1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLoweringBase class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/BitVector.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/ISDOpcodes.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/RuntimeLibcalls.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MachineValueType.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include "llvm/Target/TargetOptions.h" 56 #include "llvm/Transforms/Utils/SizeOpts.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <cstring> 61 #include <iterator> 62 #include <string> 63 #include <tuple> 64 #include <utility> 65 66 using namespace llvm; 67 68 static cl::opt<bool> JumpIsExpensiveOverride( 69 "jump-is-expensive", cl::init(false), 70 cl::desc("Do not create extra branches to split comparison logic."), 71 cl::Hidden); 72 73 static cl::opt<unsigned> MinimumJumpTableEntries 74 ("min-jump-table-entries", cl::init(4), cl::Hidden, 75 cl::desc("Set minimum number of entries to use a jump table.")); 76 77 static cl::opt<unsigned> MaximumJumpTableSize 78 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, 79 cl::desc("Set maximum size of jump tables.")); 80 81 /// Minimum jump table density for normal functions. 82 static cl::opt<unsigned> 83 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 84 cl::desc("Minimum density for building a jump table in " 85 "a normal function")); 86 87 /// Minimum jump table density for -Os or -Oz functions. 88 static cl::opt<unsigned> OptsizeJumpTableDensity( 89 "optsize-jump-table-density", cl::init(40), cl::Hidden, 90 cl::desc("Minimum density for building a jump table in " 91 "an optsize function")); 92 93 // FIXME: This option is only to test if the strict fp operation processed 94 // correctly by preventing mutating strict fp operation to normal fp operation 95 // during development. When the backend supports strict float operation, this 96 // option will be meaningless. 97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation", 98 cl::desc("Don't mutate strict-float node to a legalize node"), 99 cl::init(false), cl::Hidden); 100 101 static bool darwinHasSinCos(const Triple &TT) { 102 assert(TT.isOSDarwin() && "should be called with darwin triple"); 103 // Don't bother with 32 bit x86. 104 if (TT.getArch() == Triple::x86) 105 return false; 106 // Macos < 10.9 has no sincos_stret. 107 if (TT.isMacOSX()) 108 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); 109 // iOS < 7.0 has no sincos_stret. 110 if (TT.isiOS()) 111 return !TT.isOSVersionLT(7, 0); 112 // Any other darwin such as WatchOS/TvOS is new enough. 113 return true; 114 } 115 116 void TargetLoweringBase::InitLibcalls(const Triple &TT) { 117 #define HANDLE_LIBCALL(code, name) \ 118 setLibcallName(RTLIB::code, name); 119 #include "llvm/IR/RuntimeLibcalls.def" 120 #undef HANDLE_LIBCALL 121 // Initialize calling conventions to their default. 122 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) 123 setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); 124 125 // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". 126 if (TT.isPPC()) { 127 setLibcallName(RTLIB::ADD_F128, "__addkf3"); 128 setLibcallName(RTLIB::SUB_F128, "__subkf3"); 129 setLibcallName(RTLIB::MUL_F128, "__mulkf3"); 130 setLibcallName(RTLIB::DIV_F128, "__divkf3"); 131 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 132 setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); 133 setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); 134 setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); 135 setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); 136 setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); 137 setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); 138 setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti"); 139 setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); 140 setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); 141 setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti"); 142 setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); 143 setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); 144 setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf"); 145 setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); 146 setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); 147 setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf"); 148 setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); 149 setLibcallName(RTLIB::UNE_F128, "__nekf2"); 150 setLibcallName(RTLIB::OGE_F128, "__gekf2"); 151 setLibcallName(RTLIB::OLT_F128, "__ltkf2"); 152 setLibcallName(RTLIB::OLE_F128, "__lekf2"); 153 setLibcallName(RTLIB::OGT_F128, "__gtkf2"); 154 setLibcallName(RTLIB::UO_F128, "__unordkf2"); 155 } 156 157 // A few names are different on particular architectures or environments. 158 if (TT.isOSDarwin()) { 159 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead 160 // of the gnueabi-style __gnu_*_ieee. 161 // FIXME: What about other targets? 162 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 163 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 164 165 // Some darwins have an optimized __bzero/bzero function. 166 switch (TT.getArch()) { 167 case Triple::x86: 168 case Triple::x86_64: 169 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) 170 setLibcallName(RTLIB::BZERO, "__bzero"); 171 break; 172 case Triple::aarch64: 173 case Triple::aarch64_32: 174 setLibcallName(RTLIB::BZERO, "bzero"); 175 break; 176 default: 177 break; 178 } 179 180 if (darwinHasSinCos(TT)) { 181 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); 182 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); 183 if (TT.isWatchABI()) { 184 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, 185 CallingConv::ARM_AAPCS_VFP); 186 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, 187 CallingConv::ARM_AAPCS_VFP); 188 } 189 } 190 } else { 191 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); 192 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); 193 } 194 195 if (TT.isGNUEnvironment() || TT.isOSFuchsia() || 196 (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { 197 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 198 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 199 setLibcallName(RTLIB::SINCOS_F80, "sincosl"); 200 setLibcallName(RTLIB::SINCOS_F128, "sincosl"); 201 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); 202 } 203 204 if (TT.isPS()) { 205 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 206 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 207 } 208 209 if (TT.isOSOpenBSD()) { 210 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); 211 } 212 } 213 214 /// GetFPLibCall - Helper to return the right libcall for the given floating 215 /// point type, or UNKNOWN_LIBCALL if there is none. 216 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT, 217 RTLIB::Libcall Call_F32, 218 RTLIB::Libcall Call_F64, 219 RTLIB::Libcall Call_F80, 220 RTLIB::Libcall Call_F128, 221 RTLIB::Libcall Call_PPCF128) { 222 return 223 VT == MVT::f32 ? Call_F32 : 224 VT == MVT::f64 ? Call_F64 : 225 VT == MVT::f80 ? Call_F80 : 226 VT == MVT::f128 ? Call_F128 : 227 VT == MVT::ppcf128 ? Call_PPCF128 : 228 RTLIB::UNKNOWN_LIBCALL; 229 } 230 231 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 232 /// UNKNOWN_LIBCALL if there is none. 233 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 234 if (OpVT == MVT::f16) { 235 if (RetVT == MVT::f32) 236 return FPEXT_F16_F32; 237 if (RetVT == MVT::f64) 238 return FPEXT_F16_F64; 239 if (RetVT == MVT::f80) 240 return FPEXT_F16_F80; 241 if (RetVT == MVT::f128) 242 return FPEXT_F16_F128; 243 } else if (OpVT == MVT::f32) { 244 if (RetVT == MVT::f64) 245 return FPEXT_F32_F64; 246 if (RetVT == MVT::f128) 247 return FPEXT_F32_F128; 248 if (RetVT == MVT::ppcf128) 249 return FPEXT_F32_PPCF128; 250 } else if (OpVT == MVT::f64) { 251 if (RetVT == MVT::f128) 252 return FPEXT_F64_F128; 253 else if (RetVT == MVT::ppcf128) 254 return FPEXT_F64_PPCF128; 255 } else if (OpVT == MVT::f80) { 256 if (RetVT == MVT::f128) 257 return FPEXT_F80_F128; 258 } 259 260 return UNKNOWN_LIBCALL; 261 } 262 263 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 264 /// UNKNOWN_LIBCALL if there is none. 265 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 266 if (RetVT == MVT::f16) { 267 if (OpVT == MVT::f32) 268 return FPROUND_F32_F16; 269 if (OpVT == MVT::f64) 270 return FPROUND_F64_F16; 271 if (OpVT == MVT::f80) 272 return FPROUND_F80_F16; 273 if (OpVT == MVT::f128) 274 return FPROUND_F128_F16; 275 if (OpVT == MVT::ppcf128) 276 return FPROUND_PPCF128_F16; 277 } else if (RetVT == MVT::bf16) { 278 if (OpVT == MVT::f32) 279 return FPROUND_F32_BF16; 280 if (OpVT == MVT::f64) 281 return FPROUND_F64_BF16; 282 } else if (RetVT == MVT::f32) { 283 if (OpVT == MVT::f64) 284 return FPROUND_F64_F32; 285 if (OpVT == MVT::f80) 286 return FPROUND_F80_F32; 287 if (OpVT == MVT::f128) 288 return FPROUND_F128_F32; 289 if (OpVT == MVT::ppcf128) 290 return FPROUND_PPCF128_F32; 291 } else if (RetVT == MVT::f64) { 292 if (OpVT == MVT::f80) 293 return FPROUND_F80_F64; 294 if (OpVT == MVT::f128) 295 return FPROUND_F128_F64; 296 if (OpVT == MVT::ppcf128) 297 return FPROUND_PPCF128_F64; 298 } else if (RetVT == MVT::f80) { 299 if (OpVT == MVT::f128) 300 return FPROUND_F128_F80; 301 } 302 303 return UNKNOWN_LIBCALL; 304 } 305 306 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 307 /// UNKNOWN_LIBCALL if there is none. 308 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 309 if (OpVT == MVT::f16) { 310 if (RetVT == MVT::i32) 311 return FPTOSINT_F16_I32; 312 if (RetVT == MVT::i64) 313 return FPTOSINT_F16_I64; 314 if (RetVT == MVT::i128) 315 return FPTOSINT_F16_I128; 316 } else if (OpVT == MVT::f32) { 317 if (RetVT == MVT::i32) 318 return FPTOSINT_F32_I32; 319 if (RetVT == MVT::i64) 320 return FPTOSINT_F32_I64; 321 if (RetVT == MVT::i128) 322 return FPTOSINT_F32_I128; 323 } else if (OpVT == MVT::f64) { 324 if (RetVT == MVT::i32) 325 return FPTOSINT_F64_I32; 326 if (RetVT == MVT::i64) 327 return FPTOSINT_F64_I64; 328 if (RetVT == MVT::i128) 329 return FPTOSINT_F64_I128; 330 } else if (OpVT == MVT::f80) { 331 if (RetVT == MVT::i32) 332 return FPTOSINT_F80_I32; 333 if (RetVT == MVT::i64) 334 return FPTOSINT_F80_I64; 335 if (RetVT == MVT::i128) 336 return FPTOSINT_F80_I128; 337 } else if (OpVT == MVT::f128) { 338 if (RetVT == MVT::i32) 339 return FPTOSINT_F128_I32; 340 if (RetVT == MVT::i64) 341 return FPTOSINT_F128_I64; 342 if (RetVT == MVT::i128) 343 return FPTOSINT_F128_I128; 344 } else if (OpVT == MVT::ppcf128) { 345 if (RetVT == MVT::i32) 346 return FPTOSINT_PPCF128_I32; 347 if (RetVT == MVT::i64) 348 return FPTOSINT_PPCF128_I64; 349 if (RetVT == MVT::i128) 350 return FPTOSINT_PPCF128_I128; 351 } 352 return UNKNOWN_LIBCALL; 353 } 354 355 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 356 /// UNKNOWN_LIBCALL if there is none. 357 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 358 if (OpVT == MVT::f16) { 359 if (RetVT == MVT::i32) 360 return FPTOUINT_F16_I32; 361 if (RetVT == MVT::i64) 362 return FPTOUINT_F16_I64; 363 if (RetVT == MVT::i128) 364 return FPTOUINT_F16_I128; 365 } else if (OpVT == MVT::f32) { 366 if (RetVT == MVT::i32) 367 return FPTOUINT_F32_I32; 368 if (RetVT == MVT::i64) 369 return FPTOUINT_F32_I64; 370 if (RetVT == MVT::i128) 371 return FPTOUINT_F32_I128; 372 } else if (OpVT == MVT::f64) { 373 if (RetVT == MVT::i32) 374 return FPTOUINT_F64_I32; 375 if (RetVT == MVT::i64) 376 return FPTOUINT_F64_I64; 377 if (RetVT == MVT::i128) 378 return FPTOUINT_F64_I128; 379 } else if (OpVT == MVT::f80) { 380 if (RetVT == MVT::i32) 381 return FPTOUINT_F80_I32; 382 if (RetVT == MVT::i64) 383 return FPTOUINT_F80_I64; 384 if (RetVT == MVT::i128) 385 return FPTOUINT_F80_I128; 386 } else if (OpVT == MVT::f128) { 387 if (RetVT == MVT::i32) 388 return FPTOUINT_F128_I32; 389 if (RetVT == MVT::i64) 390 return FPTOUINT_F128_I64; 391 if (RetVT == MVT::i128) 392 return FPTOUINT_F128_I128; 393 } else if (OpVT == MVT::ppcf128) { 394 if (RetVT == MVT::i32) 395 return FPTOUINT_PPCF128_I32; 396 if (RetVT == MVT::i64) 397 return FPTOUINT_PPCF128_I64; 398 if (RetVT == MVT::i128) 399 return FPTOUINT_PPCF128_I128; 400 } 401 return UNKNOWN_LIBCALL; 402 } 403 404 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 405 /// UNKNOWN_LIBCALL if there is none. 406 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 407 if (OpVT == MVT::i32) { 408 if (RetVT == MVT::f16) 409 return SINTTOFP_I32_F16; 410 if (RetVT == MVT::f32) 411 return SINTTOFP_I32_F32; 412 if (RetVT == MVT::f64) 413 return SINTTOFP_I32_F64; 414 if (RetVT == MVT::f80) 415 return SINTTOFP_I32_F80; 416 if (RetVT == MVT::f128) 417 return SINTTOFP_I32_F128; 418 if (RetVT == MVT::ppcf128) 419 return SINTTOFP_I32_PPCF128; 420 } else if (OpVT == MVT::i64) { 421 if (RetVT == MVT::f16) 422 return SINTTOFP_I64_F16; 423 if (RetVT == MVT::f32) 424 return SINTTOFP_I64_F32; 425 if (RetVT == MVT::f64) 426 return SINTTOFP_I64_F64; 427 if (RetVT == MVT::f80) 428 return SINTTOFP_I64_F80; 429 if (RetVT == MVT::f128) 430 return SINTTOFP_I64_F128; 431 if (RetVT == MVT::ppcf128) 432 return SINTTOFP_I64_PPCF128; 433 } else if (OpVT == MVT::i128) { 434 if (RetVT == MVT::f16) 435 return SINTTOFP_I128_F16; 436 if (RetVT == MVT::f32) 437 return SINTTOFP_I128_F32; 438 if (RetVT == MVT::f64) 439 return SINTTOFP_I128_F64; 440 if (RetVT == MVT::f80) 441 return SINTTOFP_I128_F80; 442 if (RetVT == MVT::f128) 443 return SINTTOFP_I128_F128; 444 if (RetVT == MVT::ppcf128) 445 return SINTTOFP_I128_PPCF128; 446 } 447 return UNKNOWN_LIBCALL; 448 } 449 450 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 451 /// UNKNOWN_LIBCALL if there is none. 452 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 453 if (OpVT == MVT::i32) { 454 if (RetVT == MVT::f16) 455 return UINTTOFP_I32_F16; 456 if (RetVT == MVT::f32) 457 return UINTTOFP_I32_F32; 458 if (RetVT == MVT::f64) 459 return UINTTOFP_I32_F64; 460 if (RetVT == MVT::f80) 461 return UINTTOFP_I32_F80; 462 if (RetVT == MVT::f128) 463 return UINTTOFP_I32_F128; 464 if (RetVT == MVT::ppcf128) 465 return UINTTOFP_I32_PPCF128; 466 } else if (OpVT == MVT::i64) { 467 if (RetVT == MVT::f16) 468 return UINTTOFP_I64_F16; 469 if (RetVT == MVT::f32) 470 return UINTTOFP_I64_F32; 471 if (RetVT == MVT::f64) 472 return UINTTOFP_I64_F64; 473 if (RetVT == MVT::f80) 474 return UINTTOFP_I64_F80; 475 if (RetVT == MVT::f128) 476 return UINTTOFP_I64_F128; 477 if (RetVT == MVT::ppcf128) 478 return UINTTOFP_I64_PPCF128; 479 } else if (OpVT == MVT::i128) { 480 if (RetVT == MVT::f16) 481 return UINTTOFP_I128_F16; 482 if (RetVT == MVT::f32) 483 return UINTTOFP_I128_F32; 484 if (RetVT == MVT::f64) 485 return UINTTOFP_I128_F64; 486 if (RetVT == MVT::f80) 487 return UINTTOFP_I128_F80; 488 if (RetVT == MVT::f128) 489 return UINTTOFP_I128_F128; 490 if (RetVT == MVT::ppcf128) 491 return UINTTOFP_I128_PPCF128; 492 } 493 return UNKNOWN_LIBCALL; 494 } 495 496 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) { 497 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128, 498 POWI_PPCF128); 499 } 500 501 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, 502 MVT VT) { 503 unsigned ModeN, ModelN; 504 switch (VT.SimpleTy) { 505 case MVT::i8: 506 ModeN = 0; 507 break; 508 case MVT::i16: 509 ModeN = 1; 510 break; 511 case MVT::i32: 512 ModeN = 2; 513 break; 514 case MVT::i64: 515 ModeN = 3; 516 break; 517 case MVT::i128: 518 ModeN = 4; 519 break; 520 default: 521 return UNKNOWN_LIBCALL; 522 } 523 524 switch (Order) { 525 case AtomicOrdering::Monotonic: 526 ModelN = 0; 527 break; 528 case AtomicOrdering::Acquire: 529 ModelN = 1; 530 break; 531 case AtomicOrdering::Release: 532 ModelN = 2; 533 break; 534 case AtomicOrdering::AcquireRelease: 535 case AtomicOrdering::SequentiallyConsistent: 536 ModelN = 3; 537 break; 538 default: 539 return UNKNOWN_LIBCALL; 540 } 541 542 #define LCALLS(A, B) \ 543 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } 544 #define LCALL5(A) \ 545 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) 546 switch (Opc) { 547 case ISD::ATOMIC_CMP_SWAP: { 548 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)}; 549 return LC[ModeN][ModelN]; 550 } 551 case ISD::ATOMIC_SWAP: { 552 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)}; 553 return LC[ModeN][ModelN]; 554 } 555 case ISD::ATOMIC_LOAD_ADD: { 556 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)}; 557 return LC[ModeN][ModelN]; 558 } 559 case ISD::ATOMIC_LOAD_OR: { 560 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)}; 561 return LC[ModeN][ModelN]; 562 } 563 case ISD::ATOMIC_LOAD_CLR: { 564 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)}; 565 return LC[ModeN][ModelN]; 566 } 567 case ISD::ATOMIC_LOAD_XOR: { 568 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)}; 569 return LC[ModeN][ModelN]; 570 } 571 default: 572 return UNKNOWN_LIBCALL; 573 } 574 #undef LCALLS 575 #undef LCALL5 576 } 577 578 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { 579 #define OP_TO_LIBCALL(Name, Enum) \ 580 case Name: \ 581 switch (VT.SimpleTy) { \ 582 default: \ 583 return UNKNOWN_LIBCALL; \ 584 case MVT::i8: \ 585 return Enum##_1; \ 586 case MVT::i16: \ 587 return Enum##_2; \ 588 case MVT::i32: \ 589 return Enum##_4; \ 590 case MVT::i64: \ 591 return Enum##_8; \ 592 case MVT::i128: \ 593 return Enum##_16; \ 594 } 595 596 switch (Opc) { 597 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) 598 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) 599 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) 600 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) 601 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) 602 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) 603 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) 604 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) 605 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) 606 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) 607 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) 608 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) 609 } 610 611 #undef OP_TO_LIBCALL 612 613 return UNKNOWN_LIBCALL; 614 } 615 616 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 617 switch (ElementSize) { 618 case 1: 619 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; 620 case 2: 621 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; 622 case 4: 623 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; 624 case 8: 625 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; 626 case 16: 627 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; 628 default: 629 return UNKNOWN_LIBCALL; 630 } 631 } 632 633 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 634 switch (ElementSize) { 635 case 1: 636 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; 637 case 2: 638 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; 639 case 4: 640 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; 641 case 8: 642 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; 643 case 16: 644 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; 645 default: 646 return UNKNOWN_LIBCALL; 647 } 648 } 649 650 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 651 switch (ElementSize) { 652 case 1: 653 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; 654 case 2: 655 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; 656 case 4: 657 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; 658 case 8: 659 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; 660 case 16: 661 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; 662 default: 663 return UNKNOWN_LIBCALL; 664 } 665 } 666 667 /// InitCmpLibcallCCs - Set default comparison libcall CC. 668 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 669 std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID); 670 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 671 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 672 CCs[RTLIB::OEQ_F128] = ISD::SETEQ; 673 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; 674 CCs[RTLIB::UNE_F32] = ISD::SETNE; 675 CCs[RTLIB::UNE_F64] = ISD::SETNE; 676 CCs[RTLIB::UNE_F128] = ISD::SETNE; 677 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; 678 CCs[RTLIB::OGE_F32] = ISD::SETGE; 679 CCs[RTLIB::OGE_F64] = ISD::SETGE; 680 CCs[RTLIB::OGE_F128] = ISD::SETGE; 681 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; 682 CCs[RTLIB::OLT_F32] = ISD::SETLT; 683 CCs[RTLIB::OLT_F64] = ISD::SETLT; 684 CCs[RTLIB::OLT_F128] = ISD::SETLT; 685 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; 686 CCs[RTLIB::OLE_F32] = ISD::SETLE; 687 CCs[RTLIB::OLE_F64] = ISD::SETLE; 688 CCs[RTLIB::OLE_F128] = ISD::SETLE; 689 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; 690 CCs[RTLIB::OGT_F32] = ISD::SETGT; 691 CCs[RTLIB::OGT_F64] = ISD::SETGT; 692 CCs[RTLIB::OGT_F128] = ISD::SETGT; 693 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; 694 CCs[RTLIB::UO_F32] = ISD::SETNE; 695 CCs[RTLIB::UO_F64] = ISD::SETNE; 696 CCs[RTLIB::UO_F128] = ISD::SETNE; 697 CCs[RTLIB::UO_PPCF128] = ISD::SETNE; 698 } 699 700 /// NOTE: The TargetMachine owns TLOF. 701 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { 702 initActions(); 703 704 // Perform these initializations only once. 705 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 706 MaxLoadsPerMemcmp = 8; 707 MaxGluedStoresPerMemcpy = 0; 708 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = 709 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; 710 HasMultipleConditionRegisters = false; 711 HasExtractBitsInsn = false; 712 JumpIsExpensive = JumpIsExpensiveOverride; 713 PredictableSelectIsExpensive = false; 714 EnableExtLdPromotion = false; 715 StackPointerRegisterToSaveRestore = 0; 716 BooleanContents = UndefinedBooleanContent; 717 BooleanFloatContents = UndefinedBooleanContent; 718 BooleanVectorContents = UndefinedBooleanContent; 719 SchedPreferenceInfo = Sched::ILP; 720 GatherAllAliasesMaxDepth = 18; 721 IsStrictFPEnabled = DisableStrictNodeMutation; 722 MaxBytesForAlignment = 0; 723 // TODO: the default will be switched to 0 in the next commit, along 724 // with the Target-specific changes necessary. 725 MaxAtomicSizeInBitsSupported = 1024; 726 727 MaxDivRemBitWidthSupported = llvm::IntegerType::MAX_INT_BITS; 728 729 MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS; 730 731 MinCmpXchgSizeInBits = 0; 732 SupportsUnalignedAtomics = false; 733 734 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); 735 736 InitLibcalls(TM.getTargetTriple()); 737 InitCmpLibcallCCs(CmpLibcallCCs); 738 } 739 740 void TargetLoweringBase::initActions() { 741 // All operations default to being supported. 742 memset(OpActions, 0, sizeof(OpActions)); 743 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 744 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 745 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 746 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 747 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); 748 std::fill(std::begin(TargetDAGCombineArray), 749 std::end(TargetDAGCombineArray), 0); 750 751 // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to 752 // remove this and targets should individually set these types if not legal. 753 for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END, 754 force_iteration_on_noniterable_enum)) { 755 for (MVT VT : {MVT::i2, MVT::i4}) 756 OpActions[(unsigned)VT.SimpleTy][NT] = Expand; 757 } 758 for (MVT AVT : MVT::all_valuetypes()) { 759 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) { 760 setTruncStoreAction(AVT, VT, Expand); 761 setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand); 762 setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand); 763 } 764 } 765 for (unsigned IM = (unsigned)ISD::PRE_INC; 766 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 767 for (MVT VT : {MVT::i2, MVT::i4}) { 768 setIndexedLoadAction(IM, VT, Expand); 769 setIndexedStoreAction(IM, VT, Expand); 770 setIndexedMaskedLoadAction(IM, VT, Expand); 771 setIndexedMaskedStoreAction(IM, VT, Expand); 772 } 773 } 774 775 for (MVT VT : MVT::fp_valuetypes()) { 776 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits()); 777 if (IntVT.isValid()) { 778 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); 779 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); 780 } 781 } 782 783 // Set default actions for various operations. 784 for (MVT VT : MVT::all_valuetypes()) { 785 // Default all indexed load / store to expand. 786 for (unsigned IM = (unsigned)ISD::PRE_INC; 787 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 788 setIndexedLoadAction(IM, VT, Expand); 789 setIndexedStoreAction(IM, VT, Expand); 790 setIndexedMaskedLoadAction(IM, VT, Expand); 791 setIndexedMaskedStoreAction(IM, VT, Expand); 792 } 793 794 // Most backends expect to see the node which just returns the value loaded. 795 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 796 797 // These operations default to expand. 798 setOperationAction({ISD::FGETSIGN, ISD::CONCAT_VECTORS, 799 ISD::FMINNUM, ISD::FMAXNUM, 800 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE, 801 ISD::FMINIMUM, ISD::FMAXIMUM, 802 ISD::FMAD, ISD::SMIN, 803 ISD::SMAX, ISD::UMIN, 804 ISD::UMAX, ISD::ABS, 805 ISD::FSHL, ISD::FSHR, 806 ISD::SADDSAT, ISD::UADDSAT, 807 ISD::SSUBSAT, ISD::USUBSAT, 808 ISD::SSHLSAT, ISD::USHLSAT, 809 ISD::SMULFIX, ISD::SMULFIXSAT, 810 ISD::UMULFIX, ISD::UMULFIXSAT, 811 ISD::SDIVFIX, ISD::SDIVFIXSAT, 812 ISD::UDIVFIX, ISD::UDIVFIXSAT, 813 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, 814 ISD::IS_FPCLASS}, 815 VT, Expand); 816 817 // Overflow operations default to expand 818 setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO, 819 ISD::SMULO, ISD::UMULO}, 820 VT, Expand); 821 822 // ADDCARRY operations default to expand 823 setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY, ISD::SETCCCARRY, 824 ISD::SADDO_CARRY, ISD::SSUBO_CARRY}, 825 VT, Expand); 826 827 // ADDC/ADDE/SUBC/SUBE default to expand. 828 setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT, 829 Expand); 830 831 // Halving adds 832 setOperationAction( 833 {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT, 834 Expand); 835 836 // Absolute difference 837 setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand); 838 839 // These default to Expand so they will be expanded to CTLZ/CTTZ by default. 840 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 841 Expand); 842 843 setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand); 844 845 // These library functions default to expand. 846 setOperationAction({ISD::FROUND, ISD::FROUNDEVEN, ISD::FPOWI}, VT, Expand); 847 848 // These operations default to expand for vector types. 849 if (VT.isVector()) 850 setOperationAction({ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG, 851 ISD::ANY_EXTEND_VECTOR_INREG, 852 ISD::SIGN_EXTEND_VECTOR_INREG, 853 ISD::ZERO_EXTEND_VECTOR_INREG, ISD::SPLAT_VECTOR}, 854 VT, Expand); 855 856 // Constrained floating-point operations default to expand. 857 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 858 setOperationAction(ISD::STRICT_##DAGN, VT, Expand); 859 #include "llvm/IR/ConstrainedOps.def" 860 861 // For most targets @llvm.get.dynamic.area.offset just returns 0. 862 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); 863 864 // Vector reduction default to expand. 865 setOperationAction( 866 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD, 867 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, 868 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, 869 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX, 870 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL}, 871 VT, Expand); 872 873 // Named vector shuffles default to expand. 874 setOperationAction(ISD::VECTOR_SPLICE, VT, Expand); 875 876 // VP_SREM/UREM default to expand. 877 // TODO: Expand all VP intrinsics. 878 setOperationAction(ISD::VP_SREM, VT, Expand); 879 setOperationAction(ISD::VP_UREM, VT, Expand); 880 } 881 882 // Most targets ignore the @llvm.prefetch intrinsic. 883 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 884 885 // Most targets also ignore the @llvm.readcyclecounter intrinsic. 886 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); 887 888 // ConstantFP nodes default to expand. Targets can either change this to 889 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 890 // to optimize expansions for certain constants. 891 setOperationAction(ISD::ConstantFP, 892 {MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128}, 893 Expand); 894 895 // These library functions default to expand. 896 setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP, 897 ISD::FEXP2, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL, 898 ISD::FRINT, ISD::FTRUNC, ISD::LROUND, ISD::LLROUND, 899 ISD::LRINT, ISD::LLRINT}, 900 {MVT::f32, MVT::f64, MVT::f128}, Expand); 901 902 // Default ISD::TRAP to expand (which turns it into abort). 903 setOperationAction(ISD::TRAP, MVT::Other, Expand); 904 905 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 906 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 907 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 908 909 setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand); 910 } 911 912 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, 913 EVT) const { 914 return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); 915 } 916 917 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, 918 bool LegalTypes) const { 919 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 920 if (LHSTy.isVector()) 921 return LHSTy; 922 MVT ShiftVT = 923 LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL); 924 // If any possible shift value won't fit in the prefered type, just use 925 // something safe. Assume it will be legalized when the shift is expanded. 926 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits())) 927 ShiftVT = MVT::i32; 928 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) && 929 "ShiftVT is still too small!"); 930 return ShiftVT; 931 } 932 933 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 934 assert(isTypeLegal(VT)); 935 switch (Op) { 936 default: 937 return false; 938 case ISD::SDIV: 939 case ISD::UDIV: 940 case ISD::SREM: 941 case ISD::UREM: 942 return true; 943 } 944 } 945 946 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS, 947 unsigned DestAS) const { 948 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 949 } 950 951 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { 952 // If the command-line option was specified, ignore this request. 953 if (!JumpIsExpensiveOverride.getNumOccurrences()) 954 JumpIsExpensive = isExpensive; 955 } 956 957 TargetLoweringBase::LegalizeKind 958 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { 959 // If this is a simple type, use the ComputeRegisterProp mechanism. 960 if (VT.isSimple()) { 961 MVT SVT = VT.getSimpleVT(); 962 assert((unsigned)SVT.SimpleTy < std::size(TransformToType)); 963 MVT NVT = TransformToType[SVT.SimpleTy]; 964 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); 965 966 assert((LA == TypeLegal || LA == TypeSoftenFloat || 967 LA == TypeSoftPromoteHalf || 968 (NVT.isVector() || 969 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) && 970 "Promote may not follow Expand or Promote"); 971 972 if (LA == TypeSplitVector) 973 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context)); 974 if (LA == TypeScalarizeVector) 975 return LegalizeKind(LA, SVT.getVectorElementType()); 976 return LegalizeKind(LA, NVT); 977 } 978 979 // Handle Extended Scalar Types. 980 if (!VT.isVector()) { 981 assert(VT.isInteger() && "Float types must be simple"); 982 unsigned BitSize = VT.getSizeInBits(); 983 // First promote to a power-of-two size, then expand if necessary. 984 if (BitSize < 8 || !isPowerOf2_32(BitSize)) { 985 EVT NVT = VT.getRoundIntegerType(Context); 986 assert(NVT != VT && "Unable to round integer VT"); 987 LegalizeKind NextStep = getTypeConversion(Context, NVT); 988 // Avoid multi-step promotion. 989 if (NextStep.first == TypePromoteInteger) 990 return NextStep; 991 // Return rounded integer type. 992 return LegalizeKind(TypePromoteInteger, NVT); 993 } 994 995 return LegalizeKind(TypeExpandInteger, 996 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); 997 } 998 999 // Handle vector types. 1000 ElementCount NumElts = VT.getVectorElementCount(); 1001 EVT EltVT = VT.getVectorElementType(); 1002 1003 // Vectors with only one element are always scalarized. 1004 if (NumElts.isScalar()) 1005 return LegalizeKind(TypeScalarizeVector, EltVT); 1006 1007 // Try to widen vector elements until the element type is a power of two and 1008 // promote it to a legal type later on, for example: 1009 // <3 x i8> -> <4 x i8> -> <4 x i32> 1010 if (EltVT.isInteger()) { 1011 // Vectors with a number of elements that is not a power of two are always 1012 // widened, for example <3 x i8> -> <4 x i8>. 1013 if (!VT.isPow2VectorType()) { 1014 NumElts = NumElts.coefficientNextPowerOf2(); 1015 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); 1016 return LegalizeKind(TypeWidenVector, NVT); 1017 } 1018 1019 // Examine the element type. 1020 LegalizeKind LK = getTypeConversion(Context, EltVT); 1021 1022 // If type is to be expanded, split the vector. 1023 // <4 x i140> -> <2 x i140> 1024 if (LK.first == TypeExpandInteger) { 1025 if (VT.getVectorElementCount().isScalable()) 1026 return LegalizeKind(TypeScalarizeScalableVector, EltVT); 1027 return LegalizeKind(TypeSplitVector, 1028 VT.getHalfNumVectorElementsVT(Context)); 1029 } 1030 1031 // Promote the integer element types until a legal vector type is found 1032 // or until the element integer type is too big. If a legal type was not 1033 // found, fallback to the usual mechanism of widening/splitting the 1034 // vector. 1035 EVT OldEltVT = EltVT; 1036 while (true) { 1037 // Increase the bitwidth of the element to the next pow-of-two 1038 // (which is greater than 8 bits). 1039 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) 1040 .getRoundIntegerType(Context); 1041 1042 // Stop trying when getting a non-simple element type. 1043 // Note that vector elements may be greater than legal vector element 1044 // types. Example: X86 XMM registers hold 64bit element on 32bit 1045 // systems. 1046 if (!EltVT.isSimple()) 1047 break; 1048 1049 // Build a new vector type and check if it is legal. 1050 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1051 // Found a legal promoted vector type. 1052 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) 1053 return LegalizeKind(TypePromoteInteger, 1054 EVT::getVectorVT(Context, EltVT, NumElts)); 1055 } 1056 1057 // Reset the type to the unexpanded type if we did not find a legal vector 1058 // type with a promoted vector element type. 1059 EltVT = OldEltVT; 1060 } 1061 1062 // Try to widen the vector until a legal type is found. 1063 // If there is no wider legal type, split the vector. 1064 while (true) { 1065 // Round up to the next power of 2. 1066 NumElts = NumElts.coefficientNextPowerOf2(); 1067 1068 // If there is no simple vector type with this many elements then there 1069 // cannot be a larger legal vector type. Note that this assumes that 1070 // there are no skipped intermediate vector types in the simple types. 1071 if (!EltVT.isSimple()) 1072 break; 1073 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1074 if (LargerVector == MVT()) 1075 break; 1076 1077 // If this type is legal then widen the vector. 1078 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) 1079 return LegalizeKind(TypeWidenVector, LargerVector); 1080 } 1081 1082 // Widen odd vectors to next power of two. 1083 if (!VT.isPow2VectorType()) { 1084 EVT NVT = VT.getPow2VectorType(Context); 1085 return LegalizeKind(TypeWidenVector, NVT); 1086 } 1087 1088 if (VT.getVectorElementCount() == ElementCount::getScalable(1)) 1089 return LegalizeKind(TypeScalarizeScalableVector, EltVT); 1090 1091 // Vectors with illegal element types are expanded. 1092 EVT NVT = EVT::getVectorVT(Context, EltVT, 1093 VT.getVectorElementCount().divideCoefficientBy(2)); 1094 return LegalizeKind(TypeSplitVector, NVT); 1095 } 1096 1097 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 1098 unsigned &NumIntermediates, 1099 MVT &RegisterVT, 1100 TargetLoweringBase *TLI) { 1101 // Figure out the right, legal destination reg to copy into. 1102 ElementCount EC = VT.getVectorElementCount(); 1103 MVT EltTy = VT.getVectorElementType(); 1104 1105 unsigned NumVectorRegs = 1; 1106 1107 // Scalable vectors cannot be scalarized, so splitting or widening is 1108 // required. 1109 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue())) 1110 llvm_unreachable( 1111 "Splitting or widening of non-power-of-2 MVTs is not implemented."); 1112 1113 // FIXME: We don't support non-power-of-2-sized vectors for now. 1114 // Ideally we could break down into LHS/RHS like LegalizeDAG does. 1115 if (!isPowerOf2_32(EC.getKnownMinValue())) { 1116 // Split EC to unit size (scalable property is preserved). 1117 NumVectorRegs = EC.getKnownMinValue(); 1118 EC = ElementCount::getFixed(1); 1119 } 1120 1121 // Divide the input until we get to a supported size. This will 1122 // always end up with an EC that represent a scalar or a scalable 1123 // scalar. 1124 while (EC.getKnownMinValue() > 1 && 1125 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) { 1126 EC = EC.divideCoefficientBy(2); 1127 NumVectorRegs <<= 1; 1128 } 1129 1130 NumIntermediates = NumVectorRegs; 1131 1132 MVT NewVT = MVT::getVectorVT(EltTy, EC); 1133 if (!TLI->isTypeLegal(NewVT)) 1134 NewVT = EltTy; 1135 IntermediateVT = NewVT; 1136 1137 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits(); 1138 1139 // Convert sizes such as i33 to i64. 1140 if (!isPowerOf2_32(LaneSizeInBits)) 1141 LaneSizeInBits = NextPowerOf2(LaneSizeInBits); 1142 1143 MVT DestVT = TLI->getRegisterType(NewVT); 1144 RegisterVT = DestVT; 1145 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1146 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits()); 1147 1148 // Otherwise, promotion or legal types use the same number of registers as 1149 // the vector decimated to the appropriate level. 1150 return NumVectorRegs; 1151 } 1152 1153 /// isLegalRC - Return true if the value types that can be represented by the 1154 /// specified register class are all legal. 1155 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, 1156 const TargetRegisterClass &RC) const { 1157 for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) 1158 if (isTypeLegal(*I)) 1159 return true; 1160 return false; 1161 } 1162 1163 /// Replace/modify any TargetFrameIndex operands with a targte-dependent 1164 /// sequence of memory operands that is recognized by PrologEpilogInserter. 1165 MachineBasicBlock * 1166 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, 1167 MachineBasicBlock *MBB) const { 1168 MachineInstr *MI = &InitialMI; 1169 MachineFunction &MF = *MI->getMF(); 1170 MachineFrameInfo &MFI = MF.getFrameInfo(); 1171 1172 // We're handling multiple types of operands here: 1173 // PATCHPOINT MetaArgs - live-in, read only, direct 1174 // STATEPOINT Deopt Spill - live-through, read only, indirect 1175 // STATEPOINT Deopt Alloca - live-through, read only, direct 1176 // (We're currently conservative and mark the deopt slots read/write in 1177 // practice.) 1178 // STATEPOINT GC Spill - live-through, read/write, indirect 1179 // STATEPOINT GC Alloca - live-through, read/write, direct 1180 // The live-in vs live-through is handled already (the live through ones are 1181 // all stack slots), but we need to handle the different type of stackmap 1182 // operands and memory effects here. 1183 1184 if (llvm::none_of(MI->operands(), 1185 [](MachineOperand &Operand) { return Operand.isFI(); })) 1186 return MBB; 1187 1188 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); 1189 1190 // Inherit previous memory operands. 1191 MIB.cloneMemRefs(*MI); 1192 1193 for (unsigned i = 0; i < MI->getNumOperands(); ++i) { 1194 MachineOperand &MO = MI->getOperand(i); 1195 if (!MO.isFI()) { 1196 // Index of Def operand this Use it tied to. 1197 // Since Defs are coming before Uses, if Use is tied, then 1198 // index of Def must be smaller that index of that Use. 1199 // Also, Defs preserve their position in new MI. 1200 unsigned TiedTo = i; 1201 if (MO.isReg() && MO.isTied()) 1202 TiedTo = MI->findTiedOperandIdx(i); 1203 MIB.add(MO); 1204 if (TiedTo < i) 1205 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1); 1206 continue; 1207 } 1208 1209 // foldMemoryOperand builds a new MI after replacing a single FI operand 1210 // with the canonical set of five x86 addressing-mode operands. 1211 int FI = MO.getIndex(); 1212 1213 // Add frame index operands recognized by stackmaps.cpp 1214 if (MFI.isStatepointSpillSlotObjectIndex(FI)) { 1215 // indirect-mem-ref tag, size, #FI, offset. 1216 // Used for spills inserted by StatepointLowering. This codepath is not 1217 // used for patchpoints/stackmaps at all, for these spilling is done via 1218 // foldMemoryOperand callback only. 1219 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); 1220 MIB.addImm(StackMaps::IndirectMemRefOp); 1221 MIB.addImm(MFI.getObjectSize(FI)); 1222 MIB.add(MO); 1223 MIB.addImm(0); 1224 } else { 1225 // direct-mem-ref tag, #FI, offset. 1226 // Used by patchpoint, and direct alloca arguments to statepoints 1227 MIB.addImm(StackMaps::DirectMemRefOp); 1228 MIB.add(MO); 1229 MIB.addImm(0); 1230 } 1231 1232 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); 1233 1234 // Add a new memory operand for this FI. 1235 assert(MFI.getObjectOffset(FI) != -1); 1236 1237 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and 1238 // PATCHPOINT should be updated to do the same. (TODO) 1239 if (MI->getOpcode() != TargetOpcode::STATEPOINT) { 1240 auto Flags = MachineMemOperand::MOLoad; 1241 MachineMemOperand *MMO = MF.getMachineMemOperand( 1242 MachinePointerInfo::getFixedStack(MF, FI), Flags, 1243 MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI)); 1244 MIB->addMemOperand(MF, MMO); 1245 } 1246 } 1247 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1248 MI->eraseFromParent(); 1249 return MBB; 1250 } 1251 1252 /// findRepresentativeClass - Return the largest legal super-reg register class 1253 /// of the register class for the specified type and its associated "cost". 1254 // This function is in TargetLowering because it uses RegClassForVT which would 1255 // need to be moved to TargetRegisterInfo and would necessitate moving 1256 // isTypeLegal over as well - a massive change that would just require 1257 // TargetLowering having a TargetRegisterInfo class member that it would use. 1258 std::pair<const TargetRegisterClass *, uint8_t> 1259 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, 1260 MVT VT) const { 1261 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 1262 if (!RC) 1263 return std::make_pair(RC, 0); 1264 1265 // Compute the set of all super-register classes. 1266 BitVector SuperRegRC(TRI->getNumRegClasses()); 1267 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 1268 SuperRegRC.setBitsInMask(RCI.getMask()); 1269 1270 // Find the first legal register class with the largest spill size. 1271 const TargetRegisterClass *BestRC = RC; 1272 for (unsigned i : SuperRegRC.set_bits()) { 1273 const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 1274 // We want the largest possible spill size. 1275 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) 1276 continue; 1277 if (!isLegalRC(*TRI, *SuperRC)) 1278 continue; 1279 BestRC = SuperRC; 1280 } 1281 return std::make_pair(BestRC, 1); 1282 } 1283 1284 /// computeRegisterProperties - Once all of the register classes are added, 1285 /// this allows us to compute derived properties we expose. 1286 void TargetLoweringBase::computeRegisterProperties( 1287 const TargetRegisterInfo *TRI) { 1288 static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE, 1289 "Too many value types for ValueTypeActions to hold!"); 1290 1291 // Everything defaults to needing one register. 1292 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { 1293 NumRegistersForVT[i] = 1; 1294 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 1295 } 1296 // ...except isVoid, which doesn't need any registers. 1297 NumRegistersForVT[MVT::isVoid] = 0; 1298 1299 // Find the largest integer register class. 1300 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 1301 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) 1302 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 1303 1304 // Every integer value type larger than this largest register takes twice as 1305 // many registers to represent as the previous ValueType. 1306 for (unsigned ExpandedReg = LargestIntReg + 1; 1307 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 1308 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 1309 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 1310 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 1311 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 1312 TypeExpandInteger); 1313 } 1314 1315 // Inspect all of the ValueType's smaller than the largest integer 1316 // register to see which ones need promotion. 1317 unsigned LegalIntReg = LargestIntReg; 1318 for (unsigned IntReg = LargestIntReg - 1; 1319 IntReg >= (unsigned)MVT::i1; --IntReg) { 1320 MVT IVT = (MVT::SimpleValueType)IntReg; 1321 if (isTypeLegal(IVT)) { 1322 LegalIntReg = IntReg; 1323 } else { 1324 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 1325 (MVT::SimpleValueType)LegalIntReg; 1326 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 1327 } 1328 } 1329 1330 // ppcf128 type is really two f64's. 1331 if (!isTypeLegal(MVT::ppcf128)) { 1332 if (isTypeLegal(MVT::f64)) { 1333 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 1334 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 1335 TransformToType[MVT::ppcf128] = MVT::f64; 1336 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 1337 } else { 1338 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; 1339 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; 1340 TransformToType[MVT::ppcf128] = MVT::i128; 1341 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); 1342 } 1343 } 1344 1345 // Decide how to handle f128. If the target does not have native f128 support, 1346 // expand it to i128 and we will be generating soft float library calls. 1347 if (!isTypeLegal(MVT::f128)) { 1348 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 1349 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 1350 TransformToType[MVT::f128] = MVT::i128; 1351 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 1352 } 1353 1354 // Decide how to handle f80. If the target does not have native f80 support, 1355 // expand it to i96 and we will be generating soft float library calls. 1356 if (!isTypeLegal(MVT::f80)) { 1357 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32]; 1358 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32]; 1359 TransformToType[MVT::f80] = MVT::i32; 1360 ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat); 1361 } 1362 1363 // Decide how to handle f64. If the target does not have native f64 support, 1364 // expand it to i64 and we will be generating soft float library calls. 1365 if (!isTypeLegal(MVT::f64)) { 1366 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 1367 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 1368 TransformToType[MVT::f64] = MVT::i64; 1369 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 1370 } 1371 1372 // Decide how to handle f32. If the target does not have native f32 support, 1373 // expand it to i32 and we will be generating soft float library calls. 1374 if (!isTypeLegal(MVT::f32)) { 1375 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 1376 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 1377 TransformToType[MVT::f32] = MVT::i32; 1378 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 1379 } 1380 1381 // Decide how to handle f16. If the target does not have native f16 support, 1382 // promote it to f32, because there are no f16 library calls (except for 1383 // conversions). 1384 if (!isTypeLegal(MVT::f16)) { 1385 // Allow targets to control how we legalize half. 1386 if (softPromoteHalfType()) { 1387 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16]; 1388 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16]; 1389 TransformToType[MVT::f16] = MVT::f32; 1390 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf); 1391 } else { 1392 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; 1393 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; 1394 TransformToType[MVT::f16] = MVT::f32; 1395 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); 1396 } 1397 } 1398 1399 // Decide how to handle bf16. If the target does not have native bf16 support, 1400 // promote it to f32, because there are no bf16 library calls (except for 1401 // converting from f32 to bf16). 1402 if (!isTypeLegal(MVT::bf16)) { 1403 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32]; 1404 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32]; 1405 TransformToType[MVT::bf16] = MVT::f32; 1406 ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf); 1407 } 1408 1409 // Loop over all of the vector value types to see which need transformations. 1410 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 1411 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 1412 MVT VT = (MVT::SimpleValueType) i; 1413 if (isTypeLegal(VT)) 1414 continue; 1415 1416 MVT EltVT = VT.getVectorElementType(); 1417 ElementCount EC = VT.getVectorElementCount(); 1418 bool IsLegalWiderType = false; 1419 bool IsScalable = VT.isScalableVector(); 1420 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); 1421 switch (PreferredAction) { 1422 case TypePromoteInteger: { 1423 MVT::SimpleValueType EndVT = IsScalable ? 1424 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE : 1425 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; 1426 // Try to promote the elements of integer vectors. If no legal 1427 // promotion was found, fall through to the widen-vector method. 1428 for (unsigned nVT = i + 1; 1429 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) { 1430 MVT SVT = (MVT::SimpleValueType) nVT; 1431 // Promote vectors of integers to vectors with the same number 1432 // of elements, with a wider element type. 1433 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() && 1434 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) { 1435 TransformToType[i] = SVT; 1436 RegisterTypeForVT[i] = SVT; 1437 NumRegistersForVT[i] = 1; 1438 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 1439 IsLegalWiderType = true; 1440 break; 1441 } 1442 } 1443 if (IsLegalWiderType) 1444 break; 1445 [[fallthrough]]; 1446 } 1447 1448 case TypeWidenVector: 1449 if (isPowerOf2_32(EC.getKnownMinValue())) { 1450 // Try to widen the vector. 1451 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1452 MVT SVT = (MVT::SimpleValueType) nVT; 1453 if (SVT.getVectorElementType() == EltVT && 1454 SVT.isScalableVector() == IsScalable && 1455 SVT.getVectorElementCount().getKnownMinValue() > 1456 EC.getKnownMinValue() && 1457 isTypeLegal(SVT)) { 1458 TransformToType[i] = SVT; 1459 RegisterTypeForVT[i] = SVT; 1460 NumRegistersForVT[i] = 1; 1461 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1462 IsLegalWiderType = true; 1463 break; 1464 } 1465 } 1466 if (IsLegalWiderType) 1467 break; 1468 } else { 1469 // Only widen to the next power of 2 to keep consistency with EVT. 1470 MVT NVT = VT.getPow2VectorType(); 1471 if (isTypeLegal(NVT)) { 1472 TransformToType[i] = NVT; 1473 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1474 RegisterTypeForVT[i] = NVT; 1475 NumRegistersForVT[i] = 1; 1476 break; 1477 } 1478 } 1479 [[fallthrough]]; 1480 1481 case TypeSplitVector: 1482 case TypeScalarizeVector: { 1483 MVT IntermediateVT; 1484 MVT RegisterVT; 1485 unsigned NumIntermediates; 1486 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT, 1487 NumIntermediates, RegisterVT, this); 1488 NumRegistersForVT[i] = NumRegisters; 1489 assert(NumRegistersForVT[i] == NumRegisters && 1490 "NumRegistersForVT size cannot represent NumRegisters!"); 1491 RegisterTypeForVT[i] = RegisterVT; 1492 1493 MVT NVT = VT.getPow2VectorType(); 1494 if (NVT == VT) { 1495 // Type is already a power of 2. The default action is to split. 1496 TransformToType[i] = MVT::Other; 1497 if (PreferredAction == TypeScalarizeVector) 1498 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); 1499 else if (PreferredAction == TypeSplitVector) 1500 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1501 else if (EC.getKnownMinValue() > 1) 1502 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1503 else 1504 ValueTypeActions.setTypeAction(VT, EC.isScalable() 1505 ? TypeScalarizeScalableVector 1506 : TypeScalarizeVector); 1507 } else { 1508 TransformToType[i] = NVT; 1509 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1510 } 1511 break; 1512 } 1513 default: 1514 llvm_unreachable("Unknown vector legalization action!"); 1515 } 1516 } 1517 1518 // Determine the 'representative' register class for each value type. 1519 // An representative register class is the largest (meaning one which is 1520 // not a sub-register class / subreg register class) legal register class for 1521 // a group of value types. For example, on i386, i8, i16, and i32 1522 // representative would be GR32; while on x86_64 it's GR64. 1523 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { 1524 const TargetRegisterClass* RRC; 1525 uint8_t Cost; 1526 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); 1527 RepRegClassForVT[i] = RRC; 1528 RepRegClassCostForVT[i] = Cost; 1529 } 1530 } 1531 1532 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1533 EVT VT) const { 1534 assert(!VT.isVector() && "No default SetCC type for vectors!"); 1535 return getPointerTy(DL).SimpleTy; 1536 } 1537 1538 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 1539 return MVT::i32; // return the default value 1540 } 1541 1542 /// getVectorTypeBreakdown - Vector types are broken down into some number of 1543 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 1544 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 1545 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 1546 /// 1547 /// This method returns the number of registers needed, and the VT for each 1548 /// register. It also returns the VT and quantity of the intermediate values 1549 /// before they are promoted/expanded. 1550 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, 1551 EVT VT, EVT &IntermediateVT, 1552 unsigned &NumIntermediates, 1553 MVT &RegisterVT) const { 1554 ElementCount EltCnt = VT.getVectorElementCount(); 1555 1556 // If there is a wider vector type with the same element type as this one, 1557 // or a promoted vector type that has the same number of elements which 1558 // are wider, then we should convert to that legal vector type. 1559 // This handles things like <2 x float> -> <4 x float> and 1560 // <4 x i1> -> <4 x i32>. 1561 LegalizeTypeAction TA = getTypeAction(Context, VT); 1562 if (!EltCnt.isScalar() && 1563 (TA == TypeWidenVector || TA == TypePromoteInteger)) { 1564 EVT RegisterEVT = getTypeToTransformTo(Context, VT); 1565 if (isTypeLegal(RegisterEVT)) { 1566 IntermediateVT = RegisterEVT; 1567 RegisterVT = RegisterEVT.getSimpleVT(); 1568 NumIntermediates = 1; 1569 return 1; 1570 } 1571 } 1572 1573 // Figure out the right, legal destination reg to copy into. 1574 EVT EltTy = VT.getVectorElementType(); 1575 1576 unsigned NumVectorRegs = 1; 1577 1578 // Scalable vectors cannot be scalarized, so handle the legalisation of the 1579 // types like done elsewhere in SelectionDAG. 1580 if (EltCnt.isScalable()) { 1581 LegalizeKind LK; 1582 EVT PartVT = VT; 1583 do { 1584 // Iterate until we've found a legal (part) type to hold VT. 1585 LK = getTypeConversion(Context, PartVT); 1586 PartVT = LK.second; 1587 } while (LK.first != TypeLegal); 1588 1589 if (!PartVT.isVector()) { 1590 report_fatal_error( 1591 "Don't know how to legalize this scalable vector type"); 1592 } 1593 1594 NumIntermediates = 1595 divideCeil(VT.getVectorElementCount().getKnownMinValue(), 1596 PartVT.getVectorElementCount().getKnownMinValue()); 1597 IntermediateVT = PartVT; 1598 RegisterVT = getRegisterType(Context, IntermediateVT); 1599 return NumIntermediates; 1600 } 1601 1602 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally 1603 // we could break down into LHS/RHS like LegalizeDAG does. 1604 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) { 1605 NumVectorRegs = EltCnt.getKnownMinValue(); 1606 EltCnt = ElementCount::getFixed(1); 1607 } 1608 1609 // Divide the input until we get to a supported size. This will always 1610 // end with a scalar if the target doesn't support vectors. 1611 while (EltCnt.getKnownMinValue() > 1 && 1612 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) { 1613 EltCnt = EltCnt.divideCoefficientBy(2); 1614 NumVectorRegs <<= 1; 1615 } 1616 1617 NumIntermediates = NumVectorRegs; 1618 1619 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt); 1620 if (!isTypeLegal(NewVT)) 1621 NewVT = EltTy; 1622 IntermediateVT = NewVT; 1623 1624 MVT DestVT = getRegisterType(Context, NewVT); 1625 RegisterVT = DestVT; 1626 1627 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16. 1628 TypeSize NewVTSize = NewVT.getSizeInBits(); 1629 // Convert sizes such as i33 to i64. 1630 if (!isPowerOf2_32(NewVTSize.getKnownMinValue())) 1631 NewVTSize = NewVTSize.coefficientNextPowerOf2(); 1632 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1633 } 1634 1635 // Otherwise, promotion or legal types use the same number of registers as 1636 // the vector decimated to the appropriate level. 1637 return NumVectorRegs; 1638 } 1639 1640 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI, 1641 uint64_t NumCases, 1642 uint64_t Range, 1643 ProfileSummaryInfo *PSI, 1644 BlockFrequencyInfo *BFI) const { 1645 // FIXME: This function check the maximum table size and density, but the 1646 // minimum size is not checked. It would be nice if the minimum size is 1647 // also combined within this function. Currently, the minimum size check is 1648 // performed in findJumpTable() in SelectionDAGBuiler and 1649 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl. 1650 const bool OptForSize = 1651 SI->getParent()->getParent()->hasOptSize() || 1652 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI); 1653 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); 1654 const unsigned MaxJumpTableSize = getMaximumJumpTableSize(); 1655 1656 // Check whether the number of cases is small enough and 1657 // the range is dense enough for a jump table. 1658 return (OptForSize || Range <= MaxJumpTableSize) && 1659 (NumCases * 100 >= Range * MinDensity); 1660 } 1661 1662 MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context, 1663 EVT ConditionVT) const { 1664 return getRegisterType(Context, ConditionVT); 1665 } 1666 1667 /// Get the EVTs and ArgFlags collections that represent the legalized return 1668 /// type of the given function. This does not require a DAG or a return value, 1669 /// and is suitable for use before any DAGs for the function are constructed. 1670 /// TODO: Move this out of TargetLowering.cpp. 1671 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, 1672 AttributeList attr, 1673 SmallVectorImpl<ISD::OutputArg> &Outs, 1674 const TargetLowering &TLI, const DataLayout &DL) { 1675 SmallVector<EVT, 4> ValueVTs; 1676 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); 1677 unsigned NumValues = ValueVTs.size(); 1678 if (NumValues == 0) return; 1679 1680 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1681 EVT VT = ValueVTs[j]; 1682 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1683 1684 if (attr.hasRetAttr(Attribute::SExt)) 1685 ExtendKind = ISD::SIGN_EXTEND; 1686 else if (attr.hasRetAttr(Attribute::ZExt)) 1687 ExtendKind = ISD::ZERO_EXTEND; 1688 1689 // FIXME: C calling convention requires the return type to be promoted to 1690 // at least 32-bit. But this is not necessary for non-C calling 1691 // conventions. The frontend should mark functions whose return values 1692 // require promoting with signext or zeroext attributes. 1693 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1694 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1695 if (VT.bitsLT(MinVT)) 1696 VT = MinVT; 1697 } 1698 1699 unsigned NumParts = 1700 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); 1701 MVT PartVT = 1702 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); 1703 1704 // 'inreg' on function refers to return value 1705 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1706 if (attr.hasRetAttr(Attribute::InReg)) 1707 Flags.setInReg(); 1708 1709 // Propagate extension type if any 1710 if (attr.hasRetAttr(Attribute::SExt)) 1711 Flags.setSExt(); 1712 else if (attr.hasRetAttr(Attribute::ZExt)) 1713 Flags.setZExt(); 1714 1715 for (unsigned i = 0; i < NumParts; ++i) 1716 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); 1717 } 1718 } 1719 1720 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1721 /// function arguments in the caller parameter area. This is the actual 1722 /// alignment, not its logarithm. 1723 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty, 1724 const DataLayout &DL) const { 1725 return DL.getABITypeAlign(Ty).value(); 1726 } 1727 1728 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1729 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, 1730 Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const { 1731 // Check if the specified alignment is sufficient based on the data layout. 1732 // TODO: While using the data layout works in practice, a better solution 1733 // would be to implement this check directly (make this a virtual function). 1734 // For example, the ABI alignment may change based on software platform while 1735 // this function should only be affected by hardware implementation. 1736 Type *Ty = VT.getTypeForEVT(Context); 1737 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) { 1738 // Assume that an access that meets the ABI-specified alignment is fast. 1739 if (Fast != nullptr) 1740 *Fast = 1; 1741 return true; 1742 } 1743 1744 // This is a misaligned access. 1745 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast); 1746 } 1747 1748 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1749 LLVMContext &Context, const DataLayout &DL, EVT VT, 1750 const MachineMemOperand &MMO, unsigned *Fast) const { 1751 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(), 1752 MMO.getAlign(), MMO.getFlags(), Fast); 1753 } 1754 1755 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1756 const DataLayout &DL, EVT VT, 1757 unsigned AddrSpace, Align Alignment, 1758 MachineMemOperand::Flags Flags, 1759 unsigned *Fast) const { 1760 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment, 1761 Flags, Fast); 1762 } 1763 1764 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1765 const DataLayout &DL, EVT VT, 1766 const MachineMemOperand &MMO, 1767 unsigned *Fast) const { 1768 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), 1769 MMO.getFlags(), Fast); 1770 } 1771 1772 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1773 const DataLayout &DL, LLT Ty, 1774 const MachineMemOperand &MMO, 1775 unsigned *Fast) const { 1776 EVT VT = getApproximateEVTForLLT(Ty, DL, Context); 1777 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), 1778 MMO.getFlags(), Fast); 1779 } 1780 1781 //===----------------------------------------------------------------------===// 1782 // TargetTransformInfo Helpers 1783 //===----------------------------------------------------------------------===// 1784 1785 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 1786 enum InstructionOpcodes { 1787 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 1788 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 1789 #include "llvm/IR/Instruction.def" 1790 }; 1791 switch (static_cast<InstructionOpcodes>(Opcode)) { 1792 case Ret: return 0; 1793 case Br: return 0; 1794 case Switch: return 0; 1795 case IndirectBr: return 0; 1796 case Invoke: return 0; 1797 case CallBr: return 0; 1798 case Resume: return 0; 1799 case Unreachable: return 0; 1800 case CleanupRet: return 0; 1801 case CatchRet: return 0; 1802 case CatchPad: return 0; 1803 case CatchSwitch: return 0; 1804 case CleanupPad: return 0; 1805 case FNeg: return ISD::FNEG; 1806 case Add: return ISD::ADD; 1807 case FAdd: return ISD::FADD; 1808 case Sub: return ISD::SUB; 1809 case FSub: return ISD::FSUB; 1810 case Mul: return ISD::MUL; 1811 case FMul: return ISD::FMUL; 1812 case UDiv: return ISD::UDIV; 1813 case SDiv: return ISD::SDIV; 1814 case FDiv: return ISD::FDIV; 1815 case URem: return ISD::UREM; 1816 case SRem: return ISD::SREM; 1817 case FRem: return ISD::FREM; 1818 case Shl: return ISD::SHL; 1819 case LShr: return ISD::SRL; 1820 case AShr: return ISD::SRA; 1821 case And: return ISD::AND; 1822 case Or: return ISD::OR; 1823 case Xor: return ISD::XOR; 1824 case Alloca: return 0; 1825 case Load: return ISD::LOAD; 1826 case Store: return ISD::STORE; 1827 case GetElementPtr: return 0; 1828 case Fence: return 0; 1829 case AtomicCmpXchg: return 0; 1830 case AtomicRMW: return 0; 1831 case Trunc: return ISD::TRUNCATE; 1832 case ZExt: return ISD::ZERO_EXTEND; 1833 case SExt: return ISD::SIGN_EXTEND; 1834 case FPToUI: return ISD::FP_TO_UINT; 1835 case FPToSI: return ISD::FP_TO_SINT; 1836 case UIToFP: return ISD::UINT_TO_FP; 1837 case SIToFP: return ISD::SINT_TO_FP; 1838 case FPTrunc: return ISD::FP_ROUND; 1839 case FPExt: return ISD::FP_EXTEND; 1840 case PtrToInt: return ISD::BITCAST; 1841 case IntToPtr: return ISD::BITCAST; 1842 case BitCast: return ISD::BITCAST; 1843 case AddrSpaceCast: return ISD::ADDRSPACECAST; 1844 case ICmp: return ISD::SETCC; 1845 case FCmp: return ISD::SETCC; 1846 case PHI: return 0; 1847 case Call: return 0; 1848 case Select: return ISD::SELECT; 1849 case UserOp1: return 0; 1850 case UserOp2: return 0; 1851 case VAArg: return 0; 1852 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 1853 case InsertElement: return ISD::INSERT_VECTOR_ELT; 1854 case ShuffleVector: return ISD::VECTOR_SHUFFLE; 1855 case ExtractValue: return ISD::MERGE_VALUES; 1856 case InsertValue: return ISD::MERGE_VALUES; 1857 case LandingPad: return 0; 1858 case Freeze: return ISD::FREEZE; 1859 } 1860 1861 llvm_unreachable("Unknown instruction type encountered!"); 1862 } 1863 1864 Value * 1865 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, 1866 bool UseTLS) const { 1867 // compiler-rt provides a variable with a magic name. Targets that do not 1868 // link with compiler-rt may also provide such a variable. 1869 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1870 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 1871 auto UnsafeStackPtr = 1872 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); 1873 1874 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1875 1876 if (!UnsafeStackPtr) { 1877 auto TLSModel = UseTLS ? 1878 GlobalValue::InitialExecTLSModel : 1879 GlobalValue::NotThreadLocal; 1880 // The global variable is not defined yet, define it ourselves. 1881 // We use the initial-exec TLS model because we do not support the 1882 // variable living anywhere other than in the main executable. 1883 UnsafeStackPtr = new GlobalVariable( 1884 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 1885 UnsafeStackPtrVar, nullptr, TLSModel); 1886 } else { 1887 // The variable exists, check its type and attributes. 1888 if (UnsafeStackPtr->getValueType() != StackPtrTy) 1889 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 1890 if (UseTLS != UnsafeStackPtr->isThreadLocal()) 1891 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 1892 (UseTLS ? "" : "not ") + "be thread-local"); 1893 } 1894 return UnsafeStackPtr; 1895 } 1896 1897 Value * 1898 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const { 1899 if (!TM.getTargetTriple().isAndroid()) 1900 return getDefaultSafeStackPointerLocation(IRB, true); 1901 1902 // Android provides a libc function to retrieve the address of the current 1903 // thread's unsafe stack pointer. 1904 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1905 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1906 FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address", 1907 StackPtrTy->getPointerTo(0)); 1908 return IRB.CreateCall(Fn); 1909 } 1910 1911 //===----------------------------------------------------------------------===// 1912 // Loop Strength Reduction hooks 1913 //===----------------------------------------------------------------------===// 1914 1915 /// isLegalAddressingMode - Return true if the addressing mode represented 1916 /// by AM is legal for this target, for a load/store of the specified type. 1917 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, 1918 const AddrMode &AM, Type *Ty, 1919 unsigned AS, Instruction *I) const { 1920 // The default implementation of this implements a conservative RISCy, r+r and 1921 // r+i addr mode. 1922 1923 // Allows a sign-extended 16-bit immediate field. 1924 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 1925 return false; 1926 1927 // No global is ever allowed as a base. 1928 if (AM.BaseGV) 1929 return false; 1930 1931 // Only support r+r, 1932 switch (AM.Scale) { 1933 case 0: // "r+i" or just "i", depending on HasBaseReg. 1934 break; 1935 case 1: 1936 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 1937 return false; 1938 // Otherwise we have r+r or r+i. 1939 break; 1940 case 2: 1941 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 1942 return false; 1943 // Allow 2*r as r+r. 1944 break; 1945 default: // Don't allow n * r 1946 return false; 1947 } 1948 1949 return true; 1950 } 1951 1952 //===----------------------------------------------------------------------===// 1953 // Stack Protector 1954 //===----------------------------------------------------------------------===// 1955 1956 // For OpenBSD return its special guard variable. Otherwise return nullptr, 1957 // so that SelectionDAG handle SSP. 1958 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const { 1959 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { 1960 Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); 1961 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); 1962 Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy); 1963 if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C)) 1964 G->setVisibility(GlobalValue::HiddenVisibility); 1965 return C; 1966 } 1967 return nullptr; 1968 } 1969 1970 // Currently only support "standard" __stack_chk_guard. 1971 // TODO: add LOAD_STACK_GUARD support. 1972 void TargetLoweringBase::insertSSPDeclarations(Module &M) const { 1973 if (!M.getNamedValue("__stack_chk_guard")) { 1974 auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false, 1975 GlobalVariable::ExternalLinkage, nullptr, 1976 "__stack_chk_guard"); 1977 1978 // FreeBSD has "__stack_chk_guard" defined externally on libc.so 1979 if (TM.getRelocationModel() == Reloc::Static && 1980 !TM.getTargetTriple().isWindowsGNUEnvironment() && 1981 !(TM.getTargetTriple().isPPC64() && TM.getTargetTriple().isOSFreeBSD())) 1982 GV->setDSOLocal(true); 1983 } 1984 } 1985 1986 // Currently only support "standard" __stack_chk_guard. 1987 // TODO: add LOAD_STACK_GUARD support. 1988 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { 1989 return M.getNamedValue("__stack_chk_guard"); 1990 } 1991 1992 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { 1993 return nullptr; 1994 } 1995 1996 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { 1997 return MinimumJumpTableEntries; 1998 } 1999 2000 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { 2001 MinimumJumpTableEntries = Val; 2002 } 2003 2004 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { 2005 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 2006 } 2007 2008 unsigned TargetLoweringBase::getMaximumJumpTableSize() const { 2009 return MaximumJumpTableSize; 2010 } 2011 2012 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { 2013 MaximumJumpTableSize = Val; 2014 } 2015 2016 bool TargetLoweringBase::isJumpTableRelative() const { 2017 return getTargetMachine().isPositionIndependent(); 2018 } 2019 2020 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const { 2021 if (TM.Options.LoopAlignment) 2022 return Align(TM.Options.LoopAlignment); 2023 return PrefLoopAlignment; 2024 } 2025 2026 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment( 2027 MachineBasicBlock *MBB) const { 2028 return MaxBytesForAlignment; 2029 } 2030 2031 //===----------------------------------------------------------------------===// 2032 // Reciprocal Estimates 2033 //===----------------------------------------------------------------------===// 2034 2035 /// Get the reciprocal estimate attribute string for a function that will 2036 /// override the target defaults. 2037 static StringRef getRecipEstimateForFunc(MachineFunction &MF) { 2038 const Function &F = MF.getFunction(); 2039 return F.getFnAttribute("reciprocal-estimates").getValueAsString(); 2040 } 2041 2042 /// Construct a string for the given reciprocal operation of the given type. 2043 /// This string should match the corresponding option to the front-end's 2044 /// "-mrecip" flag assuming those strings have been passed through in an 2045 /// attribute string. For example, "vec-divf" for a division of a vXf32. 2046 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { 2047 std::string Name = VT.isVector() ? "vec-" : ""; 2048 2049 Name += IsSqrt ? "sqrt" : "div"; 2050 2051 // TODO: Handle other float types? 2052 if (VT.getScalarType() == MVT::f64) { 2053 Name += "d"; 2054 } else if (VT.getScalarType() == MVT::f16) { 2055 Name += "h"; 2056 } else { 2057 assert(VT.getScalarType() == MVT::f32 && 2058 "Unexpected FP type for reciprocal estimate"); 2059 Name += "f"; 2060 } 2061 2062 return Name; 2063 } 2064 2065 /// Return the character position and value (a single numeric character) of a 2066 /// customized refinement operation in the input string if it exists. Return 2067 /// false if there is no customized refinement step count. 2068 static bool parseRefinementStep(StringRef In, size_t &Position, 2069 uint8_t &Value) { 2070 const char RefStepToken = ':'; 2071 Position = In.find(RefStepToken); 2072 if (Position == StringRef::npos) 2073 return false; 2074 2075 StringRef RefStepString = In.substr(Position + 1); 2076 // Allow exactly one numeric character for the additional refinement 2077 // step parameter. 2078 if (RefStepString.size() == 1) { 2079 char RefStepChar = RefStepString[0]; 2080 if (isDigit(RefStepChar)) { 2081 Value = RefStepChar - '0'; 2082 return true; 2083 } 2084 } 2085 report_fatal_error("Invalid refinement step for -recip."); 2086 } 2087 2088 /// For the input attribute string, return one of the ReciprocalEstimate enum 2089 /// status values (enabled, disabled, or not specified) for this operation on 2090 /// the specified data type. 2091 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { 2092 if (Override.empty()) 2093 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2094 2095 SmallVector<StringRef, 4> OverrideVector; 2096 Override.split(OverrideVector, ','); 2097 unsigned NumArgs = OverrideVector.size(); 2098 2099 // Check if "all", "none", or "default" was specified. 2100 if (NumArgs == 1) { 2101 // Look for an optional setting of the number of refinement steps needed 2102 // for this type of reciprocal operation. 2103 size_t RefPos; 2104 uint8_t RefSteps; 2105 if (parseRefinementStep(Override, RefPos, RefSteps)) { 2106 // Split the string for further processing. 2107 Override = Override.substr(0, RefPos); 2108 } 2109 2110 // All reciprocal types are enabled. 2111 if (Override == "all") 2112 return TargetLoweringBase::ReciprocalEstimate::Enabled; 2113 2114 // All reciprocal types are disabled. 2115 if (Override == "none") 2116 return TargetLoweringBase::ReciprocalEstimate::Disabled; 2117 2118 // Target defaults for enablement are used. 2119 if (Override == "default") 2120 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2121 } 2122 2123 // The attribute string may omit the size suffix ('f'/'d'). 2124 std::string VTName = getReciprocalOpName(IsSqrt, VT); 2125 std::string VTNameNoSize = VTName; 2126 VTNameNoSize.pop_back(); 2127 static const char DisabledPrefix = '!'; 2128 2129 for (StringRef RecipType : OverrideVector) { 2130 size_t RefPos; 2131 uint8_t RefSteps; 2132 if (parseRefinementStep(RecipType, RefPos, RefSteps)) 2133 RecipType = RecipType.substr(0, RefPos); 2134 2135 // Ignore the disablement token for string matching. 2136 bool IsDisabled = RecipType[0] == DisabledPrefix; 2137 if (IsDisabled) 2138 RecipType = RecipType.substr(1); 2139 2140 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 2141 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled 2142 : TargetLoweringBase::ReciprocalEstimate::Enabled; 2143 } 2144 2145 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2146 } 2147 2148 /// For the input attribute string, return the customized refinement step count 2149 /// for this operation on the specified data type. If the step count does not 2150 /// exist, return the ReciprocalEstimate enum value for unspecified. 2151 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { 2152 if (Override.empty()) 2153 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2154 2155 SmallVector<StringRef, 4> OverrideVector; 2156 Override.split(OverrideVector, ','); 2157 unsigned NumArgs = OverrideVector.size(); 2158 2159 // Check if "all", "default", or "none" was specified. 2160 if (NumArgs == 1) { 2161 // Look for an optional setting of the number of refinement steps needed 2162 // for this type of reciprocal operation. 2163 size_t RefPos; 2164 uint8_t RefSteps; 2165 if (!parseRefinementStep(Override, RefPos, RefSteps)) 2166 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2167 2168 // Split the string for further processing. 2169 Override = Override.substr(0, RefPos); 2170 assert(Override != "none" && 2171 "Disabled reciprocals, but specifed refinement steps?"); 2172 2173 // If this is a general override, return the specified number of steps. 2174 if (Override == "all" || Override == "default") 2175 return RefSteps; 2176 } 2177 2178 // The attribute string may omit the size suffix ('f'/'d'). 2179 std::string VTName = getReciprocalOpName(IsSqrt, VT); 2180 std::string VTNameNoSize = VTName; 2181 VTNameNoSize.pop_back(); 2182 2183 for (StringRef RecipType : OverrideVector) { 2184 size_t RefPos; 2185 uint8_t RefSteps; 2186 if (!parseRefinementStep(RecipType, RefPos, RefSteps)) 2187 continue; 2188 2189 RecipType = RecipType.substr(0, RefPos); 2190 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 2191 return RefSteps; 2192 } 2193 2194 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2195 } 2196 2197 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, 2198 MachineFunction &MF) const { 2199 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); 2200 } 2201 2202 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, 2203 MachineFunction &MF) const { 2204 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); 2205 } 2206 2207 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, 2208 MachineFunction &MF) const { 2209 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); 2210 } 2211 2212 int TargetLoweringBase::getDivRefinementSteps(EVT VT, 2213 MachineFunction &MF) const { 2214 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); 2215 } 2216 2217 bool TargetLoweringBase::isLoadBitCastBeneficial( 2218 EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, 2219 const MachineMemOperand &MMO) const { 2220 // Single-element vectors are scalarized, so we should generally avoid having 2221 // any memory operations on such types, as they would get scalarized too. 2222 if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() && 2223 BitcastVT.getVectorNumElements() == 1) 2224 return false; 2225 2226 // Don't do if we could do an indexed load on the original type, but not on 2227 // the new one. 2228 if (!LoadVT.isSimple() || !BitcastVT.isSimple()) 2229 return true; 2230 2231 MVT LoadMVT = LoadVT.getSimpleVT(); 2232 2233 // Don't bother doing this if it's just going to be promoted again later, as 2234 // doing so might interfere with other combines. 2235 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote && 2236 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT()) 2237 return false; 2238 2239 unsigned Fast = 0; 2240 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT, 2241 MMO, &Fast) && 2242 Fast; 2243 } 2244 2245 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { 2246 MF.getRegInfo().freezeReservedRegs(MF); 2247 } 2248 2249 MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags( 2250 const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC, 2251 const TargetLibraryInfo *LibInfo) const { 2252 MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad; 2253 if (LI.isVolatile()) 2254 Flags |= MachineMemOperand::MOVolatile; 2255 2256 if (LI.hasMetadata(LLVMContext::MD_nontemporal)) 2257 Flags |= MachineMemOperand::MONonTemporal; 2258 2259 if (LI.hasMetadata(LLVMContext::MD_invariant_load)) 2260 Flags |= MachineMemOperand::MOInvariant; 2261 2262 if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(), 2263 LI.getAlign(), DL, &LI, AC, 2264 /*DT=*/nullptr, LibInfo)) 2265 Flags |= MachineMemOperand::MODereferenceable; 2266 2267 Flags |= getTargetMMOFlags(LI); 2268 return Flags; 2269 } 2270 2271 MachineMemOperand::Flags 2272 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI, 2273 const DataLayout &DL) const { 2274 MachineMemOperand::Flags Flags = MachineMemOperand::MOStore; 2275 2276 if (SI.isVolatile()) 2277 Flags |= MachineMemOperand::MOVolatile; 2278 2279 if (SI.hasMetadata(LLVMContext::MD_nontemporal)) 2280 Flags |= MachineMemOperand::MONonTemporal; 2281 2282 // FIXME: Not preserving dereferenceable 2283 Flags |= getTargetMMOFlags(SI); 2284 return Flags; 2285 } 2286 2287 MachineMemOperand::Flags 2288 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI, 2289 const DataLayout &DL) const { 2290 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 2291 2292 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) { 2293 if (RMW->isVolatile()) 2294 Flags |= MachineMemOperand::MOVolatile; 2295 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) { 2296 if (CmpX->isVolatile()) 2297 Flags |= MachineMemOperand::MOVolatile; 2298 } else 2299 llvm_unreachable("not an atomic instruction"); 2300 2301 // FIXME: Not preserving dereferenceable 2302 Flags |= getTargetMMOFlags(AI); 2303 return Flags; 2304 } 2305 2306 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder, 2307 Instruction *Inst, 2308 AtomicOrdering Ord) const { 2309 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore()) 2310 return Builder.CreateFence(Ord); 2311 else 2312 return nullptr; 2313 } 2314 2315 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder, 2316 Instruction *Inst, 2317 AtomicOrdering Ord) const { 2318 if (isAcquireOrStronger(Ord)) 2319 return Builder.CreateFence(Ord); 2320 else 2321 return nullptr; 2322 } 2323 2324 //===----------------------------------------------------------------------===// 2325 // GlobalISel Hooks 2326 //===----------------------------------------------------------------------===// 2327 2328 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI, 2329 const TargetTransformInfo *TTI) const { 2330 auto &MF = *MI.getMF(); 2331 auto &MRI = MF.getRegInfo(); 2332 // Assuming a spill and reload of a value has a cost of 1 instruction each, 2333 // this helper function computes the maximum number of uses we should consider 2334 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We 2335 // break even in terms of code size when the original MI has 2 users vs 2336 // choosing to potentially spill. Any more than 2 users we we have a net code 2337 // size increase. This doesn't take into account register pressure though. 2338 auto maxUses = [](unsigned RematCost) { 2339 // A cost of 1 means remats are basically free. 2340 if (RematCost == 1) 2341 return std::numeric_limits<unsigned>::max(); 2342 if (RematCost == 2) 2343 return 2U; 2344 2345 // Remat is too expensive, only sink if there's one user. 2346 if (RematCost > 2) 2347 return 1U; 2348 llvm_unreachable("Unexpected remat cost"); 2349 }; 2350 2351 switch (MI.getOpcode()) { 2352 default: 2353 return false; 2354 // Constants-like instructions should be close to their users. 2355 // We don't want long live-ranges for them. 2356 case TargetOpcode::G_CONSTANT: 2357 case TargetOpcode::G_FCONSTANT: 2358 case TargetOpcode::G_FRAME_INDEX: 2359 case TargetOpcode::G_INTTOPTR: 2360 return true; 2361 case TargetOpcode::G_GLOBAL_VALUE: { 2362 unsigned RematCost = TTI->getGISelRematGlobalCost(); 2363 Register Reg = MI.getOperand(0).getReg(); 2364 unsigned MaxUses = maxUses(RematCost); 2365 if (MaxUses == UINT_MAX) 2366 return true; // Remats are "free" so always localize. 2367 return MRI.hasAtMostUserInstrs(Reg, MaxUses); 2368 } 2369 } 2370 } 2371