1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/FixedPoint.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/Module.h"
38 #include <cstdarg>
39 
40 using namespace clang;
41 using namespace CodeGen;
42 using llvm::Value;
43 
44 //===----------------------------------------------------------------------===//
45 //                         Scalar Expression Emitter
46 //===----------------------------------------------------------------------===//
47 
48 namespace {
49 
50 /// Determine whether the given binary operation may overflow.
51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
53 /// the returned overflow check is precise. The returned value is 'true' for
54 /// all other opcodes, to be conservative.
55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
56                              BinaryOperator::Opcode Opcode, bool Signed,
57                              llvm::APInt &Result) {
58   // Assume overflow is possible, unless we can prove otherwise.
59   bool Overflow = true;
60   const auto &LHSAP = LHS->getValue();
61   const auto &RHSAP = RHS->getValue();
62   if (Opcode == BO_Add) {
63     if (Signed)
64       Result = LHSAP.sadd_ov(RHSAP, Overflow);
65     else
66       Result = LHSAP.uadd_ov(RHSAP, Overflow);
67   } else if (Opcode == BO_Sub) {
68     if (Signed)
69       Result = LHSAP.ssub_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.usub_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Mul) {
73     if (Signed)
74       Result = LHSAP.smul_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.umul_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
78     if (Signed && !RHS->isZero())
79       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
80     else
81       return false;
82   }
83   return Overflow;
84 }
85 
86 struct BinOpInfo {
87   Value *LHS;
88   Value *RHS;
89   QualType Ty;  // Computation Type.
90   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
91   FPOptions FPFeatures;
92   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
93 
94   /// Check if the binop can result in integer overflow.
95   bool mayHaveIntegerOverflow() const {
96     // Without constant input, we can't rule out overflow.
97     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
98     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
99     if (!LHSCI || !RHSCI)
100       return true;
101 
102     llvm::APInt Result;
103     return ::mayHaveIntegerOverflow(
104         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
105   }
106 
107   /// Check if the binop computes a division or a remainder.
108   bool isDivremOp() const {
109     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
110            Opcode == BO_RemAssign;
111   }
112 
113   /// Check if the binop can result in an integer division by zero.
114   bool mayHaveIntegerDivisionByZero() const {
115     if (isDivremOp())
116       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
117         return CI->isZero();
118     return true;
119   }
120 
121   /// Check if the binop can result in a float division by zero.
122   bool mayHaveFloatDivisionByZero() const {
123     if (isDivremOp())
124       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
125         return CFP->isZero();
126     return true;
127   }
128 
129   /// Check if either operand is a fixed point type or integer type, with at
130   /// least one being a fixed point type. In any case, this
131   /// operation did not follow usual arithmetic conversion and both operands may
132   /// not be the same.
133   bool isFixedPointBinOp() const {
134     // We cannot simply check the result type since comparison operations return
135     // an int.
136     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
137       QualType LHSType = BinOp->getLHS()->getType();
138       QualType RHSType = BinOp->getRHS()->getType();
139       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
140     }
141     return false;
142   }
143 };
144 
145 static bool MustVisitNullValue(const Expr *E) {
146   // If a null pointer expression's type is the C++0x nullptr_t, then
147   // it's not necessarily a simple constant and it must be evaluated
148   // for its potential side effects.
149   return E->getType()->isNullPtrType();
150 }
151 
152 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
153 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
154                                                         const Expr *E) {
155   const Expr *Base = E->IgnoreImpCasts();
156   if (E == Base)
157     return llvm::None;
158 
159   QualType BaseTy = Base->getType();
160   if (!BaseTy->isPromotableIntegerType() ||
161       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
162     return llvm::None;
163 
164   return BaseTy;
165 }
166 
167 /// Check if \p E is a widened promoted integer.
168 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
169   return getUnwidenedIntegerType(Ctx, E).hasValue();
170 }
171 
172 /// Check if we can skip the overflow check for \p Op.
173 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
174   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
175          "Expected a unary or binary operator");
176 
177   // If the binop has constant inputs and we can prove there is no overflow,
178   // we can elide the overflow check.
179   if (!Op.mayHaveIntegerOverflow())
180     return true;
181 
182   // If a unary op has a widened operand, the op cannot overflow.
183   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
184     return !UO->canOverflow();
185 
186   // We usually don't need overflow checks for binops with widened operands.
187   // Multiplication with promoted unsigned operands is a special case.
188   const auto *BO = cast<BinaryOperator>(Op.E);
189   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
190   if (!OptionalLHSTy)
191     return false;
192 
193   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
194   if (!OptionalRHSTy)
195     return false;
196 
197   QualType LHSTy = *OptionalLHSTy;
198   QualType RHSTy = *OptionalRHSTy;
199 
200   // This is the simple case: binops without unsigned multiplication, and with
201   // widened operands. No overflow check is needed here.
202   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
203       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
204     return true;
205 
206   // For unsigned multiplication the overflow check can be elided if either one
207   // of the unpromoted types are less than half the size of the promoted type.
208   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
209   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
210          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
211 }
212 
213 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
214 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
215                                 FPOptions FPFeatures) {
216   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
217 }
218 
219 /// Propagate fast-math flags from \p Op to the instruction in \p V.
220 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
221   if (auto *I = dyn_cast<llvm::Instruction>(V)) {
222     llvm::FastMathFlags FMF = I->getFastMathFlags();
223     updateFastMathFlags(FMF, Op.FPFeatures);
224     I->setFastMathFlags(FMF);
225   }
226   return V;
227 }
228 
229 class ScalarExprEmitter
230   : public StmtVisitor<ScalarExprEmitter, Value*> {
231   CodeGenFunction &CGF;
232   CGBuilderTy &Builder;
233   bool IgnoreResultAssign;
234   llvm::LLVMContext &VMContext;
235 public:
236 
237   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
238     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
239       VMContext(cgf.getLLVMContext()) {
240   }
241 
242   //===--------------------------------------------------------------------===//
243   //                               Utilities
244   //===--------------------------------------------------------------------===//
245 
246   bool TestAndClearIgnoreResultAssign() {
247     bool I = IgnoreResultAssign;
248     IgnoreResultAssign = false;
249     return I;
250   }
251 
252   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
253   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
254   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
255     return CGF.EmitCheckedLValue(E, TCK);
256   }
257 
258   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
259                       const BinOpInfo &Info);
260 
261   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
262     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
263   }
264 
265   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
266     const AlignValueAttr *AVAttr = nullptr;
267     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
268       const ValueDecl *VD = DRE->getDecl();
269 
270       if (VD->getType()->isReferenceType()) {
271         if (const auto *TTy =
272             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
273           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
274       } else {
275         // Assumptions for function parameters are emitted at the start of the
276         // function, so there is no need to repeat that here,
277         // unless the alignment-assumption sanitizer is enabled,
278         // then we prefer the assumption over alignment attribute
279         // on IR function param.
280         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
281           return;
282 
283         AVAttr = VD->getAttr<AlignValueAttr>();
284       }
285     }
286 
287     if (!AVAttr)
288       if (const auto *TTy =
289           dyn_cast<TypedefType>(E->getType()))
290         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
291 
292     if (!AVAttr)
293       return;
294 
295     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
296     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
297     CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
298   }
299 
300   /// EmitLoadOfLValue - Given an expression with complex type that represents a
301   /// value l-value, this method emits the address of the l-value, then loads
302   /// and returns the result.
303   Value *EmitLoadOfLValue(const Expr *E) {
304     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
305                                 E->getExprLoc());
306 
307     EmitLValueAlignmentAssumption(E, V);
308     return V;
309   }
310 
311   /// EmitConversionToBool - Convert the specified expression value to a
312   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
313   Value *EmitConversionToBool(Value *Src, QualType DstTy);
314 
315   /// Emit a check that a conversion from a floating-point type does not
316   /// overflow.
317   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
318                                 Value *Src, QualType SrcType, QualType DstType,
319                                 llvm::Type *DstTy, SourceLocation Loc);
320 
321   /// Known implicit conversion check kinds.
322   /// Keep in sync with the enum of the same name in ubsan_handlers.h
323   enum ImplicitConversionCheckKind : unsigned char {
324     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
325     ICCK_UnsignedIntegerTruncation = 1,
326     ICCK_SignedIntegerTruncation = 2,
327     ICCK_IntegerSignChange = 3,
328     ICCK_SignedIntegerTruncationOrSignChange = 4,
329   };
330 
331   /// Emit a check that an [implicit] truncation of an integer  does not
332   /// discard any bits. It is not UB, so we use the value after truncation.
333   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
334                                   QualType DstType, SourceLocation Loc);
335 
336   /// Emit a check that an [implicit] conversion of an integer does not change
337   /// the sign of the value. It is not UB, so we use the value after conversion.
338   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
339   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
340                                   QualType DstType, SourceLocation Loc);
341 
342   /// Emit a conversion from the specified type to the specified destination
343   /// type, both of which are LLVM scalar types.
344   struct ScalarConversionOpts {
345     bool TreatBooleanAsSigned;
346     bool EmitImplicitIntegerTruncationChecks;
347     bool EmitImplicitIntegerSignChangeChecks;
348 
349     ScalarConversionOpts()
350         : TreatBooleanAsSigned(false),
351           EmitImplicitIntegerTruncationChecks(false),
352           EmitImplicitIntegerSignChangeChecks(false) {}
353 
354     ScalarConversionOpts(clang::SanitizerSet SanOpts)
355         : TreatBooleanAsSigned(false),
356           EmitImplicitIntegerTruncationChecks(
357               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
358           EmitImplicitIntegerSignChangeChecks(
359               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
360   };
361   Value *
362   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
363                        SourceLocation Loc,
364                        ScalarConversionOpts Opts = ScalarConversionOpts());
365 
366   /// Convert between either a fixed point and other fixed point or fixed point
367   /// and an integer.
368   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
369                                   SourceLocation Loc);
370   Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
371                                   FixedPointSemantics &DstFixedSema,
372                                   SourceLocation Loc,
373                                   bool DstIsInteger = false);
374 
375   /// Emit a conversion from the specified complex type to the specified
376   /// destination type, where the destination type is an LLVM scalar type.
377   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
378                                        QualType SrcTy, QualType DstTy,
379                                        SourceLocation Loc);
380 
381   /// EmitNullValue - Emit a value that corresponds to null for the given type.
382   Value *EmitNullValue(QualType Ty);
383 
384   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
385   Value *EmitFloatToBoolConversion(Value *V) {
386     // Compare against 0.0 for fp scalars.
387     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
388     return Builder.CreateFCmpUNE(V, Zero, "tobool");
389   }
390 
391   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
392   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
393     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
394 
395     return Builder.CreateICmpNE(V, Zero, "tobool");
396   }
397 
398   Value *EmitIntToBoolConversion(Value *V) {
399     // Because of the type rules of C, we often end up computing a
400     // logical value, then zero extending it to int, then wanting it
401     // as a logical value again.  Optimize this common case.
402     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
403       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
404         Value *Result = ZI->getOperand(0);
405         // If there aren't any more uses, zap the instruction to save space.
406         // Note that there can be more uses, for example if this
407         // is the result of an assignment.
408         if (ZI->use_empty())
409           ZI->eraseFromParent();
410         return Result;
411       }
412     }
413 
414     return Builder.CreateIsNotNull(V, "tobool");
415   }
416 
417   //===--------------------------------------------------------------------===//
418   //                            Visitor Methods
419   //===--------------------------------------------------------------------===//
420 
421   Value *Visit(Expr *E) {
422     ApplyDebugLocation DL(CGF, E);
423     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
424   }
425 
426   Value *VisitStmt(Stmt *S) {
427     S->dump(CGF.getContext().getSourceManager());
428     llvm_unreachable("Stmt can't have complex result type!");
429   }
430   Value *VisitExpr(Expr *S);
431 
432   Value *VisitConstantExpr(ConstantExpr *E) {
433     return Visit(E->getSubExpr());
434   }
435   Value *VisitParenExpr(ParenExpr *PE) {
436     return Visit(PE->getSubExpr());
437   }
438   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
439     return Visit(E->getReplacement());
440   }
441   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
442     return Visit(GE->getResultExpr());
443   }
444   Value *VisitCoawaitExpr(CoawaitExpr *S) {
445     return CGF.EmitCoawaitExpr(*S).getScalarVal();
446   }
447   Value *VisitCoyieldExpr(CoyieldExpr *S) {
448     return CGF.EmitCoyieldExpr(*S).getScalarVal();
449   }
450   Value *VisitUnaryCoawait(const UnaryOperator *E) {
451     return Visit(E->getSubExpr());
452   }
453 
454   // Leaves.
455   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
456     return Builder.getInt(E->getValue());
457   }
458   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
459     return Builder.getInt(E->getValue());
460   }
461   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
462     return llvm::ConstantFP::get(VMContext, E->getValue());
463   }
464   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
465     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
466   }
467   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
468     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
469   }
470   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
471     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
472   }
473   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
474     return EmitNullValue(E->getType());
475   }
476   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
477     return EmitNullValue(E->getType());
478   }
479   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
480   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
481   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
482     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
483     return Builder.CreateBitCast(V, ConvertType(E->getType()));
484   }
485 
486   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
487     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
488   }
489 
490   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
491     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
492   }
493 
494   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
495     if (E->isGLValue())
496       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
497                               E->getExprLoc());
498 
499     // Otherwise, assume the mapping is the scalar directly.
500     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
501   }
502 
503   // l-values.
504   Value *VisitDeclRefExpr(DeclRefExpr *E) {
505     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
506       return CGF.emitScalarConstant(Constant, E);
507     return EmitLoadOfLValue(E);
508   }
509 
510   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
511     return CGF.EmitObjCSelectorExpr(E);
512   }
513   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
514     return CGF.EmitObjCProtocolExpr(E);
515   }
516   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
517     return EmitLoadOfLValue(E);
518   }
519   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
520     if (E->getMethodDecl() &&
521         E->getMethodDecl()->getReturnType()->isReferenceType())
522       return EmitLoadOfLValue(E);
523     return CGF.EmitObjCMessageExpr(E).getScalarVal();
524   }
525 
526   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
527     LValue LV = CGF.EmitObjCIsaExpr(E);
528     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
529     return V;
530   }
531 
532   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
533     VersionTuple Version = E->getVersion();
534 
535     // If we're checking for a platform older than our minimum deployment
536     // target, we can fold the check away.
537     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
538       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
539 
540     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
541     llvm::Value *Args[] = {
542         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
543         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
544         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
545     };
546 
547     return CGF.EmitBuiltinAvailable(Args);
548   }
549 
550   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
551   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
552   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
553   Value *VisitMemberExpr(MemberExpr *E);
554   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
555   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
556     return EmitLoadOfLValue(E);
557   }
558 
559   Value *VisitInitListExpr(InitListExpr *E);
560 
561   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
562     assert(CGF.getArrayInitIndex() &&
563            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
564     return CGF.getArrayInitIndex();
565   }
566 
567   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
568     return EmitNullValue(E->getType());
569   }
570   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
571     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
572     return VisitCastExpr(E);
573   }
574   Value *VisitCastExpr(CastExpr *E);
575 
576   Value *VisitCallExpr(const CallExpr *E) {
577     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
578       return EmitLoadOfLValue(E);
579 
580     Value *V = CGF.EmitCallExpr(E).getScalarVal();
581 
582     EmitLValueAlignmentAssumption(E, V);
583     return V;
584   }
585 
586   Value *VisitStmtExpr(const StmtExpr *E);
587 
588   // Unary Operators.
589   Value *VisitUnaryPostDec(const UnaryOperator *E) {
590     LValue LV = EmitLValue(E->getSubExpr());
591     return EmitScalarPrePostIncDec(E, LV, false, false);
592   }
593   Value *VisitUnaryPostInc(const UnaryOperator *E) {
594     LValue LV = EmitLValue(E->getSubExpr());
595     return EmitScalarPrePostIncDec(E, LV, true, false);
596   }
597   Value *VisitUnaryPreDec(const UnaryOperator *E) {
598     LValue LV = EmitLValue(E->getSubExpr());
599     return EmitScalarPrePostIncDec(E, LV, false, true);
600   }
601   Value *VisitUnaryPreInc(const UnaryOperator *E) {
602     LValue LV = EmitLValue(E->getSubExpr());
603     return EmitScalarPrePostIncDec(E, LV, true, true);
604   }
605 
606   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
607                                                   llvm::Value *InVal,
608                                                   bool IsInc);
609 
610   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
611                                        bool isInc, bool isPre);
612 
613 
614   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
615     if (isa<MemberPointerType>(E->getType())) // never sugared
616       return CGF.CGM.getMemberPointerConstant(E);
617 
618     return EmitLValue(E->getSubExpr()).getPointer();
619   }
620   Value *VisitUnaryDeref(const UnaryOperator *E) {
621     if (E->getType()->isVoidType())
622       return Visit(E->getSubExpr()); // the actual value should be unused
623     return EmitLoadOfLValue(E);
624   }
625   Value *VisitUnaryPlus(const UnaryOperator *E) {
626     // This differs from gcc, though, most likely due to a bug in gcc.
627     TestAndClearIgnoreResultAssign();
628     return Visit(E->getSubExpr());
629   }
630   Value *VisitUnaryMinus    (const UnaryOperator *E);
631   Value *VisitUnaryNot      (const UnaryOperator *E);
632   Value *VisitUnaryLNot     (const UnaryOperator *E);
633   Value *VisitUnaryReal     (const UnaryOperator *E);
634   Value *VisitUnaryImag     (const UnaryOperator *E);
635   Value *VisitUnaryExtension(const UnaryOperator *E) {
636     return Visit(E->getSubExpr());
637   }
638 
639   // C++
640   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
641     return EmitLoadOfLValue(E);
642   }
643   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
644     auto &Ctx = CGF.getContext();
645     APValue Evaluated =
646         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
647     return ConstantEmitter(CGF.CGM, &CGF)
648         .emitAbstract(SLE->getLocation(), Evaluated, SLE->getType());
649   }
650 
651   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
652     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
653     return Visit(DAE->getExpr());
654   }
655   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
656     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
657     return Visit(DIE->getExpr());
658   }
659   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
660     return CGF.LoadCXXThis();
661   }
662 
663   Value *VisitExprWithCleanups(ExprWithCleanups *E);
664   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
665     return CGF.EmitCXXNewExpr(E);
666   }
667   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
668     CGF.EmitCXXDeleteExpr(E);
669     return nullptr;
670   }
671 
672   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
673     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
674   }
675 
676   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
677     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
678   }
679 
680   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
681     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
682   }
683 
684   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
685     // C++ [expr.pseudo]p1:
686     //   The result shall only be used as the operand for the function call
687     //   operator (), and the result of such a call has type void. The only
688     //   effect is the evaluation of the postfix-expression before the dot or
689     //   arrow.
690     CGF.EmitScalarExpr(E->getBase());
691     return nullptr;
692   }
693 
694   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
695     return EmitNullValue(E->getType());
696   }
697 
698   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
699     CGF.EmitCXXThrowExpr(E);
700     return nullptr;
701   }
702 
703   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
704     return Builder.getInt1(E->getValue());
705   }
706 
707   // Binary Operators.
708   Value *EmitMul(const BinOpInfo &Ops) {
709     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
710       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
711       case LangOptions::SOB_Defined:
712         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
713       case LangOptions::SOB_Undefined:
714         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
715           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
716         LLVM_FALLTHROUGH;
717       case LangOptions::SOB_Trapping:
718         if (CanElideOverflowCheck(CGF.getContext(), Ops))
719           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
720         return EmitOverflowCheckedBinOp(Ops);
721       }
722     }
723 
724     if (Ops.Ty->isUnsignedIntegerType() &&
725         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
726         !CanElideOverflowCheck(CGF.getContext(), Ops))
727       return EmitOverflowCheckedBinOp(Ops);
728 
729     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
730       Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
731       return propagateFMFlags(V, Ops);
732     }
733     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
734   }
735   /// Create a binary op that checks for overflow.
736   /// Currently only supports +, - and *.
737   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
738 
739   // Check for undefined division and modulus behaviors.
740   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
741                                                   llvm::Value *Zero,bool isDiv);
742   // Common helper for getting how wide LHS of shift is.
743   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
744   Value *EmitDiv(const BinOpInfo &Ops);
745   Value *EmitRem(const BinOpInfo &Ops);
746   Value *EmitAdd(const BinOpInfo &Ops);
747   Value *EmitSub(const BinOpInfo &Ops);
748   Value *EmitShl(const BinOpInfo &Ops);
749   Value *EmitShr(const BinOpInfo &Ops);
750   Value *EmitAnd(const BinOpInfo &Ops) {
751     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
752   }
753   Value *EmitXor(const BinOpInfo &Ops) {
754     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
755   }
756   Value *EmitOr (const BinOpInfo &Ops) {
757     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
758   }
759 
760   // Helper functions for fixed point binary operations.
761   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
762 
763   BinOpInfo EmitBinOps(const BinaryOperator *E);
764   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
765                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
766                                   Value *&Result);
767 
768   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
769                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
770 
771   // Binary operators and binary compound assignment operators.
772 #define HANDLEBINOP(OP) \
773   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
774     return Emit ## OP(EmitBinOps(E));                                      \
775   }                                                                        \
776   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
777     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
778   }
779   HANDLEBINOP(Mul)
780   HANDLEBINOP(Div)
781   HANDLEBINOP(Rem)
782   HANDLEBINOP(Add)
783   HANDLEBINOP(Sub)
784   HANDLEBINOP(Shl)
785   HANDLEBINOP(Shr)
786   HANDLEBINOP(And)
787   HANDLEBINOP(Xor)
788   HANDLEBINOP(Or)
789 #undef HANDLEBINOP
790 
791   // Comparisons.
792   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
793                      llvm::CmpInst::Predicate SICmpOpc,
794                      llvm::CmpInst::Predicate FCmpOpc);
795 #define VISITCOMP(CODE, UI, SI, FP) \
796     Value *VisitBin##CODE(const BinaryOperator *E) { \
797       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
798                          llvm::FCmpInst::FP); }
799   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
800   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
801   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
802   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
803   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
804   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
805 #undef VISITCOMP
806 
807   Value *VisitBinAssign     (const BinaryOperator *E);
808 
809   Value *VisitBinLAnd       (const BinaryOperator *E);
810   Value *VisitBinLOr        (const BinaryOperator *E);
811   Value *VisitBinComma      (const BinaryOperator *E);
812 
813   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
814   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
815 
816   // Other Operators.
817   Value *VisitBlockExpr(const BlockExpr *BE);
818   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
819   Value *VisitChooseExpr(ChooseExpr *CE);
820   Value *VisitVAArgExpr(VAArgExpr *VE);
821   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
822     return CGF.EmitObjCStringLiteral(E);
823   }
824   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
825     return CGF.EmitObjCBoxedExpr(E);
826   }
827   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
828     return CGF.EmitObjCArrayLiteral(E);
829   }
830   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
831     return CGF.EmitObjCDictionaryLiteral(E);
832   }
833   Value *VisitAsTypeExpr(AsTypeExpr *CE);
834   Value *VisitAtomicExpr(AtomicExpr *AE);
835 };
836 }  // end anonymous namespace.
837 
838 //===----------------------------------------------------------------------===//
839 //                                Utilities
840 //===----------------------------------------------------------------------===//
841 
842 /// EmitConversionToBool - Convert the specified expression value to a
843 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
844 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
845   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
846 
847   if (SrcType->isRealFloatingType())
848     return EmitFloatToBoolConversion(Src);
849 
850   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
851     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
852 
853   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
854          "Unknown scalar type to convert");
855 
856   if (isa<llvm::IntegerType>(Src->getType()))
857     return EmitIntToBoolConversion(Src);
858 
859   assert(isa<llvm::PointerType>(Src->getType()));
860   return EmitPointerToBoolConversion(Src, SrcType);
861 }
862 
863 void ScalarExprEmitter::EmitFloatConversionCheck(
864     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
865     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
866   assert(SrcType->isFloatingType() && "not a conversion from floating point");
867   if (!isa<llvm::IntegerType>(DstTy))
868     return;
869 
870   CodeGenFunction::SanitizerScope SanScope(&CGF);
871   using llvm::APFloat;
872   using llvm::APSInt;
873 
874   llvm::Value *Check = nullptr;
875   const llvm::fltSemantics &SrcSema =
876     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
877 
878   // Floating-point to integer. This has undefined behavior if the source is
879   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
880   // to an integer).
881   unsigned Width = CGF.getContext().getIntWidth(DstType);
882   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
883 
884   APSInt Min = APSInt::getMinValue(Width, Unsigned);
885   APFloat MinSrc(SrcSema, APFloat::uninitialized);
886   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
887       APFloat::opOverflow)
888     // Don't need an overflow check for lower bound. Just check for
889     // -Inf/NaN.
890     MinSrc = APFloat::getInf(SrcSema, true);
891   else
892     // Find the largest value which is too small to represent (before
893     // truncation toward zero).
894     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
895 
896   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
897   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
898   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
899       APFloat::opOverflow)
900     // Don't need an overflow check for upper bound. Just check for
901     // +Inf/NaN.
902     MaxSrc = APFloat::getInf(SrcSema, false);
903   else
904     // Find the smallest value which is too large to represent (before
905     // truncation toward zero).
906     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
907 
908   // If we're converting from __half, convert the range to float to match
909   // the type of src.
910   if (OrigSrcType->isHalfType()) {
911     const llvm::fltSemantics &Sema =
912       CGF.getContext().getFloatTypeSemantics(SrcType);
913     bool IsInexact;
914     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
915     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
916   }
917 
918   llvm::Value *GE =
919     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
920   llvm::Value *LE =
921     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
922   Check = Builder.CreateAnd(GE, LE);
923 
924   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
925                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
926                                   CGF.EmitCheckTypeDescriptor(DstType)};
927   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
928                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
929 }
930 
931 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
932 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
933 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
934                  std::pair<llvm::Value *, SanitizerMask>>
935 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
936                                  QualType DstType, CGBuilderTy &Builder) {
937   llvm::Type *SrcTy = Src->getType();
938   llvm::Type *DstTy = Dst->getType();
939   (void)DstTy; // Only used in assert()
940 
941   // This should be truncation of integral types.
942   assert(Src != Dst);
943   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
944   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
945          "non-integer llvm type");
946 
947   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
948   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
949 
950   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
951   // Else, it is a signed truncation.
952   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
953   SanitizerMask Mask;
954   if (!SrcSigned && !DstSigned) {
955     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
956     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
957   } else {
958     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
959     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
960   }
961 
962   llvm::Value *Check = nullptr;
963   // 1. Extend the truncated value back to the same width as the Src.
964   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
965   // 2. Equality-compare with the original source value
966   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
967   // If the comparison result is 'i1 false', then the truncation was lossy.
968   return std::make_pair(Kind, std::make_pair(Check, Mask));
969 }
970 
971 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
972                                                    Value *Dst, QualType DstType,
973                                                    SourceLocation Loc) {
974   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
975     return;
976 
977   // We only care about int->int conversions here.
978   // We ignore conversions to/from pointer and/or bool.
979   if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
980     return;
981 
982   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
983   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
984   // This must be truncation. Else we do not care.
985   if (SrcBits <= DstBits)
986     return;
987 
988   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
989 
990   // If the integer sign change sanitizer is enabled,
991   // and we are truncating from larger unsigned type to smaller signed type,
992   // let that next sanitizer deal with it.
993   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
994   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
995   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
996       (!SrcSigned && DstSigned))
997     return;
998 
999   CodeGenFunction::SanitizerScope SanScope(&CGF);
1000 
1001   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1002             std::pair<llvm::Value *, SanitizerMask>>
1003       Check =
1004           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1005   // If the comparison result is 'i1 false', then the truncation was lossy.
1006 
1007   // Do we care about this type of truncation?
1008   if (!CGF.SanOpts.has(Check.second.second))
1009     return;
1010 
1011   llvm::Constant *StaticArgs[] = {
1012       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1013       CGF.EmitCheckTypeDescriptor(DstType),
1014       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1015   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1016                 {Src, Dst});
1017 }
1018 
1019 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1020 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1021 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1022                  std::pair<llvm::Value *, SanitizerMask>>
1023 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1024                                  QualType DstType, CGBuilderTy &Builder) {
1025   llvm::Type *SrcTy = Src->getType();
1026   llvm::Type *DstTy = Dst->getType();
1027 
1028   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1029          "non-integer llvm type");
1030 
1031   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1032   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1033   (void)SrcSigned; // Only used in assert()
1034   (void)DstSigned; // Only used in assert()
1035   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1036   unsigned DstBits = DstTy->getScalarSizeInBits();
1037   (void)SrcBits; // Only used in assert()
1038   (void)DstBits; // Only used in assert()
1039 
1040   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1041          "either the widths should be different, or the signednesses.");
1042 
1043   // NOTE: zero value is considered to be non-negative.
1044   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1045                                        const char *Name) -> Value * {
1046     // Is this value a signed type?
1047     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1048     llvm::Type *VTy = V->getType();
1049     if (!VSigned) {
1050       // If the value is unsigned, then it is never negative.
1051       // FIXME: can we encounter non-scalar VTy here?
1052       return llvm::ConstantInt::getFalse(VTy->getContext());
1053     }
1054     // Get the zero of the same type with which we will be comparing.
1055     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1056     // %V.isnegative = icmp slt %V, 0
1057     // I.e is %V *strictly* less than zero, does it have negative value?
1058     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1059                               llvm::Twine(Name) + "." + V->getName() +
1060                                   ".negativitycheck");
1061   };
1062 
1063   // 1. Was the old Value negative?
1064   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1065   // 2. Is the new Value negative?
1066   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1067   // 3. Now, was the 'negativity status' preserved during the conversion?
1068   //    NOTE: conversion from negative to zero is considered to change the sign.
1069   //    (We want to get 'false' when the conversion changed the sign)
1070   //    So we should just equality-compare the negativity statuses.
1071   llvm::Value *Check = nullptr;
1072   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1073   // If the comparison result is 'false', then the conversion changed the sign.
1074   return std::make_pair(
1075       ScalarExprEmitter::ICCK_IntegerSignChange,
1076       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1077 }
1078 
1079 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1080                                                    Value *Dst, QualType DstType,
1081                                                    SourceLocation Loc) {
1082   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1083     return;
1084 
1085   llvm::Type *SrcTy = Src->getType();
1086   llvm::Type *DstTy = Dst->getType();
1087 
1088   // We only care about int->int conversions here.
1089   // We ignore conversions to/from pointer and/or bool.
1090   if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1091     return;
1092 
1093   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1094   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1095   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1096   unsigned DstBits = DstTy->getScalarSizeInBits();
1097 
1098   // Now, we do not need to emit the check in *all* of the cases.
1099   // We can avoid emitting it in some obvious cases where it would have been
1100   // dropped by the opt passes (instcombine) always anyways.
1101   // If it's a cast between effectively the same type, no check.
1102   // NOTE: this is *not* equivalent to checking the canonical types.
1103   if (SrcSigned == DstSigned && SrcBits == DstBits)
1104     return;
1105   // At least one of the values needs to have signed type.
1106   // If both are unsigned, then obviously, neither of them can be negative.
1107   if (!SrcSigned && !DstSigned)
1108     return;
1109   // If the conversion is to *larger* *signed* type, then no check is needed.
1110   // Because either sign-extension happens (so the sign will remain),
1111   // or zero-extension will happen (the sign bit will be zero.)
1112   if ((DstBits > SrcBits) && DstSigned)
1113     return;
1114   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1115       (SrcBits > DstBits) && SrcSigned) {
1116     // If the signed integer truncation sanitizer is enabled,
1117     // and this is a truncation from signed type, then no check is needed.
1118     // Because here sign change check is interchangeable with truncation check.
1119     return;
1120   }
1121   // That's it. We can't rule out any more cases with the data we have.
1122 
1123   CodeGenFunction::SanitizerScope SanScope(&CGF);
1124 
1125   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1126             std::pair<llvm::Value *, SanitizerMask>>
1127       Check;
1128 
1129   // Each of these checks needs to return 'false' when an issue was detected.
1130   ImplicitConversionCheckKind CheckKind;
1131   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1132   // So we can 'and' all the checks together, and still get 'false',
1133   // if at least one of the checks detected an issue.
1134 
1135   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1136   CheckKind = Check.first;
1137   Checks.emplace_back(Check.second);
1138 
1139   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1140       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1141     // If the signed integer truncation sanitizer was enabled,
1142     // and we are truncating from larger unsigned type to smaller signed type,
1143     // let's handle the case we skipped in that check.
1144     Check =
1145         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1146     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1147     Checks.emplace_back(Check.second);
1148     // If the comparison result is 'i1 false', then the truncation was lossy.
1149   }
1150 
1151   llvm::Constant *StaticArgs[] = {
1152       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1153       CGF.EmitCheckTypeDescriptor(DstType),
1154       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1155   // EmitCheck() will 'and' all the checks together.
1156   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1157                 {Src, Dst});
1158 }
1159 
1160 /// Emit a conversion from the specified type to the specified destination type,
1161 /// both of which are LLVM scalar types.
1162 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1163                                                QualType DstType,
1164                                                SourceLocation Loc,
1165                                                ScalarConversionOpts Opts) {
1166   // All conversions involving fixed point types should be handled by the
1167   // EmitFixedPoint family functions. This is done to prevent bloating up this
1168   // function more, and although fixed point numbers are represented by
1169   // integers, we do not want to follow any logic that assumes they should be
1170   // treated as integers.
1171   // TODO(leonardchan): When necessary, add another if statement checking for
1172   // conversions to fixed point types from other types.
1173   if (SrcType->isFixedPointType()) {
1174     if (DstType->isBooleanType())
1175       // It is important that we check this before checking if the dest type is
1176       // an integer because booleans are technically integer types.
1177       // We do not need to check the padding bit on unsigned types if unsigned
1178       // padding is enabled because overflow into this bit is undefined
1179       // behavior.
1180       return Builder.CreateIsNotNull(Src, "tobool");
1181     if (DstType->isFixedPointType() || DstType->isIntegerType())
1182       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1183 
1184     llvm_unreachable(
1185         "Unhandled scalar conversion from a fixed point type to another type.");
1186   } else if (DstType->isFixedPointType()) {
1187     if (SrcType->isIntegerType())
1188       // This also includes converting booleans and enums to fixed point types.
1189       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1190 
1191     llvm_unreachable(
1192         "Unhandled scalar conversion to a fixed point type from another type.");
1193   }
1194 
1195   QualType NoncanonicalSrcType = SrcType;
1196   QualType NoncanonicalDstType = DstType;
1197 
1198   SrcType = CGF.getContext().getCanonicalType(SrcType);
1199   DstType = CGF.getContext().getCanonicalType(DstType);
1200   if (SrcType == DstType) return Src;
1201 
1202   if (DstType->isVoidType()) return nullptr;
1203 
1204   llvm::Value *OrigSrc = Src;
1205   QualType OrigSrcType = SrcType;
1206   llvm::Type *SrcTy = Src->getType();
1207 
1208   // Handle conversions to bool first, they are special: comparisons against 0.
1209   if (DstType->isBooleanType())
1210     return EmitConversionToBool(Src, SrcType);
1211 
1212   llvm::Type *DstTy = ConvertType(DstType);
1213 
1214   // Cast from half through float if half isn't a native type.
1215   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1216     // Cast to FP using the intrinsic if the half type itself isn't supported.
1217     if (DstTy->isFloatingPointTy()) {
1218       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1219         return Builder.CreateCall(
1220             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1221             Src);
1222     } else {
1223       // Cast to other types through float, using either the intrinsic or FPExt,
1224       // depending on whether the half type itself is supported
1225       // (as opposed to operations on half, available with NativeHalfType).
1226       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1227         Src = Builder.CreateCall(
1228             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1229                                  CGF.CGM.FloatTy),
1230             Src);
1231       } else {
1232         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1233       }
1234       SrcType = CGF.getContext().FloatTy;
1235       SrcTy = CGF.FloatTy;
1236     }
1237   }
1238 
1239   // Ignore conversions like int -> uint.
1240   if (SrcTy == DstTy) {
1241     if (Opts.EmitImplicitIntegerSignChangeChecks)
1242       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1243                                  NoncanonicalDstType, Loc);
1244 
1245     return Src;
1246   }
1247 
1248   // Handle pointer conversions next: pointers can only be converted to/from
1249   // other pointers and integers. Check for pointer types in terms of LLVM, as
1250   // some native types (like Obj-C id) may map to a pointer type.
1251   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1252     // The source value may be an integer, or a pointer.
1253     if (isa<llvm::PointerType>(SrcTy))
1254       return Builder.CreateBitCast(Src, DstTy, "conv");
1255 
1256     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1257     // First, convert to the correct width so that we control the kind of
1258     // extension.
1259     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1260     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1261     llvm::Value* IntResult =
1262         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1263     // Then, cast to pointer.
1264     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1265   }
1266 
1267   if (isa<llvm::PointerType>(SrcTy)) {
1268     // Must be an ptr to int cast.
1269     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1270     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1271   }
1272 
1273   // A scalar can be splatted to an extended vector of the same element type
1274   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1275     // Sema should add casts to make sure that the source expression's type is
1276     // the same as the vector's element type (sans qualifiers)
1277     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1278                SrcType.getTypePtr() &&
1279            "Splatted expr doesn't match with vector element type?");
1280 
1281     // Splat the element across to all elements
1282     unsigned NumElements = DstTy->getVectorNumElements();
1283     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1284   }
1285 
1286   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1287     // Allow bitcast from vector to integer/fp of the same size.
1288     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1289     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1290     if (SrcSize == DstSize)
1291       return Builder.CreateBitCast(Src, DstTy, "conv");
1292 
1293     // Conversions between vectors of different sizes are not allowed except
1294     // when vectors of half are involved. Operations on storage-only half
1295     // vectors require promoting half vector operands to float vectors and
1296     // truncating the result, which is either an int or float vector, to a
1297     // short or half vector.
1298 
1299     // Source and destination are both expected to be vectors.
1300     llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1301     llvm::Type *DstElementTy = DstTy->getVectorElementType();
1302     (void)DstElementTy;
1303 
1304     assert(((SrcElementTy->isIntegerTy() &&
1305              DstElementTy->isIntegerTy()) ||
1306             (SrcElementTy->isFloatingPointTy() &&
1307              DstElementTy->isFloatingPointTy())) &&
1308            "unexpected conversion between a floating-point vector and an "
1309            "integer vector");
1310 
1311     // Truncate an i32 vector to an i16 vector.
1312     if (SrcElementTy->isIntegerTy())
1313       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1314 
1315     // Truncate a float vector to a half vector.
1316     if (SrcSize > DstSize)
1317       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1318 
1319     // Promote a half vector to a float vector.
1320     return Builder.CreateFPExt(Src, DstTy, "conv");
1321   }
1322 
1323   // Finally, we have the arithmetic types: real int/float.
1324   Value *Res = nullptr;
1325   llvm::Type *ResTy = DstTy;
1326 
1327   // An overflowing conversion has undefined behavior if either the source type
1328   // or the destination type is a floating-point type. However, we consider the
1329   // range of representable values for all floating-point types to be
1330   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1331   // floating-point type.
1332   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1333       OrigSrcType->isFloatingType())
1334     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1335                              Loc);
1336 
1337   // Cast to half through float if half isn't a native type.
1338   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1339     // Make sure we cast in a single step if from another FP type.
1340     if (SrcTy->isFloatingPointTy()) {
1341       // Use the intrinsic if the half type itself isn't supported
1342       // (as opposed to operations on half, available with NativeHalfType).
1343       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1344         return Builder.CreateCall(
1345             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1346       // If the half type is supported, just use an fptrunc.
1347       return Builder.CreateFPTrunc(Src, DstTy);
1348     }
1349     DstTy = CGF.FloatTy;
1350   }
1351 
1352   if (isa<llvm::IntegerType>(SrcTy)) {
1353     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1354     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1355       InputSigned = true;
1356     }
1357     if (isa<llvm::IntegerType>(DstTy))
1358       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1359     else if (InputSigned)
1360       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1361     else
1362       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1363   } else if (isa<llvm::IntegerType>(DstTy)) {
1364     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1365     if (DstType->isSignedIntegerOrEnumerationType())
1366       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1367     else
1368       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1369   } else {
1370     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1371            "Unknown real conversion");
1372     if (DstTy->getTypeID() < SrcTy->getTypeID())
1373       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1374     else
1375       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1376   }
1377 
1378   if (DstTy != ResTy) {
1379     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1380       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1381       Res = Builder.CreateCall(
1382         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1383         Res);
1384     } else {
1385       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1386     }
1387   }
1388 
1389   if (Opts.EmitImplicitIntegerTruncationChecks)
1390     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1391                                NoncanonicalDstType, Loc);
1392 
1393   if (Opts.EmitImplicitIntegerSignChangeChecks)
1394     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1395                                NoncanonicalDstType, Loc);
1396 
1397   return Res;
1398 }
1399 
1400 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1401                                                    QualType DstTy,
1402                                                    SourceLocation Loc) {
1403   FixedPointSemantics SrcFPSema =
1404       CGF.getContext().getFixedPointSemantics(SrcTy);
1405   FixedPointSemantics DstFPSema =
1406       CGF.getContext().getFixedPointSemantics(DstTy);
1407   return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1408                                   DstTy->isIntegerType());
1409 }
1410 
1411 Value *ScalarExprEmitter::EmitFixedPointConversion(
1412     Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1413     SourceLocation Loc, bool DstIsInteger) {
1414   using llvm::APInt;
1415   using llvm::ConstantInt;
1416   using llvm::Value;
1417 
1418   unsigned SrcWidth = SrcFPSema.getWidth();
1419   unsigned DstWidth = DstFPSema.getWidth();
1420   unsigned SrcScale = SrcFPSema.getScale();
1421   unsigned DstScale = DstFPSema.getScale();
1422   bool SrcIsSigned = SrcFPSema.isSigned();
1423   bool DstIsSigned = DstFPSema.isSigned();
1424 
1425   llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1426 
1427   Value *Result = Src;
1428   unsigned ResultWidth = SrcWidth;
1429 
1430   // Downscale.
1431   if (DstScale < SrcScale) {
1432     // When converting to integers, we round towards zero. For negative numbers,
1433     // right shifting rounds towards negative infinity. In this case, we can
1434     // just round up before shifting.
1435     if (DstIsInteger && SrcIsSigned) {
1436       Value *Zero = llvm::Constant::getNullValue(Result->getType());
1437       Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1438       Value *LowBits = ConstantInt::get(
1439           CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1440       Value *Rounded = Builder.CreateAdd(Result, LowBits);
1441       Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1442     }
1443 
1444     Result = SrcIsSigned
1445                  ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1446                  : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1447   }
1448 
1449   if (!DstFPSema.isSaturated()) {
1450     // Resize.
1451     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1452 
1453     // Upscale.
1454     if (DstScale > SrcScale)
1455       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1456   } else {
1457     // Adjust the number of fractional bits.
1458     if (DstScale > SrcScale) {
1459       // Compare to DstWidth to prevent resizing twice.
1460       ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1461       llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1462       Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1463       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1464     }
1465 
1466     // Handle saturation.
1467     bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1468     if (LessIntBits) {
1469       Value *Max = ConstantInt::get(
1470           CGF.getLLVMContext(),
1471           APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1472       Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1473                                    : Builder.CreateICmpUGT(Result, Max);
1474       Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1475     }
1476     // Cannot overflow min to dest type if src is unsigned since all fixed
1477     // point types can cover the unsigned min of 0.
1478     if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1479       Value *Min = ConstantInt::get(
1480           CGF.getLLVMContext(),
1481           APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1482       Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1483       Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1484     }
1485 
1486     // Resize the integer part to get the final destination size.
1487     if (ResultWidth != DstWidth)
1488       Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1489   }
1490   return Result;
1491 }
1492 
1493 /// Emit a conversion from the specified complex type to the specified
1494 /// destination type, where the destination type is an LLVM scalar type.
1495 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1496     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1497     SourceLocation Loc) {
1498   // Get the source element type.
1499   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1500 
1501   // Handle conversions to bool first, they are special: comparisons against 0.
1502   if (DstTy->isBooleanType()) {
1503     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1504     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1505     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1506     return Builder.CreateOr(Src.first, Src.second, "tobool");
1507   }
1508 
1509   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1510   // the imaginary part of the complex value is discarded and the value of the
1511   // real part is converted according to the conversion rules for the
1512   // corresponding real type.
1513   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1514 }
1515 
1516 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1517   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1518 }
1519 
1520 /// Emit a sanitization check for the given "binary" operation (which
1521 /// might actually be a unary increment which has been lowered to a binary
1522 /// operation). The check passes if all values in \p Checks (which are \c i1),
1523 /// are \c true.
1524 void ScalarExprEmitter::EmitBinOpCheck(
1525     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1526   assert(CGF.IsSanitizerScope);
1527   SanitizerHandler Check;
1528   SmallVector<llvm::Constant *, 4> StaticData;
1529   SmallVector<llvm::Value *, 2> DynamicData;
1530 
1531   BinaryOperatorKind Opcode = Info.Opcode;
1532   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1533     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1534 
1535   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1536   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1537   if (UO && UO->getOpcode() == UO_Minus) {
1538     Check = SanitizerHandler::NegateOverflow;
1539     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1540     DynamicData.push_back(Info.RHS);
1541   } else {
1542     if (BinaryOperator::isShiftOp(Opcode)) {
1543       // Shift LHS negative or too large, or RHS out of bounds.
1544       Check = SanitizerHandler::ShiftOutOfBounds;
1545       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1546       StaticData.push_back(
1547         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1548       StaticData.push_back(
1549         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1550     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1551       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1552       Check = SanitizerHandler::DivremOverflow;
1553       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1554     } else {
1555       // Arithmetic overflow (+, -, *).
1556       switch (Opcode) {
1557       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1558       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1559       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1560       default: llvm_unreachable("unexpected opcode for bin op check");
1561       }
1562       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1563     }
1564     DynamicData.push_back(Info.LHS);
1565     DynamicData.push_back(Info.RHS);
1566   }
1567 
1568   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1569 }
1570 
1571 //===----------------------------------------------------------------------===//
1572 //                            Visitor Methods
1573 //===----------------------------------------------------------------------===//
1574 
1575 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1576   CGF.ErrorUnsupported(E, "scalar expression");
1577   if (E->getType()->isVoidType())
1578     return nullptr;
1579   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1580 }
1581 
1582 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1583   // Vector Mask Case
1584   if (E->getNumSubExprs() == 2) {
1585     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1586     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1587     Value *Mask;
1588 
1589     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1590     unsigned LHSElts = LTy->getNumElements();
1591 
1592     Mask = RHS;
1593 
1594     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1595 
1596     // Mask off the high bits of each shuffle index.
1597     Value *MaskBits =
1598         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1599     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1600 
1601     // newv = undef
1602     // mask = mask & maskbits
1603     // for each elt
1604     //   n = extract mask i
1605     //   x = extract val n
1606     //   newv = insert newv, x, i
1607     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1608                                                   MTy->getNumElements());
1609     Value* NewV = llvm::UndefValue::get(RTy);
1610     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1611       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1612       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1613 
1614       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1615       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1616     }
1617     return NewV;
1618   }
1619 
1620   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1621   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1622 
1623   SmallVector<llvm::Constant*, 32> indices;
1624   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1625     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1626     // Check for -1 and output it as undef in the IR.
1627     if (Idx.isSigned() && Idx.isAllOnesValue())
1628       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1629     else
1630       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1631   }
1632 
1633   Value *SV = llvm::ConstantVector::get(indices);
1634   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1635 }
1636 
1637 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1638   QualType SrcType = E->getSrcExpr()->getType(),
1639            DstType = E->getType();
1640 
1641   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1642 
1643   SrcType = CGF.getContext().getCanonicalType(SrcType);
1644   DstType = CGF.getContext().getCanonicalType(DstType);
1645   if (SrcType == DstType) return Src;
1646 
1647   assert(SrcType->isVectorType() &&
1648          "ConvertVector source type must be a vector");
1649   assert(DstType->isVectorType() &&
1650          "ConvertVector destination type must be a vector");
1651 
1652   llvm::Type *SrcTy = Src->getType();
1653   llvm::Type *DstTy = ConvertType(DstType);
1654 
1655   // Ignore conversions like int -> uint.
1656   if (SrcTy == DstTy)
1657     return Src;
1658 
1659   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1660            DstEltType = DstType->getAs<VectorType>()->getElementType();
1661 
1662   assert(SrcTy->isVectorTy() &&
1663          "ConvertVector source IR type must be a vector");
1664   assert(DstTy->isVectorTy() &&
1665          "ConvertVector destination IR type must be a vector");
1666 
1667   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1668              *DstEltTy = DstTy->getVectorElementType();
1669 
1670   if (DstEltType->isBooleanType()) {
1671     assert((SrcEltTy->isFloatingPointTy() ||
1672             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1673 
1674     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1675     if (SrcEltTy->isFloatingPointTy()) {
1676       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1677     } else {
1678       return Builder.CreateICmpNE(Src, Zero, "tobool");
1679     }
1680   }
1681 
1682   // We have the arithmetic types: real int/float.
1683   Value *Res = nullptr;
1684 
1685   if (isa<llvm::IntegerType>(SrcEltTy)) {
1686     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1687     if (isa<llvm::IntegerType>(DstEltTy))
1688       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1689     else if (InputSigned)
1690       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1691     else
1692       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1693   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1694     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1695     if (DstEltType->isSignedIntegerOrEnumerationType())
1696       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1697     else
1698       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1699   } else {
1700     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1701            "Unknown real conversion");
1702     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1703       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1704     else
1705       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1706   }
1707 
1708   return Res;
1709 }
1710 
1711 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1712   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1713     CGF.EmitIgnoredExpr(E->getBase());
1714     return CGF.emitScalarConstant(Constant, E);
1715   } else {
1716     Expr::EvalResult Result;
1717     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1718       llvm::APSInt Value = Result.Val.getInt();
1719       CGF.EmitIgnoredExpr(E->getBase());
1720       return Builder.getInt(Value);
1721     }
1722   }
1723 
1724   return EmitLoadOfLValue(E);
1725 }
1726 
1727 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1728   TestAndClearIgnoreResultAssign();
1729 
1730   // Emit subscript expressions in rvalue context's.  For most cases, this just
1731   // loads the lvalue formed by the subscript expr.  However, we have to be
1732   // careful, because the base of a vector subscript is occasionally an rvalue,
1733   // so we can't get it as an lvalue.
1734   if (!E->getBase()->getType()->isVectorType())
1735     return EmitLoadOfLValue(E);
1736 
1737   // Handle the vector case.  The base must be a vector, the index must be an
1738   // integer value.
1739   Value *Base = Visit(E->getBase());
1740   Value *Idx  = Visit(E->getIdx());
1741   QualType IdxTy = E->getIdx()->getType();
1742 
1743   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1744     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1745 
1746   return Builder.CreateExtractElement(Base, Idx, "vecext");
1747 }
1748 
1749 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1750                                   unsigned Off, llvm::Type *I32Ty) {
1751   int MV = SVI->getMaskValue(Idx);
1752   if (MV == -1)
1753     return llvm::UndefValue::get(I32Ty);
1754   return llvm::ConstantInt::get(I32Ty, Off+MV);
1755 }
1756 
1757 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1758   if (C->getBitWidth() != 32) {
1759       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1760                                                     C->getZExtValue()) &&
1761              "Index operand too large for shufflevector mask!");
1762       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1763   }
1764   return C;
1765 }
1766 
1767 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1768   bool Ignore = TestAndClearIgnoreResultAssign();
1769   (void)Ignore;
1770   assert (Ignore == false && "init list ignored");
1771   unsigned NumInitElements = E->getNumInits();
1772 
1773   if (E->hadArrayRangeDesignator())
1774     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1775 
1776   llvm::VectorType *VType =
1777     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1778 
1779   if (!VType) {
1780     if (NumInitElements == 0) {
1781       // C++11 value-initialization for the scalar.
1782       return EmitNullValue(E->getType());
1783     }
1784     // We have a scalar in braces. Just use the first element.
1785     return Visit(E->getInit(0));
1786   }
1787 
1788   unsigned ResElts = VType->getNumElements();
1789 
1790   // Loop over initializers collecting the Value for each, and remembering
1791   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1792   // us to fold the shuffle for the swizzle into the shuffle for the vector
1793   // initializer, since LLVM optimizers generally do not want to touch
1794   // shuffles.
1795   unsigned CurIdx = 0;
1796   bool VIsUndefShuffle = false;
1797   llvm::Value *V = llvm::UndefValue::get(VType);
1798   for (unsigned i = 0; i != NumInitElements; ++i) {
1799     Expr *IE = E->getInit(i);
1800     Value *Init = Visit(IE);
1801     SmallVector<llvm::Constant*, 16> Args;
1802 
1803     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1804 
1805     // Handle scalar elements.  If the scalar initializer is actually one
1806     // element of a different vector of the same width, use shuffle instead of
1807     // extract+insert.
1808     if (!VVT) {
1809       if (isa<ExtVectorElementExpr>(IE)) {
1810         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1811 
1812         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1813           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1814           Value *LHS = nullptr, *RHS = nullptr;
1815           if (CurIdx == 0) {
1816             // insert into undef -> shuffle (src, undef)
1817             // shufflemask must use an i32
1818             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1819             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1820 
1821             LHS = EI->getVectorOperand();
1822             RHS = V;
1823             VIsUndefShuffle = true;
1824           } else if (VIsUndefShuffle) {
1825             // insert into undefshuffle && size match -> shuffle (v, src)
1826             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1827             for (unsigned j = 0; j != CurIdx; ++j)
1828               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1829             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1830             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1831 
1832             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1833             RHS = EI->getVectorOperand();
1834             VIsUndefShuffle = false;
1835           }
1836           if (!Args.empty()) {
1837             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1838             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1839             ++CurIdx;
1840             continue;
1841           }
1842         }
1843       }
1844       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1845                                       "vecinit");
1846       VIsUndefShuffle = false;
1847       ++CurIdx;
1848       continue;
1849     }
1850 
1851     unsigned InitElts = VVT->getNumElements();
1852 
1853     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1854     // input is the same width as the vector being constructed, generate an
1855     // optimized shuffle of the swizzle input into the result.
1856     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1857     if (isa<ExtVectorElementExpr>(IE)) {
1858       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1859       Value *SVOp = SVI->getOperand(0);
1860       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1861 
1862       if (OpTy->getNumElements() == ResElts) {
1863         for (unsigned j = 0; j != CurIdx; ++j) {
1864           // If the current vector initializer is a shuffle with undef, merge
1865           // this shuffle directly into it.
1866           if (VIsUndefShuffle) {
1867             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1868                                       CGF.Int32Ty));
1869           } else {
1870             Args.push_back(Builder.getInt32(j));
1871           }
1872         }
1873         for (unsigned j = 0, je = InitElts; j != je; ++j)
1874           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1875         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1876 
1877         if (VIsUndefShuffle)
1878           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1879 
1880         Init = SVOp;
1881       }
1882     }
1883 
1884     // Extend init to result vector length, and then shuffle its contribution
1885     // to the vector initializer into V.
1886     if (Args.empty()) {
1887       for (unsigned j = 0; j != InitElts; ++j)
1888         Args.push_back(Builder.getInt32(j));
1889       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1890       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1891       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1892                                          Mask, "vext");
1893 
1894       Args.clear();
1895       for (unsigned j = 0; j != CurIdx; ++j)
1896         Args.push_back(Builder.getInt32(j));
1897       for (unsigned j = 0; j != InitElts; ++j)
1898         Args.push_back(Builder.getInt32(j+Offset));
1899       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1900     }
1901 
1902     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1903     // merging subsequent shuffles into this one.
1904     if (CurIdx == 0)
1905       std::swap(V, Init);
1906     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1907     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1908     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1909     CurIdx += InitElts;
1910   }
1911 
1912   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1913   // Emit remaining default initializers.
1914   llvm::Type *EltTy = VType->getElementType();
1915 
1916   // Emit remaining default initializers
1917   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1918     Value *Idx = Builder.getInt32(CurIdx);
1919     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1920     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1921   }
1922   return V;
1923 }
1924 
1925 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1926   const Expr *E = CE->getSubExpr();
1927 
1928   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1929     return false;
1930 
1931   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1932     // We always assume that 'this' is never null.
1933     return false;
1934   }
1935 
1936   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1937     // And that glvalue casts are never null.
1938     if (ICE->getValueKind() != VK_RValue)
1939       return false;
1940   }
1941 
1942   return true;
1943 }
1944 
1945 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1946 // have to handle a more broad range of conversions than explicit casts, as they
1947 // handle things like function to ptr-to-function decay etc.
1948 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1949   Expr *E = CE->getSubExpr();
1950   QualType DestTy = CE->getType();
1951   CastKind Kind = CE->getCastKind();
1952 
1953   // These cases are generally not written to ignore the result of
1954   // evaluating their sub-expressions, so we clear this now.
1955   bool Ignored = TestAndClearIgnoreResultAssign();
1956 
1957   // Since almost all cast kinds apply to scalars, this switch doesn't have
1958   // a default case, so the compiler will warn on a missing case.  The cases
1959   // are in the same order as in the CastKind enum.
1960   switch (Kind) {
1961   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1962   case CK_BuiltinFnToFnPtr:
1963     llvm_unreachable("builtin functions are handled elsewhere");
1964 
1965   case CK_LValueBitCast:
1966   case CK_ObjCObjectLValueCast: {
1967     Address Addr = EmitLValue(E).getAddress();
1968     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1969     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1970     return EmitLoadOfLValue(LV, CE->getExprLoc());
1971   }
1972 
1973   case CK_LValueToRValueBitCast: {
1974     LValue SourceLVal = CGF.EmitLValue(E);
1975     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(),
1976                                                 CGF.ConvertTypeForMem(DestTy));
1977     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1978     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
1979     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1980   }
1981 
1982   case CK_CPointerToObjCPointerCast:
1983   case CK_BlockPointerToObjCPointerCast:
1984   case CK_AnyPointerToBlockPointerCast:
1985   case CK_BitCast: {
1986     Value *Src = Visit(const_cast<Expr*>(E));
1987     llvm::Type *SrcTy = Src->getType();
1988     llvm::Type *DstTy = ConvertType(DestTy);
1989     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1990         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1991       llvm_unreachable("wrong cast for pointers in different address spaces"
1992                        "(must be an address space cast)!");
1993     }
1994 
1995     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1996       if (auto PT = DestTy->getAs<PointerType>())
1997         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1998                                       /*MayBeNull=*/true,
1999                                       CodeGenFunction::CFITCK_UnrelatedCast,
2000                                       CE->getBeginLoc());
2001     }
2002 
2003     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2004       const QualType SrcType = E->getType();
2005 
2006       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2007         // Casting to pointer that could carry dynamic information (provided by
2008         // invariant.group) requires launder.
2009         Src = Builder.CreateLaunderInvariantGroup(Src);
2010       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2011         // Casting to pointer that does not carry dynamic information (provided
2012         // by invariant.group) requires stripping it.  Note that we don't do it
2013         // if the source could not be dynamic type and destination could be
2014         // dynamic because dynamic information is already laundered.  It is
2015         // because launder(strip(src)) == launder(src), so there is no need to
2016         // add extra strip before launder.
2017         Src = Builder.CreateStripInvariantGroup(Src);
2018       }
2019     }
2020 
2021     // Update heapallocsite metadata when there is an explicit cast.
2022     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
2023       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
2024           CGF.getDebugInfo()->
2025               addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
2026 
2027     return Builder.CreateBitCast(Src, DstTy);
2028   }
2029   case CK_AddressSpaceConversion: {
2030     Expr::EvalResult Result;
2031     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2032         Result.Val.isNullPointer()) {
2033       // If E has side effect, it is emitted even if its final result is a
2034       // null pointer. In that case, a DCE pass should be able to
2035       // eliminate the useless instructions emitted during translating E.
2036       if (Result.HasSideEffects)
2037         Visit(E);
2038       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2039           ConvertType(DestTy)), DestTy);
2040     }
2041     // Since target may map different address spaces in AST to the same address
2042     // space, an address space conversion may end up as a bitcast.
2043     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2044         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2045         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2046   }
2047   case CK_AtomicToNonAtomic:
2048   case CK_NonAtomicToAtomic:
2049   case CK_NoOp:
2050   case CK_UserDefinedConversion:
2051     return Visit(const_cast<Expr*>(E));
2052 
2053   case CK_BaseToDerived: {
2054     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2055     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2056 
2057     Address Base = CGF.EmitPointerWithAlignment(E);
2058     Address Derived =
2059       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2060                                    CE->path_begin(), CE->path_end(),
2061                                    CGF.ShouldNullCheckClassCastValue(CE));
2062 
2063     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2064     // performed and the object is not of the derived type.
2065     if (CGF.sanitizePerformTypeCheck())
2066       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2067                         Derived.getPointer(), DestTy->getPointeeType());
2068 
2069     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2070       CGF.EmitVTablePtrCheckForCast(
2071           DestTy->getPointeeType(), Derived.getPointer(),
2072           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2073           CE->getBeginLoc());
2074 
2075     return Derived.getPointer();
2076   }
2077   case CK_UncheckedDerivedToBase:
2078   case CK_DerivedToBase: {
2079     // The EmitPointerWithAlignment path does this fine; just discard
2080     // the alignment.
2081     return CGF.EmitPointerWithAlignment(CE).getPointer();
2082   }
2083 
2084   case CK_Dynamic: {
2085     Address V = CGF.EmitPointerWithAlignment(E);
2086     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2087     return CGF.EmitDynamicCast(V, DCE);
2088   }
2089 
2090   case CK_ArrayToPointerDecay:
2091     return CGF.EmitArrayToPointerDecay(E).getPointer();
2092   case CK_FunctionToPointerDecay:
2093     return EmitLValue(E).getPointer();
2094 
2095   case CK_NullToPointer:
2096     if (MustVisitNullValue(E))
2097       CGF.EmitIgnoredExpr(E);
2098 
2099     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2100                               DestTy);
2101 
2102   case CK_NullToMemberPointer: {
2103     if (MustVisitNullValue(E))
2104       CGF.EmitIgnoredExpr(E);
2105 
2106     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2107     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2108   }
2109 
2110   case CK_ReinterpretMemberPointer:
2111   case CK_BaseToDerivedMemberPointer:
2112   case CK_DerivedToBaseMemberPointer: {
2113     Value *Src = Visit(E);
2114 
2115     // Note that the AST doesn't distinguish between checked and
2116     // unchecked member pointer conversions, so we always have to
2117     // implement checked conversions here.  This is inefficient when
2118     // actual control flow may be required in order to perform the
2119     // check, which it is for data member pointers (but not member
2120     // function pointers on Itanium and ARM).
2121     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2122   }
2123 
2124   case CK_ARCProduceObject:
2125     return CGF.EmitARCRetainScalarExpr(E);
2126   case CK_ARCConsumeObject:
2127     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2128   case CK_ARCReclaimReturnedObject:
2129     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2130   case CK_ARCExtendBlockObject:
2131     return CGF.EmitARCExtendBlockObject(E);
2132 
2133   case CK_CopyAndAutoreleaseBlockObject:
2134     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2135 
2136   case CK_FloatingRealToComplex:
2137   case CK_FloatingComplexCast:
2138   case CK_IntegralRealToComplex:
2139   case CK_IntegralComplexCast:
2140   case CK_IntegralComplexToFloatingComplex:
2141   case CK_FloatingComplexToIntegralComplex:
2142   case CK_ConstructorConversion:
2143   case CK_ToUnion:
2144     llvm_unreachable("scalar cast to non-scalar value");
2145 
2146   case CK_LValueToRValue:
2147     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2148     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2149     return Visit(const_cast<Expr*>(E));
2150 
2151   case CK_IntegralToPointer: {
2152     Value *Src = Visit(const_cast<Expr*>(E));
2153 
2154     // First, convert to the correct width so that we control the kind of
2155     // extension.
2156     auto DestLLVMTy = ConvertType(DestTy);
2157     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2158     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2159     llvm::Value* IntResult =
2160       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2161 
2162     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2163 
2164     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2165       // Going from integer to pointer that could be dynamic requires reloading
2166       // dynamic information from invariant.group.
2167       if (DestTy.mayBeDynamicClass())
2168         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2169     }
2170     return IntToPtr;
2171   }
2172   case CK_PointerToIntegral: {
2173     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2174     auto *PtrExpr = Visit(E);
2175 
2176     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2177       const QualType SrcType = E->getType();
2178 
2179       // Casting to integer requires stripping dynamic information as it does
2180       // not carries it.
2181       if (SrcType.mayBeDynamicClass())
2182         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2183     }
2184 
2185     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2186   }
2187   case CK_ToVoid: {
2188     CGF.EmitIgnoredExpr(E);
2189     return nullptr;
2190   }
2191   case CK_VectorSplat: {
2192     llvm::Type *DstTy = ConvertType(DestTy);
2193     Value *Elt = Visit(const_cast<Expr*>(E));
2194     // Splat the element across to all elements
2195     unsigned NumElements = DstTy->getVectorNumElements();
2196     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2197   }
2198 
2199   case CK_FixedPointCast:
2200     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2201                                 CE->getExprLoc());
2202 
2203   case CK_FixedPointToBoolean:
2204     assert(E->getType()->isFixedPointType() &&
2205            "Expected src type to be fixed point type");
2206     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2207     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2208                                 CE->getExprLoc());
2209 
2210   case CK_FixedPointToIntegral:
2211     assert(E->getType()->isFixedPointType() &&
2212            "Expected src type to be fixed point type");
2213     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2214     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2215                                 CE->getExprLoc());
2216 
2217   case CK_IntegralToFixedPoint:
2218     assert(E->getType()->isIntegerType() &&
2219            "Expected src type to be an integer");
2220     assert(DestTy->isFixedPointType() &&
2221            "Expected dest type to be fixed point type");
2222     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2223                                 CE->getExprLoc());
2224 
2225   case CK_IntegralCast: {
2226     ScalarConversionOpts Opts;
2227     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2228       if (!ICE->isPartOfExplicitCast())
2229         Opts = ScalarConversionOpts(CGF.SanOpts);
2230     }
2231     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2232                                 CE->getExprLoc(), Opts);
2233   }
2234   case CK_IntegralToFloating:
2235   case CK_FloatingToIntegral:
2236   case CK_FloatingCast:
2237     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2238                                 CE->getExprLoc());
2239   case CK_BooleanToSignedIntegral: {
2240     ScalarConversionOpts Opts;
2241     Opts.TreatBooleanAsSigned = true;
2242     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2243                                 CE->getExprLoc(), Opts);
2244   }
2245   case CK_IntegralToBoolean:
2246     return EmitIntToBoolConversion(Visit(E));
2247   case CK_PointerToBoolean:
2248     return EmitPointerToBoolConversion(Visit(E), E->getType());
2249   case CK_FloatingToBoolean:
2250     return EmitFloatToBoolConversion(Visit(E));
2251   case CK_MemberPointerToBoolean: {
2252     llvm::Value *MemPtr = Visit(E);
2253     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2254     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2255   }
2256 
2257   case CK_FloatingComplexToReal:
2258   case CK_IntegralComplexToReal:
2259     return CGF.EmitComplexExpr(E, false, true).first;
2260 
2261   case CK_FloatingComplexToBoolean:
2262   case CK_IntegralComplexToBoolean: {
2263     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2264 
2265     // TODO: kill this function off, inline appropriate case here
2266     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2267                                          CE->getExprLoc());
2268   }
2269 
2270   case CK_ZeroToOCLOpaqueType: {
2271     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2272             DestTy->isOCLIntelSubgroupAVCType()) &&
2273            "CK_ZeroToOCLEvent cast on non-event type");
2274     return llvm::Constant::getNullValue(ConvertType(DestTy));
2275   }
2276 
2277   case CK_IntToOCLSampler:
2278     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2279 
2280   } // end of switch
2281 
2282   llvm_unreachable("unknown scalar cast");
2283 }
2284 
2285 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2286   CodeGenFunction::StmtExprEvaluation eval(CGF);
2287   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2288                                            !E->getType()->isVoidType());
2289   if (!RetAlloca.isValid())
2290     return nullptr;
2291   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2292                               E->getExprLoc());
2293 }
2294 
2295 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2296   CGF.enterFullExpression(E);
2297   CodeGenFunction::RunCleanupsScope Scope(CGF);
2298   Value *V = Visit(E->getSubExpr());
2299   // Defend against dominance problems caused by jumps out of expression
2300   // evaluation through the shared cleanup block.
2301   Scope.ForceCleanup({&V});
2302   return V;
2303 }
2304 
2305 //===----------------------------------------------------------------------===//
2306 //                             Unary Operators
2307 //===----------------------------------------------------------------------===//
2308 
2309 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2310                                            llvm::Value *InVal, bool IsInc) {
2311   BinOpInfo BinOp;
2312   BinOp.LHS = InVal;
2313   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2314   BinOp.Ty = E->getType();
2315   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2316   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2317   BinOp.E = E;
2318   return BinOp;
2319 }
2320 
2321 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2322     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2323   llvm::Value *Amount =
2324       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2325   StringRef Name = IsInc ? "inc" : "dec";
2326   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2327   case LangOptions::SOB_Defined:
2328     return Builder.CreateAdd(InVal, Amount, Name);
2329   case LangOptions::SOB_Undefined:
2330     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2331       return Builder.CreateNSWAdd(InVal, Amount, Name);
2332     LLVM_FALLTHROUGH;
2333   case LangOptions::SOB_Trapping:
2334     if (!E->canOverflow())
2335       return Builder.CreateNSWAdd(InVal, Amount, Name);
2336     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2337   }
2338   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2339 }
2340 
2341 llvm::Value *
2342 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2343                                            bool isInc, bool isPre) {
2344 
2345   QualType type = E->getSubExpr()->getType();
2346   llvm::PHINode *atomicPHI = nullptr;
2347   llvm::Value *value;
2348   llvm::Value *input;
2349 
2350   int amount = (isInc ? 1 : -1);
2351   bool isSubtraction = !isInc;
2352 
2353   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2354     type = atomicTy->getValueType();
2355     if (isInc && type->isBooleanType()) {
2356       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2357       if (isPre) {
2358         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2359           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2360         return Builder.getTrue();
2361       }
2362       // For atomic bool increment, we just store true and return it for
2363       // preincrement, do an atomic swap with true for postincrement
2364       return Builder.CreateAtomicRMW(
2365           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
2366           llvm::AtomicOrdering::SequentiallyConsistent);
2367     }
2368     // Special case for atomic increment / decrement on integers, emit
2369     // atomicrmw instructions.  We skip this if we want to be doing overflow
2370     // checking, and fall into the slow path with the atomic cmpxchg loop.
2371     if (!type->isBooleanType() && type->isIntegerType() &&
2372         !(type->isUnsignedIntegerType() &&
2373           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2374         CGF.getLangOpts().getSignedOverflowBehavior() !=
2375             LangOptions::SOB_Trapping) {
2376       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2377         llvm::AtomicRMWInst::Sub;
2378       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2379         llvm::Instruction::Sub;
2380       llvm::Value *amt = CGF.EmitToMemory(
2381           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2382       llvm::Value *old = Builder.CreateAtomicRMW(aop,
2383           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
2384       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2385     }
2386     value = EmitLoadOfLValue(LV, E->getExprLoc());
2387     input = value;
2388     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2389     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2390     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2391     value = CGF.EmitToMemory(value, type);
2392     Builder.CreateBr(opBB);
2393     Builder.SetInsertPoint(opBB);
2394     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2395     atomicPHI->addIncoming(value, startBB);
2396     value = atomicPHI;
2397   } else {
2398     value = EmitLoadOfLValue(LV, E->getExprLoc());
2399     input = value;
2400   }
2401 
2402   // Special case of integer increment that we have to check first: bool++.
2403   // Due to promotion rules, we get:
2404   //   bool++ -> bool = bool + 1
2405   //          -> bool = (int)bool + 1
2406   //          -> bool = ((int)bool + 1 != 0)
2407   // An interesting aspect of this is that increment is always true.
2408   // Decrement does not have this property.
2409   if (isInc && type->isBooleanType()) {
2410     value = Builder.getTrue();
2411 
2412   // Most common case by far: integer increment.
2413   } else if (type->isIntegerType()) {
2414     // Note that signed integer inc/dec with width less than int can't
2415     // overflow because of promotion rules; we're just eliding a few steps here.
2416     if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2417       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2418     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2419                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2420       value =
2421           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2422     } else {
2423       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2424       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2425     }
2426 
2427   // Next most common: pointer increment.
2428   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2429     QualType type = ptr->getPointeeType();
2430 
2431     // VLA types don't have constant size.
2432     if (const VariableArrayType *vla
2433           = CGF.getContext().getAsVariableArrayType(type)) {
2434       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2435       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2436       if (CGF.getLangOpts().isSignedOverflowDefined())
2437         value = Builder.CreateGEP(value, numElts, "vla.inc");
2438       else
2439         value = CGF.EmitCheckedInBoundsGEP(
2440             value, numElts, /*SignedIndices=*/false, isSubtraction,
2441             E->getExprLoc(), "vla.inc");
2442 
2443     // Arithmetic on function pointers (!) is just +-1.
2444     } else if (type->isFunctionType()) {
2445       llvm::Value *amt = Builder.getInt32(amount);
2446 
2447       value = CGF.EmitCastToVoidPtr(value);
2448       if (CGF.getLangOpts().isSignedOverflowDefined())
2449         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2450       else
2451         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2452                                            isSubtraction, E->getExprLoc(),
2453                                            "incdec.funcptr");
2454       value = Builder.CreateBitCast(value, input->getType());
2455 
2456     // For everything else, we can just do a simple increment.
2457     } else {
2458       llvm::Value *amt = Builder.getInt32(amount);
2459       if (CGF.getLangOpts().isSignedOverflowDefined())
2460         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2461       else
2462         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2463                                            isSubtraction, E->getExprLoc(),
2464                                            "incdec.ptr");
2465     }
2466 
2467   // Vector increment/decrement.
2468   } else if (type->isVectorType()) {
2469     if (type->hasIntegerRepresentation()) {
2470       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2471 
2472       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2473     } else {
2474       value = Builder.CreateFAdd(
2475                   value,
2476                   llvm::ConstantFP::get(value->getType(), amount),
2477                   isInc ? "inc" : "dec");
2478     }
2479 
2480   // Floating point.
2481   } else if (type->isRealFloatingType()) {
2482     // Add the inc/dec to the real part.
2483     llvm::Value *amt;
2484 
2485     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2486       // Another special case: half FP increment should be done via float
2487       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2488         value = Builder.CreateCall(
2489             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2490                                  CGF.CGM.FloatTy),
2491             input, "incdec.conv");
2492       } else {
2493         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2494       }
2495     }
2496 
2497     if (value->getType()->isFloatTy())
2498       amt = llvm::ConstantFP::get(VMContext,
2499                                   llvm::APFloat(static_cast<float>(amount)));
2500     else if (value->getType()->isDoubleTy())
2501       amt = llvm::ConstantFP::get(VMContext,
2502                                   llvm::APFloat(static_cast<double>(amount)));
2503     else {
2504       // Remaining types are Half, LongDouble or __float128. Convert from float.
2505       llvm::APFloat F(static_cast<float>(amount));
2506       bool ignored;
2507       const llvm::fltSemantics *FS;
2508       // Don't use getFloatTypeSemantics because Half isn't
2509       // necessarily represented using the "half" LLVM type.
2510       if (value->getType()->isFP128Ty())
2511         FS = &CGF.getTarget().getFloat128Format();
2512       else if (value->getType()->isHalfTy())
2513         FS = &CGF.getTarget().getHalfFormat();
2514       else
2515         FS = &CGF.getTarget().getLongDoubleFormat();
2516       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2517       amt = llvm::ConstantFP::get(VMContext, F);
2518     }
2519     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2520 
2521     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2522       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2523         value = Builder.CreateCall(
2524             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2525                                  CGF.CGM.FloatTy),
2526             value, "incdec.conv");
2527       } else {
2528         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2529       }
2530     }
2531 
2532   // Objective-C pointer types.
2533   } else {
2534     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2535     value = CGF.EmitCastToVoidPtr(value);
2536 
2537     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2538     if (!isInc) size = -size;
2539     llvm::Value *sizeValue =
2540       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2541 
2542     if (CGF.getLangOpts().isSignedOverflowDefined())
2543       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2544     else
2545       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2546                                          /*SignedIndices=*/false, isSubtraction,
2547                                          E->getExprLoc(), "incdec.objptr");
2548     value = Builder.CreateBitCast(value, input->getType());
2549   }
2550 
2551   if (atomicPHI) {
2552     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2553     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2554     auto Pair = CGF.EmitAtomicCompareExchange(
2555         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2556     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2557     llvm::Value *success = Pair.second;
2558     atomicPHI->addIncoming(old, curBlock);
2559     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2560     Builder.SetInsertPoint(contBB);
2561     return isPre ? value : input;
2562   }
2563 
2564   // Store the updated result through the lvalue.
2565   if (LV.isBitField())
2566     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2567   else
2568     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2569 
2570   // If this is a postinc, return the value read from memory, otherwise use the
2571   // updated value.
2572   return isPre ? value : input;
2573 }
2574 
2575 
2576 
2577 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2578   TestAndClearIgnoreResultAssign();
2579   // Emit unary minus with EmitSub so we handle overflow cases etc.
2580   BinOpInfo BinOp;
2581   BinOp.RHS = Visit(E->getSubExpr());
2582 
2583   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
2584     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2585   else
2586     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2587   BinOp.Ty = E->getType();
2588   BinOp.Opcode = BO_Sub;
2589   // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2590   BinOp.E = E;
2591   return EmitSub(BinOp);
2592 }
2593 
2594 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2595   TestAndClearIgnoreResultAssign();
2596   Value *Op = Visit(E->getSubExpr());
2597   return Builder.CreateNot(Op, "neg");
2598 }
2599 
2600 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2601   // Perform vector logical not on comparison with zero vector.
2602   if (E->getType()->isExtVectorType()) {
2603     Value *Oper = Visit(E->getSubExpr());
2604     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2605     Value *Result;
2606     if (Oper->getType()->isFPOrFPVectorTy())
2607       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2608     else
2609       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2610     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2611   }
2612 
2613   // Compare operand to zero.
2614   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2615 
2616   // Invert value.
2617   // TODO: Could dynamically modify easy computations here.  For example, if
2618   // the operand is an icmp ne, turn into icmp eq.
2619   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2620 
2621   // ZExt result to the expr type.
2622   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2623 }
2624 
2625 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2626   // Try folding the offsetof to a constant.
2627   Expr::EvalResult EVResult;
2628   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2629     llvm::APSInt Value = EVResult.Val.getInt();
2630     return Builder.getInt(Value);
2631   }
2632 
2633   // Loop over the components of the offsetof to compute the value.
2634   unsigned n = E->getNumComponents();
2635   llvm::Type* ResultType = ConvertType(E->getType());
2636   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2637   QualType CurrentType = E->getTypeSourceInfo()->getType();
2638   for (unsigned i = 0; i != n; ++i) {
2639     OffsetOfNode ON = E->getComponent(i);
2640     llvm::Value *Offset = nullptr;
2641     switch (ON.getKind()) {
2642     case OffsetOfNode::Array: {
2643       // Compute the index
2644       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2645       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2646       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2647       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2648 
2649       // Save the element type
2650       CurrentType =
2651           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2652 
2653       // Compute the element size
2654       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2655           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2656 
2657       // Multiply out to compute the result
2658       Offset = Builder.CreateMul(Idx, ElemSize);
2659       break;
2660     }
2661 
2662     case OffsetOfNode::Field: {
2663       FieldDecl *MemberDecl = ON.getField();
2664       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2665       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2666 
2667       // Compute the index of the field in its parent.
2668       unsigned i = 0;
2669       // FIXME: It would be nice if we didn't have to loop here!
2670       for (RecordDecl::field_iterator Field = RD->field_begin(),
2671                                       FieldEnd = RD->field_end();
2672            Field != FieldEnd; ++Field, ++i) {
2673         if (*Field == MemberDecl)
2674           break;
2675       }
2676       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2677 
2678       // Compute the offset to the field
2679       int64_t OffsetInt = RL.getFieldOffset(i) /
2680                           CGF.getContext().getCharWidth();
2681       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2682 
2683       // Save the element type.
2684       CurrentType = MemberDecl->getType();
2685       break;
2686     }
2687 
2688     case OffsetOfNode::Identifier:
2689       llvm_unreachable("dependent __builtin_offsetof");
2690 
2691     case OffsetOfNode::Base: {
2692       if (ON.getBase()->isVirtual()) {
2693         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2694         continue;
2695       }
2696 
2697       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2698       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2699 
2700       // Save the element type.
2701       CurrentType = ON.getBase()->getType();
2702 
2703       // Compute the offset to the base.
2704       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2705       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2706       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2707       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2708       break;
2709     }
2710     }
2711     Result = Builder.CreateAdd(Result, Offset);
2712   }
2713   return Result;
2714 }
2715 
2716 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2717 /// argument of the sizeof expression as an integer.
2718 Value *
2719 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2720                               const UnaryExprOrTypeTraitExpr *E) {
2721   QualType TypeToSize = E->getTypeOfArgument();
2722   if (E->getKind() == UETT_SizeOf) {
2723     if (const VariableArrayType *VAT =
2724           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2725       if (E->isArgumentType()) {
2726         // sizeof(type) - make sure to emit the VLA size.
2727         CGF.EmitVariablyModifiedType(TypeToSize);
2728       } else {
2729         // C99 6.5.3.4p2: If the argument is an expression of type
2730         // VLA, it is evaluated.
2731         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2732       }
2733 
2734       auto VlaSize = CGF.getVLASize(VAT);
2735       llvm::Value *size = VlaSize.NumElts;
2736 
2737       // Scale the number of non-VLA elements by the non-VLA element size.
2738       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2739       if (!eltSize.isOne())
2740         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2741 
2742       return size;
2743     }
2744   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2745     auto Alignment =
2746         CGF.getContext()
2747             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2748                 E->getTypeOfArgument()->getPointeeType()))
2749             .getQuantity();
2750     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2751   }
2752 
2753   // If this isn't sizeof(vla), the result must be constant; use the constant
2754   // folding logic so we don't have to duplicate it here.
2755   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2756 }
2757 
2758 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2759   Expr *Op = E->getSubExpr();
2760   if (Op->getType()->isAnyComplexType()) {
2761     // If it's an l-value, load through the appropriate subobject l-value.
2762     // Note that we have to ask E because Op might be an l-value that
2763     // this won't work for, e.g. an Obj-C property.
2764     if (E->isGLValue())
2765       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2766                                   E->getExprLoc()).getScalarVal();
2767 
2768     // Otherwise, calculate and project.
2769     return CGF.EmitComplexExpr(Op, false, true).first;
2770   }
2771 
2772   return Visit(Op);
2773 }
2774 
2775 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2776   Expr *Op = E->getSubExpr();
2777   if (Op->getType()->isAnyComplexType()) {
2778     // If it's an l-value, load through the appropriate subobject l-value.
2779     // Note that we have to ask E because Op might be an l-value that
2780     // this won't work for, e.g. an Obj-C property.
2781     if (Op->isGLValue())
2782       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2783                                   E->getExprLoc()).getScalarVal();
2784 
2785     // Otherwise, calculate and project.
2786     return CGF.EmitComplexExpr(Op, true, false).second;
2787   }
2788 
2789   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2790   // effects are evaluated, but not the actual value.
2791   if (Op->isGLValue())
2792     CGF.EmitLValue(Op);
2793   else
2794     CGF.EmitScalarExpr(Op, true);
2795   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2796 }
2797 
2798 //===----------------------------------------------------------------------===//
2799 //                           Binary Operators
2800 //===----------------------------------------------------------------------===//
2801 
2802 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2803   TestAndClearIgnoreResultAssign();
2804   BinOpInfo Result;
2805   Result.LHS = Visit(E->getLHS());
2806   Result.RHS = Visit(E->getRHS());
2807   Result.Ty  = E->getType();
2808   Result.Opcode = E->getOpcode();
2809   Result.FPFeatures = E->getFPFeatures();
2810   Result.E = E;
2811   return Result;
2812 }
2813 
2814 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2815                                               const CompoundAssignOperator *E,
2816                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2817                                                    Value *&Result) {
2818   QualType LHSTy = E->getLHS()->getType();
2819   BinOpInfo OpInfo;
2820 
2821   if (E->getComputationResultType()->isAnyComplexType())
2822     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2823 
2824   // Emit the RHS first.  __block variables need to have the rhs evaluated
2825   // first, plus this should improve codegen a little.
2826   OpInfo.RHS = Visit(E->getRHS());
2827   OpInfo.Ty = E->getComputationResultType();
2828   OpInfo.Opcode = E->getOpcode();
2829   OpInfo.FPFeatures = E->getFPFeatures();
2830   OpInfo.E = E;
2831   // Load/convert the LHS.
2832   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2833 
2834   llvm::PHINode *atomicPHI = nullptr;
2835   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2836     QualType type = atomicTy->getValueType();
2837     if (!type->isBooleanType() && type->isIntegerType() &&
2838         !(type->isUnsignedIntegerType() &&
2839           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2840         CGF.getLangOpts().getSignedOverflowBehavior() !=
2841             LangOptions::SOB_Trapping) {
2842       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2843       switch (OpInfo.Opcode) {
2844         // We don't have atomicrmw operands for *, %, /, <<, >>
2845         case BO_MulAssign: case BO_DivAssign:
2846         case BO_RemAssign:
2847         case BO_ShlAssign:
2848         case BO_ShrAssign:
2849           break;
2850         case BO_AddAssign:
2851           aop = llvm::AtomicRMWInst::Add;
2852           break;
2853         case BO_SubAssign:
2854           aop = llvm::AtomicRMWInst::Sub;
2855           break;
2856         case BO_AndAssign:
2857           aop = llvm::AtomicRMWInst::And;
2858           break;
2859         case BO_XorAssign:
2860           aop = llvm::AtomicRMWInst::Xor;
2861           break;
2862         case BO_OrAssign:
2863           aop = llvm::AtomicRMWInst::Or;
2864           break;
2865         default:
2866           llvm_unreachable("Invalid compound assignment type");
2867       }
2868       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2869         llvm::Value *amt = CGF.EmitToMemory(
2870             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2871                                  E->getExprLoc()),
2872             LHSTy);
2873         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2874             llvm::AtomicOrdering::SequentiallyConsistent);
2875         return LHSLV;
2876       }
2877     }
2878     // FIXME: For floating point types, we should be saving and restoring the
2879     // floating point environment in the loop.
2880     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2881     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2882     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2883     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2884     Builder.CreateBr(opBB);
2885     Builder.SetInsertPoint(opBB);
2886     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2887     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2888     OpInfo.LHS = atomicPHI;
2889   }
2890   else
2891     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2892 
2893   SourceLocation Loc = E->getExprLoc();
2894   OpInfo.LHS =
2895       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2896 
2897   // Expand the binary operator.
2898   Result = (this->*Func)(OpInfo);
2899 
2900   // Convert the result back to the LHS type,
2901   // potentially with Implicit Conversion sanitizer check.
2902   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
2903                                 Loc, ScalarConversionOpts(CGF.SanOpts));
2904 
2905   if (atomicPHI) {
2906     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2907     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2908     auto Pair = CGF.EmitAtomicCompareExchange(
2909         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2910     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2911     llvm::Value *success = Pair.second;
2912     atomicPHI->addIncoming(old, curBlock);
2913     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2914     Builder.SetInsertPoint(contBB);
2915     return LHSLV;
2916   }
2917 
2918   // Store the result value into the LHS lvalue. Bit-fields are handled
2919   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2920   // 'An assignment expression has the value of the left operand after the
2921   // assignment...'.
2922   if (LHSLV.isBitField())
2923     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2924   else
2925     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2926 
2927   return LHSLV;
2928 }
2929 
2930 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2931                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2932   bool Ignore = TestAndClearIgnoreResultAssign();
2933   Value *RHS = nullptr;
2934   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2935 
2936   // If the result is clearly ignored, return now.
2937   if (Ignore)
2938     return nullptr;
2939 
2940   // The result of an assignment in C is the assigned r-value.
2941   if (!CGF.getLangOpts().CPlusPlus)
2942     return RHS;
2943 
2944   // If the lvalue is non-volatile, return the computed value of the assignment.
2945   if (!LHS.isVolatileQualified())
2946     return RHS;
2947 
2948   // Otherwise, reload the value.
2949   return EmitLoadOfLValue(LHS, E->getExprLoc());
2950 }
2951 
2952 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2953     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2954   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2955 
2956   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2957     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2958                                     SanitizerKind::IntegerDivideByZero));
2959   }
2960 
2961   const auto *BO = cast<BinaryOperator>(Ops.E);
2962   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2963       Ops.Ty->hasSignedIntegerRepresentation() &&
2964       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
2965       Ops.mayHaveIntegerOverflow()) {
2966     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2967 
2968     llvm::Value *IntMin =
2969       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2970     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2971 
2972     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2973     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2974     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2975     Checks.push_back(
2976         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2977   }
2978 
2979   if (Checks.size() > 0)
2980     EmitBinOpCheck(Checks, Ops);
2981 }
2982 
2983 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2984   {
2985     CodeGenFunction::SanitizerScope SanScope(&CGF);
2986     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2987          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2988         Ops.Ty->isIntegerType() &&
2989         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2990       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2991       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2992     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2993                Ops.Ty->isRealFloatingType() &&
2994                Ops.mayHaveFloatDivisionByZero()) {
2995       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2996       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2997       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2998                      Ops);
2999     }
3000   }
3001 
3002   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3003     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3004     if (CGF.getLangOpts().OpenCL &&
3005         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3006       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3007       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3008       // build option allows an application to specify that single precision
3009       // floating-point divide (x/y and 1/x) and sqrt used in the program
3010       // source are correctly rounded.
3011       llvm::Type *ValTy = Val->getType();
3012       if (ValTy->isFloatTy() ||
3013           (isa<llvm::VectorType>(ValTy) &&
3014            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3015         CGF.SetFPAccuracy(Val, 2.5);
3016     }
3017     return Val;
3018   }
3019   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3020     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3021   else
3022     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3023 }
3024 
3025 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3026   // Rem in C can't be a floating point type: C99 6.5.5p2.
3027   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3028        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3029       Ops.Ty->isIntegerType() &&
3030       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3031     CodeGenFunction::SanitizerScope SanScope(&CGF);
3032     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3033     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3034   }
3035 
3036   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3037     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3038   else
3039     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3040 }
3041 
3042 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3043   unsigned IID;
3044   unsigned OpID = 0;
3045 
3046   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3047   switch (Ops.Opcode) {
3048   case BO_Add:
3049   case BO_AddAssign:
3050     OpID = 1;
3051     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3052                      llvm::Intrinsic::uadd_with_overflow;
3053     break;
3054   case BO_Sub:
3055   case BO_SubAssign:
3056     OpID = 2;
3057     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3058                      llvm::Intrinsic::usub_with_overflow;
3059     break;
3060   case BO_Mul:
3061   case BO_MulAssign:
3062     OpID = 3;
3063     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3064                      llvm::Intrinsic::umul_with_overflow;
3065     break;
3066   default:
3067     llvm_unreachable("Unsupported operation for overflow detection");
3068   }
3069   OpID <<= 1;
3070   if (isSigned)
3071     OpID |= 1;
3072 
3073   CodeGenFunction::SanitizerScope SanScope(&CGF);
3074   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3075 
3076   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3077 
3078   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3079   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3080   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3081 
3082   // Handle overflow with llvm.trap if no custom handler has been specified.
3083   const std::string *handlerName =
3084     &CGF.getLangOpts().OverflowHandler;
3085   if (handlerName->empty()) {
3086     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3087     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3088     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3089       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3090       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3091                               : SanitizerKind::UnsignedIntegerOverflow;
3092       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3093     } else
3094       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3095     return result;
3096   }
3097 
3098   // Branch in case of overflow.
3099   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3100   llvm::BasicBlock *continueBB =
3101       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3102   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3103 
3104   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3105 
3106   // If an overflow handler is set, then we want to call it and then use its
3107   // result, if it returns.
3108   Builder.SetInsertPoint(overflowBB);
3109 
3110   // Get the overflow handler.
3111   llvm::Type *Int8Ty = CGF.Int8Ty;
3112   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3113   llvm::FunctionType *handlerTy =
3114       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3115   llvm::FunctionCallee handler =
3116       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3117 
3118   // Sign extend the args to 64-bit, so that we can use the same handler for
3119   // all types of overflow.
3120   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3121   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3122 
3123   // Call the handler with the two arguments, the operation, and the size of
3124   // the result.
3125   llvm::Value *handlerArgs[] = {
3126     lhs,
3127     rhs,
3128     Builder.getInt8(OpID),
3129     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3130   };
3131   llvm::Value *handlerResult =
3132     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3133 
3134   // Truncate the result back to the desired size.
3135   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3136   Builder.CreateBr(continueBB);
3137 
3138   Builder.SetInsertPoint(continueBB);
3139   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3140   phi->addIncoming(result, initialBB);
3141   phi->addIncoming(handlerResult, overflowBB);
3142 
3143   return phi;
3144 }
3145 
3146 /// Emit pointer + index arithmetic.
3147 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3148                                     const BinOpInfo &op,
3149                                     bool isSubtraction) {
3150   // Must have binary (not unary) expr here.  Unary pointer
3151   // increment/decrement doesn't use this path.
3152   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3153 
3154   Value *pointer = op.LHS;
3155   Expr *pointerOperand = expr->getLHS();
3156   Value *index = op.RHS;
3157   Expr *indexOperand = expr->getRHS();
3158 
3159   // In a subtraction, the LHS is always the pointer.
3160   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3161     std::swap(pointer, index);
3162     std::swap(pointerOperand, indexOperand);
3163   }
3164 
3165   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3166 
3167   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3168   auto &DL = CGF.CGM.getDataLayout();
3169   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3170 
3171   // Some versions of glibc and gcc use idioms (particularly in their malloc
3172   // routines) that add a pointer-sized integer (known to be a pointer value)
3173   // to a null pointer in order to cast the value back to an integer or as
3174   // part of a pointer alignment algorithm.  This is undefined behavior, but
3175   // we'd like to be able to compile programs that use it.
3176   //
3177   // Normally, we'd generate a GEP with a null-pointer base here in response
3178   // to that code, but it's also UB to dereference a pointer created that
3179   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3180   // generate a direct cast of the integer value to a pointer.
3181   //
3182   // The idiom (p = nullptr + N) is not met if any of the following are true:
3183   //
3184   //   The operation is subtraction.
3185   //   The index is not pointer-sized.
3186   //   The pointer type is not byte-sized.
3187   //
3188   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3189                                                        op.Opcode,
3190                                                        expr->getLHS(),
3191                                                        expr->getRHS()))
3192     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3193 
3194   if (width != DL.getTypeSizeInBits(PtrTy)) {
3195     // Zero-extend or sign-extend the pointer value according to
3196     // whether the index is signed or not.
3197     index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
3198                                       "idx.ext");
3199   }
3200 
3201   // If this is subtraction, negate the index.
3202   if (isSubtraction)
3203     index = CGF.Builder.CreateNeg(index, "idx.neg");
3204 
3205   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3206     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3207                         /*Accessed*/ false);
3208 
3209   const PointerType *pointerType
3210     = pointerOperand->getType()->getAs<PointerType>();
3211   if (!pointerType) {
3212     QualType objectType = pointerOperand->getType()
3213                                         ->castAs<ObjCObjectPointerType>()
3214                                         ->getPointeeType();
3215     llvm::Value *objectSize
3216       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3217 
3218     index = CGF.Builder.CreateMul(index, objectSize);
3219 
3220     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3221     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3222     return CGF.Builder.CreateBitCast(result, pointer->getType());
3223   }
3224 
3225   QualType elementType = pointerType->getPointeeType();
3226   if (const VariableArrayType *vla
3227         = CGF.getContext().getAsVariableArrayType(elementType)) {
3228     // The element count here is the total number of non-VLA elements.
3229     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3230 
3231     // Effectively, the multiply by the VLA size is part of the GEP.
3232     // GEP indexes are signed, and scaling an index isn't permitted to
3233     // signed-overflow, so we use the same semantics for our explicit
3234     // multiply.  We suppress this if overflow is not undefined behavior.
3235     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3236       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3237       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3238     } else {
3239       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3240       pointer =
3241           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3242                                      op.E->getExprLoc(), "add.ptr");
3243     }
3244     return pointer;
3245   }
3246 
3247   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3248   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3249   // future proof.
3250   if (elementType->isVoidType() || elementType->isFunctionType()) {
3251     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3252     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3253     return CGF.Builder.CreateBitCast(result, pointer->getType());
3254   }
3255 
3256   if (CGF.getLangOpts().isSignedOverflowDefined())
3257     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3258 
3259   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3260                                     op.E->getExprLoc(), "add.ptr");
3261 }
3262 
3263 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3264 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3265 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3266 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3267 // efficient operations.
3268 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
3269                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3270                            bool negMul, bool negAdd) {
3271   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3272 
3273   Value *MulOp0 = MulOp->getOperand(0);
3274   Value *MulOp1 = MulOp->getOperand(1);
3275   if (negMul) {
3276     MulOp0 =
3277       Builder.CreateFSub(
3278         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
3279         "neg");
3280   } else if (negAdd) {
3281     Addend =
3282       Builder.CreateFSub(
3283         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
3284         "neg");
3285   }
3286 
3287   Value *FMulAdd = Builder.CreateCall(
3288       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3289       {MulOp0, MulOp1, Addend});
3290    MulOp->eraseFromParent();
3291 
3292    return FMulAdd;
3293 }
3294 
3295 // Check whether it would be legal to emit an fmuladd intrinsic call to
3296 // represent op and if so, build the fmuladd.
3297 //
3298 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3299 // Does NOT check the type of the operation - it's assumed that this function
3300 // will be called from contexts where it's known that the type is contractable.
3301 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3302                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3303                          bool isSub=false) {
3304 
3305   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3306           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3307          "Only fadd/fsub can be the root of an fmuladd.");
3308 
3309   // Check whether this op is marked as fusable.
3310   if (!op.FPFeatures.allowFPContractWithinStatement())
3311     return nullptr;
3312 
3313   // We have a potentially fusable op. Look for a mul on one of the operands.
3314   // Also, make sure that the mul result isn't used directly. In that case,
3315   // there's no point creating a muladd operation.
3316   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3317     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3318         LHSBinOp->use_empty())
3319       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3320   }
3321   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3322     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3323         RHSBinOp->use_empty())
3324       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3325   }
3326 
3327   return nullptr;
3328 }
3329 
3330 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3331   if (op.LHS->getType()->isPointerTy() ||
3332       op.RHS->getType()->isPointerTy())
3333     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3334 
3335   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3336     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3337     case LangOptions::SOB_Defined:
3338       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3339     case LangOptions::SOB_Undefined:
3340       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3341         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3342       LLVM_FALLTHROUGH;
3343     case LangOptions::SOB_Trapping:
3344       if (CanElideOverflowCheck(CGF.getContext(), op))
3345         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3346       return EmitOverflowCheckedBinOp(op);
3347     }
3348   }
3349 
3350   if (op.Ty->isUnsignedIntegerType() &&
3351       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3352       !CanElideOverflowCheck(CGF.getContext(), op))
3353     return EmitOverflowCheckedBinOp(op);
3354 
3355   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3356     // Try to form an fmuladd.
3357     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3358       return FMulAdd;
3359 
3360     Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3361     return propagateFMFlags(V, op);
3362   }
3363 
3364   if (op.isFixedPointBinOp())
3365     return EmitFixedPointBinOp(op);
3366 
3367   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3368 }
3369 
3370 /// The resulting value must be calculated with exact precision, so the operands
3371 /// may not be the same type.
3372 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3373   using llvm::APSInt;
3374   using llvm::ConstantInt;
3375 
3376   const auto *BinOp = cast<BinaryOperator>(op.E);
3377 
3378   // The result is a fixed point type and at least one of the operands is fixed
3379   // point while the other is either fixed point or an int. This resulting type
3380   // should be determined by Sema::handleFixedPointConversions().
3381   QualType ResultTy = op.Ty;
3382   QualType LHSTy = BinOp->getLHS()->getType();
3383   QualType RHSTy = BinOp->getRHS()->getType();
3384   ASTContext &Ctx = CGF.getContext();
3385   Value *LHS = op.LHS;
3386   Value *RHS = op.RHS;
3387 
3388   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3389   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3390   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3391   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3392 
3393   // Convert the operands to the full precision type.
3394   Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3395                                             BinOp->getExprLoc());
3396   Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3397                                             BinOp->getExprLoc());
3398 
3399   // Perform the actual addition.
3400   Value *Result;
3401   switch (BinOp->getOpcode()) {
3402   case BO_Add: {
3403     if (ResultFixedSema.isSaturated()) {
3404       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3405                                     ? llvm::Intrinsic::sadd_sat
3406                                     : llvm::Intrinsic::uadd_sat;
3407       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3408     } else {
3409       Result = Builder.CreateAdd(FullLHS, FullRHS);
3410     }
3411     break;
3412   }
3413   case BO_Sub: {
3414     if (ResultFixedSema.isSaturated()) {
3415       llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3416                                     ? llvm::Intrinsic::ssub_sat
3417                                     : llvm::Intrinsic::usub_sat;
3418       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3419     } else {
3420       Result = Builder.CreateSub(FullLHS, FullRHS);
3421     }
3422     break;
3423   }
3424   case BO_LT:
3425     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3426                                       : Builder.CreateICmpULT(FullLHS, FullRHS);
3427   case BO_GT:
3428     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3429                                       : Builder.CreateICmpUGT(FullLHS, FullRHS);
3430   case BO_LE:
3431     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3432                                       : Builder.CreateICmpULE(FullLHS, FullRHS);
3433   case BO_GE:
3434     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3435                                       : Builder.CreateICmpUGE(FullLHS, FullRHS);
3436   case BO_EQ:
3437     // For equality operations, we assume any padding bits on unsigned types are
3438     // zero'd out. They could be overwritten through non-saturating operations
3439     // that cause overflow, but this leads to undefined behavior.
3440     return Builder.CreateICmpEQ(FullLHS, FullRHS);
3441   case BO_NE:
3442     return Builder.CreateICmpNE(FullLHS, FullRHS);
3443   case BO_Mul:
3444   case BO_Div:
3445   case BO_Shl:
3446   case BO_Shr:
3447   case BO_Cmp:
3448   case BO_LAnd:
3449   case BO_LOr:
3450   case BO_MulAssign:
3451   case BO_DivAssign:
3452   case BO_AddAssign:
3453   case BO_SubAssign:
3454   case BO_ShlAssign:
3455   case BO_ShrAssign:
3456     llvm_unreachable("Found unimplemented fixed point binary operation");
3457   case BO_PtrMemD:
3458   case BO_PtrMemI:
3459   case BO_Rem:
3460   case BO_Xor:
3461   case BO_And:
3462   case BO_Or:
3463   case BO_Assign:
3464   case BO_RemAssign:
3465   case BO_AndAssign:
3466   case BO_XorAssign:
3467   case BO_OrAssign:
3468   case BO_Comma:
3469     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3470   }
3471 
3472   // Convert to the result type.
3473   return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3474                                   BinOp->getExprLoc());
3475 }
3476 
3477 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3478   // The LHS is always a pointer if either side is.
3479   if (!op.LHS->getType()->isPointerTy()) {
3480     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3481       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3482       case LangOptions::SOB_Defined:
3483         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3484       case LangOptions::SOB_Undefined:
3485         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3486           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3487         LLVM_FALLTHROUGH;
3488       case LangOptions::SOB_Trapping:
3489         if (CanElideOverflowCheck(CGF.getContext(), op))
3490           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3491         return EmitOverflowCheckedBinOp(op);
3492       }
3493     }
3494 
3495     if (op.Ty->isUnsignedIntegerType() &&
3496         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3497         !CanElideOverflowCheck(CGF.getContext(), op))
3498       return EmitOverflowCheckedBinOp(op);
3499 
3500     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3501       // Try to form an fmuladd.
3502       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3503         return FMulAdd;
3504       Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3505       return propagateFMFlags(V, op);
3506     }
3507 
3508     if (op.isFixedPointBinOp())
3509       return EmitFixedPointBinOp(op);
3510 
3511     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3512   }
3513 
3514   // If the RHS is not a pointer, then we have normal pointer
3515   // arithmetic.
3516   if (!op.RHS->getType()->isPointerTy())
3517     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3518 
3519   // Otherwise, this is a pointer subtraction.
3520 
3521   // Do the raw subtraction part.
3522   llvm::Value *LHS
3523     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3524   llvm::Value *RHS
3525     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3526   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3527 
3528   // Okay, figure out the element size.
3529   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3530   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3531 
3532   llvm::Value *divisor = nullptr;
3533 
3534   // For a variable-length array, this is going to be non-constant.
3535   if (const VariableArrayType *vla
3536         = CGF.getContext().getAsVariableArrayType(elementType)) {
3537     auto VlaSize = CGF.getVLASize(vla);
3538     elementType = VlaSize.Type;
3539     divisor = VlaSize.NumElts;
3540 
3541     // Scale the number of non-VLA elements by the non-VLA element size.
3542     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3543     if (!eltSize.isOne())
3544       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3545 
3546   // For everything elese, we can just compute it, safe in the
3547   // assumption that Sema won't let anything through that we can't
3548   // safely compute the size of.
3549   } else {
3550     CharUnits elementSize;
3551     // Handle GCC extension for pointer arithmetic on void* and
3552     // function pointer types.
3553     if (elementType->isVoidType() || elementType->isFunctionType())
3554       elementSize = CharUnits::One();
3555     else
3556       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3557 
3558     // Don't even emit the divide for element size of 1.
3559     if (elementSize.isOne())
3560       return diffInChars;
3561 
3562     divisor = CGF.CGM.getSize(elementSize);
3563   }
3564 
3565   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3566   // pointer difference in C is only defined in the case where both operands
3567   // are pointing to elements of an array.
3568   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3569 }
3570 
3571 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3572   llvm::IntegerType *Ty;
3573   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3574     Ty = cast<llvm::IntegerType>(VT->getElementType());
3575   else
3576     Ty = cast<llvm::IntegerType>(LHS->getType());
3577   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3578 }
3579 
3580 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3581   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3582   // RHS to the same size as the LHS.
3583   Value *RHS = Ops.RHS;
3584   if (Ops.LHS->getType() != RHS->getType())
3585     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3586 
3587   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3588                       Ops.Ty->hasSignedIntegerRepresentation() &&
3589                       !CGF.getLangOpts().isSignedOverflowDefined() &&
3590                       !CGF.getLangOpts().CPlusPlus2a;
3591   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3592   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3593   if (CGF.getLangOpts().OpenCL)
3594     RHS =
3595         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3596   else if ((SanitizeBase || SanitizeExponent) &&
3597            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3598     CodeGenFunction::SanitizerScope SanScope(&CGF);
3599     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3600     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3601     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3602 
3603     if (SanitizeExponent) {
3604       Checks.push_back(
3605           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3606     }
3607 
3608     if (SanitizeBase) {
3609       // Check whether we are shifting any non-zero bits off the top of the
3610       // integer. We only emit this check if exponent is valid - otherwise
3611       // instructions below will have undefined behavior themselves.
3612       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3613       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3614       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3615       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3616       llvm::Value *PromotedWidthMinusOne =
3617           (RHS == Ops.RHS) ? WidthMinusOne
3618                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3619       CGF.EmitBlock(CheckShiftBase);
3620       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3621           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3622                                      /*NUW*/ true, /*NSW*/ true),
3623           "shl.check");
3624       if (CGF.getLangOpts().CPlusPlus) {
3625         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3626         // Under C++11's rules, shifting a 1 bit into the sign bit is
3627         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3628         // define signed left shifts, so we use the C99 and C++11 rules there).
3629         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3630         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3631       }
3632       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3633       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3634       CGF.EmitBlock(Cont);
3635       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3636       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3637       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3638       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3639     }
3640 
3641     assert(!Checks.empty());
3642     EmitBinOpCheck(Checks, Ops);
3643   }
3644 
3645   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3646 }
3647 
3648 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3649   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3650   // RHS to the same size as the LHS.
3651   Value *RHS = Ops.RHS;
3652   if (Ops.LHS->getType() != RHS->getType())
3653     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3654 
3655   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3656   if (CGF.getLangOpts().OpenCL)
3657     RHS =
3658         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3659   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3660            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3661     CodeGenFunction::SanitizerScope SanScope(&CGF);
3662     llvm::Value *Valid =
3663         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3664     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3665   }
3666 
3667   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3668     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3669   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3670 }
3671 
3672 enum IntrinsicType { VCMPEQ, VCMPGT };
3673 // return corresponding comparison intrinsic for given vector type
3674 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3675                                         BuiltinType::Kind ElemKind) {
3676   switch (ElemKind) {
3677   default: llvm_unreachable("unexpected element type");
3678   case BuiltinType::Char_U:
3679   case BuiltinType::UChar:
3680     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3681                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3682   case BuiltinType::Char_S:
3683   case BuiltinType::SChar:
3684     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3685                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3686   case BuiltinType::UShort:
3687     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3688                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3689   case BuiltinType::Short:
3690     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3691                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3692   case BuiltinType::UInt:
3693     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3694                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3695   case BuiltinType::Int:
3696     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3697                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3698   case BuiltinType::ULong:
3699   case BuiltinType::ULongLong:
3700     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3701                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3702   case BuiltinType::Long:
3703   case BuiltinType::LongLong:
3704     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3705                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3706   case BuiltinType::Float:
3707     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3708                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3709   case BuiltinType::Double:
3710     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3711                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3712   }
3713 }
3714 
3715 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3716                                       llvm::CmpInst::Predicate UICmpOpc,
3717                                       llvm::CmpInst::Predicate SICmpOpc,
3718                                       llvm::CmpInst::Predicate FCmpOpc) {
3719   TestAndClearIgnoreResultAssign();
3720   Value *Result;
3721   QualType LHSTy = E->getLHS()->getType();
3722   QualType RHSTy = E->getRHS()->getType();
3723   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3724     assert(E->getOpcode() == BO_EQ ||
3725            E->getOpcode() == BO_NE);
3726     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3727     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3728     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3729                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3730   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3731     BinOpInfo BOInfo = EmitBinOps(E);
3732     Value *LHS = BOInfo.LHS;
3733     Value *RHS = BOInfo.RHS;
3734 
3735     // If AltiVec, the comparison results in a numeric type, so we use
3736     // intrinsics comparing vectors and giving 0 or 1 as a result
3737     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3738       // constants for mapping CR6 register bits to predicate result
3739       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3740 
3741       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3742 
3743       // in several cases vector arguments order will be reversed
3744       Value *FirstVecArg = LHS,
3745             *SecondVecArg = RHS;
3746 
3747       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3748       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3749       BuiltinType::Kind ElementKind = BTy->getKind();
3750 
3751       switch(E->getOpcode()) {
3752       default: llvm_unreachable("is not a comparison operation");
3753       case BO_EQ:
3754         CR6 = CR6_LT;
3755         ID = GetIntrinsic(VCMPEQ, ElementKind);
3756         break;
3757       case BO_NE:
3758         CR6 = CR6_EQ;
3759         ID = GetIntrinsic(VCMPEQ, ElementKind);
3760         break;
3761       case BO_LT:
3762         CR6 = CR6_LT;
3763         ID = GetIntrinsic(VCMPGT, ElementKind);
3764         std::swap(FirstVecArg, SecondVecArg);
3765         break;
3766       case BO_GT:
3767         CR6 = CR6_LT;
3768         ID = GetIntrinsic(VCMPGT, ElementKind);
3769         break;
3770       case BO_LE:
3771         if (ElementKind == BuiltinType::Float) {
3772           CR6 = CR6_LT;
3773           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3774           std::swap(FirstVecArg, SecondVecArg);
3775         }
3776         else {
3777           CR6 = CR6_EQ;
3778           ID = GetIntrinsic(VCMPGT, ElementKind);
3779         }
3780         break;
3781       case BO_GE:
3782         if (ElementKind == BuiltinType::Float) {
3783           CR6 = CR6_LT;
3784           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3785         }
3786         else {
3787           CR6 = CR6_EQ;
3788           ID = GetIntrinsic(VCMPGT, ElementKind);
3789           std::swap(FirstVecArg, SecondVecArg);
3790         }
3791         break;
3792       }
3793 
3794       Value *CR6Param = Builder.getInt32(CR6);
3795       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3796       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3797 
3798       // The result type of intrinsic may not be same as E->getType().
3799       // If E->getType() is not BoolTy, EmitScalarConversion will do the
3800       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3801       // do nothing, if ResultTy is not i1 at the same time, it will cause
3802       // crash later.
3803       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3804       if (ResultTy->getBitWidth() > 1 &&
3805           E->getType() == CGF.getContext().BoolTy)
3806         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3807       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3808                                   E->getExprLoc());
3809     }
3810 
3811     if (BOInfo.isFixedPointBinOp()) {
3812       Result = EmitFixedPointBinOp(BOInfo);
3813     } else if (LHS->getType()->isFPOrFPVectorTy()) {
3814       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3815     } else if (LHSTy->hasSignedIntegerRepresentation()) {
3816       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3817     } else {
3818       // Unsigned integers and pointers.
3819 
3820       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3821           !isa<llvm::ConstantPointerNull>(LHS) &&
3822           !isa<llvm::ConstantPointerNull>(RHS)) {
3823 
3824         // Dynamic information is required to be stripped for comparisons,
3825         // because it could leak the dynamic information.  Based on comparisons
3826         // of pointers to dynamic objects, the optimizer can replace one pointer
3827         // with another, which might be incorrect in presence of invariant
3828         // groups. Comparison with null is safe because null does not carry any
3829         // dynamic information.
3830         if (LHSTy.mayBeDynamicClass())
3831           LHS = Builder.CreateStripInvariantGroup(LHS);
3832         if (RHSTy.mayBeDynamicClass())
3833           RHS = Builder.CreateStripInvariantGroup(RHS);
3834       }
3835 
3836       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3837     }
3838 
3839     // If this is a vector comparison, sign extend the result to the appropriate
3840     // vector integer type and return it (don't convert to bool).
3841     if (LHSTy->isVectorType())
3842       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3843 
3844   } else {
3845     // Complex Comparison: can only be an equality comparison.
3846     CodeGenFunction::ComplexPairTy LHS, RHS;
3847     QualType CETy;
3848     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3849       LHS = CGF.EmitComplexExpr(E->getLHS());
3850       CETy = CTy->getElementType();
3851     } else {
3852       LHS.first = Visit(E->getLHS());
3853       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3854       CETy = LHSTy;
3855     }
3856     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3857       RHS = CGF.EmitComplexExpr(E->getRHS());
3858       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3859                                                      CTy->getElementType()) &&
3860              "The element types must always match.");
3861       (void)CTy;
3862     } else {
3863       RHS.first = Visit(E->getRHS());
3864       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3865       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3866              "The element types must always match.");
3867     }
3868 
3869     Value *ResultR, *ResultI;
3870     if (CETy->isRealFloatingType()) {
3871       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3872       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3873     } else {
3874       // Complex comparisons can only be equality comparisons.  As such, signed
3875       // and unsigned opcodes are the same.
3876       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3877       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3878     }
3879 
3880     if (E->getOpcode() == BO_EQ) {
3881       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3882     } else {
3883       assert(E->getOpcode() == BO_NE &&
3884              "Complex comparison other than == or != ?");
3885       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3886     }
3887   }
3888 
3889   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3890                               E->getExprLoc());
3891 }
3892 
3893 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3894   bool Ignore = TestAndClearIgnoreResultAssign();
3895 
3896   Value *RHS;
3897   LValue LHS;
3898 
3899   switch (E->getLHS()->getType().getObjCLifetime()) {
3900   case Qualifiers::OCL_Strong:
3901     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3902     break;
3903 
3904   case Qualifiers::OCL_Autoreleasing:
3905     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3906     break;
3907 
3908   case Qualifiers::OCL_ExplicitNone:
3909     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3910     break;
3911 
3912   case Qualifiers::OCL_Weak:
3913     RHS = Visit(E->getRHS());
3914     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3915     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3916     break;
3917 
3918   case Qualifiers::OCL_None:
3919     // __block variables need to have the rhs evaluated first, plus
3920     // this should improve codegen just a little.
3921     RHS = Visit(E->getRHS());
3922     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3923 
3924     // Store the value into the LHS.  Bit-fields are handled specially
3925     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3926     // 'An assignment expression has the value of the left operand after
3927     // the assignment...'.
3928     if (LHS.isBitField()) {
3929       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3930     } else {
3931       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3932       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3933     }
3934   }
3935 
3936   // If the result is clearly ignored, return now.
3937   if (Ignore)
3938     return nullptr;
3939 
3940   // The result of an assignment in C is the assigned r-value.
3941   if (!CGF.getLangOpts().CPlusPlus)
3942     return RHS;
3943 
3944   // If the lvalue is non-volatile, return the computed value of the assignment.
3945   if (!LHS.isVolatileQualified())
3946     return RHS;
3947 
3948   // Otherwise, reload the value.
3949   return EmitLoadOfLValue(LHS, E->getExprLoc());
3950 }
3951 
3952 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3953   // Perform vector logical and on comparisons with zero vectors.
3954   if (E->getType()->isVectorType()) {
3955     CGF.incrementProfileCounter(E);
3956 
3957     Value *LHS = Visit(E->getLHS());
3958     Value *RHS = Visit(E->getRHS());
3959     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3960     if (LHS->getType()->isFPOrFPVectorTy()) {
3961       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3962       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3963     } else {
3964       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3965       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3966     }
3967     Value *And = Builder.CreateAnd(LHS, RHS);
3968     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3969   }
3970 
3971   llvm::Type *ResTy = ConvertType(E->getType());
3972 
3973   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3974   // If we have 1 && X, just emit X without inserting the control flow.
3975   bool LHSCondVal;
3976   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3977     if (LHSCondVal) { // If we have 1 && X, just emit X.
3978       CGF.incrementProfileCounter(E);
3979 
3980       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3981       // ZExt result to int or bool.
3982       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3983     }
3984 
3985     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3986     if (!CGF.ContainsLabel(E->getRHS()))
3987       return llvm::Constant::getNullValue(ResTy);
3988   }
3989 
3990   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3991   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3992 
3993   CodeGenFunction::ConditionalEvaluation eval(CGF);
3994 
3995   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3996   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3997                            CGF.getProfileCount(E->getRHS()));
3998 
3999   // Any edges into the ContBlock are now from an (indeterminate number of)
4000   // edges from this first condition.  All of these values will be false.  Start
4001   // setting up the PHI node in the Cont Block for this.
4002   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4003                                             "", ContBlock);
4004   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4005        PI != PE; ++PI)
4006     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4007 
4008   eval.begin(CGF);
4009   CGF.EmitBlock(RHSBlock);
4010   CGF.incrementProfileCounter(E);
4011   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4012   eval.end(CGF);
4013 
4014   // Reaquire the RHS block, as there may be subblocks inserted.
4015   RHSBlock = Builder.GetInsertBlock();
4016 
4017   // Emit an unconditional branch from this block to ContBlock.
4018   {
4019     // There is no need to emit line number for unconditional branch.
4020     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4021     CGF.EmitBlock(ContBlock);
4022   }
4023   // Insert an entry into the phi node for the edge with the value of RHSCond.
4024   PN->addIncoming(RHSCond, RHSBlock);
4025 
4026   // Artificial location to preserve the scope information
4027   {
4028     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4029     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4030   }
4031 
4032   // ZExt result to int.
4033   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4034 }
4035 
4036 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4037   // Perform vector logical or on comparisons with zero vectors.
4038   if (E->getType()->isVectorType()) {
4039     CGF.incrementProfileCounter(E);
4040 
4041     Value *LHS = Visit(E->getLHS());
4042     Value *RHS = Visit(E->getRHS());
4043     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4044     if (LHS->getType()->isFPOrFPVectorTy()) {
4045       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4046       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4047     } else {
4048       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4049       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4050     }
4051     Value *Or = Builder.CreateOr(LHS, RHS);
4052     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4053   }
4054 
4055   llvm::Type *ResTy = ConvertType(E->getType());
4056 
4057   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4058   // If we have 0 || X, just emit X without inserting the control flow.
4059   bool LHSCondVal;
4060   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4061     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4062       CGF.incrementProfileCounter(E);
4063 
4064       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4065       // ZExt result to int or bool.
4066       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4067     }
4068 
4069     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4070     if (!CGF.ContainsLabel(E->getRHS()))
4071       return llvm::ConstantInt::get(ResTy, 1);
4072   }
4073 
4074   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4075   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4076 
4077   CodeGenFunction::ConditionalEvaluation eval(CGF);
4078 
4079   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4080   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4081                            CGF.getCurrentProfileCount() -
4082                                CGF.getProfileCount(E->getRHS()));
4083 
4084   // Any edges into the ContBlock are now from an (indeterminate number of)
4085   // edges from this first condition.  All of these values will be true.  Start
4086   // setting up the PHI node in the Cont Block for this.
4087   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4088                                             "", ContBlock);
4089   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4090        PI != PE; ++PI)
4091     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4092 
4093   eval.begin(CGF);
4094 
4095   // Emit the RHS condition as a bool value.
4096   CGF.EmitBlock(RHSBlock);
4097   CGF.incrementProfileCounter(E);
4098   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4099 
4100   eval.end(CGF);
4101 
4102   // Reaquire the RHS block, as there may be subblocks inserted.
4103   RHSBlock = Builder.GetInsertBlock();
4104 
4105   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4106   // into the phi node for the edge with the value of RHSCond.
4107   CGF.EmitBlock(ContBlock);
4108   PN->addIncoming(RHSCond, RHSBlock);
4109 
4110   // ZExt result to int.
4111   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4112 }
4113 
4114 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4115   CGF.EmitIgnoredExpr(E->getLHS());
4116   CGF.EnsureInsertPoint();
4117   return Visit(E->getRHS());
4118 }
4119 
4120 //===----------------------------------------------------------------------===//
4121 //                             Other Operators
4122 //===----------------------------------------------------------------------===//
4123 
4124 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4125 /// expression is cheap enough and side-effect-free enough to evaluate
4126 /// unconditionally instead of conditionally.  This is used to convert control
4127 /// flow into selects in some cases.
4128 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4129                                                    CodeGenFunction &CGF) {
4130   // Anything that is an integer or floating point constant is fine.
4131   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4132 
4133   // Even non-volatile automatic variables can't be evaluated unconditionally.
4134   // Referencing a thread_local may cause non-trivial initialization work to
4135   // occur. If we're inside a lambda and one of the variables is from the scope
4136   // outside the lambda, that function may have returned already. Reading its
4137   // locals is a bad idea. Also, these reads may introduce races there didn't
4138   // exist in the source-level program.
4139 }
4140 
4141 
4142 Value *ScalarExprEmitter::
4143 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4144   TestAndClearIgnoreResultAssign();
4145 
4146   // Bind the common expression if necessary.
4147   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4148 
4149   Expr *condExpr = E->getCond();
4150   Expr *lhsExpr = E->getTrueExpr();
4151   Expr *rhsExpr = E->getFalseExpr();
4152 
4153   // If the condition constant folds and can be elided, try to avoid emitting
4154   // the condition and the dead arm.
4155   bool CondExprBool;
4156   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4157     Expr *live = lhsExpr, *dead = rhsExpr;
4158     if (!CondExprBool) std::swap(live, dead);
4159 
4160     // If the dead side doesn't have labels we need, just emit the Live part.
4161     if (!CGF.ContainsLabel(dead)) {
4162       if (CondExprBool)
4163         CGF.incrementProfileCounter(E);
4164       Value *Result = Visit(live);
4165 
4166       // If the live part is a throw expression, it acts like it has a void
4167       // type, so evaluating it returns a null Value*.  However, a conditional
4168       // with non-void type must return a non-null Value*.
4169       if (!Result && !E->getType()->isVoidType())
4170         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4171 
4172       return Result;
4173     }
4174   }
4175 
4176   // OpenCL: If the condition is a vector, we can treat this condition like
4177   // the select function.
4178   if (CGF.getLangOpts().OpenCL
4179       && condExpr->getType()->isVectorType()) {
4180     CGF.incrementProfileCounter(E);
4181 
4182     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4183     llvm::Value *LHS = Visit(lhsExpr);
4184     llvm::Value *RHS = Visit(rhsExpr);
4185 
4186     llvm::Type *condType = ConvertType(condExpr->getType());
4187     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4188 
4189     unsigned numElem = vecTy->getNumElements();
4190     llvm::Type *elemType = vecTy->getElementType();
4191 
4192     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4193     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4194     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4195                                           llvm::VectorType::get(elemType,
4196                                                                 numElem),
4197                                           "sext");
4198     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4199 
4200     // Cast float to int to perform ANDs if necessary.
4201     llvm::Value *RHSTmp = RHS;
4202     llvm::Value *LHSTmp = LHS;
4203     bool wasCast = false;
4204     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4205     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4206       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4207       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4208       wasCast = true;
4209     }
4210 
4211     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4212     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4213     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4214     if (wasCast)
4215       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4216 
4217     return tmp5;
4218   }
4219 
4220   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4221   // select instead of as control flow.  We can only do this if it is cheap and
4222   // safe to evaluate the LHS and RHS unconditionally.
4223   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4224       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4225     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4226     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4227 
4228     CGF.incrementProfileCounter(E, StepV);
4229 
4230     llvm::Value *LHS = Visit(lhsExpr);
4231     llvm::Value *RHS = Visit(rhsExpr);
4232     if (!LHS) {
4233       // If the conditional has void type, make sure we return a null Value*.
4234       assert(!RHS && "LHS and RHS types must match");
4235       return nullptr;
4236     }
4237     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4238   }
4239 
4240   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4241   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4242   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4243 
4244   CodeGenFunction::ConditionalEvaluation eval(CGF);
4245   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4246                            CGF.getProfileCount(lhsExpr));
4247 
4248   CGF.EmitBlock(LHSBlock);
4249   CGF.incrementProfileCounter(E);
4250   eval.begin(CGF);
4251   Value *LHS = Visit(lhsExpr);
4252   eval.end(CGF);
4253 
4254   LHSBlock = Builder.GetInsertBlock();
4255   Builder.CreateBr(ContBlock);
4256 
4257   CGF.EmitBlock(RHSBlock);
4258   eval.begin(CGF);
4259   Value *RHS = Visit(rhsExpr);
4260   eval.end(CGF);
4261 
4262   RHSBlock = Builder.GetInsertBlock();
4263   CGF.EmitBlock(ContBlock);
4264 
4265   // If the LHS or RHS is a throw expression, it will be legitimately null.
4266   if (!LHS)
4267     return RHS;
4268   if (!RHS)
4269     return LHS;
4270 
4271   // Create a PHI node for the real part.
4272   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4273   PN->addIncoming(LHS, LHSBlock);
4274   PN->addIncoming(RHS, RHSBlock);
4275   return PN;
4276 }
4277 
4278 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4279   return Visit(E->getChosenSubExpr());
4280 }
4281 
4282 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4283   QualType Ty = VE->getType();
4284 
4285   if (Ty->isVariablyModifiedType())
4286     CGF.EmitVariablyModifiedType(Ty);
4287 
4288   Address ArgValue = Address::invalid();
4289   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4290 
4291   llvm::Type *ArgTy = ConvertType(VE->getType());
4292 
4293   // If EmitVAArg fails, emit an error.
4294   if (!ArgPtr.isValid()) {
4295     CGF.ErrorUnsupported(VE, "va_arg expression");
4296     return llvm::UndefValue::get(ArgTy);
4297   }
4298 
4299   // FIXME Volatility.
4300   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4301 
4302   // If EmitVAArg promoted the type, we must truncate it.
4303   if (ArgTy != Val->getType()) {
4304     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4305       Val = Builder.CreateIntToPtr(Val, ArgTy);
4306     else
4307       Val = Builder.CreateTrunc(Val, ArgTy);
4308   }
4309 
4310   return Val;
4311 }
4312 
4313 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4314   return CGF.EmitBlockLiteral(block);
4315 }
4316 
4317 // Convert a vec3 to vec4, or vice versa.
4318 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4319                                  Value *Src, unsigned NumElementsDst) {
4320   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4321   SmallVector<llvm::Constant*, 4> Args;
4322   Args.push_back(Builder.getInt32(0));
4323   Args.push_back(Builder.getInt32(1));
4324   Args.push_back(Builder.getInt32(2));
4325   if (NumElementsDst == 4)
4326     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4327   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4328   return Builder.CreateShuffleVector(Src, UnV, Mask);
4329 }
4330 
4331 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4332 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4333 // but could be scalar or vectors of different lengths, and either can be
4334 // pointer.
4335 // There are 4 cases:
4336 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4337 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4338 // 3. pointer -> non-pointer
4339 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4340 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4341 // 4. non-pointer -> pointer
4342 //   a) intptr_t -> pointer       : needs 1 inttoptr
4343 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4344 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4345 // allow casting directly between pointer types and non-integer non-pointer
4346 // types.
4347 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4348                                            const llvm::DataLayout &DL,
4349                                            Value *Src, llvm::Type *DstTy,
4350                                            StringRef Name = "") {
4351   auto SrcTy = Src->getType();
4352 
4353   // Case 1.
4354   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4355     return Builder.CreateBitCast(Src, DstTy, Name);
4356 
4357   // Case 2.
4358   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4359     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4360 
4361   // Case 3.
4362   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4363     // Case 3b.
4364     if (!DstTy->isIntegerTy())
4365       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4366     // Cases 3a and 3b.
4367     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4368   }
4369 
4370   // Case 4b.
4371   if (!SrcTy->isIntegerTy())
4372     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4373   // Cases 4a and 4b.
4374   return Builder.CreateIntToPtr(Src, DstTy, Name);
4375 }
4376 
4377 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4378   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4379   llvm::Type *DstTy = ConvertType(E->getType());
4380 
4381   llvm::Type *SrcTy = Src->getType();
4382   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4383     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4384   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4385     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4386 
4387   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4388   // vector to get a vec4, then a bitcast if the target type is different.
4389   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4390     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4391 
4392     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4393       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4394                                          DstTy);
4395     }
4396 
4397     Src->setName("astype");
4398     return Src;
4399   }
4400 
4401   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4402   // to vec4 if the original type is not vec4, then a shuffle vector to
4403   // get a vec3.
4404   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4405     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4406       auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4407       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4408                                          Vec4Ty);
4409     }
4410 
4411     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4412     Src->setName("astype");
4413     return Src;
4414   }
4415 
4416   return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4417                                             Src, DstTy, "astype");
4418 }
4419 
4420 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4421   return CGF.EmitAtomicExpr(E).getScalarVal();
4422 }
4423 
4424 //===----------------------------------------------------------------------===//
4425 //                         Entry Point into this File
4426 //===----------------------------------------------------------------------===//
4427 
4428 /// Emit the computation of the specified expression of scalar type, ignoring
4429 /// the result.
4430 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4431   assert(E && hasScalarEvaluationKind(E->getType()) &&
4432          "Invalid scalar expression to emit");
4433 
4434   return ScalarExprEmitter(*this, IgnoreResultAssign)
4435       .Visit(const_cast<Expr *>(E));
4436 }
4437 
4438 /// Emit a conversion from the specified type to the specified destination type,
4439 /// both of which are LLVM scalar types.
4440 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4441                                              QualType DstTy,
4442                                              SourceLocation Loc) {
4443   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4444          "Invalid scalar expression to emit");
4445   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4446 }
4447 
4448 /// Emit a conversion from the specified complex type to the specified
4449 /// destination type, where the destination type is an LLVM scalar type.
4450 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4451                                                       QualType SrcTy,
4452                                                       QualType DstTy,
4453                                                       SourceLocation Loc) {
4454   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4455          "Invalid complex -> scalar conversion");
4456   return ScalarExprEmitter(*this)
4457       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4458 }
4459 
4460 
4461 llvm::Value *CodeGenFunction::
4462 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4463                         bool isInc, bool isPre) {
4464   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4465 }
4466 
4467 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4468   // object->isa or (*object).isa
4469   // Generate code as for: *(Class*)object
4470 
4471   Expr *BaseExpr = E->getBase();
4472   Address Addr = Address::invalid();
4473   if (BaseExpr->isRValue()) {
4474     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4475   } else {
4476     Addr = EmitLValue(BaseExpr).getAddress();
4477   }
4478 
4479   // Cast the address to Class*.
4480   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4481   return MakeAddrLValue(Addr, E->getType());
4482 }
4483 
4484 
4485 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4486                                             const CompoundAssignOperator *E) {
4487   ScalarExprEmitter Scalar(*this);
4488   Value *Result = nullptr;
4489   switch (E->getOpcode()) {
4490 #define COMPOUND_OP(Op)                                                       \
4491     case BO_##Op##Assign:                                                     \
4492       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4493                                              Result)
4494   COMPOUND_OP(Mul);
4495   COMPOUND_OP(Div);
4496   COMPOUND_OP(Rem);
4497   COMPOUND_OP(Add);
4498   COMPOUND_OP(Sub);
4499   COMPOUND_OP(Shl);
4500   COMPOUND_OP(Shr);
4501   COMPOUND_OP(And);
4502   COMPOUND_OP(Xor);
4503   COMPOUND_OP(Or);
4504 #undef COMPOUND_OP
4505 
4506   case BO_PtrMemD:
4507   case BO_PtrMemI:
4508   case BO_Mul:
4509   case BO_Div:
4510   case BO_Rem:
4511   case BO_Add:
4512   case BO_Sub:
4513   case BO_Shl:
4514   case BO_Shr:
4515   case BO_LT:
4516   case BO_GT:
4517   case BO_LE:
4518   case BO_GE:
4519   case BO_EQ:
4520   case BO_NE:
4521   case BO_Cmp:
4522   case BO_And:
4523   case BO_Xor:
4524   case BO_Or:
4525   case BO_LAnd:
4526   case BO_LOr:
4527   case BO_Assign:
4528   case BO_Comma:
4529     llvm_unreachable("Not valid compound assignment operators");
4530   }
4531 
4532   llvm_unreachable("Unhandled compound assignment operator");
4533 }
4534 
4535 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr,
4536                                                ArrayRef<Value *> IdxList,
4537                                                bool SignedIndices,
4538                                                bool IsSubtraction,
4539                                                SourceLocation Loc,
4540                                                const Twine &Name) {
4541   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4542 
4543   // If the pointer overflow sanitizer isn't enabled, do nothing.
4544   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4545     return GEPVal;
4546 
4547   // If the GEP has already been reduced to a constant, leave it be.
4548   if (isa<llvm::Constant>(GEPVal))
4549     return GEPVal;
4550 
4551   // Only check for overflows in the default address space.
4552   if (GEPVal->getType()->getPointerAddressSpace())
4553     return GEPVal;
4554 
4555   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4556   assert(GEP->isInBounds() && "Expected inbounds GEP");
4557 
4558   SanitizerScope SanScope(this);
4559   auto &VMContext = getLLVMContext();
4560   const auto &DL = CGM.getDataLayout();
4561   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4562 
4563   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4564   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4565   auto *SAddIntrinsic =
4566       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4567   auto *SMulIntrinsic =
4568       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4569 
4570   // The total (signed) byte offset for the GEP.
4571   llvm::Value *TotalOffset = nullptr;
4572   // The offset overflow flag - true if the total offset overflows.
4573   llvm::Value *OffsetOverflows = Builder.getFalse();
4574 
4575   /// Return the result of the given binary operation.
4576   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4577                   llvm::Value *RHS) -> llvm::Value * {
4578     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4579 
4580     // If the operands are constants, return a constant result.
4581     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4582       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4583         llvm::APInt N;
4584         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4585                                                   /*Signed=*/true, N);
4586         if (HasOverflow)
4587           OffsetOverflows = Builder.getTrue();
4588         return llvm::ConstantInt::get(VMContext, N);
4589       }
4590     }
4591 
4592     // Otherwise, compute the result with checked arithmetic.
4593     auto *ResultAndOverflow = Builder.CreateCall(
4594         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4595     OffsetOverflows = Builder.CreateOr(
4596         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4597     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4598   };
4599 
4600   // Determine the total byte offset by looking at each GEP operand.
4601   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4602        GTI != GTE; ++GTI) {
4603     llvm::Value *LocalOffset;
4604     auto *Index = GTI.getOperand();
4605     // Compute the local offset contributed by this indexing step:
4606     if (auto *STy = GTI.getStructTypeOrNull()) {
4607       // For struct indexing, the local offset is the byte position of the
4608       // specified field.
4609       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4610       LocalOffset = llvm::ConstantInt::get(
4611           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4612     } else {
4613       // Otherwise this is array-like indexing. The local offset is the index
4614       // multiplied by the element size.
4615       auto *ElementSize = llvm::ConstantInt::get(
4616           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4617       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4618       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4619     }
4620 
4621     // If this is the first offset, set it as the total offset. Otherwise, add
4622     // the local offset into the running total.
4623     if (!TotalOffset || TotalOffset == Zero)
4624       TotalOffset = LocalOffset;
4625     else
4626       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4627   }
4628 
4629   // Common case: if the total offset is zero, don't emit a check.
4630   if (TotalOffset == Zero)
4631     return GEPVal;
4632 
4633   // Now that we've computed the total offset, add it to the base pointer (with
4634   // wrapping semantics).
4635   auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
4636   auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
4637 
4638   // The GEP is valid if:
4639   // 1) The total offset doesn't overflow, and
4640   // 2) The sign of the difference between the computed address and the base
4641   // pointer matches the sign of the total offset.
4642   llvm::Value *ValidGEP;
4643   auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
4644   if (SignedIndices) {
4645     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4646     auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
4647     llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4648     ValidGEP = Builder.CreateAnd(
4649         Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
4650         NoOffsetOverflow);
4651   } else if (!SignedIndices && !IsSubtraction) {
4652     auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4653     ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
4654   } else {
4655     auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4656     ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
4657   }
4658 
4659   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4660   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4661   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4662   EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
4663             SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4664 
4665   return GEPVal;
4666 }
4667