1. If the caller has no GC, then the callee's GC must be propagated to the
21150b57cec5SDimitry Andric // caller.
21160b57cec5SDimitry Andric // 2. If the caller has a differing GC, it is invalid to inline.
21170b57cec5SDimitry Andric if (CalledFunc->hasGC()) {
21180b57cec5SDimitry Andric if (!Caller->hasGC())
21190b57cec5SDimitry Andric Caller->setGC(CalledFunc->getGC());
21200b57cec5SDimitry Andric else if (CalledFunc->getGC() != Caller->getGC())
21215ffd83dbSDimitry Andric return InlineResult::failure("incompatible GC");
21220b57cec5SDimitry Andric }
21230b57cec5SDimitry Andric
21240b57cec5SDimitry Andric // Get the personality function from the callee if it contains a landing pad.
21250b57cec5SDimitry Andric Constant *CalledPersonality =
21260b57cec5SDimitry Andric CalledFunc->hasPersonalityFn()
21270b57cec5SDimitry Andric ? CalledFunc->getPersonalityFn()->stripPointerCasts()
21280b57cec5SDimitry Andric : nullptr;
21290b57cec5SDimitry Andric
21300b57cec5SDimitry Andric // Find the personality function used by the landing pads of the caller. If it
21310b57cec5SDimitry Andric // exists, then check to see that it matches the personality function used in
21320b57cec5SDimitry Andric // the callee.
21330b57cec5SDimitry Andric Constant *CallerPersonality =
21340b57cec5SDimitry Andric Caller->hasPersonalityFn()
21350b57cec5SDimitry Andric ? Caller->getPersonalityFn()->stripPointerCasts()
21360b57cec5SDimitry Andric : nullptr;
21370b57cec5SDimitry Andric if (CalledPersonality) {
21380b57cec5SDimitry Andric if (!CallerPersonality)
21390b57cec5SDimitry Andric Caller->setPersonalityFn(CalledPersonality);
21400b57cec5SDimitry Andric // If the personality functions match, then we can perform the
21410b57cec5SDimitry Andric // inlining. Otherwise, we can't inline.
21420b57cec5SDimitry Andric // TODO: This isn't 100% true. Some personality functions are proper
21430b57cec5SDimitry Andric // supersets of others and can be used in place of the other.
21440b57cec5SDimitry Andric else if (CalledPersonality != CallerPersonality)
21455ffd83dbSDimitry Andric return InlineResult::failure("incompatible personality");
21460b57cec5SDimitry Andric }
21470b57cec5SDimitry Andric
21480b57cec5SDimitry Andric // We need to figure out which funclet the callsite was in so that we may
21490b57cec5SDimitry Andric // properly nest the callee.
21500b57cec5SDimitry Andric Instruction *CallSiteEHPad = nullptr;
21510b57cec5SDimitry Andric if (CallerPersonality) {
21520b57cec5SDimitry Andric EHPersonality Personality = classifyEHPersonality(CallerPersonality);
21530b57cec5SDimitry Andric if (isScopedEHPersonality(Personality)) {
2154bdd1243dSDimitry Andric std::optional<OperandBundleUse> ParentFunclet =
21555ffd83dbSDimitry Andric CB.getOperandBundle(LLVMContext::OB_funclet);
21560b57cec5SDimitry Andric if (ParentFunclet)
21570b57cec5SDimitry Andric CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
21580b57cec5SDimitry Andric
21590b57cec5SDimitry Andric // OK, the inlining site is legal. What about the target function?
21600b57cec5SDimitry Andric
21610b57cec5SDimitry Andric if (CallSiteEHPad) {
21620b57cec5SDimitry Andric if (Personality == EHPersonality::MSVC_CXX) {
21630b57cec5SDimitry Andric // The MSVC personality cannot tolerate catches getting inlined into
21640b57cec5SDimitry Andric // cleanup funclets.
21650b57cec5SDimitry Andric if (isa<CleanupPadInst>(CallSiteEHPad)) {
21660b57cec5SDimitry Andric // Ok, the call site is within a cleanuppad. Let's check the callee
21670b57cec5SDimitry Andric // for catchpads.
21680b57cec5SDimitry Andric for (const BasicBlock &CalledBB : *CalledFunc) {
21690b57cec5SDimitry Andric if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
21705ffd83dbSDimitry Andric return InlineResult::failure("catch in cleanup funclet");
21710b57cec5SDimitry Andric }
21720b57cec5SDimitry Andric }
21730b57cec5SDimitry Andric } else if (isAsynchronousEHPersonality(Personality)) {
21740b57cec5SDimitry Andric // SEH is even less tolerant, there may not be any sort of exceptional
21750b57cec5SDimitry Andric // funclet in the callee.
21760b57cec5SDimitry Andric for (const BasicBlock &CalledBB : *CalledFunc) {
21770b57cec5SDimitry Andric if (CalledBB.isEHPad())
21785ffd83dbSDimitry Andric return InlineResult::failure("SEH in cleanup funclet");
21790b57cec5SDimitry Andric }
21800b57cec5SDimitry Andric }
21810b57cec5SDimitry Andric }
21820b57cec5SDimitry Andric }
21830b57cec5SDimitry Andric }
21840b57cec5SDimitry Andric
21850b57cec5SDimitry Andric // Determine if we are dealing with a call in an EHPad which does not unwind
21860b57cec5SDimitry Andric // to caller.
21870b57cec5SDimitry Andric bool EHPadForCallUnwindsLocally = false;
21885ffd83dbSDimitry Andric if (CallSiteEHPad && isa<CallInst>(CB)) {
21890b57cec5SDimitry Andric UnwindDestMemoTy FuncletUnwindMap;
21900b57cec5SDimitry Andric Value *CallSiteUnwindDestToken =
21910b57cec5SDimitry Andric getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
21920b57cec5SDimitry Andric
21930b57cec5SDimitry Andric EHPadForCallUnwindsLocally =
21940b57cec5SDimitry Andric CallSiteUnwindDestToken &&
21950b57cec5SDimitry Andric !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
21960b57cec5SDimitry Andric }
21970b57cec5SDimitry Andric
21980b57cec5SDimitry Andric // Get an iterator to the last basic block in the function, which will have
21990b57cec5SDimitry Andric // the new function inlined after it.
22000b57cec5SDimitry Andric Function::iterator LastBlock = --Caller->end();
22010b57cec5SDimitry Andric
22020b57cec5SDimitry Andric // Make sure to capture all of the return instructions from the cloned
22030b57cec5SDimitry Andric // function.
22040b57cec5SDimitry Andric SmallVector<ReturnInst*, 8> Returns;
22050b57cec5SDimitry Andric ClonedCodeInfo InlinedFunctionInfo;
22060b57cec5SDimitry Andric Function::iterator FirstNewBlock;
22070b57cec5SDimitry Andric
22080b57cec5SDimitry Andric { // Scope to destroy VMap after cloning.
22090b57cec5SDimitry Andric ValueToValueMapTy VMap;
2210349cc55cSDimitry Andric struct ByValInit {
2211349cc55cSDimitry Andric Value *Dst;
2212349cc55cSDimitry Andric Value *Src;
2213349cc55cSDimitry Andric Type *Ty;
2214349cc55cSDimitry Andric };
22150b57cec5SDimitry Andric // Keep a list of pair (dst, src) to emit byval initializations.
2216349cc55cSDimitry Andric SmallVector<ByValInit, 4> ByValInits;
22170b57cec5SDimitry Andric
2218e8d8bef9SDimitry Andric // When inlining a function that contains noalias scope metadata,
2219e8d8bef9SDimitry Andric // this metadata needs to be cloned so that the inlined blocks
2220e8d8bef9SDimitry Andric // have different "unique scopes" at every call site.
2221e8d8bef9SDimitry Andric // Track the metadata that must be cloned. Do this before other changes to
2222e8d8bef9SDimitry Andric // the function, so that we do not get in trouble when inlining caller ==
2223e8d8bef9SDimitry Andric // callee.
2224e8d8bef9SDimitry Andric ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
2225e8d8bef9SDimitry Andric
22260b57cec5SDimitry Andric auto &DL = Caller->getParent()->getDataLayout();
22270b57cec5SDimitry Andric
22280b57cec5SDimitry Andric // Calculate the vector of arguments to pass into the function cloner, which
22290b57cec5SDimitry Andric // matches up the formal to the actual argument values.
22305ffd83dbSDimitry Andric auto AI = CB.arg_begin();
22310b57cec5SDimitry Andric unsigned ArgNo = 0;
22320b57cec5SDimitry Andric for (Function::arg_iterator I = CalledFunc->arg_begin(),
22330b57cec5SDimitry Andric E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
22340b57cec5SDimitry Andric Value *ActualArg = *AI;
22350b57cec5SDimitry Andric
22360b57cec5SDimitry Andric // When byval arguments actually inlined, we need to make the copy implied
22370b57cec5SDimitry Andric // by them explicit. However, we don't do this if the callee is readonly
22380b57cec5SDimitry Andric // or readnone, because the copy would be unneeded: the callee doesn't
22390b57cec5SDimitry Andric // modify the struct.
22405ffd83dbSDimitry Andric if (CB.isByValArgument(ArgNo)) {
2241349cc55cSDimitry Andric ActualArg = HandleByValArgument(CB.getParamByValType(ArgNo), ActualArg,
2242349cc55cSDimitry Andric &CB, CalledFunc, IFI,
2243bdd1243dSDimitry Andric CalledFunc->getParamAlign(ArgNo));
22440b57cec5SDimitry Andric if (ActualArg != *AI)
2245349cc55cSDimitry Andric ByValInits.push_back(
2246349cc55cSDimitry Andric {ActualArg, (Value *)*AI, CB.getParamByValType(ArgNo)});
22470b57cec5SDimitry Andric }
22480b57cec5SDimitry Andric
22490b57cec5SDimitry Andric VMap[&*I] = ActualArg;
22500b57cec5SDimitry Andric }
22510b57cec5SDimitry Andric
22525ffd83dbSDimitry Andric // TODO: Remove this when users have been updated to the assume bundles.
22530b57cec5SDimitry Andric // Add alignment assumptions if necessary. We do this before the inlined
22540b57cec5SDimitry Andric // instructions are actually cloned into the caller so that we can easily
22550b57cec5SDimitry Andric // check what will be known at the start of the inlined code.
22565ffd83dbSDimitry Andric AddAlignmentAssumptions(CB, IFI);
22575ffd83dbSDimitry Andric
22585ffd83dbSDimitry Andric AssumptionCache *AC =
22595ffd83dbSDimitry Andric IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
22605ffd83dbSDimitry Andric
22615ffd83dbSDimitry Andric /// Preserve all attributes on of the call and its parameters.
22625ffd83dbSDimitry Andric salvageKnowledge(&CB, AC);
22630b57cec5SDimitry Andric
22640b57cec5SDimitry Andric // We want the inliner to prune the code as it copies. We would LOVE to
22650b57cec5SDimitry Andric // have no dead or constant instructions leftover after inlining occurs
22660b57cec5SDimitry Andric // (which can happen, e.g., because an argument was constant), but we'll be
22670b57cec5SDimitry Andric // happy with whatever the cloner can do.
22680b57cec5SDimitry Andric CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
22690b57cec5SDimitry Andric /*ModuleLevelChanges=*/false, Returns, ".i",
2270fe6060f1SDimitry Andric &InlinedFunctionInfo);
22710b57cec5SDimitry Andric // Remember the first block that is newly cloned over.
22720b57cec5SDimitry Andric FirstNewBlock = LastBlock; ++FirstNewBlock;
22730b57cec5SDimitry Andric
2274fe6060f1SDimitry Andric // Insert retainRV/clainRV runtime calls.
2275349cc55cSDimitry Andric objcarc::ARCInstKind RVCallKind = objcarc::getAttachedARCFunctionKind(&CB);
2276349cc55cSDimitry Andric if (RVCallKind != objcarc::ARCInstKind::None)
2277349cc55cSDimitry Andric inlineRetainOrClaimRVCalls(CB, RVCallKind, Returns);
2278fe6060f1SDimitry Andric
2279fe6060f1SDimitry Andric // Updated caller/callee profiles only when requested. For sample loader
2280fe6060f1SDimitry Andric // inlining, the context-sensitive inlinee profile doesn't need to be
2281fe6060f1SDimitry Andric // subtracted from callee profile, and the inlined clone also doesn't need
2282fe6060f1SDimitry Andric // to be scaled based on call site count.
2283fe6060f1SDimitry Andric if (IFI.UpdateProfile) {
22840b57cec5SDimitry Andric if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
22850b57cec5SDimitry Andric // Update the BFI of blocks cloned into the caller.
22860b57cec5SDimitry Andric updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
22870b57cec5SDimitry Andric CalledFunc->front());
22880b57cec5SDimitry Andric
2289349cc55cSDimitry Andric if (auto Profile = CalledFunc->getEntryCount())
2290349cc55cSDimitry Andric updateCallProfile(CalledFunc, VMap, *Profile, CB, IFI.PSI,
2291349cc55cSDimitry Andric IFI.CallerBFI);
2292fe6060f1SDimitry Andric }
22930b57cec5SDimitry Andric
22940b57cec5SDimitry Andric // Inject byval arguments initialization.
2295349cc55cSDimitry Andric for (ByValInit &Init : ByValInits)
2296349cc55cSDimitry Andric HandleByValArgumentInit(Init.Ty, Init.Dst, Init.Src, Caller->getParent(),
2297fe013be4SDimitry Andric &*FirstNewBlock, IFI, CalledFunc);
22980b57cec5SDimitry Andric
2299bdd1243dSDimitry Andric std::optional<OperandBundleUse> ParentDeopt =
23005ffd83dbSDimitry Andric CB.getOperandBundle(LLVMContext::OB_deopt);
23010b57cec5SDimitry Andric if (ParentDeopt) {
23020b57cec5SDimitry Andric SmallVector<OperandBundleDef, 2> OpDefs;
23030b57cec5SDimitry Andric
23040b57cec5SDimitry Andric for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
23055ffd83dbSDimitry Andric CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
23065ffd83dbSDimitry Andric if (!ICS)
23075ffd83dbSDimitry Andric continue; // instruction was DCE'd or RAUW'ed to undef
23080b57cec5SDimitry Andric
23090b57cec5SDimitry Andric OpDefs.clear();
23100b57cec5SDimitry Andric
23115ffd83dbSDimitry Andric OpDefs.reserve(ICS->getNumOperandBundles());
23120b57cec5SDimitry Andric
23135ffd83dbSDimitry Andric for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
23145ffd83dbSDimitry Andric ++COBi) {
23155ffd83dbSDimitry Andric auto ChildOB = ICS->getOperandBundleAt(COBi);
23160b57cec5SDimitry Andric if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
23170b57cec5SDimitry Andric // If the inlined call has other operand bundles, let them be
23180b57cec5SDimitry Andric OpDefs.emplace_back(ChildOB);
23190b57cec5SDimitry Andric continue;
23200b57cec5SDimitry Andric }
23210b57cec5SDimitry Andric
23220b57cec5SDimitry Andric // It may be useful to separate this logic (of handling operand
23230b57cec5SDimitry Andric // bundles) out to a separate "policy" component if this gets crowded.
23240b57cec5SDimitry Andric // Prepend the parent's deoptimization continuation to the newly
23250b57cec5SDimitry Andric // inlined call's deoptimization continuation.
23260b57cec5SDimitry Andric std::vector<Value *> MergedDeoptArgs;
23270b57cec5SDimitry Andric MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
23280b57cec5SDimitry Andric ChildOB.Inputs.size());
23290b57cec5SDimitry Andric
2330e8d8bef9SDimitry Andric llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
2331e8d8bef9SDimitry Andric llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
23320b57cec5SDimitry Andric
23330b57cec5SDimitry Andric OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
23340b57cec5SDimitry Andric }
23350b57cec5SDimitry Andric
23365ffd83dbSDimitry Andric Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);
23370b57cec5SDimitry Andric
23380b57cec5SDimitry Andric // Note: the RAUW does the appropriate fixup in VMap, so we need to do
23390b57cec5SDimitry Andric // this even if the call returns void.
23405ffd83dbSDimitry Andric ICS->replaceAllUsesWith(NewI);
23410b57cec5SDimitry Andric
23420b57cec5SDimitry Andric VH = nullptr;
23435ffd83dbSDimitry Andric ICS->eraseFromParent();
23440b57cec5SDimitry Andric }
23450b57cec5SDimitry Andric }
23460b57cec5SDimitry Andric
23470b57cec5SDimitry Andric // For 'nodebug' functions, the associated DISubprogram is always null.
23480b57cec5SDimitry Andric // Conservatively avoid propagating the callsite debug location to
23490b57cec5SDimitry Andric // instructions inlined from a function whose DISubprogram is not null.
23505ffd83dbSDimitry Andric fixupLineNumbers(Caller, FirstNewBlock, &CB,
23510b57cec5SDimitry Andric CalledFunc->getSubprogram() != nullptr);
23520b57cec5SDimitry Andric
2353bdd1243dSDimitry Andric if (isAssignmentTrackingEnabled(*Caller->getParent())) {
2354bdd1243dSDimitry Andric // Interpret inlined stores to caller-local variables as assignments.
2355bdd1243dSDimitry Andric trackInlinedStores(FirstNewBlock, Caller->end(), CB);
2356bdd1243dSDimitry Andric
2357bdd1243dSDimitry Andric // Update DIAssignID metadata attachments and uses so that they are
2358bdd1243dSDimitry Andric // unique to this inlined instance.
2359bdd1243dSDimitry Andric fixupAssignments(FirstNewBlock, Caller->end());
2360bdd1243dSDimitry Andric }
2361bdd1243dSDimitry Andric
2362e8d8bef9SDimitry Andric // Now clone the inlined noalias scope metadata.
2363e8d8bef9SDimitry Andric SAMetadataCloner.clone();
236423408297SDimitry Andric SAMetadataCloner.remap(FirstNewBlock, Caller->end());
23650b57cec5SDimitry Andric
23660b57cec5SDimitry Andric // Add noalias metadata if necessary.
2367fe6060f1SDimitry Andric AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo);
23685ffd83dbSDimitry Andric
23695ffd83dbSDimitry Andric // Clone return attributes on the callsite into the calls within the inlined
23705ffd83dbSDimitry Andric // function which feed into its return value.
23715ffd83dbSDimitry Andric AddReturnAttributes(CB, VMap);
23720b57cec5SDimitry Andric
2373bdd1243dSDimitry Andric propagateMemProfMetadata(CalledFunc, CB,
2374bdd1243dSDimitry Andric InlinedFunctionInfo.ContainsMemProfMetadata, VMap);
2375bdd1243dSDimitry Andric
2376e8d8bef9SDimitry Andric // Propagate metadata on the callsite if necessary.
237723408297SDimitry Andric PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end());
23780b57cec5SDimitry Andric
23790b57cec5SDimitry Andric // Register any cloned assumptions.
23800b57cec5SDimitry Andric if (IFI.GetAssumptionCache)
23810b57cec5SDimitry Andric for (BasicBlock &NewBlock :
23820b57cec5SDimitry Andric make_range(FirstNewBlock->getIterator(), Caller->end()))
23835ffd83dbSDimitry Andric for (Instruction &I : NewBlock)
2384fe013be4SDimitry Andric if (auto *II = dyn_cast<AssumeInst>(&I))
23855ffd83dbSDimitry Andric IFI.GetAssumptionCache(*Caller).registerAssumption(II);
23860b57cec5SDimitry Andric }
23870b57cec5SDimitry Andric
2388c9157d92SDimitry Andric if (ConvergenceControlToken) {
2389c9157d92SDimitry Andric auto *I = FirstNewBlock->getFirstNonPHI();
2390c9157d92SDimitry Andric if (auto *IntrinsicCall = dyn_cast<IntrinsicInst>(I)) {
2391c9157d92SDimitry Andric if (IntrinsicCall->getIntrinsicID() ==
2392c9157d92SDimitry Andric Intrinsic::experimental_convergence_entry) {
2393c9157d92SDimitry Andric IntrinsicCall->replaceAllUsesWith(ConvergenceControlToken);
2394c9157d92SDimitry Andric IntrinsicCall->eraseFromParent();
2395c9157d92SDimitry Andric }
2396c9157d92SDimitry Andric }
2397c9157d92SDimitry Andric }
2398c9157d92SDimitry Andric
23990b57cec5SDimitry Andric // If there are any alloca instructions in the block that used to be the entry
24000b57cec5SDimitry Andric // block for the callee, move them to the entry block of the caller. First
24010b57cec5SDimitry Andric // calculate which instruction they should be inserted before. We insert the
24020b57cec5SDimitry Andric // instructions at the end of the current alloca list.
24030b57cec5SDimitry Andric {
24040b57cec5SDimitry Andric BasicBlock::iterator InsertPoint = Caller->begin()->begin();
24050b57cec5SDimitry Andric for (BasicBlock::iterator I = FirstNewBlock->begin(),
24060b57cec5SDimitry Andric E = FirstNewBlock->end(); I != E; ) {
24070b57cec5SDimitry Andric AllocaInst *AI = dyn_cast<AllocaInst>(I++);
24080b57cec5SDimitry Andric if (!AI) continue;
24090b57cec5SDimitry Andric
24100b57cec5SDimitry Andric // If the alloca is now dead, remove it. This often occurs due to code
24110b57cec5SDimitry Andric // specialization.
24120b57cec5SDimitry Andric if (AI->use_empty()) {
24130b57cec5SDimitry Andric AI->eraseFromParent();
24140b57cec5SDimitry Andric continue;
24150b57cec5SDimitry Andric }
24160b57cec5SDimitry Andric
24170b57cec5SDimitry Andric if (!allocaWouldBeStaticInEntry(AI))
24180b57cec5SDimitry Andric continue;
24190b57cec5SDimitry Andric
24200b57cec5SDimitry Andric // Keep track of the static allocas that we inline into the caller.
24210b57cec5SDimitry Andric IFI.StaticAllocas.push_back(AI);
24220b57cec5SDimitry Andric
24230b57cec5SDimitry Andric // Scan for the block of allocas that we can move over, and move them
24240b57cec5SDimitry Andric // all at once.
24250b57cec5SDimitry Andric while (isa<AllocaInst>(I) &&
2426480093f4SDimitry Andric !cast<AllocaInst>(I)->use_empty() &&
24270b57cec5SDimitry Andric allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
24280b57cec5SDimitry Andric IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
24290b57cec5SDimitry Andric ++I;
24300b57cec5SDimitry Andric }
24310b57cec5SDimitry Andric
24320b57cec5SDimitry Andric // Transfer all of the allocas over in a block. Using splice means
24330b57cec5SDimitry Andric // that the instructions aren't removed from the symbol table, then
24340b57cec5SDimitry Andric // reinserted.
2435c9157d92SDimitry Andric I.setTailBit(true);
2436bdd1243dSDimitry Andric Caller->getEntryBlock().splice(InsertPoint, &*FirstNewBlock,
2437bdd1243dSDimitry Andric AI->getIterator(), I);
24380b57cec5SDimitry Andric }
24390b57cec5SDimitry Andric }
24400b57cec5SDimitry Andric
24410b57cec5SDimitry Andric SmallVector<Value*,4> VarArgsToForward;
24420b57cec5SDimitry Andric SmallVector<AttributeSet, 4> VarArgsAttrs;
24430b57cec5SDimitry Andric for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
2444349cc55cSDimitry Andric i < CB.arg_size(); i++) {
24455ffd83dbSDimitry Andric VarArgsToForward.push_back(CB.getArgOperand(i));
2446349cc55cSDimitry Andric VarArgsAttrs.push_back(CB.getAttributes().getParamAttrs(i));
24470b57cec5SDimitry Andric }
24480b57cec5SDimitry Andric
24490b57cec5SDimitry Andric bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
24500b57cec5SDimitry Andric if (InlinedFunctionInfo.ContainsCalls) {
24510b57cec5SDimitry Andric CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
24525ffd83dbSDimitry Andric if (CallInst *CI = dyn_cast<CallInst>(&CB))
24530b57cec5SDimitry Andric CallSiteTailKind = CI->getTailCallKind();
24540b57cec5SDimitry Andric
24550b57cec5SDimitry Andric // For inlining purposes, the "notail" marker is the same as no marker.
24560b57cec5SDimitry Andric if (CallSiteTailKind == CallInst::TCK_NoTail)
24570b57cec5SDimitry Andric CallSiteTailKind = CallInst::TCK_None;
24580b57cec5SDimitry Andric
24590b57cec5SDimitry Andric for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
24600b57cec5SDimitry Andric ++BB) {
2461349cc55cSDimitry Andric for (Instruction &I : llvm::make_early_inc_range(*BB)) {
24620b57cec5SDimitry Andric CallInst *CI = dyn_cast<CallInst>(&I);
24630b57cec5SDimitry Andric if (!CI)
24640b57cec5SDimitry Andric continue;
24650b57cec5SDimitry Andric
24660b57cec5SDimitry Andric // Forward varargs from inlined call site to calls to the
24670b57cec5SDimitry Andric // ForwardVarArgsTo function, if requested, and to musttail calls.
24680b57cec5SDimitry Andric if (!VarArgsToForward.empty() &&
24690b57cec5SDimitry Andric ((ForwardVarArgsTo &&
24700b57cec5SDimitry Andric CI->getCalledFunction() == ForwardVarArgsTo) ||
24710b57cec5SDimitry Andric CI->isMustTailCall())) {
24720b57cec5SDimitry Andric // Collect attributes for non-vararg parameters.
24730b57cec5SDimitry Andric AttributeList Attrs = CI->getAttributes();
24740b57cec5SDimitry Andric SmallVector<AttributeSet, 8> ArgAttrs;
24750b57cec5SDimitry Andric if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
24760b57cec5SDimitry Andric for (unsigned ArgNo = 0;
24770b57cec5SDimitry Andric ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
2478349cc55cSDimitry Andric ArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
24790b57cec5SDimitry Andric }
24800b57cec5SDimitry Andric
24810b57cec5SDimitry Andric // Add VarArg attributes.
24820b57cec5SDimitry Andric ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
2483349cc55cSDimitry Andric Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(),
2484349cc55cSDimitry Andric Attrs.getRetAttrs(), ArgAttrs);
24850b57cec5SDimitry Andric // Add VarArgs to existing parameters.
2486349cc55cSDimitry Andric SmallVector<Value *, 6> Params(CI->args());
24870b57cec5SDimitry Andric Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
24880b57cec5SDimitry Andric CallInst *NewCI = CallInst::Create(
24890b57cec5SDimitry Andric CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
24900b57cec5SDimitry Andric NewCI->setDebugLoc(CI->getDebugLoc());
24910b57cec5SDimitry Andric NewCI->setAttributes(Attrs);
24920b57cec5SDimitry Andric NewCI->setCallingConv(CI->getCallingConv());
24930b57cec5SDimitry Andric CI->replaceAllUsesWith(NewCI);
24940b57cec5SDimitry Andric CI->eraseFromParent();
24950b57cec5SDimitry Andric CI = NewCI;
24960b57cec5SDimitry Andric }
24970b57cec5SDimitry Andric
24980b57cec5SDimitry Andric if (Function *F = CI->getCalledFunction())
24990b57cec5SDimitry Andric InlinedDeoptimizeCalls |=
25000b57cec5SDimitry Andric F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
25010b57cec5SDimitry Andric
25020b57cec5SDimitry Andric // We need to reduce the strength of any inlined tail calls. For
25030b57cec5SDimitry Andric // musttail, we have to avoid introducing potential unbounded stack
25040b57cec5SDimitry Andric // growth. For example, if functions 'f' and 'g' are mutually recursive
25050b57cec5SDimitry Andric // with musttail, we can inline 'g' into 'f' so long as we preserve
25060b57cec5SDimitry Andric // musttail on the cloned call to 'f'. If either the inlined call site
25070b57cec5SDimitry Andric // or the cloned call site is *not* musttail, the program already has
25080b57cec5SDimitry Andric // one frame of stack growth, so it's safe to remove musttail. Here is
25090b57cec5SDimitry Andric // a table of example transformations:
25100b57cec5SDimitry Andric //
25110b57cec5SDimitry Andric // f -> musttail g -> musttail f ==> f -> musttail f
25120b57cec5SDimitry Andric // f -> musttail g -> tail f ==> f -> tail f
25130b57cec5SDimitry Andric // f -> g -> musttail f ==> f -> f
25140b57cec5SDimitry Andric // f -> g -> tail f ==> f -> f
25150b57cec5SDimitry Andric //
25160b57cec5SDimitry Andric // Inlined notail calls should remain notail calls.
25170b57cec5SDimitry Andric CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
25180b57cec5SDimitry Andric if (ChildTCK != CallInst::TCK_NoTail)
25190b57cec5SDimitry Andric ChildTCK = std::min(CallSiteTailKind, ChildTCK);
25200b57cec5SDimitry Andric CI->setTailCallKind(ChildTCK);
25210b57cec5SDimitry Andric InlinedMustTailCalls |= CI->isMustTailCall();
25220b57cec5SDimitry Andric
2523fcaf7f86SDimitry Andric // Call sites inlined through a 'nounwind' call site should be
2524fcaf7f86SDimitry Andric // 'nounwind' as well. However, avoid marking call sites explicitly
2525fcaf7f86SDimitry Andric // where possible. This helps expose more opportunities for CSE after
2526fcaf7f86SDimitry Andric // inlining, commonly when the callee is an intrinsic.
2527fcaf7f86SDimitry Andric if (MarkNoUnwind && !CI->doesNotThrow())
25280b57cec5SDimitry Andric CI->setDoesNotThrow();
25290b57cec5SDimitry Andric }
25300b57cec5SDimitry Andric }
25310b57cec5SDimitry Andric }
25320b57cec5SDimitry Andric
25330b57cec5SDimitry Andric // Leave lifetime markers for the static alloca's, scoping them to the
25340b57cec5SDimitry Andric // function we just inlined.
2535fe6060f1SDimitry Andric // We need to insert lifetime intrinsics even at O0 to avoid invalid
2536fe6060f1SDimitry Andric // access caused by multithreaded coroutines. The check
2537fe6060f1SDimitry Andric // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only.
2538fe6060f1SDimitry Andric if ((InsertLifetime || Caller->isPresplitCoroutine()) &&
2539fe6060f1SDimitry Andric !IFI.StaticAllocas.empty()) {
2540c9157d92SDimitry Andric IRBuilder<> builder(&*FirstNewBlock, FirstNewBlock->begin());
25410b57cec5SDimitry Andric for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
25420b57cec5SDimitry Andric AllocaInst *AI = IFI.StaticAllocas[ai];
25430b57cec5SDimitry Andric // Don't mark swifterror allocas. They can't have bitcast uses.
25440b57cec5SDimitry Andric if (AI->isSwiftError())
25450b57cec5SDimitry Andric continue;
25460b57cec5SDimitry Andric
25470b57cec5SDimitry Andric // If the alloca is already scoped to something smaller than the whole
25480b57cec5SDimitry Andric // function then there's no need to add redundant, less accurate markers.
25490b57cec5SDimitry Andric if (hasLifetimeMarkers(AI))
25500b57cec5SDimitry Andric continue;
25510b57cec5SDimitry Andric
25520b57cec5SDimitry Andric // Try to determine the size of the allocation.
25530b57cec5SDimitry Andric ConstantInt *AllocaSize = nullptr;
25540b57cec5SDimitry Andric if (ConstantInt *AIArraySize =
25550b57cec5SDimitry Andric dyn_cast<ConstantInt>(AI->getArraySize())) {
25560b57cec5SDimitry Andric auto &DL = Caller->getParent()->getDataLayout();
25570b57cec5SDimitry Andric Type *AllocaType = AI->getAllocatedType();
2558e8d8bef9SDimitry Andric TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
25590b57cec5SDimitry Andric uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
25600b57cec5SDimitry Andric
25610b57cec5SDimitry Andric // Don't add markers for zero-sized allocas.
25620b57cec5SDimitry Andric if (AllocaArraySize == 0)
25630b57cec5SDimitry Andric continue;
25640b57cec5SDimitry Andric
25650b57cec5SDimitry Andric // Check that array size doesn't saturate uint64_t and doesn't
25660b57cec5SDimitry Andric // overflow when it's multiplied by type size.
2567e8d8bef9SDimitry Andric if (!AllocaTypeSize.isScalable() &&
2568e8d8bef9SDimitry Andric AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
25690b57cec5SDimitry Andric std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
2570bdd1243dSDimitry Andric AllocaTypeSize.getFixedValue()) {
25710b57cec5SDimitry Andric AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
25720b57cec5SDimitry Andric AllocaArraySize * AllocaTypeSize);
25730b57cec5SDimitry Andric }
25740b57cec5SDimitry Andric }
25750b57cec5SDimitry Andric
25760b57cec5SDimitry Andric builder.CreateLifetimeStart(AI, AllocaSize);
25770b57cec5SDimitry Andric for (ReturnInst *RI : Returns) {
25780b57cec5SDimitry Andric // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
25790b57cec5SDimitry Andric // call and a return. The return kills all local allocas.
25800b57cec5SDimitry Andric if (InlinedMustTailCalls &&
25810b57cec5SDimitry Andric RI->getParent()->getTerminatingMustTailCall())
25820b57cec5SDimitry Andric continue;
25830b57cec5SDimitry Andric if (InlinedDeoptimizeCalls &&
25840b57cec5SDimitry Andric RI->getParent()->getTerminatingDeoptimizeCall())
25850b57cec5SDimitry Andric continue;
25860b57cec5SDimitry Andric IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
25870b57cec5SDimitry Andric }
25880b57cec5SDimitry Andric }
25890b57cec5SDimitry Andric }
25900b57cec5SDimitry Andric
25910b57cec5SDimitry Andric // If the inlined code contained dynamic alloca instructions, wrap the inlined
25920b57cec5SDimitry Andric // code with llvm.stacksave/llvm.stackrestore intrinsics.
25930b57cec5SDimitry Andric if (InlinedFunctionInfo.ContainsDynamicAllocas) {
25940b57cec5SDimitry Andric // Insert the llvm.stacksave.
25950b57cec5SDimitry Andric CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2596c9157d92SDimitry Andric .CreateStackSave("savedstack");
25970b57cec5SDimitry Andric
25980b57cec5SDimitry Andric // Insert a call to llvm.stackrestore before any return instructions in the
25990b57cec5SDimitry Andric // inlined function.
26000b57cec5SDimitry Andric for (ReturnInst *RI : Returns) {
26010b57cec5SDimitry Andric // Don't insert llvm.stackrestore calls between a musttail or deoptimize
26020b57cec5SDimitry Andric // call and a return. The return will restore the stack pointer.
26030b57cec5SDimitry Andric if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
26040b57cec5SDimitry Andric continue;
26050b57cec5SDimitry Andric if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
26060b57cec5SDimitry Andric continue;
2607c9157d92SDimitry Andric IRBuilder<>(RI).CreateStackRestore(SavedPtr);
26080b57cec5SDimitry Andric }
26090b57cec5SDimitry Andric }
26100b57cec5SDimitry Andric
26110b57cec5SDimitry Andric // If we are inlining for an invoke instruction, we must make sure to rewrite
26120b57cec5SDimitry Andric // any call instructions into invoke instructions. This is sensitive to which
26130b57cec5SDimitry Andric // funclet pads were top-level in the inlinee, so must be done before
26140b57cec5SDimitry Andric // rewriting the "parent pad" links.
26155ffd83dbSDimitry Andric if (auto *II = dyn_cast<InvokeInst>(&CB)) {
26160b57cec5SDimitry Andric BasicBlock *UnwindDest = II->getUnwindDest();
26170b57cec5SDimitry Andric Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
26180b57cec5SDimitry Andric if (isa<LandingPadInst>(FirstNonPHI)) {
26190b57cec5SDimitry Andric HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
26200b57cec5SDimitry Andric } else {
26210b57cec5SDimitry Andric HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
26220b57cec5SDimitry Andric }
26230b57cec5SDimitry Andric }
26240b57cec5SDimitry Andric
26250b57cec5SDimitry Andric // Update the lexical scopes of the new funclets and callsites.
26260b57cec5SDimitry Andric // Anything that had 'none' as its parent is now nested inside the callsite's
26270b57cec5SDimitry Andric // EHPad.
26280b57cec5SDimitry Andric if (CallSiteEHPad) {
26290b57cec5SDimitry Andric for (Function::iterator BB = FirstNewBlock->getIterator(),
26300b57cec5SDimitry Andric E = Caller->end();
26310b57cec5SDimitry Andric BB != E; ++BB) {
2632972a253aSDimitry Andric // Add bundle operands to inlined call sites.
2633972a253aSDimitry Andric PropagateOperandBundles(BB, CallSiteEHPad);
26340b57cec5SDimitry Andric
26350b57cec5SDimitry Andric // It is problematic if the inlinee has a cleanupret which unwinds to
26360b57cec5SDimitry Andric // caller and we inline it into a call site which doesn't unwind but into
26370b57cec5SDimitry Andric // an EH pad that does. Such an edge must be dynamically unreachable.
26380b57cec5SDimitry Andric // As such, we replace the cleanupret with unreachable.
26390b57cec5SDimitry Andric if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
26400b57cec5SDimitry Andric if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2641fe6060f1SDimitry Andric changeToUnreachable(CleanupRet);
26420b57cec5SDimitry Andric
26430b57cec5SDimitry Andric Instruction *I = BB->getFirstNonPHI();
26440b57cec5SDimitry Andric if (!I->isEHPad())
26450b57cec5SDimitry Andric continue;
26460b57cec5SDimitry Andric
26470b57cec5SDimitry Andric if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
26480b57cec5SDimitry Andric if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
26490b57cec5SDimitry Andric CatchSwitch->setParentPad(CallSiteEHPad);
26500b57cec5SDimitry Andric } else {
26510b57cec5SDimitry Andric auto *FPI = cast<FuncletPadInst>(I);
26520b57cec5SDimitry Andric if (isa<ConstantTokenNone>(FPI->getParentPad()))
26530b57cec5SDimitry Andric FPI->setParentPad(CallSiteEHPad);
26540b57cec5SDimitry Andric }
26550b57cec5SDimitry Andric }
26560b57cec5SDimitry Andric }
26570b57cec5SDimitry Andric
26580b57cec5SDimitry Andric if (InlinedDeoptimizeCalls) {
26590b57cec5SDimitry Andric // We need to at least remove the deoptimizing returns from the Return set,
26600b57cec5SDimitry Andric // so that the control flow from those returns does not get merged into the
26610b57cec5SDimitry Andric // caller (but terminate it instead). If the caller's return type does not
26620b57cec5SDimitry Andric // match the callee's return type, we also need to change the return type of
26630b57cec5SDimitry Andric // the intrinsic.
26645ffd83dbSDimitry Andric if (Caller->getReturnType() == CB.getType()) {
2665e8d8bef9SDimitry Andric llvm::erase_if(Returns, [](ReturnInst *RI) {
26660b57cec5SDimitry Andric return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
26670b57cec5SDimitry Andric });
26680b57cec5SDimitry Andric } else {
26690b57cec5SDimitry Andric SmallVector<ReturnInst *, 8> NormalReturns;
26700b57cec5SDimitry Andric Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
26710b57cec5SDimitry Andric Caller->getParent(), Intrinsic::experimental_deoptimize,
26720b57cec5SDimitry Andric {Caller->getReturnType()});
26730b57cec5SDimitry Andric
26740b57cec5SDimitry Andric for (ReturnInst *RI : Returns) {
26750b57cec5SDimitry Andric CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
26760b57cec5SDimitry Andric if (!DeoptCall) {
26770b57cec5SDimitry Andric NormalReturns.push_back(RI);
26780b57cec5SDimitry Andric continue;
26790b57cec5SDimitry Andric }
26800b57cec5SDimitry Andric
26810b57cec5SDimitry Andric // The calling convention on the deoptimize call itself may be bogus,
26820b57cec5SDimitry Andric // since the code we're inlining may have undefined behavior (and may
26830b57cec5SDimitry Andric // never actually execute at runtime); but all
26840b57cec5SDimitry Andric // @llvm.experimental.deoptimize declarations have to have the same
26850b57cec5SDimitry Andric // calling convention in a well-formed module.
26860b57cec5SDimitry Andric auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
26870b57cec5SDimitry Andric NewDeoptIntrinsic->setCallingConv(CallingConv);
26880b57cec5SDimitry Andric auto *CurBB = RI->getParent();
26890b57cec5SDimitry Andric RI->eraseFromParent();
26900b57cec5SDimitry Andric
2691e8d8bef9SDimitry Andric SmallVector<Value *, 4> CallArgs(DeoptCall->args());
26920b57cec5SDimitry Andric
26930b57cec5SDimitry Andric SmallVector<OperandBundleDef, 1> OpBundles;
26940b57cec5SDimitry Andric DeoptCall->getOperandBundlesAsDefs(OpBundles);
2695fe6060f1SDimitry Andric auto DeoptAttributes = DeoptCall->getAttributes();
26960b57cec5SDimitry Andric DeoptCall->eraseFromParent();
26970b57cec5SDimitry Andric assert(!OpBundles.empty() &&
26980b57cec5SDimitry Andric "Expected at least the deopt operand bundle");
26990b57cec5SDimitry Andric
27000b57cec5SDimitry Andric IRBuilder<> Builder(CurBB);
27010b57cec5SDimitry Andric CallInst *NewDeoptCall =
27020b57cec5SDimitry Andric Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
27030b57cec5SDimitry Andric NewDeoptCall->setCallingConv(CallingConv);
2704fe6060f1SDimitry Andric NewDeoptCall->setAttributes(DeoptAttributes);
27050b57cec5SDimitry Andric if (NewDeoptCall->getType()->isVoidTy())
27060b57cec5SDimitry Andric Builder.CreateRetVoid();
27070b57cec5SDimitry Andric else
27080b57cec5SDimitry Andric Builder.CreateRet(NewDeoptCall);
2709c9157d92SDimitry Andric // Since the ret type is changed, remove the incompatible attributes.
2710c9157d92SDimitry Andric NewDeoptCall->removeRetAttrs(
2711c9157d92SDimitry Andric AttributeFuncs::typeIncompatible(NewDeoptCall->getType()));
27120b57cec5SDimitry Andric }
27130b57cec5SDimitry Andric
27140b57cec5SDimitry Andric // Leave behind the normal returns so we can merge control flow.
27150b57cec5SDimitry Andric std::swap(Returns, NormalReturns);
27160b57cec5SDimitry Andric }
27170b57cec5SDimitry Andric }
27180b57cec5SDimitry Andric
27190b57cec5SDimitry Andric // Handle any inlined musttail call sites. In order for a new call site to be
27200b57cec5SDimitry Andric // musttail, the source of the clone and the inlined call site must have been
27210b57cec5SDimitry Andric // musttail. Therefore it's safe to return without merging control into the
27220b57cec5SDimitry Andric // phi below.
27230b57cec5SDimitry Andric if (InlinedMustTailCalls) {
27240b57cec5SDimitry Andric // Check if we need to bitcast the result of any musttail calls.
27250b57cec5SDimitry Andric Type *NewRetTy = Caller->getReturnType();
27265ffd83dbSDimitry Andric bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
27270b57cec5SDimitry Andric
27280b57cec5SDimitry Andric // Handle the returns preceded by musttail calls separately.
27290b57cec5SDimitry Andric SmallVector<ReturnInst *, 8> NormalReturns;
27300b57cec5SDimitry Andric for (ReturnInst *RI : Returns) {
27310b57cec5SDimitry Andric CallInst *ReturnedMustTail =
27320b57cec5SDimitry Andric RI->getParent()->getTerminatingMustTailCall();
27330b57cec5SDimitry Andric if (!ReturnedMustTail) {
27340b57cec5SDimitry Andric NormalReturns.push_back(RI);
27350b57cec5SDimitry Andric continue;
27360b57cec5SDimitry Andric }
27370b57cec5SDimitry Andric if (!NeedBitCast)
27380b57cec5SDimitry Andric continue;
27390b57cec5SDimitry Andric
27400b57cec5SDimitry Andric // Delete the old return and any preceding bitcast.
27410b57cec5SDimitry Andric BasicBlock *CurBB = RI->getParent();
27420b57cec5SDimitry Andric auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
27430b57cec5SDimitry Andric RI->eraseFromParent();
27440b57cec5SDimitry Andric if (OldCast)
27450b57cec5SDimitry Andric OldCast->eraseFromParent();
27460b57cec5SDimitry Andric
27470b57cec5SDimitry Andric // Insert a new bitcast and return with the right type.
27480b57cec5SDimitry Andric IRBuilder<> Builder(CurBB);
27490b57cec5SDimitry Andric Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
27500b57cec5SDimitry Andric }
27510b57cec5SDimitry Andric
27520b57cec5SDimitry Andric // Leave behind the normal returns so we can merge control flow.
27530b57cec5SDimitry Andric std::swap(Returns, NormalReturns);
27540b57cec5SDimitry Andric }
27550b57cec5SDimitry Andric
27560b57cec5SDimitry Andric // Now that all of the transforms on the inlined code have taken place but
27570b57cec5SDimitry Andric // before we splice the inlined code into the CFG and lose track of which
27580b57cec5SDimitry Andric // blocks were actually inlined, collect the call sites. We only do this if
27590b57cec5SDimitry Andric // call graph updates weren't requested, as those provide value handle based
2760fe6060f1SDimitry Andric // tracking of inlined call sites instead. Calls to intrinsics are not
2761fe6060f1SDimitry Andric // collected because they are not inlineable.
2762fe013be4SDimitry Andric if (InlinedFunctionInfo.ContainsCalls) {
27630b57cec5SDimitry Andric // Otherwise just collect the raw call sites that were inlined.
27640b57cec5SDimitry Andric for (BasicBlock &NewBB :
27650b57cec5SDimitry Andric make_range(FirstNewBlock->getIterator(), Caller->end()))
27660b57cec5SDimitry Andric for (Instruction &I : NewBB)
27675ffd83dbSDimitry Andric if (auto *CB = dyn_cast<CallBase>(&I))
2768fe6060f1SDimitry Andric if (!(CB->getCalledFunction() &&
2769fe6060f1SDimitry Andric CB->getCalledFunction()->isIntrinsic()))
27705ffd83dbSDimitry Andric IFI.InlinedCallSites.push_back(CB);
27710b57cec5SDimitry Andric }
27720b57cec5SDimitry Andric
27730b57cec5SDimitry Andric // If we cloned in _exactly one_ basic block, and if that block ends in a
27740b57cec5SDimitry Andric // return instruction, we splice the body of the inlined callee directly into
27750b57cec5SDimitry Andric // the calling basic block.
27760b57cec5SDimitry Andric if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
27770b57cec5SDimitry Andric // Move all of the instructions right before the call.
2778bdd1243dSDimitry Andric OrigBB->splice(CB.getIterator(), &*FirstNewBlock, FirstNewBlock->begin(),
2779bdd1243dSDimitry Andric FirstNewBlock->end());
27800b57cec5SDimitry Andric // Remove the cloned basic block.
2781bdd1243dSDimitry Andric Caller->back().eraseFromParent();
27820b57cec5SDimitry Andric
27830b57cec5SDimitry Andric // If the call site was an invoke instruction, add a branch to the normal
27840b57cec5SDimitry Andric // destination.
27855ffd83dbSDimitry Andric if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
27865ffd83dbSDimitry Andric BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
27870b57cec5SDimitry Andric NewBr->setDebugLoc(Returns[0]->getDebugLoc());
27880b57cec5SDimitry Andric }
27890b57cec5SDimitry Andric
27900b57cec5SDimitry Andric // If the return instruction returned a value, replace uses of the call with
27910b57cec5SDimitry Andric // uses of the returned value.
27925ffd83dbSDimitry Andric if (!CB.use_empty()) {
27930b57cec5SDimitry Andric ReturnInst *R = Returns[0];
27945ffd83dbSDimitry Andric if (&CB == R->getReturnValue())
2795fe013be4SDimitry Andric CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
27960b57cec5SDimitry Andric else
27975ffd83dbSDimitry Andric CB.replaceAllUsesWith(R->getReturnValue());
27980b57cec5SDimitry Andric }
27990b57cec5SDimitry Andric // Since we are now done with the Call/Invoke, we can delete it.
28005ffd83dbSDimitry Andric CB.eraseFromParent();
28010b57cec5SDimitry Andric
28020b57cec5SDimitry Andric // Since we are now done with the return instruction, delete it also.
28030b57cec5SDimitry Andric Returns[0]->eraseFromParent();
28040b57cec5SDimitry Andric
2805bdd1243dSDimitry Andric if (MergeAttributes)
2806bdd1243dSDimitry Andric AttributeFuncs::mergeAttributesForInlining(*Caller, *CalledFunc);
2807bdd1243dSDimitry Andric
28080b57cec5SDimitry Andric // We are now done with the inlining.
28095ffd83dbSDimitry Andric return InlineResult::success();
28100b57cec5SDimitry Andric }
28110b57cec5SDimitry Andric
28120b57cec5SDimitry Andric // Otherwise, we have the normal case, of more than one block to inline or
28130b57cec5SDimitry Andric // multiple return sites.
28140b57cec5SDimitry Andric
28150b57cec5SDimitry Andric // We want to clone the entire callee function into the hole between the
28160b57cec5SDimitry Andric // "starter" and "ender" blocks. How we accomplish this depends on whether
28170b57cec5SDimitry Andric // this is an invoke instruction or a call instruction.
28180b57cec5SDimitry Andric BasicBlock *AfterCallBB;
28190b57cec5SDimitry Andric BranchInst *CreatedBranchToNormalDest = nullptr;
28205ffd83dbSDimitry Andric if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
28210b57cec5SDimitry Andric
28220b57cec5SDimitry Andric // Add an unconditional branch to make this look like the CallInst case...
28235ffd83dbSDimitry Andric CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);
28240b57cec5SDimitry Andric
28250b57cec5SDimitry Andric // Split the basic block. This guarantees that no PHI nodes will have to be
28260b57cec5SDimitry Andric // updated due to new incoming edges, and make the invoke case more
28270b57cec5SDimitry Andric // symmetric to the call case.
28280b57cec5SDimitry Andric AfterCallBB =
28290b57cec5SDimitry Andric OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
28300b57cec5SDimitry Andric CalledFunc->getName() + ".exit");
28310b57cec5SDimitry Andric
28320b57cec5SDimitry Andric } else { // It's a call
28330b57cec5SDimitry Andric // If this is a call instruction, we need to split the basic block that
28340b57cec5SDimitry Andric // the call lives in.
28350b57cec5SDimitry Andric //
28365ffd83dbSDimitry Andric AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
28370b57cec5SDimitry Andric CalledFunc->getName() + ".exit");
28380b57cec5SDimitry Andric }
28390b57cec5SDimitry Andric
28400b57cec5SDimitry Andric if (IFI.CallerBFI) {
28410b57cec5SDimitry Andric // Copy original BB's block frequency to AfterCallBB
2842c9157d92SDimitry Andric IFI.CallerBFI->setBlockFreq(AfterCallBB,
2843c9157d92SDimitry Andric IFI.CallerBFI->getBlockFreq(OrigBB));
28440b57cec5SDimitry Andric }
28450b57cec5SDimitry Andric
28460b57cec5SDimitry Andric // Change the branch that used to go to AfterCallBB to branch to the first
28470b57cec5SDimitry Andric // basic block of the inlined function.
28480b57cec5SDimitry Andric //
28490b57cec5SDimitry Andric Instruction *Br = OrigBB->getTerminator();
28500b57cec5SDimitry Andric assert(Br && Br->getOpcode() == Instruction::Br &&
28510b57cec5SDimitry Andric "splitBasicBlock broken!");
28520b57cec5SDimitry Andric Br->setOperand(0, &*FirstNewBlock);
28530b57cec5SDimitry Andric
28540b57cec5SDimitry Andric // Now that the function is correct, make it a little bit nicer. In
28550b57cec5SDimitry Andric // particular, move the basic blocks inserted from the end of the function
28560b57cec5SDimitry Andric // into the space made by splitting the source basic block.
2857bdd1243dSDimitry Andric Caller->splice(AfterCallBB->getIterator(), Caller, FirstNewBlock,
28580b57cec5SDimitry Andric Caller->end());
28590b57cec5SDimitry Andric
28600b57cec5SDimitry Andric // Handle all of the return instructions that we just cloned in, and eliminate
28610b57cec5SDimitry Andric // any users of the original call/invoke instruction.
28620b57cec5SDimitry Andric Type *RTy = CalledFunc->getReturnType();
28630b57cec5SDimitry Andric
28640b57cec5SDimitry Andric PHINode *PHI = nullptr;
28650b57cec5SDimitry Andric if (Returns.size() > 1) {
28660b57cec5SDimitry Andric // The PHI node should go at the front of the new basic block to merge all
28670b57cec5SDimitry Andric // possible incoming values.
28685ffd83dbSDimitry Andric if (!CB.use_empty()) {
2869c9157d92SDimitry Andric PHI = PHINode::Create(RTy, Returns.size(), CB.getName());
2870c9157d92SDimitry Andric PHI->insertBefore(AfterCallBB->begin());
28710b57cec5SDimitry Andric // Anything that used the result of the function call should now use the
28720b57cec5SDimitry Andric // PHI node as their operand.
28735ffd83dbSDimitry Andric CB.replaceAllUsesWith(PHI);
28740b57cec5SDimitry Andric }
28750b57cec5SDimitry Andric
28760b57cec5SDimitry Andric // Loop over all of the return instructions adding entries to the PHI node
28770b57cec5SDimitry Andric // as appropriate.
28780b57cec5SDimitry Andric if (PHI) {
28790b57cec5SDimitry Andric for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
28800b57cec5SDimitry Andric ReturnInst *RI = Returns[i];
28810b57cec5SDimitry Andric assert(RI->getReturnValue()->getType() == PHI->getType() &&
28820b57cec5SDimitry Andric "Ret value not consistent in function!");
28830b57cec5SDimitry Andric PHI->addIncoming(RI->getReturnValue(), RI->getParent());
28840b57cec5SDimitry Andric }
28850b57cec5SDimitry Andric }
28860b57cec5SDimitry Andric
28870b57cec5SDimitry Andric // Add a branch to the merge points and remove return instructions.
28880b57cec5SDimitry Andric DebugLoc Loc;
28890b57cec5SDimitry Andric for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
28900b57cec5SDimitry Andric ReturnInst *RI = Returns[i];
28910b57cec5SDimitry Andric BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
28920b57cec5SDimitry Andric Loc = RI->getDebugLoc();
28930b57cec5SDimitry Andric BI->setDebugLoc(Loc);
28940b57cec5SDimitry Andric RI->eraseFromParent();
28950b57cec5SDimitry Andric }
28960b57cec5SDimitry Andric // We need to set the debug location to *somewhere* inside the
28970b57cec5SDimitry Andric // inlined function. The line number may be nonsensical, but the
28980b57cec5SDimitry Andric // instruction will at least be associated with the right
28990b57cec5SDimitry Andric // function.
29000b57cec5SDimitry Andric if (CreatedBranchToNormalDest)
29010b57cec5SDimitry Andric CreatedBranchToNormalDest->setDebugLoc(Loc);
29020b57cec5SDimitry Andric } else if (!Returns.empty()) {
29030b57cec5SDimitry Andric // Otherwise, if there is exactly one return value, just replace anything
29040b57cec5SDimitry Andric // using the return value of the call with the computed value.
29055ffd83dbSDimitry Andric if (!CB.use_empty()) {
29065ffd83dbSDimitry Andric if (&CB == Returns[0]->getReturnValue())
2907fe013be4SDimitry Andric CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
29080b57cec5SDimitry Andric else
29095ffd83dbSDimitry Andric CB.replaceAllUsesWith(Returns[0]->getReturnValue());
29100b57cec5SDimitry Andric }
29110b57cec5SDimitry Andric
29120b57cec5SDimitry Andric // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
29130b57cec5SDimitry Andric BasicBlock *ReturnBB = Returns[0]->getParent();
29140b57cec5SDimitry Andric ReturnBB->replaceAllUsesWith(AfterCallBB);
29150b57cec5SDimitry Andric
29160b57cec5SDimitry Andric // Splice the code from the return block into the block that it will return
29170b57cec5SDimitry Andric // to, which contains the code that was after the call.
2918bdd1243dSDimitry Andric AfterCallBB->splice(AfterCallBB->begin(), ReturnBB);
29190b57cec5SDimitry Andric
29200b57cec5SDimitry Andric if (CreatedBranchToNormalDest)
29210b57cec5SDimitry Andric CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
29220b57cec5SDimitry Andric
29230b57cec5SDimitry Andric // Delete the return instruction now and empty ReturnBB now.
29240b57cec5SDimitry Andric Returns[0]->eraseFromParent();
29250b57cec5SDimitry Andric ReturnBB->eraseFromParent();
29265ffd83dbSDimitry Andric } else if (!CB.use_empty()) {
29270b57cec5SDimitry Andric // No returns, but something is using the return value of the call. Just
29280b57cec5SDimitry Andric // nuke the result.
2929fcaf7f86SDimitry Andric CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
29300b57cec5SDimitry Andric }
29310b57cec5SDimitry Andric
29320b57cec5SDimitry Andric // Since we are now done with the Call/Invoke, we can delete it.
29335ffd83dbSDimitry Andric CB.eraseFromParent();
29340b57cec5SDimitry Andric
29350b57cec5SDimitry Andric // If we inlined any musttail calls and the original return is now
29360b57cec5SDimitry Andric // unreachable, delete it. It can only contain a bitcast and ret.
2937e8d8bef9SDimitry Andric if (InlinedMustTailCalls && pred_empty(AfterCallBB))
29380b57cec5SDimitry Andric AfterCallBB->eraseFromParent();
29390b57cec5SDimitry Andric
29400b57cec5SDimitry Andric // We should always be able to fold the entry block of the function into the
29410b57cec5SDimitry Andric // single predecessor of the block...
29420b57cec5SDimitry Andric assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
29430b57cec5SDimitry Andric BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
29440b57cec5SDimitry Andric
29450b57cec5SDimitry Andric // Splice the code entry block into calling block, right before the
29460b57cec5SDimitry Andric // unconditional branch.
29470b57cec5SDimitry Andric CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
2948bdd1243dSDimitry Andric OrigBB->splice(Br->getIterator(), CalleeEntry);
29490b57cec5SDimitry Andric
29500b57cec5SDimitry Andric // Remove the unconditional branch.
2951bdd1243dSDimitry Andric Br->eraseFromParent();
29520b57cec5SDimitry Andric
29530b57cec5SDimitry Andric // Now we can remove the CalleeEntry block, which is now empty.
2954bdd1243dSDimitry Andric CalleeEntry->eraseFromParent();
29550b57cec5SDimitry Andric
29560b57cec5SDimitry Andric // If we inserted a phi node, check to see if it has a single value (e.g. all
29570b57cec5SDimitry Andric // the entries are the same or undef). If so, remove the PHI so it doesn't
29580b57cec5SDimitry Andric // block other optimizations.
29590b57cec5SDimitry Andric if (PHI) {
29600b57cec5SDimitry Andric AssumptionCache *AC =
29615ffd83dbSDimitry Andric IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
29620b57cec5SDimitry Andric auto &DL = Caller->getParent()->getDataLayout();
296381ad6265SDimitry Andric if (Value *V = simplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
29640b57cec5SDimitry Andric PHI->replaceAllUsesWith(V);
29650b57cec5SDimitry Andric PHI->eraseFromParent();
29660b57cec5SDimitry Andric }
29670b57cec5SDimitry Andric }
29680b57cec5SDimitry Andric
2969bdd1243dSDimitry Andric if (MergeAttributes)
2970bdd1243dSDimitry Andric AttributeFuncs::mergeAttributesForInlining(*Caller, *CalledFunc);
2971bdd1243dSDimitry Andric
29725ffd83dbSDimitry Andric return InlineResult::success();
29730b57cec5SDimitry Andric }
2974