1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is SSA construction, where
15 /// each debug instruction assigns the *value* that a variable has, and every
16 /// instruction where the variable is in scope uses that variable. The resulting
17 /// map of instruction-to-value is then translated into a register (or spill)
18 /// location for each variable over each instruction.
19 ///
20 /// The primary difference from normal SSA construction is that we cannot
21 /// _create_ PHI values that contain variable values. CodeGen has already
22 /// completed, and we can't alter it just to make debug-info complete. Thus:
23 /// we can identify function positions where we would like a PHI value for a
24 /// variable, but must search the MachineFunction to see whether such a PHI is
25 /// available. If no such PHI exists, the variable location must be dropped.
26 ///
27 /// To achieve this, we perform two kinds of analysis. First, we identify
28 /// every value defined by every instruction (ignoring those that only move
29 /// another value), then re-compute an SSA-form representation of the
30 /// MachineFunction, using value propagation to eliminate any un-necessary
31 /// PHI values. This gives us a map of every value computed in the function,
32 /// and its location within the register file / stack.
33 ///
34 /// Secondly, for each variable we perform the same analysis, where each debug
35 /// instruction is considered a def, and every instruction where the variable
36 /// is in lexical scope as a use. Value propagation is used again to eliminate
37 /// any un-necessary PHIs. This gives us a map of each variable to the value
38 /// it should have in a block.
39 ///
40 /// Once both are complete, we have two maps for each block:
41 ///  * Variables to the values they should have,
42 ///  * Values to the register / spill slot they are located in.
43 /// After which we can marry-up variable values with a location, and emit
44 /// DBG_VALUE instructions specifying those locations. Variable locations may
45 /// be dropped in this process due to the desired variable value not being
46 /// resident in any machine location, or because there is no PHI value in any
47 /// location that accurately represents the desired value.  The building of
48 /// location lists for each block is left to DbgEntityHistoryCalculator.
49 ///
50 /// This pass is kept efficient because the size of the first SSA problem
51 /// is proportional to the working-set size of the function, which the compiler
52 /// tries to keep small. (It's also proportional to the number of blocks).
53 /// Additionally, we repeatedly perform the second SSA problem analysis with
54 /// only the variables and blocks in a single lexical scope, exploiting their
55 /// locality.
56 ///
57 /// ### Terminology
58 ///
59 /// A machine location is a register or spill slot, a value is something that's
60 /// defined by an instruction or PHI node, while a variable value is the value
61 /// assigned to a variable. A variable location is a machine location, that must
62 /// contain the appropriate variable value. A value that is a PHI node is
63 /// occasionally called an mphi.
64 ///
65 /// The first SSA problem is the "machine value location" problem,
66 /// because we're determining which machine locations contain which values.
67 /// The "locations" are constant: what's unknown is what value they contain.
68 ///
69 /// The second SSA problem (the one for variables) is the "variable value
70 /// problem", because it's determining what values a variable has, rather than
71 /// what location those values are placed in.
72 ///
73 /// TODO:
74 ///   Overlapping fragments
75 ///   Entry values
76 ///   Add back DEBUG statements for debugging this
77 ///   Collect statistics
78 ///
79 //===----------------------------------------------------------------------===//
80 
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/PostOrderIterator.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallSet.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/BinaryFormat/Dwarf.h"
88 #include "llvm/CodeGen/LexicalScopes.h"
89 #include "llvm/CodeGen/MachineBasicBlock.h"
90 #include "llvm/CodeGen/MachineDominators.h"
91 #include "llvm/CodeGen/MachineFrameInfo.h"
92 #include "llvm/CodeGen/MachineFunction.h"
93 #include "llvm/CodeGen/MachineInstr.h"
94 #include "llvm/CodeGen/MachineInstrBuilder.h"
95 #include "llvm/CodeGen/MachineInstrBundle.h"
96 #include "llvm/CodeGen/MachineMemOperand.h"
97 #include "llvm/CodeGen/MachineOperand.h"
98 #include "llvm/CodeGen/PseudoSourceValue.h"
99 #include "llvm/CodeGen/TargetFrameLowering.h"
100 #include "llvm/CodeGen/TargetInstrInfo.h"
101 #include "llvm/CodeGen/TargetLowering.h"
102 #include "llvm/CodeGen/TargetPassConfig.h"
103 #include "llvm/CodeGen/TargetRegisterInfo.h"
104 #include "llvm/CodeGen/TargetSubtargetInfo.h"
105 #include "llvm/Config/llvm-config.h"
106 #include "llvm/IR/DebugInfoMetadata.h"
107 #include "llvm/IR/DebugLoc.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/MC/MCRegisterInfo.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/Debug.h"
113 #include "llvm/Support/GenericIteratedDominanceFrontier.h"
114 #include "llvm/Support/TypeSize.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetMachine.h"
117 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <climits>
121 #include <cstdint>
122 #include <functional>
123 #include <queue>
124 #include <tuple>
125 #include <utility>
126 #include <vector>
127 
128 #include "InstrRefBasedImpl.h"
129 #include "LiveDebugValues.h"
130 #include <optional>
131 
132 using namespace llvm;
133 using namespace LiveDebugValues;
134 
135 // SSAUpdaterImple sets DEBUG_TYPE, change it.
136 #undef DEBUG_TYPE
137 #define DEBUG_TYPE "livedebugvalues"
138 
139 // Act more like the VarLoc implementation, by propagating some locations too
140 // far and ignoring some transfers.
141 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
142                                    cl::desc("Act like old LiveDebugValues did"),
143                                    cl::init(false));
144 
145 // Limit for the maximum number of stack slots we should track, past which we
146 // will ignore any spills. InstrRefBasedLDV gathers detailed information on all
147 // stack slots which leads to high memory consumption, and in some scenarios
148 // (such as asan with very many locals) the working set of the function can be
149 // very large, causing many spills. In these scenarios, it is very unlikely that
150 // the developer has hundreds of variables live at the same time that they're
151 // carefully thinking about -- instead, they probably autogenerated the code.
152 // When this happens, gracefully stop tracking excess spill slots, rather than
153 // consuming all the developer's memory.
154 static cl::opt<unsigned>
155     StackWorkingSetLimit("livedebugvalues-max-stack-slots", cl::Hidden,
156                          cl::desc("livedebugvalues-stack-ws-limit"),
157                          cl::init(250));
158 
159 DbgOpID DbgOpID::UndefID = DbgOpID(0xffffffff);
160 
161 /// Tracker for converting machine value locations and variable values into
162 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
163 /// specifying block live-in locations and transfers within blocks.
164 ///
165 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
166 /// and must be initialized with the set of variable values that are live-in to
167 /// the block. The caller then repeatedly calls process(). TransferTracker picks
168 /// out variable locations for the live-in variable values (if there _is_ a
169 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
170 /// stepped through, transfers of values between machine locations are
171 /// identified and if profitable, a DBG_VALUE created.
172 ///
173 /// This is where debug use-before-defs would be resolved: a variable with an
174 /// unavailable value could materialize in the middle of a block, when the
175 /// value becomes available. Or, we could detect clobbers and re-specify the
176 /// variable in a backup location. (XXX these are unimplemented).
177 class TransferTracker {
178 public:
179   const TargetInstrInfo *TII;
180   const TargetLowering *TLI;
181   /// This machine location tracker is assumed to always contain the up-to-date
182   /// value mapping for all machine locations. TransferTracker only reads
183   /// information from it. (XXX make it const?)
184   MLocTracker *MTracker;
185   MachineFunction &MF;
186   bool ShouldEmitDebugEntryValues;
187 
188   /// Record of all changes in variable locations at a block position. Awkwardly
189   /// we allow inserting either before or after the point: MBB != nullptr
190   /// indicates it's before, otherwise after.
191   struct Transfer {
192     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
193     MachineBasicBlock *MBB; /// non-null if we should insert after.
194     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
195   };
196 
197   /// Stores the resolved operands (machine locations and constants) and
198   /// qualifying meta-information needed to construct a concrete DBG_VALUE-like
199   /// instruction.
200   struct ResolvedDbgValue {
201     SmallVector<ResolvedDbgOp> Ops;
202     DbgValueProperties Properties;
203 
204     ResolvedDbgValue(SmallVectorImpl<ResolvedDbgOp> &Ops,
205                      DbgValueProperties Properties)
206         : Ops(Ops.begin(), Ops.end()), Properties(Properties) {}
207 
208     /// Returns all the LocIdx values used in this struct, in the order in which
209     /// they appear as operands in the debug value; may contain duplicates.
210     auto loc_indices() const {
211       return map_range(
212           make_filter_range(
213               Ops, [](const ResolvedDbgOp &Op) { return !Op.IsConst; }),
214           [](const ResolvedDbgOp &Op) { return Op.Loc; });
215     }
216   };
217 
218   /// Collection of transfers (DBG_VALUEs) to be inserted.
219   SmallVector<Transfer, 32> Transfers;
220 
221   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
222   /// between TransferTrackers view of variable locations and MLocTrackers. For
223   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
224   /// does not.
225   SmallVector<ValueIDNum, 32> VarLocs;
226 
227   /// Map from LocIdxes to which DebugVariables are based that location.
228   /// Mantained while stepping through the block. Not accurate if
229   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
230   DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
231 
232   /// Map from DebugVariable to it's current location and qualifying meta
233   /// information. To be used in conjunction with ActiveMLocs to construct
234   /// enough information for the DBG_VALUEs for a particular LocIdx.
235   DenseMap<DebugVariable, ResolvedDbgValue> ActiveVLocs;
236 
237   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
238   SmallVector<MachineInstr *, 4> PendingDbgValues;
239 
240   /// Record of a use-before-def: created when a value that's live-in to the
241   /// current block isn't available in any machine location, but it will be
242   /// defined in this block.
243   struct UseBeforeDef {
244     /// Value of this variable, def'd in block.
245     SmallVector<DbgOp> Values;
246     /// Identity of this variable.
247     DebugVariable Var;
248     /// Additional variable properties.
249     DbgValueProperties Properties;
250     UseBeforeDef(ArrayRef<DbgOp> Values, const DebugVariable &Var,
251                  const DbgValueProperties &Properties)
252         : Values(Values.begin(), Values.end()), Var(Var),
253           Properties(Properties) {}
254   };
255 
256   /// Map from instruction index (within the block) to the set of UseBeforeDefs
257   /// that become defined at that instruction.
258   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
259 
260   /// The set of variables that are in UseBeforeDefs and can become a location
261   /// once the relevant value is defined. An element being erased from this
262   /// collection prevents the use-before-def materializing.
263   DenseSet<DebugVariable> UseBeforeDefVariables;
264 
265   const TargetRegisterInfo &TRI;
266   const BitVector &CalleeSavedRegs;
267 
268   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
269                   MachineFunction &MF, const TargetRegisterInfo &TRI,
270                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
271       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
272         CalleeSavedRegs(CalleeSavedRegs) {
273     TLI = MF.getSubtarget().getTargetLowering();
274     auto &TM = TPC.getTM<TargetMachine>();
275     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
276   }
277 
278   bool isCalleeSaved(LocIdx L) const {
279     unsigned Reg = MTracker->LocIdxToLocID[L];
280     if (Reg >= MTracker->NumRegs)
281       return false;
282     for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
283       if (CalleeSavedRegs.test(*RAI))
284         return true;
285     return false;
286   };
287 
288   // An estimate of the expected lifespan of values at a machine location, with
289   // a greater value corresponding to a longer expected lifespan, i.e. spill
290   // slots generally live longer than callee-saved registers which generally
291   // live longer than non-callee-saved registers. The minimum value of 0
292   // corresponds to an illegal location that cannot have a "lifespan" at all.
293   enum class LocationQuality : unsigned char {
294     Illegal = 0,
295     Register,
296     CalleeSavedRegister,
297     SpillSlot,
298     Best = SpillSlot
299   };
300 
301   class LocationAndQuality {
302     unsigned Location : 24;
303     unsigned Quality : 8;
304 
305   public:
306     LocationAndQuality() : Location(0), Quality(0) {}
307     LocationAndQuality(LocIdx L, LocationQuality Q)
308         : Location(L.asU64()), Quality(static_cast<unsigned>(Q)) {}
309     LocIdx getLoc() const {
310       if (!Quality)
311         return LocIdx::MakeIllegalLoc();
312       return LocIdx(Location);
313     }
314     LocationQuality getQuality() const { return LocationQuality(Quality); }
315     bool isIllegal() const { return !Quality; }
316     bool isBest() const { return getQuality() == LocationQuality::Best; }
317   };
318 
319   // Returns the LocationQuality for the location L iff the quality of L is
320   // is strictly greater than the provided minimum quality.
321   std::optional<LocationQuality>
322   getLocQualityIfBetter(LocIdx L, LocationQuality Min) const {
323     if (L.isIllegal())
324       return std::nullopt;
325     if (Min >= LocationQuality::SpillSlot)
326       return std::nullopt;
327     if (MTracker->isSpill(L))
328       return LocationQuality::SpillSlot;
329     if (Min >= LocationQuality::CalleeSavedRegister)
330       return std::nullopt;
331     if (isCalleeSaved(L))
332       return LocationQuality::CalleeSavedRegister;
333     if (Min >= LocationQuality::Register)
334       return std::nullopt;
335     return LocationQuality::Register;
336   }
337 
338   /// For a variable \p Var with the live-in value \p Value, attempts to resolve
339   /// the DbgValue to a concrete DBG_VALUE, emitting that value and loading the
340   /// tracking information to track Var throughout the block.
341   /// \p ValueToLoc is a map containing the best known location for every
342   ///    ValueIDNum that Value may use.
343   /// \p MBB is the basic block that we are loading the live-in value for.
344   /// \p DbgOpStore is the map containing the DbgOpID->DbgOp mapping needed to
345   ///    determine the values used by Value.
346   void loadVarInloc(MachineBasicBlock &MBB, DbgOpIDMap &DbgOpStore,
347                     const DenseMap<ValueIDNum, LocationAndQuality> &ValueToLoc,
348                     DebugVariable Var, DbgValue Value) {
349     SmallVector<DbgOp> DbgOps;
350     SmallVector<ResolvedDbgOp> ResolvedDbgOps;
351     bool IsValueValid = true;
352     unsigned LastUseBeforeDef = 0;
353 
354     // If every value used by the incoming DbgValue is available at block
355     // entry, ResolvedDbgOps will contain the machine locations/constants for
356     // those values and will be used to emit a debug location.
357     // If one or more values are not yet available, but will all be defined in
358     // this block, then LastUseBeforeDef will track the instruction index in
359     // this BB at which the last of those values is defined, DbgOps will
360     // contain the values that we will emit when we reach that instruction.
361     // If one or more values are undef or not available throughout this block,
362     // and we can't recover as an entry value, we set IsValueValid=false and
363     // skip this variable.
364     for (DbgOpID ID : Value.getDbgOpIDs()) {
365       DbgOp Op = DbgOpStore.find(ID);
366       DbgOps.push_back(Op);
367       if (ID.isUndef()) {
368         IsValueValid = false;
369         break;
370       }
371       if (ID.isConst()) {
372         ResolvedDbgOps.push_back(Op.MO);
373         continue;
374       }
375 
376       // If the value has no location, we can't make a variable location.
377       const ValueIDNum &Num = Op.ID;
378       auto ValuesPreferredLoc = ValueToLoc.find(Num);
379       if (ValuesPreferredLoc->second.isIllegal()) {
380         // If it's a def that occurs in this block, register it as a
381         // use-before-def to be resolved as we step through the block.
382         // Continue processing values so that we add any other UseBeforeDef
383         // entries needed for later.
384         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) {
385           LastUseBeforeDef = std::max(LastUseBeforeDef,
386                                       static_cast<unsigned>(Num.getInst()));
387           continue;
388         }
389         recoverAsEntryValue(Var, Value.Properties, Num);
390         IsValueValid = false;
391         break;
392       }
393 
394       // Defer modifying ActiveVLocs until after we've confirmed we have a
395       // live range.
396       LocIdx M = ValuesPreferredLoc->second.getLoc();
397       ResolvedDbgOps.push_back(M);
398     }
399 
400     // If we cannot produce a valid value for the LiveIn value within this
401     // block, skip this variable.
402     if (!IsValueValid)
403       return;
404 
405     // Add UseBeforeDef entry for the last value to be defined in this block.
406     if (LastUseBeforeDef) {
407       addUseBeforeDef(Var, Value.Properties, DbgOps,
408                       LastUseBeforeDef);
409       return;
410     }
411 
412     // The LiveIn value is available at block entry, begin tracking and record
413     // the transfer.
414     for (const ResolvedDbgOp &Op : ResolvedDbgOps)
415       if (!Op.IsConst)
416         ActiveMLocs[Op.Loc].insert(Var);
417     auto NewValue = ResolvedDbgValue{ResolvedDbgOps, Value.Properties};
418     auto Result = ActiveVLocs.insert(std::make_pair(Var, NewValue));
419     if (!Result.second)
420       Result.first->second = NewValue;
421     PendingDbgValues.push_back(
422         MTracker->emitLoc(ResolvedDbgOps, Var, Value.Properties));
423   }
424 
425   /// Load object with live-in variable values. \p mlocs contains the live-in
426   /// values in each machine location, while \p vlocs the live-in variable
427   /// values. This method picks variable locations for the live-in variables,
428   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
429   /// object fields to track variable locations as we step through the block.
430   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
431   void
432   loadInlocs(MachineBasicBlock &MBB, ValueTable &MLocs, DbgOpIDMap &DbgOpStore,
433              const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
434              unsigned NumLocs) {
435     ActiveMLocs.clear();
436     ActiveVLocs.clear();
437     VarLocs.clear();
438     VarLocs.reserve(NumLocs);
439     UseBeforeDefs.clear();
440     UseBeforeDefVariables.clear();
441 
442     // Map of the preferred location for each value.
443     DenseMap<ValueIDNum, LocationAndQuality> ValueToLoc;
444 
445     // Initialized the preferred-location map with illegal locations, to be
446     // filled in later.
447     for (const auto &VLoc : VLocs)
448       if (VLoc.second.Kind == DbgValue::Def)
449         for (DbgOpID OpID : VLoc.second.getDbgOpIDs())
450           if (!OpID.ID.IsConst)
451             ValueToLoc.insert({DbgOpStore.find(OpID).ID, LocationAndQuality()});
452 
453     ActiveMLocs.reserve(VLocs.size());
454     ActiveVLocs.reserve(VLocs.size());
455 
456     // Produce a map of value numbers to the current machine locs they live
457     // in. When emulating VarLocBasedImpl, there should only be one
458     // location; when not, we get to pick.
459     for (auto Location : MTracker->locations()) {
460       LocIdx Idx = Location.Idx;
461       ValueIDNum &VNum = MLocs[Idx.asU64()];
462       if (VNum == ValueIDNum::EmptyValue)
463         continue;
464       VarLocs.push_back(VNum);
465 
466       // Is there a variable that wants a location for this value? If not, skip.
467       auto VIt = ValueToLoc.find(VNum);
468       if (VIt == ValueToLoc.end())
469         continue;
470 
471       auto &Previous = VIt->second;
472       // If this is the first location with that value, pick it. Otherwise,
473       // consider whether it's a "longer term" location.
474       std::optional<LocationQuality> ReplacementQuality =
475           getLocQualityIfBetter(Idx, Previous.getQuality());
476       if (ReplacementQuality)
477         Previous = LocationAndQuality(Idx, *ReplacementQuality);
478     }
479 
480     // Now map variables to their picked LocIdxes.
481     for (const auto &Var : VLocs) {
482       loadVarInloc(MBB, DbgOpStore, ValueToLoc, Var.first, Var.second);
483     }
484     flushDbgValues(MBB.begin(), &MBB);
485   }
486 
487   /// Record that \p Var has value \p ID, a value that becomes available
488   /// later in the function.
489   void addUseBeforeDef(const DebugVariable &Var,
490                        const DbgValueProperties &Properties,
491                        const SmallVectorImpl<DbgOp> &DbgOps, unsigned Inst) {
492     UseBeforeDefs[Inst].emplace_back(DbgOps, Var, Properties);
493     UseBeforeDefVariables.insert(Var);
494   }
495 
496   /// After the instruction at index \p Inst and position \p pos has been
497   /// processed, check whether it defines a variable value in a use-before-def.
498   /// If so, and the variable value hasn't changed since the start of the
499   /// block, create a DBG_VALUE.
500   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
501     auto MIt = UseBeforeDefs.find(Inst);
502     if (MIt == UseBeforeDefs.end())
503       return;
504 
505     // Map of values to the locations that store them for every value used by
506     // the variables that may have become available.
507     SmallDenseMap<ValueIDNum, LocationAndQuality> ValueToLoc;
508 
509     // Populate ValueToLoc with illegal default mappings for every value used by
510     // any UseBeforeDef variables for this instruction.
511     for (auto &Use : MIt->second) {
512       if (!UseBeforeDefVariables.count(Use.Var))
513         continue;
514 
515       for (DbgOp &Op : Use.Values) {
516         assert(!Op.isUndef() && "UseBeforeDef erroneously created for a "
517                                 "DbgValue with undef values.");
518         if (Op.IsConst)
519           continue;
520 
521         ValueToLoc.insert({Op.ID, LocationAndQuality()});
522       }
523     }
524 
525     // Exit early if we have no DbgValues to produce.
526     if (ValueToLoc.empty())
527       return;
528 
529     // Determine the best location for each desired value.
530     for (auto Location : MTracker->locations()) {
531       LocIdx Idx = Location.Idx;
532       ValueIDNum &LocValueID = Location.Value;
533 
534       // Is there a variable that wants a location for this value? If not, skip.
535       auto VIt = ValueToLoc.find(LocValueID);
536       if (VIt == ValueToLoc.end())
537         continue;
538 
539       auto &Previous = VIt->second;
540       // If this is the first location with that value, pick it. Otherwise,
541       // consider whether it's a "longer term" location.
542       std::optional<LocationQuality> ReplacementQuality =
543           getLocQualityIfBetter(Idx, Previous.getQuality());
544       if (ReplacementQuality)
545         Previous = LocationAndQuality(Idx, *ReplacementQuality);
546     }
547 
548     // Using the map of values to locations, produce a final set of values for
549     // this variable.
550     for (auto &Use : MIt->second) {
551       if (!UseBeforeDefVariables.count(Use.Var))
552         continue;
553 
554       SmallVector<ResolvedDbgOp> DbgOps;
555 
556       for (DbgOp &Op : Use.Values) {
557         if (Op.IsConst) {
558           DbgOps.push_back(Op.MO);
559           continue;
560         }
561         LocIdx NewLoc = ValueToLoc.find(Op.ID)->second.getLoc();
562         if (NewLoc.isIllegal())
563           break;
564         DbgOps.push_back(NewLoc);
565       }
566 
567       // If at least one value used by this debug value is no longer available,
568       // i.e. one of the values was killed before we finished defining all of
569       // the values used by this variable, discard.
570       if (DbgOps.size() != Use.Values.size())
571         continue;
572 
573       // Otherwise, we're good to go.
574       PendingDbgValues.push_back(
575           MTracker->emitLoc(DbgOps, Use.Var, Use.Properties));
576     }
577     flushDbgValues(pos, nullptr);
578   }
579 
580   /// Helper to move created DBG_VALUEs into Transfers collection.
581   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
582     if (PendingDbgValues.size() == 0)
583       return;
584 
585     // Pick out the instruction start position.
586     MachineBasicBlock::instr_iterator BundleStart;
587     if (MBB && Pos == MBB->begin())
588       BundleStart = MBB->instr_begin();
589     else
590       BundleStart = getBundleStart(Pos->getIterator());
591 
592     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
593     PendingDbgValues.clear();
594   }
595 
596   bool isEntryValueVariable(const DebugVariable &Var,
597                             const DIExpression *Expr) const {
598     if (!Var.getVariable()->isParameter())
599       return false;
600 
601     if (Var.getInlinedAt())
602       return false;
603 
604     if (Expr->getNumElements() > 0 && !Expr->isDeref())
605       return false;
606 
607     return true;
608   }
609 
610   bool isEntryValueValue(const ValueIDNum &Val) const {
611     // Must be in entry block (block number zero), and be a PHI / live-in value.
612     if (Val.getBlock() || !Val.isPHI())
613       return false;
614 
615     // Entry values must enter in a register.
616     if (MTracker->isSpill(Val.getLoc()))
617       return false;
618 
619     Register SP = TLI->getStackPointerRegisterToSaveRestore();
620     Register FP = TRI.getFrameRegister(MF);
621     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
622     return Reg != SP && Reg != FP;
623   }
624 
625   bool recoverAsEntryValue(const DebugVariable &Var,
626                            const DbgValueProperties &Prop,
627                            const ValueIDNum &Num) {
628     // Is this variable location a candidate to be an entry value. First,
629     // should we be trying this at all?
630     if (!ShouldEmitDebugEntryValues)
631       return false;
632 
633     const DIExpression *DIExpr = Prop.DIExpr;
634 
635     // We don't currently emit entry values for DBG_VALUE_LISTs.
636     if (Prop.IsVariadic) {
637       // If this debug value can be converted to be non-variadic, then do so;
638       // otherwise give up.
639       auto NonVariadicExpression =
640           DIExpression::convertToNonVariadicExpression(DIExpr);
641       if (!NonVariadicExpression)
642         return false;
643       DIExpr = *NonVariadicExpression;
644     }
645 
646     // Is the variable appropriate for entry values (i.e., is a parameter).
647     if (!isEntryValueVariable(Var, DIExpr))
648       return false;
649 
650     // Is the value assigned to this variable still the entry value?
651     if (!isEntryValueValue(Num))
652       return false;
653 
654     // Emit a variable location using an entry value expression.
655     DIExpression *NewExpr =
656         DIExpression::prepend(DIExpr, DIExpression::EntryValue);
657     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
658     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
659 
660     PendingDbgValues.push_back(
661         emitMOLoc(MO, Var, {NewExpr, Prop.Indirect, false}));
662     return true;
663   }
664 
665   /// Change a variable value after encountering a DBG_VALUE inside a block.
666   void redefVar(const MachineInstr &MI) {
667     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
668                       MI.getDebugLoc()->getInlinedAt());
669     DbgValueProperties Properties(MI);
670 
671     // Ignore non-register locations, we don't transfer those.
672     if (MI.isUndefDebugValue() ||
673         all_of(MI.debug_operands(),
674                [](const MachineOperand &MO) { return !MO.isReg(); })) {
675       auto It = ActiveVLocs.find(Var);
676       if (It != ActiveVLocs.end()) {
677         for (LocIdx Loc : It->second.loc_indices())
678           ActiveMLocs[Loc].erase(Var);
679         ActiveVLocs.erase(It);
680       }
681       // Any use-before-defs no longer apply.
682       UseBeforeDefVariables.erase(Var);
683       return;
684     }
685 
686     SmallVector<ResolvedDbgOp> NewLocs;
687     for (const MachineOperand &MO : MI.debug_operands()) {
688       if (MO.isReg()) {
689         // Any undef regs have already been filtered out above.
690         Register Reg = MO.getReg();
691         LocIdx NewLoc = MTracker->getRegMLoc(Reg);
692         NewLocs.push_back(NewLoc);
693       } else {
694         NewLocs.push_back(MO);
695       }
696     }
697 
698     redefVar(MI, Properties, NewLocs);
699   }
700 
701   /// Handle a change in variable location within a block. Terminate the
702   /// variables current location, and record the value it now refers to, so
703   /// that we can detect location transfers later on.
704   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
705                 SmallVectorImpl<ResolvedDbgOp> &NewLocs) {
706     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
707                       MI.getDebugLoc()->getInlinedAt());
708     // Any use-before-defs no longer apply.
709     UseBeforeDefVariables.erase(Var);
710 
711     // Erase any previous location.
712     auto It = ActiveVLocs.find(Var);
713     if (It != ActiveVLocs.end()) {
714       for (LocIdx Loc : It->second.loc_indices())
715         ActiveMLocs[Loc].erase(Var);
716     }
717 
718     // If there _is_ no new location, all we had to do was erase.
719     if (NewLocs.empty()) {
720       if (It != ActiveVLocs.end())
721         ActiveVLocs.erase(It);
722       return;
723     }
724 
725     SmallVector<std::pair<LocIdx, DebugVariable>> LostMLocs;
726     for (ResolvedDbgOp &Op : NewLocs) {
727       if (Op.IsConst)
728         continue;
729 
730       LocIdx NewLoc = Op.Loc;
731 
732       // Check whether our local copy of values-by-location in #VarLocs is out
733       // of date. Wipe old tracking data for the location if it's been clobbered
734       // in the meantime.
735       if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
736         for (const auto &P : ActiveMLocs[NewLoc]) {
737           auto LostVLocIt = ActiveVLocs.find(P);
738           if (LostVLocIt != ActiveVLocs.end()) {
739             for (LocIdx Loc : LostVLocIt->second.loc_indices()) {
740               // Every active variable mapping for NewLoc will be cleared, no
741               // need to track individual variables.
742               if (Loc == NewLoc)
743                 continue;
744               LostMLocs.emplace_back(Loc, P);
745             }
746           }
747           ActiveVLocs.erase(P);
748         }
749         for (const auto &LostMLoc : LostMLocs)
750           ActiveMLocs[LostMLoc.first].erase(LostMLoc.second);
751         LostMLocs.clear();
752         It = ActiveVLocs.find(Var);
753         ActiveMLocs[NewLoc.asU64()].clear();
754         VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
755       }
756 
757       ActiveMLocs[NewLoc].insert(Var);
758     }
759 
760     if (It == ActiveVLocs.end()) {
761       ActiveVLocs.insert(
762           std::make_pair(Var, ResolvedDbgValue(NewLocs, Properties)));
763     } else {
764       It->second.Ops.assign(NewLocs);
765       It->second.Properties = Properties;
766     }
767   }
768 
769   /// Account for a location \p mloc being clobbered. Examine the variable
770   /// locations that will be terminated: and try to recover them by using
771   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
772   /// explicitly terminate a location if it can't be recovered.
773   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
774                    bool MakeUndef = true) {
775     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
776     if (ActiveMLocIt == ActiveMLocs.end())
777       return;
778 
779     // What was the old variable value?
780     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
781     clobberMloc(MLoc, OldValue, Pos, MakeUndef);
782   }
783   /// Overload that takes an explicit value \p OldValue for when the value in
784   /// \p MLoc has changed and the TransferTracker's locations have not been
785   /// updated yet.
786   void clobberMloc(LocIdx MLoc, ValueIDNum OldValue,
787                    MachineBasicBlock::iterator Pos, bool MakeUndef = true) {
788     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
789     if (ActiveMLocIt == ActiveMLocs.end())
790       return;
791 
792     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
793 
794     // Examine the remaining variable locations: if we can find the same value
795     // again, we can recover the location.
796     std::optional<LocIdx> NewLoc;
797     for (auto Loc : MTracker->locations())
798       if (Loc.Value == OldValue)
799         NewLoc = Loc.Idx;
800 
801     // If there is no location, and we weren't asked to make the variable
802     // explicitly undef, then stop here.
803     if (!NewLoc && !MakeUndef) {
804       // Try and recover a few more locations with entry values.
805       for (const auto &Var : ActiveMLocIt->second) {
806         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
807         recoverAsEntryValue(Var, Prop, OldValue);
808       }
809       flushDbgValues(Pos, nullptr);
810       return;
811     }
812 
813     // Examine all the variables based on this location.
814     DenseSet<DebugVariable> NewMLocs;
815     // If no new location has been found, every variable that depends on this
816     // MLoc is dead, so end their existing MLoc->Var mappings as well.
817     SmallVector<std::pair<LocIdx, DebugVariable>> LostMLocs;
818     for (const auto &Var : ActiveMLocIt->second) {
819       auto ActiveVLocIt = ActiveVLocs.find(Var);
820       // Re-state the variable location: if there's no replacement then NewLoc
821       // is std::nullopt and a $noreg DBG_VALUE will be created. Otherwise, a
822       // DBG_VALUE identifying the alternative location will be emitted.
823       const DbgValueProperties &Properties = ActiveVLocIt->second.Properties;
824 
825       // Produce the new list of debug ops - an empty list if no new location
826       // was found, or the existing list with the substitution MLoc -> NewLoc
827       // otherwise.
828       SmallVector<ResolvedDbgOp> DbgOps;
829       if (NewLoc) {
830         ResolvedDbgOp OldOp(MLoc);
831         ResolvedDbgOp NewOp(*NewLoc);
832         // Insert illegal ops to overwrite afterwards.
833         DbgOps.insert(DbgOps.begin(), ActiveVLocIt->second.Ops.size(),
834                       ResolvedDbgOp(LocIdx::MakeIllegalLoc()));
835         replace_copy(ActiveVLocIt->second.Ops, DbgOps.begin(), OldOp, NewOp);
836       }
837 
838       PendingDbgValues.push_back(MTracker->emitLoc(DbgOps, Var, Properties));
839 
840       // Update machine locations <=> variable locations maps. Defer updating
841       // ActiveMLocs to avoid invalidating the ActiveMLocIt iterator.
842       if (!NewLoc) {
843         for (LocIdx Loc : ActiveVLocIt->second.loc_indices()) {
844           if (Loc != MLoc)
845             LostMLocs.emplace_back(Loc, Var);
846         }
847         ActiveVLocs.erase(ActiveVLocIt);
848       } else {
849         ActiveVLocIt->second.Ops = DbgOps;
850         NewMLocs.insert(Var);
851       }
852     }
853 
854     // Remove variables from ActiveMLocs if they no longer use any other MLocs
855     // due to being killed by this clobber.
856     for (auto &LocVarIt : LostMLocs) {
857       auto LostMLocIt = ActiveMLocs.find(LocVarIt.first);
858       assert(LostMLocIt != ActiveMLocs.end() &&
859              "Variable was using this MLoc, but ActiveMLocs[MLoc] has no "
860              "entries?");
861       LostMLocIt->second.erase(LocVarIt.second);
862     }
863 
864     // We lazily track what locations have which values; if we've found a new
865     // location for the clobbered value, remember it.
866     if (NewLoc)
867       VarLocs[NewLoc->asU64()] = OldValue;
868 
869     flushDbgValues(Pos, nullptr);
870 
871     // Commit ActiveMLoc changes.
872     ActiveMLocIt->second.clear();
873     if (!NewMLocs.empty())
874       for (auto &Var : NewMLocs)
875         ActiveMLocs[*NewLoc].insert(Var);
876   }
877 
878   /// Transfer variables based on \p Src to be based on \p Dst. This handles
879   /// both register copies as well as spills and restores. Creates DBG_VALUEs
880   /// describing the movement.
881   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
882     // Does Src still contain the value num we expect? If not, it's been
883     // clobbered in the meantime, and our variable locations are stale.
884     if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
885       return;
886 
887     // assert(ActiveMLocs[Dst].size() == 0);
888     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
889 
890     // Move set of active variables from one location to another.
891     auto MovingVars = ActiveMLocs[Src];
892     ActiveMLocs[Dst].insert(MovingVars.begin(), MovingVars.end());
893     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
894 
895     // For each variable based on Src; create a location at Dst.
896     ResolvedDbgOp SrcOp(Src);
897     ResolvedDbgOp DstOp(Dst);
898     for (const auto &Var : MovingVars) {
899       auto ActiveVLocIt = ActiveVLocs.find(Var);
900       assert(ActiveVLocIt != ActiveVLocs.end());
901 
902       // Update all instances of Src in the variable's tracked values to Dst.
903       std::replace(ActiveVLocIt->second.Ops.begin(),
904                    ActiveVLocIt->second.Ops.end(), SrcOp, DstOp);
905 
906       MachineInstr *MI = MTracker->emitLoc(ActiveVLocIt->second.Ops, Var,
907                                            ActiveVLocIt->second.Properties);
908       PendingDbgValues.push_back(MI);
909     }
910     ActiveMLocs[Src].clear();
911     flushDbgValues(Pos, nullptr);
912 
913     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
914     // about the old location.
915     if (EmulateOldLDV)
916       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
917   }
918 
919   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
920                                 const DebugVariable &Var,
921                                 const DbgValueProperties &Properties) {
922     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
923                                   Var.getVariable()->getScope(),
924                                   const_cast<DILocation *>(Var.getInlinedAt()));
925     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
926     MIB.add(MO);
927     if (Properties.Indirect)
928       MIB.addImm(0);
929     else
930       MIB.addReg(0);
931     MIB.addMetadata(Var.getVariable());
932     MIB.addMetadata(Properties.DIExpr);
933     return MIB;
934   }
935 };
936 
937 //===----------------------------------------------------------------------===//
938 //            Implementation
939 //===----------------------------------------------------------------------===//
940 
941 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
942 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
943 
944 #ifndef NDEBUG
945 void ResolvedDbgOp::dump(const MLocTracker *MTrack) const {
946   if (IsConst) {
947     dbgs() << MO;
948   } else {
949     dbgs() << MTrack->LocIdxToName(Loc);
950   }
951 }
952 void DbgOp::dump(const MLocTracker *MTrack) const {
953   if (IsConst) {
954     dbgs() << MO;
955   } else if (!isUndef()) {
956     dbgs() << MTrack->IDAsString(ID);
957   }
958 }
959 void DbgOpID::dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const {
960   if (!OpStore) {
961     dbgs() << "ID(" << asU32() << ")";
962   } else {
963     OpStore->find(*this).dump(MTrack);
964   }
965 }
966 void DbgValue::dump(const MLocTracker *MTrack,
967                     const DbgOpIDMap *OpStore) const {
968   if (Kind == NoVal) {
969     dbgs() << "NoVal(" << BlockNo << ")";
970   } else if (Kind == VPHI || Kind == Def) {
971     if (Kind == VPHI)
972       dbgs() << "VPHI(" << BlockNo << ",";
973     else
974       dbgs() << "Def(";
975     for (unsigned Idx = 0; Idx < getDbgOpIDs().size(); ++Idx) {
976       getDbgOpID(Idx).dump(MTrack, OpStore);
977       if (Idx != 0)
978         dbgs() << ",";
979     }
980     dbgs() << ")";
981   }
982   if (Properties.Indirect)
983     dbgs() << " indir";
984   if (Properties.DIExpr)
985     dbgs() << " " << *Properties.DIExpr;
986 }
987 #endif
988 
989 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
990                          const TargetRegisterInfo &TRI,
991                          const TargetLowering &TLI)
992     : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
993       LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
994   NumRegs = TRI.getNumRegs();
995   reset();
996   LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
997   assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
998 
999   // Always track SP. This avoids the implicit clobbering caused by regmasks
1000   // from affectings its values. (LiveDebugValues disbelieves calls and
1001   // regmasks that claim to clobber SP).
1002   Register SP = TLI.getStackPointerRegisterToSaveRestore();
1003   if (SP) {
1004     unsigned ID = getLocID(SP);
1005     (void)lookupOrTrackRegister(ID);
1006 
1007     for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
1008       SPAliases.insert(*RAI);
1009   }
1010 
1011   // Build some common stack positions -- full registers being spilt to the
1012   // stack.
1013   StackSlotIdxes.insert({{8, 0}, 0});
1014   StackSlotIdxes.insert({{16, 0}, 1});
1015   StackSlotIdxes.insert({{32, 0}, 2});
1016   StackSlotIdxes.insert({{64, 0}, 3});
1017   StackSlotIdxes.insert({{128, 0}, 4});
1018   StackSlotIdxes.insert({{256, 0}, 5});
1019   StackSlotIdxes.insert({{512, 0}, 6});
1020 
1021   // Traverse all the subregister idxes, and ensure there's an index for them.
1022   // Duplicates are no problem: we're interested in their position in the
1023   // stack slot, we don't want to type the slot.
1024   for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
1025     unsigned Size = TRI.getSubRegIdxSize(I);
1026     unsigned Offs = TRI.getSubRegIdxOffset(I);
1027     unsigned Idx = StackSlotIdxes.size();
1028 
1029     // Some subregs have -1, -2 and so forth fed into their fields, to mean
1030     // special backend things. Ignore those.
1031     if (Size > 60000 || Offs > 60000)
1032       continue;
1033 
1034     StackSlotIdxes.insert({{Size, Offs}, Idx});
1035   }
1036 
1037   // There may also be strange register class sizes (think x86 fp80s).
1038   for (const TargetRegisterClass *RC : TRI.regclasses()) {
1039     unsigned Size = TRI.getRegSizeInBits(*RC);
1040 
1041     // We might see special reserved values as sizes, and classes for other
1042     // stuff the machine tries to model. If it's more than 512 bits, then it
1043     // is very unlikely to be a register than can be spilt.
1044     if (Size > 512)
1045       continue;
1046 
1047     unsigned Idx = StackSlotIdxes.size();
1048     StackSlotIdxes.insert({{Size, 0}, Idx});
1049   }
1050 
1051   for (auto &Idx : StackSlotIdxes)
1052     StackIdxesToPos[Idx.second] = Idx.first;
1053 
1054   NumSlotIdxes = StackSlotIdxes.size();
1055 }
1056 
1057 LocIdx MLocTracker::trackRegister(unsigned ID) {
1058   assert(ID != 0);
1059   LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
1060   LocIdxToIDNum.grow(NewIdx);
1061   LocIdxToLocID.grow(NewIdx);
1062 
1063   // Default: it's an mphi.
1064   ValueIDNum ValNum = {CurBB, 0, NewIdx};
1065   // Was this reg ever touched by a regmask?
1066   for (const auto &MaskPair : reverse(Masks)) {
1067     if (MaskPair.first->clobbersPhysReg(ID)) {
1068       // There was an earlier def we skipped.
1069       ValNum = {CurBB, MaskPair.second, NewIdx};
1070       break;
1071     }
1072   }
1073 
1074   LocIdxToIDNum[NewIdx] = ValNum;
1075   LocIdxToLocID[NewIdx] = ID;
1076   return NewIdx;
1077 }
1078 
1079 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
1080                                unsigned InstID) {
1081   // Def any register we track have that isn't preserved. The regmask
1082   // terminates the liveness of a register, meaning its value can't be
1083   // relied upon -- we represent this by giving it a new value.
1084   for (auto Location : locations()) {
1085     unsigned ID = LocIdxToLocID[Location.Idx];
1086     // Don't clobber SP, even if the mask says it's clobbered.
1087     if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
1088       defReg(ID, CurBB, InstID);
1089   }
1090   Masks.push_back(std::make_pair(MO, InstID));
1091 }
1092 
1093 std::optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
1094   SpillLocationNo SpillID(SpillLocs.idFor(L));
1095 
1096   if (SpillID.id() == 0) {
1097     // If there is no location, and we have reached the limit of how many stack
1098     // slots to track, then don't track this one.
1099     if (SpillLocs.size() >= StackWorkingSetLimit)
1100       return std::nullopt;
1101 
1102     // Spill location is untracked: create record for this one, and all
1103     // subregister slots too.
1104     SpillID = SpillLocationNo(SpillLocs.insert(L));
1105     for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
1106       unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
1107       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
1108       LocIdxToIDNum.grow(Idx);
1109       LocIdxToLocID.grow(Idx);
1110       LocIDToLocIdx.push_back(Idx);
1111       LocIdxToLocID[Idx] = L;
1112       // Initialize to PHI value; corresponds to the location's live-in value
1113       // during transfer function construction.
1114       LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
1115     }
1116   }
1117   return SpillID;
1118 }
1119 
1120 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
1121   unsigned ID = LocIdxToLocID[Idx];
1122   if (ID >= NumRegs) {
1123     StackSlotPos Pos = locIDToSpillIdx(ID);
1124     ID -= NumRegs;
1125     unsigned Slot = ID / NumSlotIdxes;
1126     return Twine("slot ")
1127         .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
1128         .concat(Twine(" offs ").concat(Twine(Pos.second))))))
1129         .str();
1130   } else {
1131     return TRI.getRegAsmName(ID).str();
1132   }
1133 }
1134 
1135 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
1136   std::string DefName = LocIdxToName(Num.getLoc());
1137   return Num.asString(DefName);
1138 }
1139 
1140 #ifndef NDEBUG
1141 LLVM_DUMP_METHOD void MLocTracker::dump() {
1142   for (auto Location : locations()) {
1143     std::string MLocName = LocIdxToName(Location.Value.getLoc());
1144     std::string DefName = Location.Value.asString(MLocName);
1145     dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
1146   }
1147 }
1148 
1149 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
1150   for (auto Location : locations()) {
1151     std::string foo = LocIdxToName(Location.Idx);
1152     dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
1153   }
1154 }
1155 #endif
1156 
1157 MachineInstrBuilder
1158 MLocTracker::emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps,
1159                      const DebugVariable &Var,
1160                      const DbgValueProperties &Properties) {
1161   DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
1162                                 Var.getVariable()->getScope(),
1163                                 const_cast<DILocation *>(Var.getInlinedAt()));
1164 
1165   const MCInstrDesc &Desc = Properties.IsVariadic
1166                                 ? TII.get(TargetOpcode::DBG_VALUE_LIST)
1167                                 : TII.get(TargetOpcode::DBG_VALUE);
1168 
1169 #ifdef EXPENSIVE_CHECKS
1170   assert(all_of(DbgOps,
1171                 [](const ResolvedDbgOp &Op) {
1172                   return Op.IsConst || !Op.Loc.isIllegal();
1173                 }) &&
1174          "Did not expect illegal ops in DbgOps.");
1175   assert((DbgOps.size() == 0 ||
1176           DbgOps.size() == Properties.getLocationOpCount()) &&
1177          "Expected to have either one DbgOp per MI LocationOp, or none.");
1178 #endif
1179 
1180   auto GetRegOp = [](unsigned Reg) -> MachineOperand {
1181     return MachineOperand::CreateReg(
1182         /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
1183         /* isKill */ false, /* isDead */ false,
1184         /* isUndef */ false, /* isEarlyClobber */ false,
1185         /* SubReg */ 0, /* isDebug */ true);
1186   };
1187 
1188   SmallVector<MachineOperand> MOs;
1189 
1190   auto EmitUndef = [&]() {
1191     MOs.clear();
1192     MOs.assign(Properties.getLocationOpCount(), GetRegOp(0));
1193     return BuildMI(MF, DL, Desc, false, MOs, Var.getVariable(),
1194                    Properties.DIExpr);
1195   };
1196 
1197   // Don't bother passing any real operands to BuildMI if any of them would be
1198   // $noreg.
1199   if (DbgOps.empty())
1200     return EmitUndef();
1201 
1202   bool Indirect = Properties.Indirect;
1203 
1204   const DIExpression *Expr = Properties.DIExpr;
1205 
1206   assert(DbgOps.size() == Properties.getLocationOpCount());
1207 
1208   // If all locations are valid, accumulate them into our list of
1209   // MachineOperands. For any spilled locations, either update the indirectness
1210   // register or apply the appropriate transformations in the DIExpression.
1211   for (size_t Idx = 0; Idx < Properties.getLocationOpCount(); ++Idx) {
1212     const ResolvedDbgOp &Op = DbgOps[Idx];
1213 
1214     if (Op.IsConst) {
1215       MOs.push_back(Op.MO);
1216       continue;
1217     }
1218 
1219     LocIdx MLoc = Op.Loc;
1220     unsigned LocID = LocIdxToLocID[MLoc];
1221     if (LocID >= NumRegs) {
1222       SpillLocationNo SpillID = locIDToSpill(LocID);
1223       StackSlotPos StackIdx = locIDToSpillIdx(LocID);
1224       unsigned short Offset = StackIdx.second;
1225 
1226       // TODO: support variables that are located in spill slots, with non-zero
1227       // offsets from the start of the spill slot. It would require some more
1228       // complex DIExpression calculations. This doesn't seem to be produced by
1229       // LLVM right now, so don't try and support it.
1230       // Accept no-subregister slots and subregisters where the offset is zero.
1231       // The consumer should already have type information to work out how large
1232       // the variable is.
1233       if (Offset == 0) {
1234         const SpillLoc &Spill = SpillLocs[SpillID.id()];
1235         unsigned Base = Spill.SpillBase;
1236 
1237         // There are several ways we can dereference things, and several inputs
1238         // to consider:
1239         // * NRVO variables will appear with IsIndirect set, but should have
1240         //   nothing else in their DIExpressions,
1241         // * Variables with DW_OP_stack_value in their expr already need an
1242         //   explicit dereference of the stack location,
1243         // * Values that don't match the variable size need DW_OP_deref_size,
1244         // * Everything else can just become a simple location expression.
1245 
1246         // We need to use deref_size whenever there's a mismatch between the
1247         // size of value and the size of variable portion being read.
1248         // Additionally, we should use it whenever dealing with stack_value
1249         // fragments, to avoid the consumer having to determine the deref size
1250         // from DW_OP_piece.
1251         bool UseDerefSize = false;
1252         unsigned ValueSizeInBits = getLocSizeInBits(MLoc);
1253         unsigned DerefSizeInBytes = ValueSizeInBits / 8;
1254         if (auto Fragment = Var.getFragment()) {
1255           unsigned VariableSizeInBits = Fragment->SizeInBits;
1256           if (VariableSizeInBits != ValueSizeInBits || Expr->isComplex())
1257             UseDerefSize = true;
1258         } else if (auto Size = Var.getVariable()->getSizeInBits()) {
1259           if (*Size != ValueSizeInBits) {
1260             UseDerefSize = true;
1261           }
1262         }
1263 
1264         SmallVector<uint64_t, 5> OffsetOps;
1265         TRI.getOffsetOpcodes(Spill.SpillOffset, OffsetOps);
1266         bool StackValue = false;
1267 
1268         if (Properties.Indirect) {
1269           // This is something like an NRVO variable, where the pointer has been
1270           // spilt to the stack. It should end up being a memory location, with
1271           // the pointer to the variable loaded off the stack with a deref:
1272           assert(!Expr->isImplicit());
1273           OffsetOps.push_back(dwarf::DW_OP_deref);
1274         } else if (UseDerefSize && Expr->isSingleLocationExpression()) {
1275           // TODO: Figure out how to handle deref size issues for variadic
1276           // values.
1277           // We're loading a value off the stack that's not the same size as the
1278           // variable. Add / subtract stack offset, explicitly deref with a
1279           // size, and add DW_OP_stack_value if not already present.
1280           OffsetOps.push_back(dwarf::DW_OP_deref_size);
1281           OffsetOps.push_back(DerefSizeInBytes);
1282           StackValue = true;
1283         } else if (Expr->isComplex() || Properties.IsVariadic) {
1284           // A variable with no size ambiguity, but with extra elements in it's
1285           // expression. Manually dereference the stack location.
1286           OffsetOps.push_back(dwarf::DW_OP_deref);
1287         } else {
1288           // A plain value that has been spilt to the stack, with no further
1289           // context. Request a location expression, marking the DBG_VALUE as
1290           // IsIndirect.
1291           Indirect = true;
1292         }
1293 
1294         Expr = DIExpression::appendOpsToArg(Expr, OffsetOps, Idx, StackValue);
1295         MOs.push_back(GetRegOp(Base));
1296       } else {
1297         // This is a stack location with a weird subregister offset: emit an
1298         // undef DBG_VALUE instead.
1299         return EmitUndef();
1300       }
1301     } else {
1302       // Non-empty, non-stack slot, must be a plain register.
1303       MOs.push_back(GetRegOp(LocID));
1304     }
1305   }
1306 
1307   return BuildMI(MF, DL, Desc, Indirect, MOs, Var.getVariable(), Expr);
1308 }
1309 
1310 /// Default construct and initialize the pass.
1311 InstrRefBasedLDV::InstrRefBasedLDV() = default;
1312 
1313 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
1314   unsigned Reg = MTracker->LocIdxToLocID[L];
1315   return isCalleeSavedReg(Reg);
1316 }
1317 bool InstrRefBasedLDV::isCalleeSavedReg(Register R) const {
1318   for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI)
1319     if (CalleeSavedRegs.test(*RAI))
1320       return true;
1321   return false;
1322 }
1323 
1324 //===----------------------------------------------------------------------===//
1325 //            Debug Range Extension Implementation
1326 //===----------------------------------------------------------------------===//
1327 
1328 #ifndef NDEBUG
1329 // Something to restore in the future.
1330 // void InstrRefBasedLDV::printVarLocInMBB(..)
1331 #endif
1332 
1333 std::optional<SpillLocationNo>
1334 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1335   assert(MI.hasOneMemOperand() &&
1336          "Spill instruction does not have exactly one memory operand?");
1337   auto MMOI = MI.memoperands_begin();
1338   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1339   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1340          "Inconsistent memory operand in spill instruction");
1341   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1342   const MachineBasicBlock *MBB = MI.getParent();
1343   Register Reg;
1344   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1345   return MTracker->getOrTrackSpillLoc({Reg, Offset});
1346 }
1347 
1348 std::optional<LocIdx>
1349 InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
1350   std::optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI);
1351   if (!SpillLoc)
1352     return std::nullopt;
1353 
1354   // Where in the stack slot is this value defined -- i.e., what size of value
1355   // is this? An important question, because it could be loaded into a register
1356   // from the stack at some point. Happily the memory operand will tell us
1357   // the size written to the stack.
1358   auto *MemOperand = *MI.memoperands_begin();
1359   unsigned SizeInBits = MemOperand->getSizeInBits();
1360 
1361   // Find that position in the stack indexes we're tracking.
1362   auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
1363   if (IdxIt == MTracker->StackSlotIdxes.end())
1364     // That index is not tracked. This is suprising, and unlikely to ever
1365     // occur, but the safe action is to indicate the variable is optimised out.
1366     return std::nullopt;
1367 
1368   unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillLoc, IdxIt->second);
1369   return MTracker->getSpillMLoc(SpillID);
1370 }
1371 
1372 /// End all previous ranges related to @MI and start a new range from @MI
1373 /// if it is a DBG_VALUE instr.
1374 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
1375   if (!MI.isDebugValue())
1376     return false;
1377 
1378   const DILocalVariable *Var = MI.getDebugVariable();
1379   const DIExpression *Expr = MI.getDebugExpression();
1380   const DILocation *DebugLoc = MI.getDebugLoc();
1381   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1382   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1383          "Expected inlined-at fields to agree");
1384 
1385   DebugVariable V(Var, Expr, InlinedAt);
1386   DbgValueProperties Properties(MI);
1387 
1388   // If there are no instructions in this lexical scope, do no location tracking
1389   // at all, this variable shouldn't get a legitimate location range.
1390   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1391   if (Scope == nullptr)
1392     return true; // handled it; by doing nothing
1393 
1394   // MLocTracker needs to know that this register is read, even if it's only
1395   // read by a debug inst.
1396   for (const MachineOperand &MO : MI.debug_operands())
1397     if (MO.isReg() && MO.getReg() != 0)
1398       (void)MTracker->readReg(MO.getReg());
1399 
1400   // If we're preparing for the second analysis (variables), the machine value
1401   // locations are already solved, and we report this DBG_VALUE and the value
1402   // it refers to to VLocTracker.
1403   if (VTracker) {
1404     SmallVector<DbgOpID> DebugOps;
1405     // Feed defVar the new variable location, or if this is a DBG_VALUE $noreg,
1406     // feed defVar None.
1407     if (!MI.isUndefDebugValue()) {
1408       for (const MachineOperand &MO : MI.debug_operands()) {
1409         // There should be no undef registers here, as we've screened for undef
1410         // debug values.
1411         if (MO.isReg()) {
1412           DebugOps.push_back(DbgOpStore.insert(MTracker->readReg(MO.getReg())));
1413         } else if (MO.isImm() || MO.isFPImm() || MO.isCImm()) {
1414           DebugOps.push_back(DbgOpStore.insert(MO));
1415         } else {
1416           llvm_unreachable("Unexpected debug operand type.");
1417         }
1418       }
1419     }
1420     VTracker->defVar(MI, Properties, DebugOps);
1421   }
1422 
1423   // If performing final tracking of transfers, report this variable definition
1424   // to the TransferTracker too.
1425   if (TTracker)
1426     TTracker->redefVar(MI);
1427   return true;
1428 }
1429 
1430 std::optional<ValueIDNum> InstrRefBasedLDV::getValueForInstrRef(
1431     unsigned InstNo, unsigned OpNo, MachineInstr &MI,
1432     const FuncValueTable *MLiveOuts, const FuncValueTable *MLiveIns) {
1433   // Various optimizations may have happened to the value during codegen,
1434   // recorded in the value substitution table. Apply any substitutions to
1435   // the instruction / operand number in this DBG_INSTR_REF, and collect
1436   // any subregister extractions performed during optimization.
1437   const MachineFunction &MF = *MI.getParent()->getParent();
1438 
1439   // Create dummy substitution with Src set, for lookup.
1440   auto SoughtSub =
1441       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1442 
1443   SmallVector<unsigned, 4> SeenSubregs;
1444   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1445   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1446          LowerBoundIt->Src == SoughtSub.Src) {
1447     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1448     SoughtSub.Src = LowerBoundIt->Dest;
1449     if (unsigned Subreg = LowerBoundIt->Subreg)
1450       SeenSubregs.push_back(Subreg);
1451     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1452   }
1453 
1454   // Default machine value number is <None> -- if no instruction defines
1455   // the corresponding value, it must have been optimized out.
1456   std::optional<ValueIDNum> NewID;
1457 
1458   // Try to lookup the instruction number, and find the machine value number
1459   // that it defines. It could be an instruction, or a PHI.
1460   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1461   auto PHIIt = llvm::lower_bound(DebugPHINumToValue, InstNo);
1462   if (InstrIt != DebugInstrNumToInstr.end()) {
1463     const MachineInstr &TargetInstr = *InstrIt->second.first;
1464     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1465 
1466     // Pick out the designated operand. It might be a memory reference, if
1467     // a register def was folded into a stack store.
1468     if (OpNo == MachineFunction::DebugOperandMemNumber &&
1469         TargetInstr.hasOneMemOperand()) {
1470       std::optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
1471       if (L)
1472         NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
1473     } else if (OpNo != MachineFunction::DebugOperandMemNumber) {
1474       // Permit the debug-info to be completely wrong: identifying a nonexistant
1475       // operand, or one that is not a register definition, means something
1476       // unexpected happened during optimisation. Broken debug-info, however,
1477       // shouldn't crash the compiler -- instead leave the variable value as
1478       // None, which will make it appear "optimised out".
1479       if (OpNo < TargetInstr.getNumOperands()) {
1480         const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1481 
1482         if (MO.isReg() && MO.isDef() && MO.getReg()) {
1483           unsigned LocID = MTracker->getLocID(MO.getReg());
1484           LocIdx L = MTracker->LocIDToLocIdx[LocID];
1485           NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1486         }
1487       }
1488 
1489       if (!NewID) {
1490         LLVM_DEBUG(
1491             { dbgs() << "Seen instruction reference to illegal operand\n"; });
1492       }
1493     }
1494     // else: NewID is left as None.
1495   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1496     // It's actually a PHI value. Which value it is might not be obvious, use
1497     // the resolver helper to find out.
1498     assert(MLiveOuts && MLiveIns);
1499     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), *MLiveOuts, *MLiveIns,
1500                            MI, InstNo);
1501   }
1502 
1503   // Apply any subregister extractions, in reverse. We might have seen code
1504   // like this:
1505   //    CALL64 @foo, implicit-def $rax
1506   //    %0:gr64 = COPY $rax
1507   //    %1:gr32 = COPY %0.sub_32bit
1508   //    %2:gr16 = COPY %1.sub_16bit
1509   //    %3:gr8  = COPY %2.sub_8bit
1510   // In which case each copy would have been recorded as a substitution with
1511   // a subregister qualifier. Apply those qualifiers now.
1512   if (NewID && !SeenSubregs.empty()) {
1513     unsigned Offset = 0;
1514     unsigned Size = 0;
1515 
1516     // Look at each subregister that we passed through, and progressively
1517     // narrow in, accumulating any offsets that occur. Substitutions should
1518     // only ever be the same or narrower width than what they read from;
1519     // iterate in reverse order so that we go from wide to small.
1520     for (unsigned Subreg : reverse(SeenSubregs)) {
1521       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1522       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1523       Offset += ThisOffset;
1524       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1525     }
1526 
1527     // If that worked, look for an appropriate subregister with the register
1528     // where the define happens. Don't look at values that were defined during
1529     // a stack write: we can't currently express register locations within
1530     // spills.
1531     LocIdx L = NewID->getLoc();
1532     if (NewID && !MTracker->isSpill(L)) {
1533       // Find the register class for the register where this def happened.
1534       // FIXME: no index for this?
1535       Register Reg = MTracker->LocIdxToLocID[L];
1536       const TargetRegisterClass *TRC = nullptr;
1537       for (const auto *TRCI : TRI->regclasses())
1538         if (TRCI->contains(Reg))
1539           TRC = TRCI;
1540       assert(TRC && "Couldn't find target register class?");
1541 
1542       // If the register we have isn't the right size or in the right place,
1543       // Try to find a subregister inside it.
1544       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1545       if (Size != MainRegSize || Offset) {
1546         // Enumerate all subregisters, searching.
1547         Register NewReg = 0;
1548         for (MCPhysReg SR : TRI->subregs(Reg)) {
1549           unsigned Subreg = TRI->getSubRegIndex(Reg, SR);
1550           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1551           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1552           if (SubregSize == Size && SubregOffset == Offset) {
1553             NewReg = SR;
1554             break;
1555           }
1556         }
1557 
1558         // If we didn't find anything: there's no way to express our value.
1559         if (!NewReg) {
1560           NewID = std::nullopt;
1561         } else {
1562           // Re-state the value as being defined within the subregister
1563           // that we found.
1564           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1565           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1566         }
1567       }
1568     } else {
1569       // If we can't handle subregisters, unset the new value.
1570       NewID = std::nullopt;
1571     }
1572   }
1573 
1574   return NewID;
1575 }
1576 
1577 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
1578                                              const FuncValueTable *MLiveOuts,
1579                                              const FuncValueTable *MLiveIns) {
1580   if (!MI.isDebugRef())
1581     return false;
1582 
1583   // Only handle this instruction when we are building the variable value
1584   // transfer function.
1585   if (!VTracker && !TTracker)
1586     return false;
1587 
1588   const DILocalVariable *Var = MI.getDebugVariable();
1589   const DIExpression *Expr = MI.getDebugExpression();
1590   const DILocation *DebugLoc = MI.getDebugLoc();
1591   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1592   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1593          "Expected inlined-at fields to agree");
1594 
1595   DebugVariable V(Var, Expr, InlinedAt);
1596 
1597   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1598   if (Scope == nullptr)
1599     return true; // Handled by doing nothing. This variable is never in scope.
1600 
1601   SmallVector<DbgOpID> DbgOpIDs;
1602   for (const MachineOperand &MO : MI.debug_operands()) {
1603     if (!MO.isDbgInstrRef()) {
1604       assert(!MO.isReg() && "DBG_INSTR_REF should not contain registers");
1605       DbgOpID ConstOpID = DbgOpStore.insert(DbgOp(MO));
1606       DbgOpIDs.push_back(ConstOpID);
1607       continue;
1608     }
1609 
1610     unsigned InstNo = MO.getInstrRefInstrIndex();
1611     unsigned OpNo = MO.getInstrRefOpIndex();
1612 
1613     // Default machine value number is <None> -- if no instruction defines
1614     // the corresponding value, it must have been optimized out.
1615     std::optional<ValueIDNum> NewID =
1616         getValueForInstrRef(InstNo, OpNo, MI, MLiveOuts, MLiveIns);
1617     // We have a value number or std::nullopt. If the latter, then kill the
1618     // entire debug value.
1619     if (NewID) {
1620       DbgOpIDs.push_back(DbgOpStore.insert(*NewID));
1621     } else {
1622       DbgOpIDs.clear();
1623       break;
1624     }
1625   }
1626 
1627   // We have a DbgOpID for every value or for none. Tell the variable value
1628   // tracker about it. The rest of this LiveDebugValues implementation acts
1629   // exactly the same for DBG_INSTR_REFs as DBG_VALUEs (just, the former can
1630   // refer to values that aren't immediately available).
1631   DbgValueProperties Properties(Expr, false, true);
1632   if (VTracker)
1633     VTracker->defVar(MI, Properties, DbgOpIDs);
1634 
1635   // If we're on the final pass through the function, decompose this INSTR_REF
1636   // into a plain DBG_VALUE.
1637   if (!TTracker)
1638     return true;
1639 
1640   // Fetch the concrete DbgOps now, as we will need them later.
1641   SmallVector<DbgOp> DbgOps;
1642   for (DbgOpID OpID : DbgOpIDs) {
1643     DbgOps.push_back(DbgOpStore.find(OpID));
1644   }
1645 
1646   // Pick a location for the machine value number, if such a location exists.
1647   // (This information could be stored in TransferTracker to make it faster).
1648   SmallDenseMap<ValueIDNum, TransferTracker::LocationAndQuality> FoundLocs;
1649   SmallVector<ValueIDNum> ValuesToFind;
1650   // Initialized the preferred-location map with illegal locations, to be
1651   // filled in later.
1652   for (const DbgOp &Op : DbgOps) {
1653     if (!Op.IsConst)
1654       if (FoundLocs.insert({Op.ID, TransferTracker::LocationAndQuality()})
1655               .second)
1656         ValuesToFind.push_back(Op.ID);
1657   }
1658 
1659   for (auto Location : MTracker->locations()) {
1660     LocIdx CurL = Location.Idx;
1661     ValueIDNum ID = MTracker->readMLoc(CurL);
1662     auto ValueToFindIt = find(ValuesToFind, ID);
1663     if (ValueToFindIt == ValuesToFind.end())
1664       continue;
1665     auto &Previous = FoundLocs.find(ID)->second;
1666     // If this is the first location with that value, pick it. Otherwise,
1667     // consider whether it's a "longer term" location.
1668     std::optional<TransferTracker::LocationQuality> ReplacementQuality =
1669         TTracker->getLocQualityIfBetter(CurL, Previous.getQuality());
1670     if (ReplacementQuality) {
1671       Previous = TransferTracker::LocationAndQuality(CurL, *ReplacementQuality);
1672       if (Previous.isBest()) {
1673         ValuesToFind.erase(ValueToFindIt);
1674         if (ValuesToFind.empty())
1675           break;
1676       }
1677     }
1678   }
1679 
1680   SmallVector<ResolvedDbgOp> NewLocs;
1681   for (const DbgOp &DbgOp : DbgOps) {
1682     if (DbgOp.IsConst) {
1683       NewLocs.push_back(DbgOp.MO);
1684       continue;
1685     }
1686     LocIdx FoundLoc = FoundLocs.find(DbgOp.ID)->second.getLoc();
1687     if (FoundLoc.isIllegal()) {
1688       NewLocs.clear();
1689       break;
1690     }
1691     NewLocs.push_back(FoundLoc);
1692   }
1693   // Tell transfer tracker that the variable value has changed.
1694   TTracker->redefVar(MI, Properties, NewLocs);
1695 
1696   // If there were values with no location, but all such values are defined in
1697   // later instructions in this block, this is a block-local use-before-def.
1698   if (!DbgOps.empty() && NewLocs.empty()) {
1699     bool IsValidUseBeforeDef = true;
1700     uint64_t LastUseBeforeDef = 0;
1701     for (auto ValueLoc : FoundLocs) {
1702       ValueIDNum NewID = ValueLoc.first;
1703       LocIdx FoundLoc = ValueLoc.second.getLoc();
1704       if (!FoundLoc.isIllegal())
1705         continue;
1706       // If we have an value with no location that is not defined in this block,
1707       // then it has no location in this block, leaving this value undefined.
1708       if (NewID.getBlock() != CurBB || NewID.getInst() <= CurInst) {
1709         IsValidUseBeforeDef = false;
1710         break;
1711       }
1712       LastUseBeforeDef = std::max(LastUseBeforeDef, NewID.getInst());
1713     }
1714     if (IsValidUseBeforeDef) {
1715       TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false, true},
1716                                 DbgOps, LastUseBeforeDef);
1717     }
1718   }
1719 
1720   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1721   // This DBG_VALUE is potentially a $noreg / undefined location, if
1722   // FoundLoc is illegal.
1723   // (XXX -- could morph the DBG_INSTR_REF in the future).
1724   MachineInstr *DbgMI = MTracker->emitLoc(NewLocs, V, Properties);
1725 
1726   TTracker->PendingDbgValues.push_back(DbgMI);
1727   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1728   return true;
1729 }
1730 
1731 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1732   if (!MI.isDebugPHI())
1733     return false;
1734 
1735   // Analyse these only when solving the machine value location problem.
1736   if (VTracker || TTracker)
1737     return true;
1738 
1739   // First operand is the value location, either a stack slot or register.
1740   // Second is the debug instruction number of the original PHI.
1741   const MachineOperand &MO = MI.getOperand(0);
1742   unsigned InstrNum = MI.getOperand(1).getImm();
1743 
1744   auto EmitBadPHI = [this, &MI, InstrNum]() -> bool {
1745     // Helper lambda to do any accounting when we fail to find a location for
1746     // a DBG_PHI. This can happen if DBG_PHIs are malformed, or refer to a
1747     // dead stack slot, for example.
1748     // Record a DebugPHIRecord with an empty value + location.
1749     DebugPHINumToValue.push_back(
1750         {InstrNum, MI.getParent(), std::nullopt, std::nullopt});
1751     return true;
1752   };
1753 
1754   if (MO.isReg() && MO.getReg()) {
1755     // The value is whatever's currently in the register. Read and record it,
1756     // to be analysed later.
1757     Register Reg = MO.getReg();
1758     ValueIDNum Num = MTracker->readReg(Reg);
1759     auto PHIRec = DebugPHIRecord(
1760         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1761     DebugPHINumToValue.push_back(PHIRec);
1762 
1763     // Ensure this register is tracked.
1764     for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1765       MTracker->lookupOrTrackRegister(*RAI);
1766   } else if (MO.isFI()) {
1767     // The value is whatever's in this stack slot.
1768     unsigned FI = MO.getIndex();
1769 
1770     // If the stack slot is dead, then this was optimized away.
1771     // FIXME: stack slot colouring should account for slots that get merged.
1772     if (MFI->isDeadObjectIndex(FI))
1773       return EmitBadPHI();
1774 
1775     // Identify this spill slot, ensure it's tracked.
1776     Register Base;
1777     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1778     SpillLoc SL = {Base, Offs};
1779     std::optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(SL);
1780 
1781     // We might be able to find a value, but have chosen not to, to avoid
1782     // tracking too much stack information.
1783     if (!SpillNo)
1784       return EmitBadPHI();
1785 
1786     // Any stack location DBG_PHI should have an associate bit-size.
1787     assert(MI.getNumOperands() == 3 && "Stack DBG_PHI with no size?");
1788     unsigned slotBitSize = MI.getOperand(2).getImm();
1789 
1790     unsigned SpillID = MTracker->getLocID(*SpillNo, {slotBitSize, 0});
1791     LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID);
1792     ValueIDNum Result = MTracker->readMLoc(SpillLoc);
1793 
1794     // Record this DBG_PHI for later analysis.
1795     auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), Result, SpillLoc});
1796     DebugPHINumToValue.push_back(DbgPHI);
1797   } else {
1798     // Else: if the operand is neither a legal register or a stack slot, then
1799     // we're being fed illegal debug-info. Record an empty PHI, so that any
1800     // debug users trying to read this number will be put off trying to
1801     // interpret the value.
1802     LLVM_DEBUG(
1803         { dbgs() << "Seen DBG_PHI with unrecognised operand format\n"; });
1804     return EmitBadPHI();
1805   }
1806 
1807   return true;
1808 }
1809 
1810 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1811   // Meta Instructions do not affect the debug liveness of any register they
1812   // define.
1813   if (MI.isImplicitDef()) {
1814     // Except when there's an implicit def, and the location it's defining has
1815     // no value number. The whole point of an implicit def is to announce that
1816     // the register is live, without be specific about it's value. So define
1817     // a value if there isn't one already.
1818     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1819     // Has a legitimate value -> ignore the implicit def.
1820     if (Num.getLoc() != 0)
1821       return;
1822     // Otherwise, def it here.
1823   } else if (MI.isMetaInstruction())
1824     return;
1825 
1826   // We always ignore SP defines on call instructions, they don't actually
1827   // change the value of the stack pointer... except for win32's _chkstk. This
1828   // is rare: filter quickly for the common case (no stack adjustments, not a
1829   // call, etc). If it is a call that modifies SP, recognise the SP register
1830   // defs.
1831   bool CallChangesSP = false;
1832   if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
1833       !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
1834     CallChangesSP = true;
1835 
1836   // Test whether we should ignore a def of this register due to it being part
1837   // of the stack pointer.
1838   auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
1839     if (CallChangesSP)
1840       return false;
1841     return MI.isCall() && MTracker->SPAliases.count(R);
1842   };
1843 
1844   // Find the regs killed by MI, and find regmasks of preserved regs.
1845   // Max out the number of statically allocated elements in `DeadRegs`, as this
1846   // prevents fallback to std::set::count() operations.
1847   SmallSet<uint32_t, 32> DeadRegs;
1848   SmallVector<const uint32_t *, 4> RegMasks;
1849   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1850   for (const MachineOperand &MO : MI.operands()) {
1851     // Determine whether the operand is a register def.
1852     if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() &&
1853         !IgnoreSPAlias(MO.getReg())) {
1854       // Remove ranges of all aliased registers.
1855       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1856         // FIXME: Can we break out of this loop early if no insertion occurs?
1857         DeadRegs.insert(*RAI);
1858     } else if (MO.isRegMask()) {
1859       RegMasks.push_back(MO.getRegMask());
1860       RegMaskPtrs.push_back(&MO);
1861     }
1862   }
1863 
1864   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1865   for (uint32_t DeadReg : DeadRegs)
1866     MTracker->defReg(DeadReg, CurBB, CurInst);
1867 
1868   for (const auto *MO : RegMaskPtrs)
1869     MTracker->writeRegMask(MO, CurBB, CurInst);
1870 
1871   // If this instruction writes to a spill slot, def that slot.
1872   if (hasFoldedStackStore(MI)) {
1873     if (std::optional<SpillLocationNo> SpillNo =
1874             extractSpillBaseRegAndOffset(MI)) {
1875       for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1876         unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1877         LocIdx L = MTracker->getSpillMLoc(SpillID);
1878         MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
1879       }
1880     }
1881   }
1882 
1883   if (!TTracker)
1884     return;
1885 
1886   // When committing variable values to locations: tell transfer tracker that
1887   // we've clobbered things. It may be able to recover the variable from a
1888   // different location.
1889 
1890   // Inform TTracker about any direct clobbers.
1891   for (uint32_t DeadReg : DeadRegs) {
1892     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1893     TTracker->clobberMloc(Loc, MI.getIterator(), false);
1894   }
1895 
1896   // Look for any clobbers performed by a register mask. Only test locations
1897   // that are actually being tracked.
1898   if (!RegMaskPtrs.empty()) {
1899     for (auto L : MTracker->locations()) {
1900       // Stack locations can't be clobbered by regmasks.
1901       if (MTracker->isSpill(L.Idx))
1902         continue;
1903 
1904       Register Reg = MTracker->LocIdxToLocID[L.Idx];
1905       if (IgnoreSPAlias(Reg))
1906         continue;
1907 
1908       for (const auto *MO : RegMaskPtrs)
1909         if (MO->clobbersPhysReg(Reg))
1910           TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1911     }
1912   }
1913 
1914   // Tell TTracker about any folded stack store.
1915   if (hasFoldedStackStore(MI)) {
1916     if (std::optional<SpillLocationNo> SpillNo =
1917             extractSpillBaseRegAndOffset(MI)) {
1918       for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1919         unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1920         LocIdx L = MTracker->getSpillMLoc(SpillID);
1921         TTracker->clobberMloc(L, MI.getIterator(), true);
1922       }
1923     }
1924   }
1925 }
1926 
1927 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1928   // In all circumstances, re-def all aliases. It's definitely a new value now.
1929   for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
1930     MTracker->defReg(*RAI, CurBB, CurInst);
1931 
1932   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1933   MTracker->setReg(DstRegNum, SrcValue);
1934 
1935   // Copy subregisters from one location to another.
1936   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1937     unsigned SrcSubReg = SRI.getSubReg();
1938     unsigned SubRegIdx = SRI.getSubRegIndex();
1939     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1940     if (!DstSubReg)
1941       continue;
1942 
1943     // Do copy. There are two matching subregisters, the source value should
1944     // have been def'd when the super-reg was, the latter might not be tracked
1945     // yet.
1946     // This will force SrcSubReg to be tracked, if it isn't yet. Will read
1947     // mphi values if it wasn't tracked.
1948     LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
1949     LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
1950     (void)SrcL;
1951     (void)DstL;
1952     ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
1953 
1954     MTracker->setReg(DstSubReg, CpyValue);
1955   }
1956 }
1957 
1958 std::optional<SpillLocationNo>
1959 InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1960                                      MachineFunction *MF) {
1961   // TODO: Handle multiple stores folded into one.
1962   if (!MI.hasOneMemOperand())
1963     return std::nullopt;
1964 
1965   // Reject any memory operand that's aliased -- we can't guarantee its value.
1966   auto MMOI = MI.memoperands_begin();
1967   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1968   if (PVal->isAliased(MFI))
1969     return std::nullopt;
1970 
1971   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1972     return std::nullopt; // This is not a spill instruction, since no valid size
1973                          // was returned from either function.
1974 
1975   return extractSpillBaseRegAndOffset(MI);
1976 }
1977 
1978 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1979                                        MachineFunction *MF, unsigned &Reg) {
1980   if (!isSpillInstruction(MI, MF))
1981     return false;
1982 
1983   int FI;
1984   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1985   return Reg != 0;
1986 }
1987 
1988 std::optional<SpillLocationNo>
1989 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1990                                        MachineFunction *MF, unsigned &Reg) {
1991   if (!MI.hasOneMemOperand())
1992     return std::nullopt;
1993 
1994   // FIXME: Handle folded restore instructions with more than one memory
1995   // operand.
1996   if (MI.getRestoreSize(TII)) {
1997     Reg = MI.getOperand(0).getReg();
1998     return extractSpillBaseRegAndOffset(MI);
1999   }
2000   return std::nullopt;
2001 }
2002 
2003 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
2004   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
2005   // limitations under the new model. Therefore, when comparing them, compare
2006   // versions that don't attempt spills or restores at all.
2007   if (EmulateOldLDV)
2008     return false;
2009 
2010   // Strictly limit ourselves to plain loads and stores, not all instructions
2011   // that can access the stack.
2012   int DummyFI = -1;
2013   if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
2014       !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
2015     return false;
2016 
2017   MachineFunction *MF = MI.getMF();
2018   unsigned Reg;
2019 
2020   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
2021 
2022   // Strictly limit ourselves to plain loads and stores, not all instructions
2023   // that can access the stack.
2024   int FIDummy;
2025   if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
2026       !TII->isLoadFromStackSlotPostFE(MI, FIDummy))
2027     return false;
2028 
2029   // First, if there are any DBG_VALUEs pointing at a spill slot that is
2030   // written to, terminate that variable location. The value in memory
2031   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
2032   if (std::optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) {
2033     // Un-set this location and clobber, so that earlier locations don't
2034     // continue past this store.
2035     for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
2036       unsigned SpillID = MTracker->getSpillIDWithIdx(*Loc, SlotIdx);
2037       std::optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
2038       if (!MLoc)
2039         continue;
2040 
2041       // We need to over-write the stack slot with something (here, a def at
2042       // this instruction) to ensure no values are preserved in this stack slot
2043       // after the spill. It also prevents TTracker from trying to recover the
2044       // location and re-installing it in the same place.
2045       ValueIDNum Def(CurBB, CurInst, *MLoc);
2046       MTracker->setMLoc(*MLoc, Def);
2047       if (TTracker)
2048         TTracker->clobberMloc(*MLoc, MI.getIterator());
2049     }
2050   }
2051 
2052   // Try to recognise spill and restore instructions that may transfer a value.
2053   if (isLocationSpill(MI, MF, Reg)) {
2054     // isLocationSpill returning true should guarantee we can extract a
2055     // location.
2056     SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI);
2057 
2058     auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
2059       auto ReadValue = MTracker->readReg(SrcReg);
2060       LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
2061       MTracker->setMLoc(DstLoc, ReadValue);
2062 
2063       if (TTracker) {
2064         LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
2065         TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
2066       }
2067     };
2068 
2069     // Then, transfer subreg bits.
2070     for (MCPhysReg SR : TRI->subregs(Reg)) {
2071       // Ensure this reg is tracked,
2072       (void)MTracker->lookupOrTrackRegister(SR);
2073       unsigned SubregIdx = TRI->getSubRegIndex(Reg, SR);
2074       unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
2075       DoTransfer(SR, SpillID);
2076     }
2077 
2078     // Directly lookup size of main source reg, and transfer.
2079     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
2080     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
2081     DoTransfer(Reg, SpillID);
2082   } else {
2083     std::optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg);
2084     if (!Loc)
2085       return false;
2086 
2087     // Assumption: we're reading from the base of the stack slot, not some
2088     // offset into it. It seems very unlikely LLVM would ever generate
2089     // restores where this wasn't true. This then becomes a question of what
2090     // subregisters in the destination register line up with positions in the
2091     // stack slot.
2092 
2093     // Def all registers that alias the destination.
2094     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2095       MTracker->defReg(*RAI, CurBB, CurInst);
2096 
2097     // Now find subregisters within the destination register, and load values
2098     // from stack slot positions.
2099     auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
2100       LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
2101       auto ReadValue = MTracker->readMLoc(SrcIdx);
2102       MTracker->setReg(DestReg, ReadValue);
2103     };
2104 
2105     for (MCPhysReg SR : TRI->subregs(Reg)) {
2106       unsigned Subreg = TRI->getSubRegIndex(Reg, SR);
2107       unsigned SpillID = MTracker->getLocID(*Loc, Subreg);
2108       DoTransfer(SR, SpillID);
2109     }
2110 
2111     // Directly look up this registers slot idx by size, and transfer.
2112     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
2113     unsigned SpillID = MTracker->getLocID(*Loc, {Size, 0});
2114     DoTransfer(Reg, SpillID);
2115   }
2116   return true;
2117 }
2118 
2119 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
2120   auto DestSrc = TII->isCopyLikeInstr(MI);
2121   if (!DestSrc)
2122     return false;
2123 
2124   const MachineOperand *DestRegOp = DestSrc->Destination;
2125   const MachineOperand *SrcRegOp = DestSrc->Source;
2126 
2127   Register SrcReg = SrcRegOp->getReg();
2128   Register DestReg = DestRegOp->getReg();
2129 
2130   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
2131   if (SrcReg == DestReg)
2132     return true;
2133 
2134   // For emulating VarLocBasedImpl:
2135   // We want to recognize instructions where destination register is callee
2136   // saved register. If register that could be clobbered by the call is
2137   // included, there would be a great chance that it is going to be clobbered
2138   // soon. It is more likely that previous register, which is callee saved, is
2139   // going to stay unclobbered longer, even if it is killed.
2140   //
2141   // For InstrRefBasedImpl, we can track multiple locations per value, so
2142   // ignore this condition.
2143   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
2144     return false;
2145 
2146   // InstrRefBasedImpl only followed killing copies.
2147   if (EmulateOldLDV && !SrcRegOp->isKill())
2148     return false;
2149 
2150   // Before we update MTracker, remember which values were present in each of
2151   // the locations about to be overwritten, so that we can recover any
2152   // potentially clobbered variables.
2153   DenseMap<LocIdx, ValueIDNum> ClobberedLocs;
2154   if (TTracker) {
2155     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
2156       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
2157       auto MLocIt = TTracker->ActiveMLocs.find(ClobberedLoc);
2158       // If ActiveMLocs isn't tracking this location or there are no variables
2159       // using it, don't bother remembering.
2160       if (MLocIt == TTracker->ActiveMLocs.end() || MLocIt->second.empty())
2161         continue;
2162       ValueIDNum Value = MTracker->readReg(*RAI);
2163       ClobberedLocs[ClobberedLoc] = Value;
2164     }
2165   }
2166 
2167   // Copy MTracker info, including subregs if available.
2168   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
2169 
2170   // The copy might have clobbered variables based on the destination register.
2171   // Tell TTracker about it, passing the old ValueIDNum to search for
2172   // alternative locations (or else terminating those variables).
2173   if (TTracker) {
2174     for (auto LocVal : ClobberedLocs) {
2175       TTracker->clobberMloc(LocVal.first, LocVal.second, MI.getIterator(), false);
2176     }
2177   }
2178 
2179   // Only produce a transfer of DBG_VALUE within a block where old LDV
2180   // would have. We might make use of the additional value tracking in some
2181   // other way, later.
2182   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
2183     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
2184                             MTracker->getRegMLoc(DestReg), MI.getIterator());
2185 
2186   // VarLocBasedImpl would quit tracking the old location after copying.
2187   if (EmulateOldLDV && SrcReg != DestReg)
2188     MTracker->defReg(SrcReg, CurBB, CurInst);
2189 
2190   return true;
2191 }
2192 
2193 /// Accumulate a mapping between each DILocalVariable fragment and other
2194 /// fragments of that DILocalVariable which overlap. This reduces work during
2195 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
2196 /// known-to-overlap fragments are present".
2197 /// \param MI A previously unprocessed debug instruction to analyze for
2198 ///           fragment usage.
2199 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
2200   assert(MI.isDebugValueLike());
2201   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
2202                       MI.getDebugLoc()->getInlinedAt());
2203   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
2204 
2205   // If this is the first sighting of this variable, then we are guaranteed
2206   // there are currently no overlapping fragments either. Initialize the set
2207   // of seen fragments, record no overlaps for the current one, and return.
2208   auto SeenIt = SeenFragments.find(MIVar.getVariable());
2209   if (SeenIt == SeenFragments.end()) {
2210     SmallSet<FragmentInfo, 4> OneFragment;
2211     OneFragment.insert(ThisFragment);
2212     SeenFragments.insert({MIVar.getVariable(), OneFragment});
2213 
2214     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2215     return;
2216   }
2217 
2218   // If this particular Variable/Fragment pair already exists in the overlap
2219   // map, it has already been accounted for.
2220   auto IsInOLapMap =
2221       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2222   if (!IsInOLapMap.second)
2223     return;
2224 
2225   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
2226   auto &AllSeenFragments = SeenIt->second;
2227 
2228   // Otherwise, examine all other seen fragments for this variable, with "this"
2229   // fragment being a previously unseen fragment. Record any pair of
2230   // overlapping fragments.
2231   for (const auto &ASeenFragment : AllSeenFragments) {
2232     // Does this previously seen fragment overlap?
2233     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
2234       // Yes: Mark the current fragment as being overlapped.
2235       ThisFragmentsOverlaps.push_back(ASeenFragment);
2236       // Mark the previously seen fragment as being overlapped by the current
2237       // one.
2238       auto ASeenFragmentsOverlaps =
2239           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
2240       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
2241              "Previously seen var fragment has no vector of overlaps");
2242       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
2243     }
2244   }
2245 
2246   AllSeenFragments.insert(ThisFragment);
2247 }
2248 
2249 void InstrRefBasedLDV::process(MachineInstr &MI,
2250                                const FuncValueTable *MLiveOuts,
2251                                const FuncValueTable *MLiveIns) {
2252   // Try to interpret an MI as a debug or transfer instruction. Only if it's
2253   // none of these should we interpret it's register defs as new value
2254   // definitions.
2255   if (transferDebugValue(MI))
2256     return;
2257   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
2258     return;
2259   if (transferDebugPHI(MI))
2260     return;
2261   if (transferRegisterCopy(MI))
2262     return;
2263   if (transferSpillOrRestoreInst(MI))
2264     return;
2265   transferRegisterDef(MI);
2266 }
2267 
2268 void InstrRefBasedLDV::produceMLocTransferFunction(
2269     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
2270     unsigned MaxNumBlocks) {
2271   // Because we try to optimize around register mask operands by ignoring regs
2272   // that aren't currently tracked, we set up something ugly for later: RegMask
2273   // operands that are seen earlier than the first use of a register, still need
2274   // to clobber that register in the transfer function. But this information
2275   // isn't actively recorded. Instead, we track each RegMask used in each block,
2276   // and accumulated the clobbered but untracked registers in each block into
2277   // the following bitvector. Later, if new values are tracked, we can add
2278   // appropriate clobbers.
2279   SmallVector<BitVector, 32> BlockMasks;
2280   BlockMasks.resize(MaxNumBlocks);
2281 
2282   // Reserve one bit per register for the masks described above.
2283   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
2284   for (auto &BV : BlockMasks)
2285     BV.resize(TRI->getNumRegs(), true);
2286 
2287   // Step through all instructions and inhale the transfer function.
2288   for (auto &MBB : MF) {
2289     // Object fields that are read by trackers to know where we are in the
2290     // function.
2291     CurBB = MBB.getNumber();
2292     CurInst = 1;
2293 
2294     // Set all machine locations to a PHI value. For transfer function
2295     // production only, this signifies the live-in value to the block.
2296     MTracker->reset();
2297     MTracker->setMPhis(CurBB);
2298 
2299     // Step through each instruction in this block.
2300     for (auto &MI : MBB) {
2301       // Pass in an empty unique_ptr for the value tables when accumulating the
2302       // machine transfer function.
2303       process(MI, nullptr, nullptr);
2304 
2305       // Also accumulate fragment map.
2306       if (MI.isDebugValueLike())
2307         accumulateFragmentMap(MI);
2308 
2309       // Create a map from the instruction number (if present) to the
2310       // MachineInstr and its position.
2311       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
2312         auto InstrAndPos = std::make_pair(&MI, CurInst);
2313         auto InsertResult =
2314             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
2315 
2316         // There should never be duplicate instruction numbers.
2317         assert(InsertResult.second);
2318         (void)InsertResult;
2319       }
2320 
2321       ++CurInst;
2322     }
2323 
2324     // Produce the transfer function, a map of machine location to new value. If
2325     // any machine location has the live-in phi value from the start of the
2326     // block, it's live-through and doesn't need recording in the transfer
2327     // function.
2328     for (auto Location : MTracker->locations()) {
2329       LocIdx Idx = Location.Idx;
2330       ValueIDNum &P = Location.Value;
2331       if (P.isPHI() && P.getLoc() == Idx.asU64())
2332         continue;
2333 
2334       // Insert-or-update.
2335       auto &TransferMap = MLocTransfer[CurBB];
2336       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
2337       if (!Result.second)
2338         Result.first->second = P;
2339     }
2340 
2341     // Accumulate any bitmask operands into the clobbered reg mask for this
2342     // block.
2343     for (auto &P : MTracker->Masks) {
2344       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
2345     }
2346   }
2347 
2348   // Compute a bitvector of all the registers that are tracked in this block.
2349   BitVector UsedRegs(TRI->getNumRegs());
2350   for (auto Location : MTracker->locations()) {
2351     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
2352     // Ignore stack slots, and aliases of the stack pointer.
2353     if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
2354       continue;
2355     UsedRegs.set(ID);
2356   }
2357 
2358   // Check that any regmask-clobber of a register that gets tracked, is not
2359   // live-through in the transfer function. It needs to be clobbered at the
2360   // very least.
2361   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
2362     BitVector &BV = BlockMasks[I];
2363     BV.flip();
2364     BV &= UsedRegs;
2365     // This produces all the bits that we clobber, but also use. Check that
2366     // they're all clobbered or at least set in the designated transfer
2367     // elem.
2368     for (unsigned Bit : BV.set_bits()) {
2369       unsigned ID = MTracker->getLocID(Bit);
2370       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
2371       auto &TransferMap = MLocTransfer[I];
2372 
2373       // Install a value representing the fact that this location is effectively
2374       // written to in this block. As there's no reserved value, instead use
2375       // a value number that is never generated. Pick the value number for the
2376       // first instruction in the block, def'ing this location, which we know
2377       // this block never used anyway.
2378       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
2379       auto Result =
2380         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
2381       if (!Result.second) {
2382         ValueIDNum &ValueID = Result.first->second;
2383         if (ValueID.getBlock() == I && ValueID.isPHI())
2384           // It was left as live-through. Set it to clobbered.
2385           ValueID = NotGeneratedNum;
2386       }
2387     }
2388   }
2389 }
2390 
2391 bool InstrRefBasedLDV::mlocJoin(
2392     MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
2393     FuncValueTable &OutLocs, ValueTable &InLocs) {
2394   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2395   bool Changed = false;
2396 
2397   // Handle value-propagation when control flow merges on entry to a block. For
2398   // any location without a PHI already placed, the location has the same value
2399   // as its predecessors. If a PHI is placed, test to see whether it's now a
2400   // redundant PHI that we can eliminate.
2401 
2402   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
2403   for (auto *Pred : MBB.predecessors())
2404     BlockOrders.push_back(Pred);
2405 
2406   // Visit predecessors in RPOT order.
2407   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
2408     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
2409   };
2410   llvm::sort(BlockOrders, Cmp);
2411 
2412   // Skip entry block.
2413   if (BlockOrders.size() == 0)
2414     return false;
2415 
2416   // Step through all machine locations, look at each predecessor and test
2417   // whether we can eliminate redundant PHIs.
2418   for (auto Location : MTracker->locations()) {
2419     LocIdx Idx = Location.Idx;
2420 
2421     // Pick out the first predecessors live-out value for this location. It's
2422     // guaranteed to not be a backedge, as we order by RPO.
2423     ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
2424 
2425     // If we've already eliminated a PHI here, do no further checking, just
2426     // propagate the first live-in value into this block.
2427     if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
2428       if (InLocs[Idx.asU64()] != FirstVal) {
2429         InLocs[Idx.asU64()] = FirstVal;
2430         Changed |= true;
2431       }
2432       continue;
2433     }
2434 
2435     // We're now examining a PHI to see whether it's un-necessary. Loop around
2436     // the other live-in values and test whether they're all the same.
2437     bool Disagree = false;
2438     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
2439       const MachineBasicBlock *PredMBB = BlockOrders[I];
2440       const ValueIDNum &PredLiveOut =
2441           OutLocs[PredMBB->getNumber()][Idx.asU64()];
2442 
2443       // Incoming values agree, continue trying to eliminate this PHI.
2444       if (FirstVal == PredLiveOut)
2445         continue;
2446 
2447       // We can also accept a PHI value that feeds back into itself.
2448       if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
2449         continue;
2450 
2451       // Live-out of a predecessor disagrees with the first predecessor.
2452       Disagree = true;
2453     }
2454 
2455     // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
2456     if (!Disagree) {
2457       InLocs[Idx.asU64()] = FirstVal;
2458       Changed |= true;
2459     }
2460   }
2461 
2462   // TODO: Reimplement NumInserted and NumRemoved.
2463   return Changed;
2464 }
2465 
2466 void InstrRefBasedLDV::findStackIndexInterference(
2467     SmallVectorImpl<unsigned> &Slots) {
2468   // We could spend a bit of time finding the exact, minimal, set of stack
2469   // indexes that interfere with each other, much like reg units. Or, we can
2470   // rely on the fact that:
2471   //  * The smallest / lowest index will interfere with everything at zero
2472   //    offset, which will be the largest set of registers,
2473   //  * Most indexes with non-zero offset will end up being interference units
2474   //    anyway.
2475   // So just pick those out and return them.
2476 
2477   // We can rely on a single-byte stack index existing already, because we
2478   // initialize them in MLocTracker.
2479   auto It = MTracker->StackSlotIdxes.find({8, 0});
2480   assert(It != MTracker->StackSlotIdxes.end());
2481   Slots.push_back(It->second);
2482 
2483   // Find anything that has a non-zero offset and add that too.
2484   for (auto &Pair : MTracker->StackSlotIdxes) {
2485     // Is offset zero? If so, ignore.
2486     if (!Pair.first.second)
2487       continue;
2488     Slots.push_back(Pair.second);
2489   }
2490 }
2491 
2492 void InstrRefBasedLDV::placeMLocPHIs(
2493     MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2494     FuncValueTable &MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2495   SmallVector<unsigned, 4> StackUnits;
2496   findStackIndexInterference(StackUnits);
2497 
2498   // To avoid repeatedly running the PHI placement algorithm, leverage the
2499   // fact that a def of register MUST also def its register units. Find the
2500   // units for registers, place PHIs for them, and then replicate them for
2501   // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
2502   // arguments) don't lead to register units being tracked, just place PHIs for
2503   // those registers directly. Stack slots have their own form of "unit",
2504   // store them to one side.
2505   SmallSet<Register, 32> RegUnitsToPHIUp;
2506   SmallSet<LocIdx, 32> NormalLocsToPHI;
2507   SmallSet<SpillLocationNo, 32> StackSlots;
2508   for (auto Location : MTracker->locations()) {
2509     LocIdx L = Location.Idx;
2510     if (MTracker->isSpill(L)) {
2511       StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
2512       continue;
2513     }
2514 
2515     Register R = MTracker->LocIdxToLocID[L];
2516     SmallSet<Register, 8> FoundRegUnits;
2517     bool AnyIllegal = false;
2518     for (MCRegUnit Unit : TRI->regunits(R.asMCReg())) {
2519       for (MCRegUnitRootIterator URoot(Unit, TRI); URoot.isValid(); ++URoot) {
2520         if (!MTracker->isRegisterTracked(*URoot)) {
2521           // Not all roots were loaded into the tracking map: this register
2522           // isn't actually def'd anywhere, we only read from it. Generate PHIs
2523           // for this reg, but don't iterate units.
2524           AnyIllegal = true;
2525         } else {
2526           FoundRegUnits.insert(*URoot);
2527         }
2528       }
2529     }
2530 
2531     if (AnyIllegal) {
2532       NormalLocsToPHI.insert(L);
2533       continue;
2534     }
2535 
2536     RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
2537   }
2538 
2539   // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
2540   // collection.
2541   SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2542   auto CollectPHIsForLoc = [&](LocIdx L) {
2543     // Collect the set of defs.
2544     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2545     for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2546       MachineBasicBlock *MBB = OrderToBB[I];
2547       const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
2548       if (TransferFunc.contains(L))
2549         DefBlocks.insert(MBB);
2550     }
2551 
2552     // The entry block defs the location too: it's the live-in / argument value.
2553     // Only insert if there are other defs though; everything is trivially live
2554     // through otherwise.
2555     if (!DefBlocks.empty())
2556       DefBlocks.insert(&*MF.begin());
2557 
2558     // Ask the SSA construction algorithm where we should put PHIs. Clear
2559     // anything that might have been hanging around from earlier.
2560     PHIBlocks.clear();
2561     BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
2562   };
2563 
2564   auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
2565     for (const MachineBasicBlock *MBB : PHIBlocks)
2566       MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
2567   };
2568 
2569   // For locations with no reg units, just place PHIs.
2570   for (LocIdx L : NormalLocsToPHI) {
2571     CollectPHIsForLoc(L);
2572     // Install those PHI values into the live-in value array.
2573     InstallPHIsAtLoc(L);
2574   }
2575 
2576   // For stack slots, calculate PHIs for the equivalent of the units, then
2577   // install for each index.
2578   for (SpillLocationNo Slot : StackSlots) {
2579     for (unsigned Idx : StackUnits) {
2580       unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
2581       LocIdx L = MTracker->getSpillMLoc(SpillID);
2582       CollectPHIsForLoc(L);
2583       InstallPHIsAtLoc(L);
2584 
2585       // Find anything that aliases this stack index, install PHIs for it too.
2586       unsigned Size, Offset;
2587       std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
2588       for (auto &Pair : MTracker->StackSlotIdxes) {
2589         unsigned ThisSize, ThisOffset;
2590         std::tie(ThisSize, ThisOffset) = Pair.first;
2591         if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
2592           continue;
2593 
2594         unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
2595         LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
2596         InstallPHIsAtLoc(ThisL);
2597       }
2598     }
2599   }
2600 
2601   // For reg units, place PHIs, and then place them for any aliasing registers.
2602   for (Register R : RegUnitsToPHIUp) {
2603     LocIdx L = MTracker->lookupOrTrackRegister(R);
2604     CollectPHIsForLoc(L);
2605 
2606     // Install those PHI values into the live-in value array.
2607     InstallPHIsAtLoc(L);
2608 
2609     // Now find aliases and install PHIs for those.
2610     for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
2611       // Super-registers that are "above" the largest register read/written by
2612       // the function will alias, but will not be tracked.
2613       if (!MTracker->isRegisterTracked(*RAI))
2614         continue;
2615 
2616       LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
2617       InstallPHIsAtLoc(AliasLoc);
2618     }
2619   }
2620 }
2621 
2622 void InstrRefBasedLDV::buildMLocValueMap(
2623     MachineFunction &MF, FuncValueTable &MInLocs, FuncValueTable &MOutLocs,
2624     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2625   std::priority_queue<unsigned int, std::vector<unsigned int>,
2626                       std::greater<unsigned int>>
2627       Worklist, Pending;
2628 
2629   // We track what is on the current and pending worklist to avoid inserting
2630   // the same thing twice. We could avoid this with a custom priority queue,
2631   // but this is probably not worth it.
2632   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2633 
2634   // Initialize worklist with every block to be visited. Also produce list of
2635   // all blocks.
2636   SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
2637   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2638     Worklist.push(I);
2639     OnWorklist.insert(OrderToBB[I]);
2640     AllBlocks.insert(OrderToBB[I]);
2641   }
2642 
2643   // Initialize entry block to PHIs. These represent arguments.
2644   for (auto Location : MTracker->locations())
2645     MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
2646 
2647   MTracker->reset();
2648 
2649   // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
2650   // any machine-location that isn't live-through a block to be def'd in that
2651   // block.
2652   placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
2653 
2654   // Propagate values to eliminate redundant PHIs. At the same time, this
2655   // produces the table of Block x Location => Value for the entry to each
2656   // block.
2657   // The kind of PHIs we can eliminate are, for example, where one path in a
2658   // conditional spills and restores a register, and the register still has
2659   // the same value once control flow joins, unbeknowns to the PHI placement
2660   // code. Propagating values allows us to identify such un-necessary PHIs and
2661   // remove them.
2662   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2663   while (!Worklist.empty() || !Pending.empty()) {
2664     // Vector for storing the evaluated block transfer function.
2665     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2666 
2667     while (!Worklist.empty()) {
2668       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2669       CurBB = MBB->getNumber();
2670       Worklist.pop();
2671 
2672       // Join the values in all predecessor blocks.
2673       bool InLocsChanged;
2674       InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2675       InLocsChanged |= Visited.insert(MBB).second;
2676 
2677       // Don't examine transfer function if we've visited this loc at least
2678       // once, and inlocs haven't changed.
2679       if (!InLocsChanged)
2680         continue;
2681 
2682       // Load the current set of live-ins into MLocTracker.
2683       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2684 
2685       // Each element of the transfer function can be a new def, or a read of
2686       // a live-in value. Evaluate each element, and store to "ToRemap".
2687       ToRemap.clear();
2688       for (auto &P : MLocTransfer[CurBB]) {
2689         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2690           // This is a movement of whatever was live in. Read it.
2691           ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
2692           ToRemap.push_back(std::make_pair(P.first, NewID));
2693         } else {
2694           // It's a def. Just set it.
2695           assert(P.second.getBlock() == CurBB);
2696           ToRemap.push_back(std::make_pair(P.first, P.second));
2697         }
2698       }
2699 
2700       // Commit the transfer function changes into mloc tracker, which
2701       // transforms the contents of the MLocTracker into the live-outs.
2702       for (auto &P : ToRemap)
2703         MTracker->setMLoc(P.first, P.second);
2704 
2705       // Now copy out-locs from mloc tracker into out-loc vector, checking
2706       // whether changes have occurred. These changes can have come from both
2707       // the transfer function, and mlocJoin.
2708       bool OLChanged = false;
2709       for (auto Location : MTracker->locations()) {
2710         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2711         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2712       }
2713 
2714       MTracker->reset();
2715 
2716       // No need to examine successors again if out-locs didn't change.
2717       if (!OLChanged)
2718         continue;
2719 
2720       // All successors should be visited: put any back-edges on the pending
2721       // list for the next pass-through, and any other successors to be
2722       // visited this pass, if they're not going to be already.
2723       for (auto *s : MBB->successors()) {
2724         // Does branching to this successor represent a back-edge?
2725         if (BBToOrder[s] > BBToOrder[MBB]) {
2726           // No: visit it during this dataflow iteration.
2727           if (OnWorklist.insert(s).second)
2728             Worklist.push(BBToOrder[s]);
2729         } else {
2730           // Yes: visit it on the next iteration.
2731           if (OnPending.insert(s).second)
2732             Pending.push(BBToOrder[s]);
2733         }
2734       }
2735     }
2736 
2737     Worklist.swap(Pending);
2738     std::swap(OnPending, OnWorklist);
2739     OnPending.clear();
2740     // At this point, pending must be empty, since it was just the empty
2741     // worklist
2742     assert(Pending.empty() && "Pending should be empty");
2743   }
2744 
2745   // Once all the live-ins don't change on mlocJoin(), we've eliminated all
2746   // redundant PHIs.
2747 }
2748 
2749 void InstrRefBasedLDV::BlockPHIPlacement(
2750     const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2751     const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
2752     SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
2753   // Apply IDF calculator to the designated set of location defs, storing
2754   // required PHIs into PHIBlocks. Uses the dominator tree stored in the
2755   // InstrRefBasedLDV object.
2756   IDFCalculatorBase<MachineBasicBlock, false> IDF(DomTree->getBase());
2757 
2758   IDF.setLiveInBlocks(AllBlocks);
2759   IDF.setDefiningBlocks(DefBlocks);
2760   IDF.calculate(PHIBlocks);
2761 }
2762 
2763 bool InstrRefBasedLDV::pickVPHILoc(
2764     SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB,
2765     const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
2766     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2767 
2768   // No predecessors means no PHIs.
2769   if (BlockOrders.empty())
2770     return false;
2771 
2772   // All the location operands that do not already agree need to be joined,
2773   // track the indices of each such location operand here.
2774   SmallDenseSet<unsigned> LocOpsToJoin;
2775 
2776   auto FirstValueIt = LiveOuts.find(BlockOrders[0]);
2777   if (FirstValueIt == LiveOuts.end())
2778     return false;
2779   const DbgValue &FirstValue = *FirstValueIt->second;
2780 
2781   for (const auto p : BlockOrders) {
2782     auto OutValIt = LiveOuts.find(p);
2783     if (OutValIt == LiveOuts.end())
2784       // If we have a predecessor not in scope, we'll never find a PHI position.
2785       return false;
2786     const DbgValue &OutVal = *OutValIt->second;
2787 
2788     // No-values cannot have locations we can join on.
2789     if (OutVal.Kind == DbgValue::NoVal)
2790       return false;
2791 
2792     // For unjoined VPHIs where we don't know the location, we definitely
2793     // can't find a join loc unless the VPHI is a backedge.
2794     if (OutVal.isUnjoinedPHI() && OutVal.BlockNo != MBB.getNumber())
2795       return false;
2796 
2797     if (!FirstValue.Properties.isJoinable(OutVal.Properties))
2798       return false;
2799 
2800     for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) {
2801       // An unjoined PHI has no defined locations, and so a shared location must
2802       // be found for every operand.
2803       if (OutVal.isUnjoinedPHI()) {
2804         LocOpsToJoin.insert(Idx);
2805         continue;
2806       }
2807       DbgOpID FirstValOp = FirstValue.getDbgOpID(Idx);
2808       DbgOpID OutValOp = OutVal.getDbgOpID(Idx);
2809       if (FirstValOp != OutValOp) {
2810         // We can never join constant ops - the ops must either both be equal
2811         // constant ops or non-const ops.
2812         if (FirstValOp.isConst() || OutValOp.isConst())
2813           return false;
2814         else
2815           LocOpsToJoin.insert(Idx);
2816       }
2817     }
2818   }
2819 
2820   SmallVector<DbgOpID> NewDbgOps;
2821 
2822   for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) {
2823     // If this op doesn't need to be joined because the values agree, use that
2824     // already-agreed value.
2825     if (!LocOpsToJoin.contains(Idx)) {
2826       NewDbgOps.push_back(FirstValue.getDbgOpID(Idx));
2827       continue;
2828     }
2829 
2830     std::optional<ValueIDNum> JoinedOpLoc =
2831         pickOperandPHILoc(Idx, MBB, LiveOuts, MOutLocs, BlockOrders);
2832 
2833     if (!JoinedOpLoc)
2834       return false;
2835 
2836     NewDbgOps.push_back(DbgOpStore.insert(*JoinedOpLoc));
2837   }
2838 
2839   OutValues.append(NewDbgOps);
2840   return true;
2841 }
2842 
2843 std::optional<ValueIDNum> InstrRefBasedLDV::pickOperandPHILoc(
2844     unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts,
2845     FuncValueTable &MOutLocs,
2846     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2847 
2848   // Collect a set of locations from predecessor where its live-out value can
2849   // be found.
2850   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2851   unsigned NumLocs = MTracker->getNumLocs();
2852 
2853   for (const auto p : BlockOrders) {
2854     unsigned ThisBBNum = p->getNumber();
2855     auto OutValIt = LiveOuts.find(p);
2856     assert(OutValIt != LiveOuts.end());
2857     const DbgValue &OutVal = *OutValIt->second;
2858     DbgOpID OutValOpID = OutVal.getDbgOpID(DbgOpIdx);
2859     DbgOp OutValOp = DbgOpStore.find(OutValOpID);
2860     assert(!OutValOp.IsConst);
2861 
2862     // Create new empty vector of locations.
2863     Locs.resize(Locs.size() + 1);
2864 
2865     // If the live-in value is a def, find the locations where that value is
2866     // present. Do the same for VPHIs where we know the VPHI value.
2867     if (OutVal.Kind == DbgValue::Def ||
2868         (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
2869          !OutValOp.isUndef())) {
2870       ValueIDNum ValToLookFor = OutValOp.ID;
2871       // Search the live-outs of the predecessor for the specified value.
2872       for (unsigned int I = 0; I < NumLocs; ++I) {
2873         if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2874           Locs.back().push_back(LocIdx(I));
2875       }
2876     } else {
2877       assert(OutVal.Kind == DbgValue::VPHI);
2878       // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
2879       // a value that's live-through the whole loop. (It has to be a backedge,
2880       // because a block can't dominate itself). We can accept as a PHI location
2881       // any location where the other predecessors agree, _and_ the machine
2882       // locations feed back into themselves. Therefore, add all self-looping
2883       // machine-value PHI locations.
2884       for (unsigned int I = 0; I < NumLocs; ++I) {
2885         ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
2886         if (MOutLocs[ThisBBNum][I] == MPHI)
2887           Locs.back().push_back(LocIdx(I));
2888       }
2889     }
2890   }
2891   // We should have found locations for all predecessors, or returned.
2892   assert(Locs.size() == BlockOrders.size());
2893 
2894   // Starting with the first set of locations, take the intersection with
2895   // subsequent sets.
2896   SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
2897   for (unsigned int I = 1; I < Locs.size(); ++I) {
2898     auto &LocVec = Locs[I];
2899     SmallVector<LocIdx, 4> NewCandidates;
2900     std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
2901                           LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
2902     CandidateLocs = NewCandidates;
2903   }
2904   if (CandidateLocs.empty())
2905     return std::nullopt;
2906 
2907   // We now have a set of LocIdxes that contain the right output value in
2908   // each of the predecessors. Pick the lowest; if there's a register loc,
2909   // that'll be it.
2910   LocIdx L = *CandidateLocs.begin();
2911 
2912   // Return a PHI-value-number for the found location.
2913   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2914   return PHIVal;
2915 }
2916 
2917 bool InstrRefBasedLDV::vlocJoin(
2918     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
2919     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2920     DbgValue &LiveIn) {
2921   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2922   bool Changed = false;
2923 
2924   // Order predecessors by RPOT order, for exploring them in that order.
2925   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2926 
2927   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2928     return BBToOrder[A] < BBToOrder[B];
2929   };
2930 
2931   llvm::sort(BlockOrders, Cmp);
2932 
2933   unsigned CurBlockRPONum = BBToOrder[&MBB];
2934 
2935   // Collect all the incoming DbgValues for this variable, from predecessor
2936   // live-out values.
2937   SmallVector<InValueT, 8> Values;
2938   bool Bail = false;
2939   int BackEdgesStart = 0;
2940   for (auto *p : BlockOrders) {
2941     // If the predecessor isn't in scope / to be explored, we'll never be
2942     // able to join any locations.
2943     if (!BlocksToExplore.contains(p)) {
2944       Bail = true;
2945       break;
2946     }
2947 
2948     // All Live-outs will have been initialized.
2949     DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
2950 
2951     // Keep track of where back-edges begin in the Values vector. Relies on
2952     // BlockOrders being sorted by RPO.
2953     unsigned ThisBBRPONum = BBToOrder[p];
2954     if (ThisBBRPONum < CurBlockRPONum)
2955       ++BackEdgesStart;
2956 
2957     Values.push_back(std::make_pair(p, &OutLoc));
2958   }
2959 
2960   // If there were no values, or one of the predecessors couldn't have a
2961   // value, then give up immediately. It's not safe to produce a live-in
2962   // value. Leave as whatever it was before.
2963   if (Bail || Values.size() == 0)
2964     return false;
2965 
2966   // All (non-entry) blocks have at least one non-backedge predecessor.
2967   // Pick the variable value from the first of these, to compare against
2968   // all others.
2969   const DbgValue &FirstVal = *Values[0].second;
2970 
2971   // If the old live-in value is not a PHI then either a) no PHI is needed
2972   // here, or b) we eliminated the PHI that was here. If so, we can just
2973   // propagate in the first parent's incoming value.
2974   if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
2975     Changed = LiveIn != FirstVal;
2976     if (Changed)
2977       LiveIn = FirstVal;
2978     return Changed;
2979   }
2980 
2981   // Scan for variable values that can never be resolved: if they have
2982   // different DIExpressions, different indirectness, or are mixed constants /
2983   // non-constants.
2984   for (const auto &V : Values) {
2985     if (!V.second->Properties.isJoinable(FirstVal.Properties))
2986       return false;
2987     if (V.second->Kind == DbgValue::NoVal)
2988       return false;
2989     if (!V.second->hasJoinableLocOps(FirstVal))
2990       return false;
2991   }
2992 
2993   // Try to eliminate this PHI. Do the incoming values all agree?
2994   bool Disagree = false;
2995   for (auto &V : Values) {
2996     if (*V.second == FirstVal)
2997       continue; // No disagreement.
2998 
2999     // If both values are not equal but have equal non-empty IDs then they refer
3000     // to the same value from different sources (e.g. one is VPHI and the other
3001     // is Def), which does not cause disagreement.
3002     if (V.second->hasIdenticalValidLocOps(FirstVal))
3003       continue;
3004 
3005     // Eliminate if a backedge feeds a VPHI back into itself.
3006     if (V.second->Kind == DbgValue::VPHI &&
3007         V.second->BlockNo == MBB.getNumber() &&
3008         // Is this a backedge?
3009         std::distance(Values.begin(), &V) >= BackEdgesStart)
3010       continue;
3011 
3012     Disagree = true;
3013   }
3014 
3015   // No disagreement -> live-through value.
3016   if (!Disagree) {
3017     Changed = LiveIn != FirstVal;
3018     if (Changed)
3019       LiveIn = FirstVal;
3020     return Changed;
3021   } else {
3022     // Otherwise use a VPHI.
3023     DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
3024     Changed = LiveIn != VPHI;
3025     if (Changed)
3026       LiveIn = VPHI;
3027     return Changed;
3028   }
3029 }
3030 
3031 void InstrRefBasedLDV::getBlocksForScope(
3032     const DILocation *DILoc,
3033     SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore,
3034     const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) {
3035   // Get the set of "normal" in-lexical-scope blocks.
3036   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
3037 
3038   // VarLoc LiveDebugValues tracks variable locations that are defined in
3039   // blocks not in scope. This is something we could legitimately ignore, but
3040   // lets allow it for now for the sake of coverage.
3041   BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
3042 
3043   // Storage for artificial blocks we intend to add to BlocksToExplore.
3044   DenseSet<const MachineBasicBlock *> ToAdd;
3045 
3046   // To avoid needlessly dropping large volumes of variable locations, propagate
3047   // variables through aritifical blocks, i.e. those that don't have any
3048   // instructions in scope at all. To accurately replicate VarLoc
3049   // LiveDebugValues, this means exploring all artificial successors too.
3050   // Perform a depth-first-search to enumerate those blocks.
3051   for (const auto *MBB : BlocksToExplore) {
3052     // Depth-first-search state: each node is a block and which successor
3053     // we're currently exploring.
3054     SmallVector<std::pair<const MachineBasicBlock *,
3055                           MachineBasicBlock::const_succ_iterator>,
3056                 8>
3057         DFS;
3058 
3059     // Find any artificial successors not already tracked.
3060     for (auto *succ : MBB->successors()) {
3061       if (BlocksToExplore.count(succ))
3062         continue;
3063       if (!ArtificialBlocks.count(succ))
3064         continue;
3065       ToAdd.insert(succ);
3066       DFS.push_back({succ, succ->succ_begin()});
3067     }
3068 
3069     // Search all those blocks, depth first.
3070     while (!DFS.empty()) {
3071       const MachineBasicBlock *CurBB = DFS.back().first;
3072       MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
3073       // Walk back if we've explored this blocks successors to the end.
3074       if (CurSucc == CurBB->succ_end()) {
3075         DFS.pop_back();
3076         continue;
3077       }
3078 
3079       // If the current successor is artificial and unexplored, descend into
3080       // it.
3081       if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
3082         ToAdd.insert(*CurSucc);
3083         DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()});
3084         continue;
3085       }
3086 
3087       ++CurSucc;
3088     }
3089   };
3090 
3091   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
3092 }
3093 
3094 void InstrRefBasedLDV::buildVLocValueMap(
3095     const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
3096     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
3097     FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
3098     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
3099   // This method is much like buildMLocValueMap: but focuses on a single
3100   // LexicalScope at a time. Pick out a set of blocks and variables that are
3101   // to have their value assignments solved, then run our dataflow algorithm
3102   // until a fixedpoint is reached.
3103   std::priority_queue<unsigned int, std::vector<unsigned int>,
3104                       std::greater<unsigned int>>
3105       Worklist, Pending;
3106   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
3107 
3108   // The set of blocks we'll be examining.
3109   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3110 
3111   // The order in which to examine them (RPO).
3112   SmallVector<MachineBasicBlock *, 8> BlockOrders;
3113 
3114   // RPO ordering function.
3115   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3116     return BBToOrder[A] < BBToOrder[B];
3117   };
3118 
3119   getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks);
3120 
3121   // Single block scope: not interesting! No propagation at all. Note that
3122   // this could probably go above ArtificialBlocks without damage, but
3123   // that then produces output differences from original-live-debug-values,
3124   // which propagates from a single block into many artificial ones.
3125   if (BlocksToExplore.size() == 1)
3126     return;
3127 
3128   // Convert a const set to a non-const set. LexicalScopes
3129   // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
3130   // (Neither of them mutate anything).
3131   SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
3132   for (const auto *MBB : BlocksToExplore)
3133     MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
3134 
3135   // Picks out relevants blocks RPO order and sort them.
3136   for (const auto *MBB : BlocksToExplore)
3137     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
3138 
3139   llvm::sort(BlockOrders, Cmp);
3140   unsigned NumBlocks = BlockOrders.size();
3141 
3142   // Allocate some vectors for storing the live ins and live outs. Large.
3143   SmallVector<DbgValue, 32> LiveIns, LiveOuts;
3144   LiveIns.reserve(NumBlocks);
3145   LiveOuts.reserve(NumBlocks);
3146 
3147   // Initialize all values to start as NoVals. This signifies "it's live
3148   // through, but we don't know what it is".
3149   DbgValueProperties EmptyProperties(EmptyExpr, false, false);
3150   for (unsigned int I = 0; I < NumBlocks; ++I) {
3151     DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
3152     LiveIns.push_back(EmptyDbgValue);
3153     LiveOuts.push_back(EmptyDbgValue);
3154   }
3155 
3156   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
3157   // vlocJoin.
3158   LiveIdxT LiveOutIdx, LiveInIdx;
3159   LiveOutIdx.reserve(NumBlocks);
3160   LiveInIdx.reserve(NumBlocks);
3161   for (unsigned I = 0; I < NumBlocks; ++I) {
3162     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
3163     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
3164   }
3165 
3166   // Loop over each variable and place PHIs for it, then propagate values
3167   // between blocks. This keeps the locality of working on one lexical scope at
3168   // at time, but avoids re-processing variable values because some other
3169   // variable has been assigned.
3170   for (const auto &Var : VarsWeCareAbout) {
3171     // Re-initialize live-ins and live-outs, to clear the remains of previous
3172     // variables live-ins / live-outs.
3173     for (unsigned int I = 0; I < NumBlocks; ++I) {
3174       DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
3175       LiveIns[I] = EmptyDbgValue;
3176       LiveOuts[I] = EmptyDbgValue;
3177     }
3178 
3179     // Place PHIs for variable values, using the LLVM IDF calculator.
3180     // Collect the set of blocks where variables are def'd.
3181     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
3182     for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
3183       auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
3184       if (TransferFunc.contains(Var))
3185         DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
3186     }
3187 
3188     SmallVector<MachineBasicBlock *, 32> PHIBlocks;
3189 
3190     // Request the set of PHIs we should insert for this variable. If there's
3191     // only one value definition, things are very simple.
3192     if (DefBlocks.size() == 1) {
3193       placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(),
3194                                       AllTheVLocs, Var, Output);
3195       continue;
3196     }
3197 
3198     // Otherwise: we need to place PHIs through SSA and propagate values.
3199     BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
3200 
3201     // Insert PHIs into the per-block live-in tables for this variable.
3202     for (MachineBasicBlock *PHIMBB : PHIBlocks) {
3203       unsigned BlockNo = PHIMBB->getNumber();
3204       DbgValue *LiveIn = LiveInIdx[PHIMBB];
3205       *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
3206     }
3207 
3208     for (auto *MBB : BlockOrders) {
3209       Worklist.push(BBToOrder[MBB]);
3210       OnWorklist.insert(MBB);
3211     }
3212 
3213     // Iterate over all the blocks we selected, propagating the variables value.
3214     // This loop does two things:
3215     //  * Eliminates un-necessary VPHIs in vlocJoin,
3216     //  * Evaluates the blocks transfer function (i.e. variable assignments) and
3217     //    stores the result to the blocks live-outs.
3218     // Always evaluate the transfer function on the first iteration, and when
3219     // the live-ins change thereafter.
3220     bool FirstTrip = true;
3221     while (!Worklist.empty() || !Pending.empty()) {
3222       while (!Worklist.empty()) {
3223         auto *MBB = OrderToBB[Worklist.top()];
3224         CurBB = MBB->getNumber();
3225         Worklist.pop();
3226 
3227         auto LiveInsIt = LiveInIdx.find(MBB);
3228         assert(LiveInsIt != LiveInIdx.end());
3229         DbgValue *LiveIn = LiveInsIt->second;
3230 
3231         // Join values from predecessors. Updates LiveInIdx, and writes output
3232         // into JoinedInLocs.
3233         bool InLocsChanged =
3234             vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn);
3235 
3236         SmallVector<const MachineBasicBlock *, 8> Preds;
3237         for (const auto *Pred : MBB->predecessors())
3238           Preds.push_back(Pred);
3239 
3240         // If this block's live-in value is a VPHI, try to pick a machine-value
3241         // for it. This makes the machine-value available and propagated
3242         // through all blocks by the time value propagation finishes. We can't
3243         // do this any earlier as it needs to read the block live-outs.
3244         if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
3245           // There's a small possibility that on a preceeding path, a VPHI is
3246           // eliminated and transitions from VPHI-with-location to
3247           // live-through-value. As a result, the selected location of any VPHI
3248           // might change, so we need to re-compute it on each iteration.
3249           SmallVector<DbgOpID> JoinedOps;
3250 
3251           if (pickVPHILoc(JoinedOps, *MBB, LiveOutIdx, MOutLocs, Preds)) {
3252             bool NewLocPicked = !equal(LiveIn->getDbgOpIDs(), JoinedOps);
3253             InLocsChanged |= NewLocPicked;
3254             if (NewLocPicked)
3255               LiveIn->setDbgOpIDs(JoinedOps);
3256           }
3257         }
3258 
3259         if (!InLocsChanged && !FirstTrip)
3260           continue;
3261 
3262         DbgValue *LiveOut = LiveOutIdx[MBB];
3263         bool OLChanged = false;
3264 
3265         // Do transfer function.
3266         auto &VTracker = AllTheVLocs[MBB->getNumber()];
3267         auto TransferIt = VTracker.Vars.find(Var);
3268         if (TransferIt != VTracker.Vars.end()) {
3269           // Erase on empty transfer (DBG_VALUE $noreg).
3270           if (TransferIt->second.Kind == DbgValue::Undef) {
3271             DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
3272             if (*LiveOut != NewVal) {
3273               *LiveOut = NewVal;
3274               OLChanged = true;
3275             }
3276           } else {
3277             // Insert new variable value; or overwrite.
3278             if (*LiveOut != TransferIt->second) {
3279               *LiveOut = TransferIt->second;
3280               OLChanged = true;
3281             }
3282           }
3283         } else {
3284           // Just copy live-ins to live-outs, for anything not transferred.
3285           if (*LiveOut != *LiveIn) {
3286             *LiveOut = *LiveIn;
3287             OLChanged = true;
3288           }
3289         }
3290 
3291         // If no live-out value changed, there's no need to explore further.
3292         if (!OLChanged)
3293           continue;
3294 
3295         // We should visit all successors. Ensure we'll visit any non-backedge
3296         // successors during this dataflow iteration; book backedge successors
3297         // to be visited next time around.
3298         for (auto *s : MBB->successors()) {
3299           // Ignore out of scope / not-to-be-explored successors.
3300           if (!LiveInIdx.contains(s))
3301             continue;
3302 
3303           if (BBToOrder[s] > BBToOrder[MBB]) {
3304             if (OnWorklist.insert(s).second)
3305               Worklist.push(BBToOrder[s]);
3306           } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
3307             Pending.push(BBToOrder[s]);
3308           }
3309         }
3310       }
3311       Worklist.swap(Pending);
3312       std::swap(OnWorklist, OnPending);
3313       OnPending.clear();
3314       assert(Pending.empty());
3315       FirstTrip = false;
3316     }
3317 
3318     // Save live-ins to output vector. Ignore any that are still marked as being
3319     // VPHIs with no location -- those are variables that we know the value of,
3320     // but are not actually available in the register file.
3321     for (auto *MBB : BlockOrders) {
3322       DbgValue *BlockLiveIn = LiveInIdx[MBB];
3323       if (BlockLiveIn->Kind == DbgValue::NoVal)
3324         continue;
3325       if (BlockLiveIn->isUnjoinedPHI())
3326         continue;
3327       if (BlockLiveIn->Kind == DbgValue::VPHI)
3328         BlockLiveIn->Kind = DbgValue::Def;
3329       assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() ==
3330              Var.getFragment() && "Fragment info missing during value prop");
3331       Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
3332     }
3333   } // Per-variable loop.
3334 
3335   BlockOrders.clear();
3336   BlocksToExplore.clear();
3337 }
3338 
3339 void InstrRefBasedLDV::placePHIsForSingleVarDefinition(
3340     const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
3341     MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
3342     const DebugVariable &Var, LiveInsT &Output) {
3343   // If there is a single definition of the variable, then working out it's
3344   // value everywhere is very simple: it's every block dominated by the
3345   // definition. At the dominance frontier, the usual algorithm would:
3346   //  * Place PHIs,
3347   //  * Propagate values into them,
3348   //  * Find there's no incoming variable value from the other incoming branches
3349   //    of the dominance frontier,
3350   //  * Specify there's no variable value in blocks past the frontier.
3351   // This is a common case, hence it's worth special-casing it.
3352 
3353   // Pick out the variables value from the block transfer function.
3354   VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()];
3355   auto ValueIt = VLocs.Vars.find(Var);
3356   const DbgValue &Value = ValueIt->second;
3357 
3358   // If it's an explicit assignment of "undef", that means there is no location
3359   // anyway, anywhere.
3360   if (Value.Kind == DbgValue::Undef)
3361     return;
3362 
3363   // Assign the variable value to entry to each dominated block that's in scope.
3364   // Skip the definition block -- it's assigned the variable value in the middle
3365   // of the block somewhere.
3366   for (auto *ScopeBlock : InScopeBlocks) {
3367     if (!DomTree->properlyDominates(AssignMBB, ScopeBlock))
3368       continue;
3369 
3370     Output[ScopeBlock->getNumber()].push_back({Var, Value});
3371   }
3372 
3373   // All blocks that aren't dominated have no live-in value, thus no variable
3374   // value will be given to them.
3375 }
3376 
3377 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3378 void InstrRefBasedLDV::dump_mloc_transfer(
3379     const MLocTransferMap &mloc_transfer) const {
3380   for (const auto &P : mloc_transfer) {
3381     std::string foo = MTracker->LocIdxToName(P.first);
3382     std::string bar = MTracker->IDAsString(P.second);
3383     dbgs() << "Loc " << foo << " --> " << bar << "\n";
3384   }
3385 }
3386 #endif
3387 
3388 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
3389   // Build some useful data structures.
3390 
3391   LLVMContext &Context = MF.getFunction().getContext();
3392   EmptyExpr = DIExpression::get(Context, {});
3393 
3394   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
3395     if (const DebugLoc &DL = MI.getDebugLoc())
3396       return DL.getLine() != 0;
3397     return false;
3398   };
3399   // Collect a set of all the artificial blocks.
3400   for (auto &MBB : MF)
3401     if (none_of(MBB.instrs(), hasNonArtificialLocation))
3402       ArtificialBlocks.insert(&MBB);
3403 
3404   // Compute mappings of block <=> RPO order.
3405   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
3406   unsigned int RPONumber = 0;
3407   auto processMBB = [&](MachineBasicBlock *MBB) {
3408     OrderToBB[RPONumber] = MBB;
3409     BBToOrder[MBB] = RPONumber;
3410     BBNumToRPO[MBB->getNumber()] = RPONumber;
3411     ++RPONumber;
3412   };
3413   for (MachineBasicBlock *MBB : RPOT)
3414     processMBB(MBB);
3415   for (MachineBasicBlock &MBB : MF)
3416     if (!BBToOrder.contains(&MBB))
3417       processMBB(&MBB);
3418 
3419   // Order value substitutions by their "source" operand pair, for quick lookup.
3420   llvm::sort(MF.DebugValueSubstitutions);
3421 
3422 #ifdef EXPENSIVE_CHECKS
3423   // As an expensive check, test whether there are any duplicate substitution
3424   // sources in the collection.
3425   if (MF.DebugValueSubstitutions.size() > 2) {
3426     for (auto It = MF.DebugValueSubstitutions.begin();
3427          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
3428       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
3429                                               "substitution seen");
3430     }
3431   }
3432 #endif
3433 }
3434 
3435 // Produce an "ejection map" for blocks, i.e., what's the highest-numbered
3436 // lexical scope it's used in. When exploring in DFS order and we pass that
3437 // scope, the block can be processed and any tracking information freed.
3438 void InstrRefBasedLDV::makeDepthFirstEjectionMap(
3439     SmallVectorImpl<unsigned> &EjectionMap,
3440     const ScopeToDILocT &ScopeToDILocation,
3441     ScopeToAssignBlocksT &ScopeToAssignBlocks) {
3442   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3443   SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
3444   auto *TopScope = LS.getCurrentFunctionScope();
3445 
3446   // Unlike lexical scope explorers, we explore in reverse order, to find the
3447   // "last" lexical scope used for each block early.
3448   WorkStack.push_back({TopScope, TopScope->getChildren().size() - 1});
3449 
3450   while (!WorkStack.empty()) {
3451     auto &ScopePosition = WorkStack.back();
3452     LexicalScope *WS = ScopePosition.first;
3453     ssize_t ChildNum = ScopePosition.second--;
3454 
3455     const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
3456     if (ChildNum >= 0) {
3457       // If ChildNum is positive, there are remaining children to explore.
3458       // Push the child and its children-count onto the stack.
3459       auto &ChildScope = Children[ChildNum];
3460       WorkStack.push_back(
3461           std::make_pair(ChildScope, ChildScope->getChildren().size() - 1));
3462     } else {
3463       WorkStack.pop_back();
3464 
3465       // We've explored all children and any later blocks: examine all blocks
3466       // in our scope. If they haven't yet had an ejection number set, then
3467       // this scope will be the last to use that block.
3468       auto DILocationIt = ScopeToDILocation.find(WS);
3469       if (DILocationIt != ScopeToDILocation.end()) {
3470         getBlocksForScope(DILocationIt->second, BlocksToExplore,
3471                           ScopeToAssignBlocks.find(WS)->second);
3472         for (const auto *MBB : BlocksToExplore) {
3473           unsigned BBNum = MBB->getNumber();
3474           if (EjectionMap[BBNum] == 0)
3475             EjectionMap[BBNum] = WS->getDFSOut();
3476         }
3477 
3478         BlocksToExplore.clear();
3479       }
3480     }
3481   }
3482 }
3483 
3484 bool InstrRefBasedLDV::depthFirstVLocAndEmit(
3485     unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
3486     const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks,
3487     LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
3488     SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
3489     DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
3490     const TargetPassConfig &TPC) {
3491   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
3492   unsigned NumLocs = MTracker->getNumLocs();
3493   VTracker = nullptr;
3494 
3495   // No scopes? No variable locations.
3496   if (!LS.getCurrentFunctionScope())
3497     return false;
3498 
3499   // Build map from block number to the last scope that uses the block.
3500   SmallVector<unsigned, 16> EjectionMap;
3501   EjectionMap.resize(MaxNumBlocks, 0);
3502   makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation,
3503                             ScopeToAssignBlocks);
3504 
3505   // Helper lambda for ejecting a block -- if nothing is going to use the block,
3506   // we can translate the variable location information into DBG_VALUEs and then
3507   // free all of InstrRefBasedLDV's data structures.
3508   SmallPtrSet<const MachineBasicBlock *, 8> EjectedBBs;
3509   auto EjectBlock = [&](MachineBasicBlock &MBB) -> void {
3510     if (EjectedBBs.insert(&MBB).second == false)
3511       return;
3512     unsigned BBNum = MBB.getNumber();
3513     AllTheVLocs[BBNum].clear();
3514 
3515     // Prime the transfer-tracker, and then step through all the block
3516     // instructions, installing transfers.
3517     MTracker->reset();
3518     MTracker->loadFromArray(MInLocs[BBNum], BBNum);
3519     TTracker->loadInlocs(MBB, MInLocs[BBNum], DbgOpStore, Output[BBNum],
3520                          NumLocs);
3521 
3522     CurBB = BBNum;
3523     CurInst = 1;
3524     for (auto &MI : MBB) {
3525       process(MI, &MOutLocs, &MInLocs);
3526       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
3527       ++CurInst;
3528     }
3529 
3530     // Free machine-location tables for this block.
3531     MInLocs[BBNum] = ValueTable();
3532     MOutLocs[BBNum] = ValueTable();
3533     // We don't need live-in variable values for this block either.
3534     Output[BBNum].clear();
3535     AllTheVLocs[BBNum].clear();
3536   };
3537 
3538   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3539   SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
3540   WorkStack.push_back({LS.getCurrentFunctionScope(), 0});
3541   unsigned HighestDFSIn = 0;
3542 
3543   // Proceed to explore in depth first order.
3544   while (!WorkStack.empty()) {
3545     auto &ScopePosition = WorkStack.back();
3546     LexicalScope *WS = ScopePosition.first;
3547     ssize_t ChildNum = ScopePosition.second++;
3548 
3549     // We obesrve scopes with children twice here, once descending in, once
3550     // ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure
3551     // we don't process a scope twice. Additionally, ignore scopes that don't
3552     // have a DILocation -- by proxy, this means we never tracked any variable
3553     // assignments in that scope.
3554     auto DILocIt = ScopeToDILocation.find(WS);
3555     if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) {
3556       const DILocation *DILoc = DILocIt->second;
3557       auto &VarsWeCareAbout = ScopeToVars.find(WS)->second;
3558       auto &BlocksInScope = ScopeToAssignBlocks.find(WS)->second;
3559 
3560       buildVLocValueMap(DILoc, VarsWeCareAbout, BlocksInScope, Output, MOutLocs,
3561                         MInLocs, AllTheVLocs);
3562     }
3563 
3564     HighestDFSIn = std::max(HighestDFSIn, WS->getDFSIn());
3565 
3566     // Descend into any scope nests.
3567     const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
3568     if (ChildNum < (ssize_t)Children.size()) {
3569       // There are children to explore -- push onto stack and continue.
3570       auto &ChildScope = Children[ChildNum];
3571       WorkStack.push_back(std::make_pair(ChildScope, 0));
3572     } else {
3573       WorkStack.pop_back();
3574 
3575       // We've explored a leaf, or have explored all the children of a scope.
3576       // Try to eject any blocks where this is the last scope it's relevant to.
3577       auto DILocationIt = ScopeToDILocation.find(WS);
3578       if (DILocationIt == ScopeToDILocation.end())
3579         continue;
3580 
3581       getBlocksForScope(DILocationIt->second, BlocksToExplore,
3582                         ScopeToAssignBlocks.find(WS)->second);
3583       for (const auto *MBB : BlocksToExplore)
3584         if (WS->getDFSOut() == EjectionMap[MBB->getNumber()])
3585           EjectBlock(const_cast<MachineBasicBlock &>(*MBB));
3586 
3587       BlocksToExplore.clear();
3588     }
3589   }
3590 
3591   // Some artificial blocks may not have been ejected, meaning they're not
3592   // connected to an actual legitimate scope. This can technically happen
3593   // with things like the entry block. In theory, we shouldn't need to do
3594   // anything for such out-of-scope blocks, but for the sake of being similar
3595   // to VarLocBasedLDV, eject these too.
3596   for (auto *MBB : ArtificialBlocks)
3597     EjectBlock(*MBB);
3598 
3599   return emitTransfers(AllVarsNumbering);
3600 }
3601 
3602 bool InstrRefBasedLDV::emitTransfers(
3603     DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
3604   // Go through all the transfers recorded in the TransferTracker -- this is
3605   // both the live-ins to a block, and any movements of values that happen
3606   // in the middle.
3607   for (const auto &P : TTracker->Transfers) {
3608     // We have to insert DBG_VALUEs in a consistent order, otherwise they
3609     // appear in DWARF in different orders. Use the order that they appear
3610     // when walking through each block / each instruction, stored in
3611     // AllVarsNumbering.
3612     SmallVector<std::pair<unsigned, MachineInstr *>> Insts;
3613     for (MachineInstr *MI : P.Insts) {
3614       DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(),
3615                         MI->getDebugLoc()->getInlinedAt());
3616       Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI);
3617     }
3618     llvm::sort(Insts, llvm::less_first());
3619 
3620     // Insert either before or after the designated point...
3621     if (P.MBB) {
3622       MachineBasicBlock &MBB = *P.MBB;
3623       for (const auto &Pair : Insts)
3624         MBB.insert(P.Pos, Pair.second);
3625     } else {
3626       // Terminators, like tail calls, can clobber things. Don't try and place
3627       // transfers after them.
3628       if (P.Pos->isTerminator())
3629         continue;
3630 
3631       MachineBasicBlock &MBB = *P.Pos->getParent();
3632       for (const auto &Pair : Insts)
3633         MBB.insertAfterBundle(P.Pos, Pair.second);
3634     }
3635   }
3636 
3637   return TTracker->Transfers.size() != 0;
3638 }
3639 
3640 /// Calculate the liveness information for the given machine function and
3641 /// extend ranges across basic blocks.
3642 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
3643                                     MachineDominatorTree *DomTree,
3644                                     TargetPassConfig *TPC,
3645                                     unsigned InputBBLimit,
3646                                     unsigned InputDbgValLimit) {
3647   // No subprogram means this function contains no debuginfo.
3648   if (!MF.getFunction().getSubprogram())
3649     return false;
3650 
3651   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
3652   this->TPC = TPC;
3653 
3654   this->DomTree = DomTree;
3655   TRI = MF.getSubtarget().getRegisterInfo();
3656   MRI = &MF.getRegInfo();
3657   TII = MF.getSubtarget().getInstrInfo();
3658   TFI = MF.getSubtarget().getFrameLowering();
3659   TFI->getCalleeSaves(MF, CalleeSavedRegs);
3660   MFI = &MF.getFrameInfo();
3661   LS.initialize(MF);
3662 
3663   const auto &STI = MF.getSubtarget();
3664   AdjustsStackInCalls = MFI->adjustsStack() &&
3665                         STI.getFrameLowering()->stackProbeFunctionModifiesSP();
3666   if (AdjustsStackInCalls)
3667     StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
3668 
3669   MTracker =
3670       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
3671   VTracker = nullptr;
3672   TTracker = nullptr;
3673 
3674   SmallVector<MLocTransferMap, 32> MLocTransfer;
3675   SmallVector<VLocTracker, 8> vlocs;
3676   LiveInsT SavedLiveIns;
3677 
3678   int MaxNumBlocks = -1;
3679   for (auto &MBB : MF)
3680     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
3681   assert(MaxNumBlocks >= 0);
3682   ++MaxNumBlocks;
3683 
3684   initialSetup(MF);
3685 
3686   MLocTransfer.resize(MaxNumBlocks);
3687   vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr));
3688   SavedLiveIns.resize(MaxNumBlocks);
3689 
3690   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
3691 
3692   // Allocate and initialize two array-of-arrays for the live-in and live-out
3693   // machine values. The outer dimension is the block number; while the inner
3694   // dimension is a LocIdx from MLocTracker.
3695   unsigned NumLocs = MTracker->getNumLocs();
3696   FuncValueTable MOutLocs(MaxNumBlocks, ValueTable(NumLocs));
3697   FuncValueTable MInLocs(MaxNumBlocks, ValueTable(NumLocs));
3698 
3699   // Solve the machine value dataflow problem using the MLocTransfer function,
3700   // storing the computed live-ins / live-outs into the array-of-arrays. We use
3701   // both live-ins and live-outs for decision making in the variable value
3702   // dataflow problem.
3703   buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
3704 
3705   // Patch up debug phi numbers, turning unknown block-live-in values into
3706   // either live-through machine values, or PHIs.
3707   for (auto &DBG_PHI : DebugPHINumToValue) {
3708     // Identify unresolved block-live-ins.
3709     if (!DBG_PHI.ValueRead)
3710       continue;
3711 
3712     ValueIDNum &Num = *DBG_PHI.ValueRead;
3713     if (!Num.isPHI())
3714       continue;
3715 
3716     unsigned BlockNo = Num.getBlock();
3717     LocIdx LocNo = Num.getLoc();
3718     ValueIDNum ResolvedValue = MInLocs[BlockNo][LocNo.asU64()];
3719     // If there is no resolved value for this live-in then it is not directly
3720     // reachable from the entry block -- model it as a PHI on entry to this
3721     // block, which means we leave the ValueIDNum unchanged.
3722     if (ResolvedValue != ValueIDNum::EmptyValue)
3723       Num = ResolvedValue;
3724   }
3725   // Later, we'll be looking up ranges of instruction numbers.
3726   llvm::sort(DebugPHINumToValue);
3727 
3728   // Walk back through each block / instruction, collecting DBG_VALUE
3729   // instructions and recording what machine value their operands refer to.
3730   for (auto &OrderPair : OrderToBB) {
3731     MachineBasicBlock &MBB = *OrderPair.second;
3732     CurBB = MBB.getNumber();
3733     VTracker = &vlocs[CurBB];
3734     VTracker->MBB = &MBB;
3735     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
3736     CurInst = 1;
3737     for (auto &MI : MBB) {
3738       process(MI, &MOutLocs, &MInLocs);
3739       ++CurInst;
3740     }
3741     MTracker->reset();
3742   }
3743 
3744   // Number all variables in the order that they appear, to be used as a stable
3745   // insertion order later.
3746   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
3747 
3748   // Map from one LexicalScope to all the variables in that scope.
3749   ScopeToVarsT ScopeToVars;
3750 
3751   // Map from One lexical scope to all blocks where assignments happen for
3752   // that scope.
3753   ScopeToAssignBlocksT ScopeToAssignBlocks;
3754 
3755   // Store map of DILocations that describes scopes.
3756   ScopeToDILocT ScopeToDILocation;
3757 
3758   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3759   // the order is unimportant, it just has to be stable.
3760   unsigned VarAssignCount = 0;
3761   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3762     auto *MBB = OrderToBB[I];
3763     auto *VTracker = &vlocs[MBB->getNumber()];
3764     // Collect each variable with a DBG_VALUE in this block.
3765     for (auto &idx : VTracker->Vars) {
3766       const auto &Var = idx.first;
3767       const DILocation *ScopeLoc = VTracker->Scopes[Var];
3768       assert(ScopeLoc != nullptr);
3769       auto *Scope = LS.findLexicalScope(ScopeLoc);
3770 
3771       // No insts in scope -> shouldn't have been recorded.
3772       assert(Scope != nullptr);
3773 
3774       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3775       ScopeToVars[Scope].insert(Var);
3776       ScopeToAssignBlocks[Scope].insert(VTracker->MBB);
3777       ScopeToDILocation[Scope] = ScopeLoc;
3778       ++VarAssignCount;
3779     }
3780   }
3781 
3782   bool Changed = false;
3783 
3784   // If we have an extremely large number of variable assignments and blocks,
3785   // bail out at this point. We've burnt some time doing analysis already,
3786   // however we should cut our losses.
3787   if ((unsigned)MaxNumBlocks > InputBBLimit &&
3788       VarAssignCount > InputDbgValLimit) {
3789     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
3790                       << " has " << MaxNumBlocks << " basic blocks and "
3791                       << VarAssignCount
3792                       << " variable assignments, exceeding limits.\n");
3793   } else {
3794     // Optionally, solve the variable value problem and emit to blocks by using
3795     // a lexical-scope-depth search. It should be functionally identical to
3796     // the "else" block of this condition.
3797     Changed = depthFirstVLocAndEmit(
3798         MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks,
3799         SavedLiveIns, MOutLocs, MInLocs, vlocs, MF, AllVarsNumbering, *TPC);
3800   }
3801 
3802   delete MTracker;
3803   delete TTracker;
3804   MTracker = nullptr;
3805   VTracker = nullptr;
3806   TTracker = nullptr;
3807 
3808   ArtificialBlocks.clear();
3809   OrderToBB.clear();
3810   BBToOrder.clear();
3811   BBNumToRPO.clear();
3812   DebugInstrNumToInstr.clear();
3813   DebugPHINumToValue.clear();
3814   OverlapFragments.clear();
3815   SeenFragments.clear();
3816   SeenDbgPHIs.clear();
3817   DbgOpStore.clear();
3818 
3819   return Changed;
3820 }
3821 
3822 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3823   return new InstrRefBasedLDV();
3824 }
3825 
3826 namespace {
3827 class LDVSSABlock;
3828 class LDVSSAUpdater;
3829 
3830 // Pick a type to identify incoming block values as we construct SSA. We
3831 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3832 // expects to zero-initialize the type.
3833 typedef uint64_t BlockValueNum;
3834 
3835 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3836 /// this PHI is in, the value number it would have, and the expected incoming
3837 /// values from parent blocks.
3838 class LDVSSAPhi {
3839 public:
3840   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3841   LDVSSABlock *ParentBlock;
3842   BlockValueNum PHIValNum;
3843   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3844       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3845 
3846   LDVSSABlock *getParent() { return ParentBlock; }
3847 };
3848 
3849 /// Thin wrapper around a block predecessor iterator. Only difference from a
3850 /// normal block iterator is that it dereferences to an LDVSSABlock.
3851 class LDVSSABlockIterator {
3852 public:
3853   MachineBasicBlock::pred_iterator PredIt;
3854   LDVSSAUpdater &Updater;
3855 
3856   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3857                       LDVSSAUpdater &Updater)
3858       : PredIt(PredIt), Updater(Updater) {}
3859 
3860   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3861     return OtherIt.PredIt != PredIt;
3862   }
3863 
3864   LDVSSABlockIterator &operator++() {
3865     ++PredIt;
3866     return *this;
3867   }
3868 
3869   LDVSSABlock *operator*();
3870 };
3871 
3872 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3873 /// we need to track the PHI value(s) that we may have observed as necessary
3874 /// in this block.
3875 class LDVSSABlock {
3876 public:
3877   MachineBasicBlock &BB;
3878   LDVSSAUpdater &Updater;
3879   using PHIListT = SmallVector<LDVSSAPhi, 1>;
3880   /// List of PHIs in this block. There should only ever be one.
3881   PHIListT PHIList;
3882 
3883   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3884       : BB(BB), Updater(Updater) {}
3885 
3886   LDVSSABlockIterator succ_begin() {
3887     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3888   }
3889 
3890   LDVSSABlockIterator succ_end() {
3891     return LDVSSABlockIterator(BB.succ_end(), Updater);
3892   }
3893 
3894   /// SSAUpdater has requested a PHI: create that within this block record.
3895   LDVSSAPhi *newPHI(BlockValueNum Value) {
3896     PHIList.emplace_back(Value, this);
3897     return &PHIList.back();
3898   }
3899 
3900   /// SSAUpdater wishes to know what PHIs already exist in this block.
3901   PHIListT &phis() { return PHIList; }
3902 };
3903 
3904 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3905 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3906 // SSAUpdaterTraits<LDVSSAUpdater>.
3907 class LDVSSAUpdater {
3908 public:
3909   /// Map of value numbers to PHI records.
3910   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3911   /// Map of which blocks generate Undef values -- blocks that are not
3912   /// dominated by any Def.
3913   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3914   /// Map of machine blocks to our own records of them.
3915   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3916   /// Machine location where any PHI must occur.
3917   LocIdx Loc;
3918   /// Table of live-in machine value numbers for blocks / locations.
3919   const FuncValueTable &MLiveIns;
3920 
3921   LDVSSAUpdater(LocIdx L, const FuncValueTable &MLiveIns)
3922       : Loc(L), MLiveIns(MLiveIns) {}
3923 
3924   void reset() {
3925     for (auto &Block : BlockMap)
3926       delete Block.second;
3927 
3928     PHIs.clear();
3929     UndefMap.clear();
3930     BlockMap.clear();
3931   }
3932 
3933   ~LDVSSAUpdater() { reset(); }
3934 
3935   /// For a given MBB, create a wrapper block for it. Stores it in the
3936   /// LDVSSAUpdater block map.
3937   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3938     auto it = BlockMap.find(BB);
3939     if (it == BlockMap.end()) {
3940       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3941       it = BlockMap.find(BB);
3942     }
3943     return it->second;
3944   }
3945 
3946   /// Find the live-in value number for the given block. Looks up the value at
3947   /// the PHI location on entry.
3948   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3949     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3950   }
3951 };
3952 
3953 LDVSSABlock *LDVSSABlockIterator::operator*() {
3954   return Updater.getSSALDVBlock(*PredIt);
3955 }
3956 
3957 #ifndef NDEBUG
3958 
3959 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3960   out << "SSALDVPHI " << PHI.PHIValNum;
3961   return out;
3962 }
3963 
3964 #endif
3965 
3966 } // namespace
3967 
3968 namespace llvm {
3969 
3970 /// Template specialization to give SSAUpdater access to CFG and value
3971 /// information. SSAUpdater calls methods in these traits, passing in the
3972 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3973 /// It also provides methods to create PHI nodes and track them.
3974 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3975 public:
3976   using BlkT = LDVSSABlock;
3977   using ValT = BlockValueNum;
3978   using PhiT = LDVSSAPhi;
3979   using BlkSucc_iterator = LDVSSABlockIterator;
3980 
3981   // Methods to access block successors -- dereferencing to our wrapper class.
3982   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3983   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3984 
3985   /// Iterator for PHI operands.
3986   class PHI_iterator {
3987   private:
3988     LDVSSAPhi *PHI;
3989     unsigned Idx;
3990 
3991   public:
3992     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3993         : PHI(P), Idx(0) {}
3994     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3995         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3996 
3997     PHI_iterator &operator++() {
3998       Idx++;
3999       return *this;
4000     }
4001     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
4002     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
4003 
4004     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
4005 
4006     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
4007   };
4008 
4009   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
4010 
4011   static inline PHI_iterator PHI_end(PhiT *PHI) {
4012     return PHI_iterator(PHI, true);
4013   }
4014 
4015   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
4016   /// vector.
4017   static void FindPredecessorBlocks(LDVSSABlock *BB,
4018                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
4019     for (MachineBasicBlock *Pred : BB->BB.predecessors())
4020       Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
4021   }
4022 
4023   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
4024   /// register. For LiveDebugValues, represents a block identified as not having
4025   /// any DBG_PHI predecessors.
4026   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
4027     // Create a value number for this block -- it needs to be unique and in the
4028     // "undef" collection, so that we know it's not real. Use a number
4029     // representing a PHI into this block.
4030     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
4031     Updater->UndefMap[&BB->BB] = Num;
4032     return Num;
4033   }
4034 
4035   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
4036   /// SSAUpdater will populate it with information about incoming values. The
4037   /// value number of this PHI is whatever the  machine value number problem
4038   /// solution determined it to be. This includes non-phi values if SSAUpdater
4039   /// tries to create a PHI where the incoming values are identical.
4040   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
4041                                    LDVSSAUpdater *Updater) {
4042     BlockValueNum PHIValNum = Updater->getValue(BB);
4043     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
4044     Updater->PHIs[PHIValNum] = PHI;
4045     return PHIValNum;
4046   }
4047 
4048   /// AddPHIOperand - Add the specified value as an operand of the PHI for
4049   /// the specified predecessor block.
4050   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
4051     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
4052   }
4053 
4054   /// ValueIsPHI - Check if the instruction that defines the specified value
4055   /// is a PHI instruction.
4056   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
4057     return Updater->PHIs.lookup(Val);
4058   }
4059 
4060   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
4061   /// operands, i.e., it was just added.
4062   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
4063     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
4064     if (PHI && PHI->IncomingValues.size() == 0)
4065       return PHI;
4066     return nullptr;
4067   }
4068 
4069   /// GetPHIValue - For the specified PHI instruction, return the value
4070   /// that it defines.
4071   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
4072 };
4073 
4074 } // end namespace llvm
4075 
4076 std::optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(
4077     MachineFunction &MF, const FuncValueTable &MLiveOuts,
4078     const FuncValueTable &MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
4079   // This function will be called twice per DBG_INSTR_REF, and might end up
4080   // computing lots of SSA information: memoize it.
4081   auto SeenDbgPHIIt = SeenDbgPHIs.find(std::make_pair(&Here, InstrNum));
4082   if (SeenDbgPHIIt != SeenDbgPHIs.end())
4083     return SeenDbgPHIIt->second;
4084 
4085   std::optional<ValueIDNum> Result =
4086       resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum);
4087   SeenDbgPHIs.insert({std::make_pair(&Here, InstrNum), Result});
4088   return Result;
4089 }
4090 
4091 std::optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl(
4092     MachineFunction &MF, const FuncValueTable &MLiveOuts,
4093     const FuncValueTable &MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
4094   // Pick out records of DBG_PHI instructions that have been observed. If there
4095   // are none, then we cannot compute a value number.
4096   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
4097                                     DebugPHINumToValue.end(), InstrNum);
4098   auto LowerIt = RangePair.first;
4099   auto UpperIt = RangePair.second;
4100 
4101   // No DBG_PHI means there can be no location.
4102   if (LowerIt == UpperIt)
4103     return std::nullopt;
4104 
4105   // If any DBG_PHIs referred to a location we didn't understand, don't try to
4106   // compute a value. There might be scenarios where we could recover a value
4107   // for some range of DBG_INSTR_REFs, but at this point we can have high
4108   // confidence that we've seen a bug.
4109   auto DBGPHIRange = make_range(LowerIt, UpperIt);
4110   for (const DebugPHIRecord &DBG_PHI : DBGPHIRange)
4111     if (!DBG_PHI.ValueRead)
4112       return std::nullopt;
4113 
4114   // If there's only one DBG_PHI, then that is our value number.
4115   if (std::distance(LowerIt, UpperIt) == 1)
4116     return *LowerIt->ValueRead;
4117 
4118   // Pick out the location (physreg, slot) where any PHIs must occur. It's
4119   // technically possible for us to merge values in different registers in each
4120   // block, but highly unlikely that LLVM will generate such code after register
4121   // allocation.
4122   LocIdx Loc = *LowerIt->ReadLoc;
4123 
4124   // We have several DBG_PHIs, and a use position (the Here inst). All each
4125   // DBG_PHI does is identify a value at a program position. We can treat each
4126   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
4127   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
4128   // determine which Def is used at the Use, and any PHIs that happen along
4129   // the way.
4130   // Adapted LLVM SSA Updater:
4131   LDVSSAUpdater Updater(Loc, MLiveIns);
4132   // Map of which Def or PHI is the current value in each block.
4133   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
4134   // Set of PHIs that we have created along the way.
4135   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
4136 
4137   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
4138   // for the SSAUpdater.
4139   for (const auto &DBG_PHI : DBGPHIRange) {
4140     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
4141     const ValueIDNum &Num = *DBG_PHI.ValueRead;
4142     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
4143   }
4144 
4145   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
4146   const auto &AvailIt = AvailableValues.find(HereBlock);
4147   if (AvailIt != AvailableValues.end()) {
4148     // Actually, we already know what the value is -- the Use is in the same
4149     // block as the Def.
4150     return ValueIDNum::fromU64(AvailIt->second);
4151   }
4152 
4153   // Otherwise, we must use the SSA Updater. It will identify the value number
4154   // that we are to use, and the PHIs that must happen along the way.
4155   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
4156   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
4157   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
4158 
4159   // We have the number for a PHI, or possibly live-through value, to be used
4160   // at this Use. There are a number of things we have to check about it though:
4161   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
4162   //    Use was not completely dominated by DBG_PHIs and we should abort.
4163   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
4164   //    we've left SSA form. Validate that the inputs to each PHI are the
4165   //    expected values.
4166   //  * Is a PHI we've created actually a merging of values, or are all the
4167   //    predecessor values the same, leading to a non-PHI machine value number?
4168   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
4169   //    the ValidatedValues collection below to sort this out.
4170   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
4171 
4172   // Define all the input DBG_PHI values in ValidatedValues.
4173   for (const auto &DBG_PHI : DBGPHIRange) {
4174     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
4175     const ValueIDNum &Num = *DBG_PHI.ValueRead;
4176     ValidatedValues.insert(std::make_pair(Block, Num));
4177   }
4178 
4179   // Sort PHIs to validate into RPO-order.
4180   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
4181   for (auto &PHI : CreatedPHIs)
4182     SortedPHIs.push_back(PHI);
4183 
4184   llvm::sort(SortedPHIs, [&](LDVSSAPhi *A, LDVSSAPhi *B) {
4185     return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
4186   });
4187 
4188   for (auto &PHI : SortedPHIs) {
4189     ValueIDNum ThisBlockValueNum =
4190         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
4191 
4192     // Are all these things actually defined?
4193     for (auto &PHIIt : PHI->IncomingValues) {
4194       // Any undef input means DBG_PHIs didn't dominate the use point.
4195       if (Updater.UndefMap.contains(&PHIIt.first->BB))
4196         return std::nullopt;
4197 
4198       ValueIDNum ValueToCheck;
4199       const ValueTable &BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
4200 
4201       auto VVal = ValidatedValues.find(PHIIt.first);
4202       if (VVal == ValidatedValues.end()) {
4203         // We cross a loop, and this is a backedge. LLVMs tail duplication
4204         // happens so late that DBG_PHI instructions should not be able to
4205         // migrate into loops -- meaning we can only be live-through this
4206         // loop.
4207         ValueToCheck = ThisBlockValueNum;
4208       } else {
4209         // Does the block have as a live-out, in the location we're examining,
4210         // the value that we expect? If not, it's been moved or clobbered.
4211         ValueToCheck = VVal->second;
4212       }
4213 
4214       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
4215         return std::nullopt;
4216     }
4217 
4218     // Record this value as validated.
4219     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
4220   }
4221 
4222   // All the PHIs are valid: we can return what the SSAUpdater said our value
4223   // number was.
4224   return Result;
4225 }
4226