1*0b57cec5SDimitry Andric //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2*0b57cec5SDimitry Andric // 3*0b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*0b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5*0b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*0b57cec5SDimitry Andric // 7*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 8*0b57cec5SDimitry Andric // 9*0b57cec5SDimitry Andric // This contains code to emit Expr nodes with complex types as LLVM code. 10*0b57cec5SDimitry Andric // 11*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 12*0b57cec5SDimitry Andric 13*0b57cec5SDimitry Andric #include "CodeGenFunction.h" 14*0b57cec5SDimitry Andric #include "CodeGenModule.h" 15*0b57cec5SDimitry Andric #include "clang/AST/StmtVisitor.h" 16*0b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h" 17*0b57cec5SDimitry Andric #include "llvm/IR/Constants.h" 18*0b57cec5SDimitry Andric #include "llvm/IR/Instructions.h" 19*0b57cec5SDimitry Andric #include "llvm/IR/MDBuilder.h" 20*0b57cec5SDimitry Andric #include "llvm/IR/Metadata.h" 21*0b57cec5SDimitry Andric #include <algorithm> 22*0b57cec5SDimitry Andric using namespace clang; 23*0b57cec5SDimitry Andric using namespace CodeGen; 24*0b57cec5SDimitry Andric 25*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 26*0b57cec5SDimitry Andric // Complex Expression Emitter 27*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 28*0b57cec5SDimitry Andric 29*0b57cec5SDimitry Andric typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 30*0b57cec5SDimitry Andric 31*0b57cec5SDimitry Andric /// Return the complex type that we are meant to emit. 32*0b57cec5SDimitry Andric static const ComplexType *getComplexType(QualType type) { 33*0b57cec5SDimitry Andric type = type.getCanonicalType(); 34*0b57cec5SDimitry Andric if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 35*0b57cec5SDimitry Andric return comp; 36*0b57cec5SDimitry Andric } else { 37*0b57cec5SDimitry Andric return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 38*0b57cec5SDimitry Andric } 39*0b57cec5SDimitry Andric } 40*0b57cec5SDimitry Andric 41*0b57cec5SDimitry Andric namespace { 42*0b57cec5SDimitry Andric class ComplexExprEmitter 43*0b57cec5SDimitry Andric : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 44*0b57cec5SDimitry Andric CodeGenFunction &CGF; 45*0b57cec5SDimitry Andric CGBuilderTy &Builder; 46*0b57cec5SDimitry Andric bool IgnoreReal; 47*0b57cec5SDimitry Andric bool IgnoreImag; 48*0b57cec5SDimitry Andric public: 49*0b57cec5SDimitry Andric ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 50*0b57cec5SDimitry Andric : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 51*0b57cec5SDimitry Andric } 52*0b57cec5SDimitry Andric 53*0b57cec5SDimitry Andric 54*0b57cec5SDimitry Andric //===--------------------------------------------------------------------===// 55*0b57cec5SDimitry Andric // Utilities 56*0b57cec5SDimitry Andric //===--------------------------------------------------------------------===// 57*0b57cec5SDimitry Andric 58*0b57cec5SDimitry Andric bool TestAndClearIgnoreReal() { 59*0b57cec5SDimitry Andric bool I = IgnoreReal; 60*0b57cec5SDimitry Andric IgnoreReal = false; 61*0b57cec5SDimitry Andric return I; 62*0b57cec5SDimitry Andric } 63*0b57cec5SDimitry Andric bool TestAndClearIgnoreImag() { 64*0b57cec5SDimitry Andric bool I = IgnoreImag; 65*0b57cec5SDimitry Andric IgnoreImag = false; 66*0b57cec5SDimitry Andric return I; 67*0b57cec5SDimitry Andric } 68*0b57cec5SDimitry Andric 69*0b57cec5SDimitry Andric /// EmitLoadOfLValue - Given an expression with complex type that represents a 70*0b57cec5SDimitry Andric /// value l-value, this method emits the address of the l-value, then loads 71*0b57cec5SDimitry Andric /// and returns the result. 72*0b57cec5SDimitry Andric ComplexPairTy EmitLoadOfLValue(const Expr *E) { 73*0b57cec5SDimitry Andric return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 74*0b57cec5SDimitry Andric } 75*0b57cec5SDimitry Andric 76*0b57cec5SDimitry Andric ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 77*0b57cec5SDimitry Andric 78*0b57cec5SDimitry Andric /// EmitStoreOfComplex - Store the specified real/imag parts into the 79*0b57cec5SDimitry Andric /// specified value pointer. 80*0b57cec5SDimitry Andric void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 81*0b57cec5SDimitry Andric 82*0b57cec5SDimitry Andric /// Emit a cast from complex value Val to DestType. 83*0b57cec5SDimitry Andric ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 84*0b57cec5SDimitry Andric QualType DestType, SourceLocation Loc); 85*0b57cec5SDimitry Andric /// Emit a cast from scalar value Val to DestType. 86*0b57cec5SDimitry Andric ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 87*0b57cec5SDimitry Andric QualType DestType, SourceLocation Loc); 88*0b57cec5SDimitry Andric 89*0b57cec5SDimitry Andric //===--------------------------------------------------------------------===// 90*0b57cec5SDimitry Andric // Visitor Methods 91*0b57cec5SDimitry Andric //===--------------------------------------------------------------------===// 92*0b57cec5SDimitry Andric 93*0b57cec5SDimitry Andric ComplexPairTy Visit(Expr *E) { 94*0b57cec5SDimitry Andric ApplyDebugLocation DL(CGF, E); 95*0b57cec5SDimitry Andric return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 96*0b57cec5SDimitry Andric } 97*0b57cec5SDimitry Andric 98*0b57cec5SDimitry Andric ComplexPairTy VisitStmt(Stmt *S) { 99*0b57cec5SDimitry Andric S->dump(CGF.getContext().getSourceManager()); 100*0b57cec5SDimitry Andric llvm_unreachable("Stmt can't have complex result type!"); 101*0b57cec5SDimitry Andric } 102*0b57cec5SDimitry Andric ComplexPairTy VisitExpr(Expr *S); 103*0b57cec5SDimitry Andric ComplexPairTy VisitConstantExpr(ConstantExpr *E) { 104*0b57cec5SDimitry Andric return Visit(E->getSubExpr()); 105*0b57cec5SDimitry Andric } 106*0b57cec5SDimitry Andric ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 107*0b57cec5SDimitry Andric ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 108*0b57cec5SDimitry Andric return Visit(GE->getResultExpr()); 109*0b57cec5SDimitry Andric } 110*0b57cec5SDimitry Andric ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 111*0b57cec5SDimitry Andric ComplexPairTy 112*0b57cec5SDimitry Andric VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 113*0b57cec5SDimitry Andric return Visit(PE->getReplacement()); 114*0b57cec5SDimitry Andric } 115*0b57cec5SDimitry Andric ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { 116*0b57cec5SDimitry Andric return CGF.EmitCoawaitExpr(*S).getComplexVal(); 117*0b57cec5SDimitry Andric } 118*0b57cec5SDimitry Andric ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { 119*0b57cec5SDimitry Andric return CGF.EmitCoyieldExpr(*S).getComplexVal(); 120*0b57cec5SDimitry Andric } 121*0b57cec5SDimitry Andric ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { 122*0b57cec5SDimitry Andric return Visit(E->getSubExpr()); 123*0b57cec5SDimitry Andric } 124*0b57cec5SDimitry Andric 125*0b57cec5SDimitry Andric ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, 126*0b57cec5SDimitry Andric Expr *E) { 127*0b57cec5SDimitry Andric assert(Constant && "not a constant"); 128*0b57cec5SDimitry Andric if (Constant.isReference()) 129*0b57cec5SDimitry Andric return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 130*0b57cec5SDimitry Andric E->getExprLoc()); 131*0b57cec5SDimitry Andric 132*0b57cec5SDimitry Andric llvm::Constant *pair = Constant.getValue(); 133*0b57cec5SDimitry Andric return ComplexPairTy(pair->getAggregateElement(0U), 134*0b57cec5SDimitry Andric pair->getAggregateElement(1U)); 135*0b57cec5SDimitry Andric } 136*0b57cec5SDimitry Andric 137*0b57cec5SDimitry Andric // l-values. 138*0b57cec5SDimitry Andric ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 139*0b57cec5SDimitry Andric if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 140*0b57cec5SDimitry Andric return emitConstant(Constant, E); 141*0b57cec5SDimitry Andric return EmitLoadOfLValue(E); 142*0b57cec5SDimitry Andric } 143*0b57cec5SDimitry Andric ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 144*0b57cec5SDimitry Andric return EmitLoadOfLValue(E); 145*0b57cec5SDimitry Andric } 146*0b57cec5SDimitry Andric ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 147*0b57cec5SDimitry Andric return CGF.EmitObjCMessageExpr(E).getComplexVal(); 148*0b57cec5SDimitry Andric } 149*0b57cec5SDimitry Andric ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 150*0b57cec5SDimitry Andric ComplexPairTy VisitMemberExpr(MemberExpr *ME) { 151*0b57cec5SDimitry Andric if (CodeGenFunction::ConstantEmission Constant = 152*0b57cec5SDimitry Andric CGF.tryEmitAsConstant(ME)) { 153*0b57cec5SDimitry Andric CGF.EmitIgnoredExpr(ME->getBase()); 154*0b57cec5SDimitry Andric return emitConstant(Constant, ME); 155*0b57cec5SDimitry Andric } 156*0b57cec5SDimitry Andric return EmitLoadOfLValue(ME); 157*0b57cec5SDimitry Andric } 158*0b57cec5SDimitry Andric ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 159*0b57cec5SDimitry Andric if (E->isGLValue()) 160*0b57cec5SDimitry Andric return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 161*0b57cec5SDimitry Andric E->getExprLoc()); 162*0b57cec5SDimitry Andric return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); 163*0b57cec5SDimitry Andric } 164*0b57cec5SDimitry Andric 165*0b57cec5SDimitry Andric ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 166*0b57cec5SDimitry Andric return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 167*0b57cec5SDimitry Andric } 168*0b57cec5SDimitry Andric 169*0b57cec5SDimitry Andric // FIXME: CompoundLiteralExpr 170*0b57cec5SDimitry Andric 171*0b57cec5SDimitry Andric ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 172*0b57cec5SDimitry Andric ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 173*0b57cec5SDimitry Andric // Unlike for scalars, we don't have to worry about function->ptr demotion 174*0b57cec5SDimitry Andric // here. 175*0b57cec5SDimitry Andric return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 176*0b57cec5SDimitry Andric } 177*0b57cec5SDimitry Andric ComplexPairTy VisitCastExpr(CastExpr *E) { 178*0b57cec5SDimitry Andric if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 179*0b57cec5SDimitry Andric CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 180*0b57cec5SDimitry Andric return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 181*0b57cec5SDimitry Andric } 182*0b57cec5SDimitry Andric ComplexPairTy VisitCallExpr(const CallExpr *E); 183*0b57cec5SDimitry Andric ComplexPairTy VisitStmtExpr(const StmtExpr *E); 184*0b57cec5SDimitry Andric 185*0b57cec5SDimitry Andric // Operators. 186*0b57cec5SDimitry Andric ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 187*0b57cec5SDimitry Andric bool isInc, bool isPre) { 188*0b57cec5SDimitry Andric LValue LV = CGF.EmitLValue(E->getSubExpr()); 189*0b57cec5SDimitry Andric return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 190*0b57cec5SDimitry Andric } 191*0b57cec5SDimitry Andric ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 192*0b57cec5SDimitry Andric return VisitPrePostIncDec(E, false, false); 193*0b57cec5SDimitry Andric } 194*0b57cec5SDimitry Andric ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 195*0b57cec5SDimitry Andric return VisitPrePostIncDec(E, true, false); 196*0b57cec5SDimitry Andric } 197*0b57cec5SDimitry Andric ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 198*0b57cec5SDimitry Andric return VisitPrePostIncDec(E, false, true); 199*0b57cec5SDimitry Andric } 200*0b57cec5SDimitry Andric ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 201*0b57cec5SDimitry Andric return VisitPrePostIncDec(E, true, true); 202*0b57cec5SDimitry Andric } 203*0b57cec5SDimitry Andric ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 204*0b57cec5SDimitry Andric ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 205*0b57cec5SDimitry Andric TestAndClearIgnoreReal(); 206*0b57cec5SDimitry Andric TestAndClearIgnoreImag(); 207*0b57cec5SDimitry Andric return Visit(E->getSubExpr()); 208*0b57cec5SDimitry Andric } 209*0b57cec5SDimitry Andric ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 210*0b57cec5SDimitry Andric ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 211*0b57cec5SDimitry Andric // LNot,Real,Imag never return complex. 212*0b57cec5SDimitry Andric ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 213*0b57cec5SDimitry Andric return Visit(E->getSubExpr()); 214*0b57cec5SDimitry Andric } 215*0b57cec5SDimitry Andric ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 216*0b57cec5SDimitry Andric CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 217*0b57cec5SDimitry Andric return Visit(DAE->getExpr()); 218*0b57cec5SDimitry Andric } 219*0b57cec5SDimitry Andric ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 220*0b57cec5SDimitry Andric CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 221*0b57cec5SDimitry Andric return Visit(DIE->getExpr()); 222*0b57cec5SDimitry Andric } 223*0b57cec5SDimitry Andric ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 224*0b57cec5SDimitry Andric CGF.enterFullExpression(E); 225*0b57cec5SDimitry Andric CodeGenFunction::RunCleanupsScope Scope(CGF); 226*0b57cec5SDimitry Andric ComplexPairTy Vals = Visit(E->getSubExpr()); 227*0b57cec5SDimitry Andric // Defend against dominance problems caused by jumps out of expression 228*0b57cec5SDimitry Andric // evaluation through the shared cleanup block. 229*0b57cec5SDimitry Andric Scope.ForceCleanup({&Vals.first, &Vals.second}); 230*0b57cec5SDimitry Andric return Vals; 231*0b57cec5SDimitry Andric } 232*0b57cec5SDimitry Andric ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 233*0b57cec5SDimitry Andric assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 234*0b57cec5SDimitry Andric QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 235*0b57cec5SDimitry Andric llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 236*0b57cec5SDimitry Andric return ComplexPairTy(Null, Null); 237*0b57cec5SDimitry Andric } 238*0b57cec5SDimitry Andric ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 239*0b57cec5SDimitry Andric assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 240*0b57cec5SDimitry Andric QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 241*0b57cec5SDimitry Andric llvm::Constant *Null = 242*0b57cec5SDimitry Andric llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 243*0b57cec5SDimitry Andric return ComplexPairTy(Null, Null); 244*0b57cec5SDimitry Andric } 245*0b57cec5SDimitry Andric 246*0b57cec5SDimitry Andric struct BinOpInfo { 247*0b57cec5SDimitry Andric ComplexPairTy LHS; 248*0b57cec5SDimitry Andric ComplexPairTy RHS; 249*0b57cec5SDimitry Andric QualType Ty; // Computation Type. 250*0b57cec5SDimitry Andric }; 251*0b57cec5SDimitry Andric 252*0b57cec5SDimitry Andric BinOpInfo EmitBinOps(const BinaryOperator *E); 253*0b57cec5SDimitry Andric LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 254*0b57cec5SDimitry Andric ComplexPairTy (ComplexExprEmitter::*Func) 255*0b57cec5SDimitry Andric (const BinOpInfo &), 256*0b57cec5SDimitry Andric RValue &Val); 257*0b57cec5SDimitry Andric ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 258*0b57cec5SDimitry Andric ComplexPairTy (ComplexExprEmitter::*Func) 259*0b57cec5SDimitry Andric (const BinOpInfo &)); 260*0b57cec5SDimitry Andric 261*0b57cec5SDimitry Andric ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 262*0b57cec5SDimitry Andric ComplexPairTy EmitBinSub(const BinOpInfo &Op); 263*0b57cec5SDimitry Andric ComplexPairTy EmitBinMul(const BinOpInfo &Op); 264*0b57cec5SDimitry Andric ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 265*0b57cec5SDimitry Andric 266*0b57cec5SDimitry Andric ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 267*0b57cec5SDimitry Andric const BinOpInfo &Op); 268*0b57cec5SDimitry Andric 269*0b57cec5SDimitry Andric ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 270*0b57cec5SDimitry Andric return EmitBinAdd(EmitBinOps(E)); 271*0b57cec5SDimitry Andric } 272*0b57cec5SDimitry Andric ComplexPairTy VisitBinSub(const BinaryOperator *E) { 273*0b57cec5SDimitry Andric return EmitBinSub(EmitBinOps(E)); 274*0b57cec5SDimitry Andric } 275*0b57cec5SDimitry Andric ComplexPairTy VisitBinMul(const BinaryOperator *E) { 276*0b57cec5SDimitry Andric return EmitBinMul(EmitBinOps(E)); 277*0b57cec5SDimitry Andric } 278*0b57cec5SDimitry Andric ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 279*0b57cec5SDimitry Andric return EmitBinDiv(EmitBinOps(E)); 280*0b57cec5SDimitry Andric } 281*0b57cec5SDimitry Andric 282a7dea167SDimitry Andric ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 283a7dea167SDimitry Andric return Visit(E->getSemanticForm()); 284a7dea167SDimitry Andric } 285a7dea167SDimitry Andric 286*0b57cec5SDimitry Andric // Compound assignments. 287*0b57cec5SDimitry Andric ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 288*0b57cec5SDimitry Andric return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 289*0b57cec5SDimitry Andric } 290*0b57cec5SDimitry Andric ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 291*0b57cec5SDimitry Andric return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 292*0b57cec5SDimitry Andric } 293*0b57cec5SDimitry Andric ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 294*0b57cec5SDimitry Andric return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 295*0b57cec5SDimitry Andric } 296*0b57cec5SDimitry Andric ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 297*0b57cec5SDimitry Andric return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 298*0b57cec5SDimitry Andric } 299*0b57cec5SDimitry Andric 300*0b57cec5SDimitry Andric // GCC rejects rem/and/or/xor for integer complex. 301*0b57cec5SDimitry Andric // Logical and/or always return int, never complex. 302*0b57cec5SDimitry Andric 303*0b57cec5SDimitry Andric // No comparisons produce a complex result. 304*0b57cec5SDimitry Andric 305*0b57cec5SDimitry Andric LValue EmitBinAssignLValue(const BinaryOperator *E, 306*0b57cec5SDimitry Andric ComplexPairTy &Val); 307*0b57cec5SDimitry Andric ComplexPairTy VisitBinAssign (const BinaryOperator *E); 308*0b57cec5SDimitry Andric ComplexPairTy VisitBinComma (const BinaryOperator *E); 309*0b57cec5SDimitry Andric 310*0b57cec5SDimitry Andric 311*0b57cec5SDimitry Andric ComplexPairTy 312*0b57cec5SDimitry Andric VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 313*0b57cec5SDimitry Andric ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 314*0b57cec5SDimitry Andric 315*0b57cec5SDimitry Andric ComplexPairTy VisitInitListExpr(InitListExpr *E); 316*0b57cec5SDimitry Andric 317*0b57cec5SDimitry Andric ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 318*0b57cec5SDimitry Andric return EmitLoadOfLValue(E); 319*0b57cec5SDimitry Andric } 320*0b57cec5SDimitry Andric 321*0b57cec5SDimitry Andric ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 322*0b57cec5SDimitry Andric 323*0b57cec5SDimitry Andric ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 324*0b57cec5SDimitry Andric return CGF.EmitAtomicExpr(E).getComplexVal(); 325*0b57cec5SDimitry Andric } 326*0b57cec5SDimitry Andric }; 327*0b57cec5SDimitry Andric } // end anonymous namespace. 328*0b57cec5SDimitry Andric 329*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 330*0b57cec5SDimitry Andric // Utilities 331*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 332*0b57cec5SDimitry Andric 333*0b57cec5SDimitry Andric Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 334*0b57cec5SDimitry Andric QualType complexType) { 335*0b57cec5SDimitry Andric return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp"); 336*0b57cec5SDimitry Andric } 337*0b57cec5SDimitry Andric 338*0b57cec5SDimitry Andric Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 339*0b57cec5SDimitry Andric QualType complexType) { 340*0b57cec5SDimitry Andric return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp"); 341*0b57cec5SDimitry Andric } 342*0b57cec5SDimitry Andric 343*0b57cec5SDimitry Andric /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 344*0b57cec5SDimitry Andric /// load the real and imaginary pieces, returning them as Real/Imag. 345*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 346*0b57cec5SDimitry Andric SourceLocation loc) { 347*0b57cec5SDimitry Andric assert(lvalue.isSimple() && "non-simple complex l-value?"); 348*0b57cec5SDimitry Andric if (lvalue.getType()->isAtomicType()) 349*0b57cec5SDimitry Andric return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 350*0b57cec5SDimitry Andric 351*0b57cec5SDimitry Andric Address SrcPtr = lvalue.getAddress(); 352*0b57cec5SDimitry Andric bool isVolatile = lvalue.isVolatileQualified(); 353*0b57cec5SDimitry Andric 354*0b57cec5SDimitry Andric llvm::Value *Real = nullptr, *Imag = nullptr; 355*0b57cec5SDimitry Andric 356*0b57cec5SDimitry Andric if (!IgnoreReal || isVolatile) { 357*0b57cec5SDimitry Andric Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 358*0b57cec5SDimitry Andric Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 359*0b57cec5SDimitry Andric } 360*0b57cec5SDimitry Andric 361*0b57cec5SDimitry Andric if (!IgnoreImag || isVolatile) { 362*0b57cec5SDimitry Andric Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 363*0b57cec5SDimitry Andric Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 364*0b57cec5SDimitry Andric } 365*0b57cec5SDimitry Andric 366*0b57cec5SDimitry Andric return ComplexPairTy(Real, Imag); 367*0b57cec5SDimitry Andric } 368*0b57cec5SDimitry Andric 369*0b57cec5SDimitry Andric /// EmitStoreOfComplex - Store the specified real/imag parts into the 370*0b57cec5SDimitry Andric /// specified value pointer. 371*0b57cec5SDimitry Andric void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 372*0b57cec5SDimitry Andric bool isInit) { 373*0b57cec5SDimitry Andric if (lvalue.getType()->isAtomicType() || 374*0b57cec5SDimitry Andric (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 375*0b57cec5SDimitry Andric return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 376*0b57cec5SDimitry Andric 377*0b57cec5SDimitry Andric Address Ptr = lvalue.getAddress(); 378*0b57cec5SDimitry Andric Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 379*0b57cec5SDimitry Andric Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 380*0b57cec5SDimitry Andric 381*0b57cec5SDimitry Andric Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 382*0b57cec5SDimitry Andric Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 383*0b57cec5SDimitry Andric } 384*0b57cec5SDimitry Andric 385*0b57cec5SDimitry Andric 386*0b57cec5SDimitry Andric 387*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 388*0b57cec5SDimitry Andric // Visitor Methods 389*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 390*0b57cec5SDimitry Andric 391*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 392*0b57cec5SDimitry Andric CGF.ErrorUnsupported(E, "complex expression"); 393*0b57cec5SDimitry Andric llvm::Type *EltTy = 394*0b57cec5SDimitry Andric CGF.ConvertType(getComplexType(E->getType())->getElementType()); 395*0b57cec5SDimitry Andric llvm::Value *U = llvm::UndefValue::get(EltTy); 396*0b57cec5SDimitry Andric return ComplexPairTy(U, U); 397*0b57cec5SDimitry Andric } 398*0b57cec5SDimitry Andric 399*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter:: 400*0b57cec5SDimitry Andric VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 401*0b57cec5SDimitry Andric llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 402*0b57cec5SDimitry Andric return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 403*0b57cec5SDimitry Andric } 404*0b57cec5SDimitry Andric 405*0b57cec5SDimitry Andric 406*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 407*0b57cec5SDimitry Andric if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 408*0b57cec5SDimitry Andric return EmitLoadOfLValue(E); 409*0b57cec5SDimitry Andric 410*0b57cec5SDimitry Andric return CGF.EmitCallExpr(E).getComplexVal(); 411*0b57cec5SDimitry Andric } 412*0b57cec5SDimitry Andric 413*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 414*0b57cec5SDimitry Andric CodeGenFunction::StmtExprEvaluation eval(CGF); 415*0b57cec5SDimitry Andric Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 416*0b57cec5SDimitry Andric assert(RetAlloca.isValid() && "Expected complex return value"); 417*0b57cec5SDimitry Andric return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 418*0b57cec5SDimitry Andric E->getExprLoc()); 419*0b57cec5SDimitry Andric } 420*0b57cec5SDimitry Andric 421*0b57cec5SDimitry Andric /// Emit a cast from complex value Val to DestType. 422*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 423*0b57cec5SDimitry Andric QualType SrcType, 424*0b57cec5SDimitry Andric QualType DestType, 425*0b57cec5SDimitry Andric SourceLocation Loc) { 426*0b57cec5SDimitry Andric // Get the src/dest element type. 427*0b57cec5SDimitry Andric SrcType = SrcType->castAs<ComplexType>()->getElementType(); 428*0b57cec5SDimitry Andric DestType = DestType->castAs<ComplexType>()->getElementType(); 429*0b57cec5SDimitry Andric 430*0b57cec5SDimitry Andric // C99 6.3.1.6: When a value of complex type is converted to another 431*0b57cec5SDimitry Andric // complex type, both the real and imaginary parts follow the conversion 432*0b57cec5SDimitry Andric // rules for the corresponding real types. 433*0b57cec5SDimitry Andric Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 434*0b57cec5SDimitry Andric Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 435*0b57cec5SDimitry Andric return Val; 436*0b57cec5SDimitry Andric } 437*0b57cec5SDimitry Andric 438*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 439*0b57cec5SDimitry Andric QualType SrcType, 440*0b57cec5SDimitry Andric QualType DestType, 441*0b57cec5SDimitry Andric SourceLocation Loc) { 442*0b57cec5SDimitry Andric // Convert the input element to the element type of the complex. 443*0b57cec5SDimitry Andric DestType = DestType->castAs<ComplexType>()->getElementType(); 444*0b57cec5SDimitry Andric Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 445*0b57cec5SDimitry Andric 446*0b57cec5SDimitry Andric // Return (realval, 0). 447*0b57cec5SDimitry Andric return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 448*0b57cec5SDimitry Andric } 449*0b57cec5SDimitry Andric 450*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 451*0b57cec5SDimitry Andric QualType DestTy) { 452*0b57cec5SDimitry Andric switch (CK) { 453*0b57cec5SDimitry Andric case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 454*0b57cec5SDimitry Andric 455*0b57cec5SDimitry Andric // Atomic to non-atomic casts may be more than a no-op for some platforms and 456*0b57cec5SDimitry Andric // for some types. 457*0b57cec5SDimitry Andric case CK_AtomicToNonAtomic: 458*0b57cec5SDimitry Andric case CK_NonAtomicToAtomic: 459*0b57cec5SDimitry Andric case CK_NoOp: 460*0b57cec5SDimitry Andric case CK_LValueToRValue: 461*0b57cec5SDimitry Andric case CK_UserDefinedConversion: 462*0b57cec5SDimitry Andric return Visit(Op); 463*0b57cec5SDimitry Andric 464*0b57cec5SDimitry Andric case CK_LValueBitCast: { 465*0b57cec5SDimitry Andric LValue origLV = CGF.EmitLValue(Op); 466*0b57cec5SDimitry Andric Address V = origLV.getAddress(); 467*0b57cec5SDimitry Andric V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 468*0b57cec5SDimitry Andric return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 469*0b57cec5SDimitry Andric } 470*0b57cec5SDimitry Andric 471*0b57cec5SDimitry Andric case CK_LValueToRValueBitCast: { 472*0b57cec5SDimitry Andric LValue SourceLVal = CGF.EmitLValue(Op); 473*0b57cec5SDimitry Andric Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(), 474*0b57cec5SDimitry Andric CGF.ConvertTypeForMem(DestTy)); 475*0b57cec5SDimitry Andric LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); 476*0b57cec5SDimitry Andric DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); 477*0b57cec5SDimitry Andric return EmitLoadOfLValue(DestLV, Op->getExprLoc()); 478*0b57cec5SDimitry Andric } 479*0b57cec5SDimitry Andric 480*0b57cec5SDimitry Andric case CK_BitCast: 481*0b57cec5SDimitry Andric case CK_BaseToDerived: 482*0b57cec5SDimitry Andric case CK_DerivedToBase: 483*0b57cec5SDimitry Andric case CK_UncheckedDerivedToBase: 484*0b57cec5SDimitry Andric case CK_Dynamic: 485*0b57cec5SDimitry Andric case CK_ToUnion: 486*0b57cec5SDimitry Andric case CK_ArrayToPointerDecay: 487*0b57cec5SDimitry Andric case CK_FunctionToPointerDecay: 488*0b57cec5SDimitry Andric case CK_NullToPointer: 489*0b57cec5SDimitry Andric case CK_NullToMemberPointer: 490*0b57cec5SDimitry Andric case CK_BaseToDerivedMemberPointer: 491*0b57cec5SDimitry Andric case CK_DerivedToBaseMemberPointer: 492*0b57cec5SDimitry Andric case CK_MemberPointerToBoolean: 493*0b57cec5SDimitry Andric case CK_ReinterpretMemberPointer: 494*0b57cec5SDimitry Andric case CK_ConstructorConversion: 495*0b57cec5SDimitry Andric case CK_IntegralToPointer: 496*0b57cec5SDimitry Andric case CK_PointerToIntegral: 497*0b57cec5SDimitry Andric case CK_PointerToBoolean: 498*0b57cec5SDimitry Andric case CK_ToVoid: 499*0b57cec5SDimitry Andric case CK_VectorSplat: 500*0b57cec5SDimitry Andric case CK_IntegralCast: 501*0b57cec5SDimitry Andric case CK_BooleanToSignedIntegral: 502*0b57cec5SDimitry Andric case CK_IntegralToBoolean: 503*0b57cec5SDimitry Andric case CK_IntegralToFloating: 504*0b57cec5SDimitry Andric case CK_FloatingToIntegral: 505*0b57cec5SDimitry Andric case CK_FloatingToBoolean: 506*0b57cec5SDimitry Andric case CK_FloatingCast: 507*0b57cec5SDimitry Andric case CK_CPointerToObjCPointerCast: 508*0b57cec5SDimitry Andric case CK_BlockPointerToObjCPointerCast: 509*0b57cec5SDimitry Andric case CK_AnyPointerToBlockPointerCast: 510*0b57cec5SDimitry Andric case CK_ObjCObjectLValueCast: 511*0b57cec5SDimitry Andric case CK_FloatingComplexToReal: 512*0b57cec5SDimitry Andric case CK_FloatingComplexToBoolean: 513*0b57cec5SDimitry Andric case CK_IntegralComplexToReal: 514*0b57cec5SDimitry Andric case CK_IntegralComplexToBoolean: 515*0b57cec5SDimitry Andric case CK_ARCProduceObject: 516*0b57cec5SDimitry Andric case CK_ARCConsumeObject: 517*0b57cec5SDimitry Andric case CK_ARCReclaimReturnedObject: 518*0b57cec5SDimitry Andric case CK_ARCExtendBlockObject: 519*0b57cec5SDimitry Andric case CK_CopyAndAutoreleaseBlockObject: 520*0b57cec5SDimitry Andric case CK_BuiltinFnToFnPtr: 521*0b57cec5SDimitry Andric case CK_ZeroToOCLOpaqueType: 522*0b57cec5SDimitry Andric case CK_AddressSpaceConversion: 523*0b57cec5SDimitry Andric case CK_IntToOCLSampler: 524*0b57cec5SDimitry Andric case CK_FixedPointCast: 525*0b57cec5SDimitry Andric case CK_FixedPointToBoolean: 526*0b57cec5SDimitry Andric case CK_FixedPointToIntegral: 527*0b57cec5SDimitry Andric case CK_IntegralToFixedPoint: 528*0b57cec5SDimitry Andric llvm_unreachable("invalid cast kind for complex value"); 529*0b57cec5SDimitry Andric 530*0b57cec5SDimitry Andric case CK_FloatingRealToComplex: 531*0b57cec5SDimitry Andric case CK_IntegralRealToComplex: 532*0b57cec5SDimitry Andric return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 533*0b57cec5SDimitry Andric DestTy, Op->getExprLoc()); 534*0b57cec5SDimitry Andric 535*0b57cec5SDimitry Andric case CK_FloatingComplexCast: 536*0b57cec5SDimitry Andric case CK_FloatingComplexToIntegralComplex: 537*0b57cec5SDimitry Andric case CK_IntegralComplexCast: 538*0b57cec5SDimitry Andric case CK_IntegralComplexToFloatingComplex: 539*0b57cec5SDimitry Andric return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 540*0b57cec5SDimitry Andric Op->getExprLoc()); 541*0b57cec5SDimitry Andric } 542*0b57cec5SDimitry Andric 543*0b57cec5SDimitry Andric llvm_unreachable("unknown cast resulting in complex value"); 544*0b57cec5SDimitry Andric } 545*0b57cec5SDimitry Andric 546*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 547*0b57cec5SDimitry Andric TestAndClearIgnoreReal(); 548*0b57cec5SDimitry Andric TestAndClearIgnoreImag(); 549*0b57cec5SDimitry Andric ComplexPairTy Op = Visit(E->getSubExpr()); 550*0b57cec5SDimitry Andric 551*0b57cec5SDimitry Andric llvm::Value *ResR, *ResI; 552*0b57cec5SDimitry Andric if (Op.first->getType()->isFloatingPointTy()) { 553*0b57cec5SDimitry Andric ResR = Builder.CreateFNeg(Op.first, "neg.r"); 554*0b57cec5SDimitry Andric ResI = Builder.CreateFNeg(Op.second, "neg.i"); 555*0b57cec5SDimitry Andric } else { 556*0b57cec5SDimitry Andric ResR = Builder.CreateNeg(Op.first, "neg.r"); 557*0b57cec5SDimitry Andric ResI = Builder.CreateNeg(Op.second, "neg.i"); 558*0b57cec5SDimitry Andric } 559*0b57cec5SDimitry Andric return ComplexPairTy(ResR, ResI); 560*0b57cec5SDimitry Andric } 561*0b57cec5SDimitry Andric 562*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 563*0b57cec5SDimitry Andric TestAndClearIgnoreReal(); 564*0b57cec5SDimitry Andric TestAndClearIgnoreImag(); 565*0b57cec5SDimitry Andric // ~(a+ib) = a + i*-b 566*0b57cec5SDimitry Andric ComplexPairTy Op = Visit(E->getSubExpr()); 567*0b57cec5SDimitry Andric llvm::Value *ResI; 568*0b57cec5SDimitry Andric if (Op.second->getType()->isFloatingPointTy()) 569*0b57cec5SDimitry Andric ResI = Builder.CreateFNeg(Op.second, "conj.i"); 570*0b57cec5SDimitry Andric else 571*0b57cec5SDimitry Andric ResI = Builder.CreateNeg(Op.second, "conj.i"); 572*0b57cec5SDimitry Andric 573*0b57cec5SDimitry Andric return ComplexPairTy(Op.first, ResI); 574*0b57cec5SDimitry Andric } 575*0b57cec5SDimitry Andric 576*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 577*0b57cec5SDimitry Andric llvm::Value *ResR, *ResI; 578*0b57cec5SDimitry Andric 579*0b57cec5SDimitry Andric if (Op.LHS.first->getType()->isFloatingPointTy()) { 580*0b57cec5SDimitry Andric ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 581*0b57cec5SDimitry Andric if (Op.LHS.second && Op.RHS.second) 582*0b57cec5SDimitry Andric ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 583*0b57cec5SDimitry Andric else 584*0b57cec5SDimitry Andric ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 585*0b57cec5SDimitry Andric assert(ResI && "Only one operand may be real!"); 586*0b57cec5SDimitry Andric } else { 587*0b57cec5SDimitry Andric ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 588*0b57cec5SDimitry Andric assert(Op.LHS.second && Op.RHS.second && 589*0b57cec5SDimitry Andric "Both operands of integer complex operators must be complex!"); 590*0b57cec5SDimitry Andric ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 591*0b57cec5SDimitry Andric } 592*0b57cec5SDimitry Andric return ComplexPairTy(ResR, ResI); 593*0b57cec5SDimitry Andric } 594*0b57cec5SDimitry Andric 595*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 596*0b57cec5SDimitry Andric llvm::Value *ResR, *ResI; 597*0b57cec5SDimitry Andric if (Op.LHS.first->getType()->isFloatingPointTy()) { 598*0b57cec5SDimitry Andric ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 599*0b57cec5SDimitry Andric if (Op.LHS.second && Op.RHS.second) 600*0b57cec5SDimitry Andric ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 601*0b57cec5SDimitry Andric else 602*0b57cec5SDimitry Andric ResI = Op.LHS.second ? Op.LHS.second 603*0b57cec5SDimitry Andric : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 604*0b57cec5SDimitry Andric assert(ResI && "Only one operand may be real!"); 605*0b57cec5SDimitry Andric } else { 606*0b57cec5SDimitry Andric ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 607*0b57cec5SDimitry Andric assert(Op.LHS.second && Op.RHS.second && 608*0b57cec5SDimitry Andric "Both operands of integer complex operators must be complex!"); 609*0b57cec5SDimitry Andric ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 610*0b57cec5SDimitry Andric } 611*0b57cec5SDimitry Andric return ComplexPairTy(ResR, ResI); 612*0b57cec5SDimitry Andric } 613*0b57cec5SDimitry Andric 614*0b57cec5SDimitry Andric /// Emit a libcall for a binary operation on complex types. 615*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 616*0b57cec5SDimitry Andric const BinOpInfo &Op) { 617*0b57cec5SDimitry Andric CallArgList Args; 618*0b57cec5SDimitry Andric Args.add(RValue::get(Op.LHS.first), 619*0b57cec5SDimitry Andric Op.Ty->castAs<ComplexType>()->getElementType()); 620*0b57cec5SDimitry Andric Args.add(RValue::get(Op.LHS.second), 621*0b57cec5SDimitry Andric Op.Ty->castAs<ComplexType>()->getElementType()); 622*0b57cec5SDimitry Andric Args.add(RValue::get(Op.RHS.first), 623*0b57cec5SDimitry Andric Op.Ty->castAs<ComplexType>()->getElementType()); 624*0b57cec5SDimitry Andric Args.add(RValue::get(Op.RHS.second), 625*0b57cec5SDimitry Andric Op.Ty->castAs<ComplexType>()->getElementType()); 626*0b57cec5SDimitry Andric 627*0b57cec5SDimitry Andric // We *must* use the full CG function call building logic here because the 628*0b57cec5SDimitry Andric // complex type has special ABI handling. We also should not forget about 629*0b57cec5SDimitry Andric // special calling convention which may be used for compiler builtins. 630*0b57cec5SDimitry Andric 631*0b57cec5SDimitry Andric // We create a function qualified type to state that this call does not have 632*0b57cec5SDimitry Andric // any exceptions. 633*0b57cec5SDimitry Andric FunctionProtoType::ExtProtoInfo EPI; 634*0b57cec5SDimitry Andric EPI = EPI.withExceptionSpec( 635*0b57cec5SDimitry Andric FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 636*0b57cec5SDimitry Andric SmallVector<QualType, 4> ArgsQTys( 637*0b57cec5SDimitry Andric 4, Op.Ty->castAs<ComplexType>()->getElementType()); 638*0b57cec5SDimitry Andric QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 639*0b57cec5SDimitry Andric const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 640*0b57cec5SDimitry Andric Args, cast<FunctionType>(FQTy.getTypePtr()), false); 641*0b57cec5SDimitry Andric 642*0b57cec5SDimitry Andric llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 643*0b57cec5SDimitry Andric llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( 644*0b57cec5SDimitry Andric FTy, LibCallName, llvm::AttributeList(), true); 645*0b57cec5SDimitry Andric CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>()); 646*0b57cec5SDimitry Andric 647*0b57cec5SDimitry Andric llvm::CallBase *Call; 648*0b57cec5SDimitry Andric RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); 649*0b57cec5SDimitry Andric Call->setCallingConv(CGF.CGM.getRuntimeCC()); 650*0b57cec5SDimitry Andric return Res.getComplexVal(); 651*0b57cec5SDimitry Andric } 652*0b57cec5SDimitry Andric 653*0b57cec5SDimitry Andric /// Lookup the libcall name for a given floating point type complex 654*0b57cec5SDimitry Andric /// multiply. 655*0b57cec5SDimitry Andric static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 656*0b57cec5SDimitry Andric switch (Ty->getTypeID()) { 657*0b57cec5SDimitry Andric default: 658*0b57cec5SDimitry Andric llvm_unreachable("Unsupported floating point type!"); 659*0b57cec5SDimitry Andric case llvm::Type::HalfTyID: 660*0b57cec5SDimitry Andric return "__mulhc3"; 661*0b57cec5SDimitry Andric case llvm::Type::FloatTyID: 662*0b57cec5SDimitry Andric return "__mulsc3"; 663*0b57cec5SDimitry Andric case llvm::Type::DoubleTyID: 664*0b57cec5SDimitry Andric return "__muldc3"; 665*0b57cec5SDimitry Andric case llvm::Type::PPC_FP128TyID: 666*0b57cec5SDimitry Andric return "__multc3"; 667*0b57cec5SDimitry Andric case llvm::Type::X86_FP80TyID: 668*0b57cec5SDimitry Andric return "__mulxc3"; 669*0b57cec5SDimitry Andric case llvm::Type::FP128TyID: 670*0b57cec5SDimitry Andric return "__multc3"; 671*0b57cec5SDimitry Andric } 672*0b57cec5SDimitry Andric } 673*0b57cec5SDimitry Andric 674*0b57cec5SDimitry Andric // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 675*0b57cec5SDimitry Andric // typed values. 676*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 677*0b57cec5SDimitry Andric using llvm::Value; 678*0b57cec5SDimitry Andric Value *ResR, *ResI; 679*0b57cec5SDimitry Andric llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 680*0b57cec5SDimitry Andric 681*0b57cec5SDimitry Andric if (Op.LHS.first->getType()->isFloatingPointTy()) { 682*0b57cec5SDimitry Andric // The general formulation is: 683*0b57cec5SDimitry Andric // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 684*0b57cec5SDimitry Andric // 685*0b57cec5SDimitry Andric // But we can fold away components which would be zero due to a real 686*0b57cec5SDimitry Andric // operand according to C11 Annex G.5.1p2. 687*0b57cec5SDimitry Andric // FIXME: C11 also provides for imaginary types which would allow folding 688*0b57cec5SDimitry Andric // still more of this within the type system. 689*0b57cec5SDimitry Andric 690*0b57cec5SDimitry Andric if (Op.LHS.second && Op.RHS.second) { 691*0b57cec5SDimitry Andric // If both operands are complex, emit the core math directly, and then 692*0b57cec5SDimitry Andric // test for NaNs. If we find NaNs in the result, we delegate to a libcall 693*0b57cec5SDimitry Andric // to carefully re-compute the correct infinity representation if 694*0b57cec5SDimitry Andric // possible. The expectation is that the presence of NaNs here is 695*0b57cec5SDimitry Andric // *extremely* rare, and so the cost of the libcall is almost irrelevant. 696*0b57cec5SDimitry Andric // This is good, because the libcall re-computes the core multiplication 697*0b57cec5SDimitry Andric // exactly the same as we do here and re-tests for NaNs in order to be 698*0b57cec5SDimitry Andric // a generic complex*complex libcall. 699*0b57cec5SDimitry Andric 700*0b57cec5SDimitry Andric // First compute the four products. 701*0b57cec5SDimitry Andric Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 702*0b57cec5SDimitry Andric Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 703*0b57cec5SDimitry Andric Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 704*0b57cec5SDimitry Andric Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 705*0b57cec5SDimitry Andric 706*0b57cec5SDimitry Andric // The real part is the difference of the first two, the imaginary part is 707*0b57cec5SDimitry Andric // the sum of the second. 708*0b57cec5SDimitry Andric ResR = Builder.CreateFSub(AC, BD, "mul_r"); 709*0b57cec5SDimitry Andric ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 710*0b57cec5SDimitry Andric 711*0b57cec5SDimitry Andric // Emit the test for the real part becoming NaN and create a branch to 712*0b57cec5SDimitry Andric // handle it. We test for NaN by comparing the number to itself. 713*0b57cec5SDimitry Andric Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 714*0b57cec5SDimitry Andric llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 715*0b57cec5SDimitry Andric llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 716*0b57cec5SDimitry Andric llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 717*0b57cec5SDimitry Andric llvm::BasicBlock *OrigBB = Branch->getParent(); 718*0b57cec5SDimitry Andric 719*0b57cec5SDimitry Andric // Give hint that we very much don't expect to see NaNs. 720*0b57cec5SDimitry Andric // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 721*0b57cec5SDimitry Andric llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 722*0b57cec5SDimitry Andric Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 723*0b57cec5SDimitry Andric 724*0b57cec5SDimitry Andric // Now test the imaginary part and create its branch. 725*0b57cec5SDimitry Andric CGF.EmitBlock(INaNBB); 726*0b57cec5SDimitry Andric Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 727*0b57cec5SDimitry Andric llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 728*0b57cec5SDimitry Andric Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 729*0b57cec5SDimitry Andric Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 730*0b57cec5SDimitry Andric 731*0b57cec5SDimitry Andric // Now emit the libcall on this slowest of the slow paths. 732*0b57cec5SDimitry Andric CGF.EmitBlock(LibCallBB); 733*0b57cec5SDimitry Andric Value *LibCallR, *LibCallI; 734*0b57cec5SDimitry Andric std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 735*0b57cec5SDimitry Andric getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 736*0b57cec5SDimitry Andric Builder.CreateBr(ContBB); 737*0b57cec5SDimitry Andric 738*0b57cec5SDimitry Andric // Finally continue execution by phi-ing together the different 739*0b57cec5SDimitry Andric // computation paths. 740*0b57cec5SDimitry Andric CGF.EmitBlock(ContBB); 741*0b57cec5SDimitry Andric llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 742*0b57cec5SDimitry Andric RealPHI->addIncoming(ResR, OrigBB); 743*0b57cec5SDimitry Andric RealPHI->addIncoming(ResR, INaNBB); 744*0b57cec5SDimitry Andric RealPHI->addIncoming(LibCallR, LibCallBB); 745*0b57cec5SDimitry Andric llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 746*0b57cec5SDimitry Andric ImagPHI->addIncoming(ResI, OrigBB); 747*0b57cec5SDimitry Andric ImagPHI->addIncoming(ResI, INaNBB); 748*0b57cec5SDimitry Andric ImagPHI->addIncoming(LibCallI, LibCallBB); 749*0b57cec5SDimitry Andric return ComplexPairTy(RealPHI, ImagPHI); 750*0b57cec5SDimitry Andric } 751*0b57cec5SDimitry Andric assert((Op.LHS.second || Op.RHS.second) && 752*0b57cec5SDimitry Andric "At least one operand must be complex!"); 753*0b57cec5SDimitry Andric 754*0b57cec5SDimitry Andric // If either of the operands is a real rather than a complex, the 755*0b57cec5SDimitry Andric // imaginary component is ignored when computing the real component of the 756*0b57cec5SDimitry Andric // result. 757*0b57cec5SDimitry Andric ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 758*0b57cec5SDimitry Andric 759*0b57cec5SDimitry Andric ResI = Op.LHS.second 760*0b57cec5SDimitry Andric ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 761*0b57cec5SDimitry Andric : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 762*0b57cec5SDimitry Andric } else { 763*0b57cec5SDimitry Andric assert(Op.LHS.second && Op.RHS.second && 764*0b57cec5SDimitry Andric "Both operands of integer complex operators must be complex!"); 765*0b57cec5SDimitry Andric Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 766*0b57cec5SDimitry Andric Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 767*0b57cec5SDimitry Andric ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 768*0b57cec5SDimitry Andric 769*0b57cec5SDimitry Andric Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 770*0b57cec5SDimitry Andric Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 771*0b57cec5SDimitry Andric ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 772*0b57cec5SDimitry Andric } 773*0b57cec5SDimitry Andric return ComplexPairTy(ResR, ResI); 774*0b57cec5SDimitry Andric } 775*0b57cec5SDimitry Andric 776*0b57cec5SDimitry Andric // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 777*0b57cec5SDimitry Andric // typed values. 778*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 779*0b57cec5SDimitry Andric llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 780*0b57cec5SDimitry Andric llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 781*0b57cec5SDimitry Andric 782*0b57cec5SDimitry Andric llvm::Value *DSTr, *DSTi; 783*0b57cec5SDimitry Andric if (LHSr->getType()->isFloatingPointTy()) { 784*0b57cec5SDimitry Andric // If we have a complex operand on the RHS and FastMath is not allowed, we 785*0b57cec5SDimitry Andric // delegate to a libcall to handle all of the complexities and minimize 786*0b57cec5SDimitry Andric // underflow/overflow cases. When FastMath is allowed we construct the 787*0b57cec5SDimitry Andric // divide inline using the same algorithm as for integer operands. 788*0b57cec5SDimitry Andric // 789*0b57cec5SDimitry Andric // FIXME: We would be able to avoid the libcall in many places if we 790*0b57cec5SDimitry Andric // supported imaginary types in addition to complex types. 791*0b57cec5SDimitry Andric if (RHSi && !CGF.getLangOpts().FastMath) { 792*0b57cec5SDimitry Andric BinOpInfo LibCallOp = Op; 793*0b57cec5SDimitry Andric // If LHS was a real, supply a null imaginary part. 794*0b57cec5SDimitry Andric if (!LHSi) 795*0b57cec5SDimitry Andric LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 796*0b57cec5SDimitry Andric 797*0b57cec5SDimitry Andric switch (LHSr->getType()->getTypeID()) { 798*0b57cec5SDimitry Andric default: 799*0b57cec5SDimitry Andric llvm_unreachable("Unsupported floating point type!"); 800*0b57cec5SDimitry Andric case llvm::Type::HalfTyID: 801*0b57cec5SDimitry Andric return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 802*0b57cec5SDimitry Andric case llvm::Type::FloatTyID: 803*0b57cec5SDimitry Andric return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 804*0b57cec5SDimitry Andric case llvm::Type::DoubleTyID: 805*0b57cec5SDimitry Andric return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 806*0b57cec5SDimitry Andric case llvm::Type::PPC_FP128TyID: 807*0b57cec5SDimitry Andric return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 808*0b57cec5SDimitry Andric case llvm::Type::X86_FP80TyID: 809*0b57cec5SDimitry Andric return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 810*0b57cec5SDimitry Andric case llvm::Type::FP128TyID: 811*0b57cec5SDimitry Andric return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 812*0b57cec5SDimitry Andric } 813*0b57cec5SDimitry Andric } else if (RHSi) { 814*0b57cec5SDimitry Andric if (!LHSi) 815*0b57cec5SDimitry Andric LHSi = llvm::Constant::getNullValue(RHSi->getType()); 816*0b57cec5SDimitry Andric 817*0b57cec5SDimitry Andric // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 818*0b57cec5SDimitry Andric llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c 819*0b57cec5SDimitry Andric llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d 820*0b57cec5SDimitry Andric llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd 821*0b57cec5SDimitry Andric 822*0b57cec5SDimitry Andric llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c 823*0b57cec5SDimitry Andric llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d 824*0b57cec5SDimitry Andric llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd 825*0b57cec5SDimitry Andric 826*0b57cec5SDimitry Andric llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c 827*0b57cec5SDimitry Andric llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d 828*0b57cec5SDimitry Andric llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad 829*0b57cec5SDimitry Andric 830*0b57cec5SDimitry Andric DSTr = Builder.CreateFDiv(ACpBD, CCpDD); 831*0b57cec5SDimitry Andric DSTi = Builder.CreateFDiv(BCmAD, CCpDD); 832*0b57cec5SDimitry Andric } else { 833*0b57cec5SDimitry Andric assert(LHSi && "Can have at most one non-complex operand!"); 834*0b57cec5SDimitry Andric 835*0b57cec5SDimitry Andric DSTr = Builder.CreateFDiv(LHSr, RHSr); 836*0b57cec5SDimitry Andric DSTi = Builder.CreateFDiv(LHSi, RHSr); 837*0b57cec5SDimitry Andric } 838*0b57cec5SDimitry Andric } else { 839*0b57cec5SDimitry Andric assert(Op.LHS.second && Op.RHS.second && 840*0b57cec5SDimitry Andric "Both operands of integer complex operators must be complex!"); 841*0b57cec5SDimitry Andric // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 842*0b57cec5SDimitry Andric llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 843*0b57cec5SDimitry Andric llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 844*0b57cec5SDimitry Andric llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 845*0b57cec5SDimitry Andric 846*0b57cec5SDimitry Andric llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 847*0b57cec5SDimitry Andric llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 848*0b57cec5SDimitry Andric llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 849*0b57cec5SDimitry Andric 850*0b57cec5SDimitry Andric llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 851*0b57cec5SDimitry Andric llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 852*0b57cec5SDimitry Andric llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 853*0b57cec5SDimitry Andric 854*0b57cec5SDimitry Andric if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 855*0b57cec5SDimitry Andric DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 856*0b57cec5SDimitry Andric DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 857*0b57cec5SDimitry Andric } else { 858*0b57cec5SDimitry Andric DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 859*0b57cec5SDimitry Andric DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 860*0b57cec5SDimitry Andric } 861*0b57cec5SDimitry Andric } 862*0b57cec5SDimitry Andric 863*0b57cec5SDimitry Andric return ComplexPairTy(DSTr, DSTi); 864*0b57cec5SDimitry Andric } 865*0b57cec5SDimitry Andric 866*0b57cec5SDimitry Andric ComplexExprEmitter::BinOpInfo 867*0b57cec5SDimitry Andric ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 868*0b57cec5SDimitry Andric TestAndClearIgnoreReal(); 869*0b57cec5SDimitry Andric TestAndClearIgnoreImag(); 870*0b57cec5SDimitry Andric BinOpInfo Ops; 871*0b57cec5SDimitry Andric if (E->getLHS()->getType()->isRealFloatingType()) 872*0b57cec5SDimitry Andric Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 873*0b57cec5SDimitry Andric else 874*0b57cec5SDimitry Andric Ops.LHS = Visit(E->getLHS()); 875*0b57cec5SDimitry Andric if (E->getRHS()->getType()->isRealFloatingType()) 876*0b57cec5SDimitry Andric Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 877*0b57cec5SDimitry Andric else 878*0b57cec5SDimitry Andric Ops.RHS = Visit(E->getRHS()); 879*0b57cec5SDimitry Andric 880*0b57cec5SDimitry Andric Ops.Ty = E->getType(); 881*0b57cec5SDimitry Andric return Ops; 882*0b57cec5SDimitry Andric } 883*0b57cec5SDimitry Andric 884*0b57cec5SDimitry Andric 885*0b57cec5SDimitry Andric LValue ComplexExprEmitter:: 886*0b57cec5SDimitry Andric EmitCompoundAssignLValue(const CompoundAssignOperator *E, 887*0b57cec5SDimitry Andric ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 888*0b57cec5SDimitry Andric RValue &Val) { 889*0b57cec5SDimitry Andric TestAndClearIgnoreReal(); 890*0b57cec5SDimitry Andric TestAndClearIgnoreImag(); 891*0b57cec5SDimitry Andric QualType LHSTy = E->getLHS()->getType(); 892*0b57cec5SDimitry Andric if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 893*0b57cec5SDimitry Andric LHSTy = AT->getValueType(); 894*0b57cec5SDimitry Andric 895*0b57cec5SDimitry Andric BinOpInfo OpInfo; 896*0b57cec5SDimitry Andric 897*0b57cec5SDimitry Andric // Load the RHS and LHS operands. 898*0b57cec5SDimitry Andric // __block variables need to have the rhs evaluated first, plus this should 899*0b57cec5SDimitry Andric // improve codegen a little. 900*0b57cec5SDimitry Andric OpInfo.Ty = E->getComputationResultType(); 901*0b57cec5SDimitry Andric QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 902*0b57cec5SDimitry Andric 903*0b57cec5SDimitry Andric // The RHS should have been converted to the computation type. 904*0b57cec5SDimitry Andric if (E->getRHS()->getType()->isRealFloatingType()) { 905*0b57cec5SDimitry Andric assert( 906*0b57cec5SDimitry Andric CGF.getContext() 907*0b57cec5SDimitry Andric .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 908*0b57cec5SDimitry Andric OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 909*0b57cec5SDimitry Andric } else { 910*0b57cec5SDimitry Andric assert(CGF.getContext() 911*0b57cec5SDimitry Andric .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 912*0b57cec5SDimitry Andric OpInfo.RHS = Visit(E->getRHS()); 913*0b57cec5SDimitry Andric } 914*0b57cec5SDimitry Andric 915*0b57cec5SDimitry Andric LValue LHS = CGF.EmitLValue(E->getLHS()); 916*0b57cec5SDimitry Andric 917*0b57cec5SDimitry Andric // Load from the l-value and convert it. 918*0b57cec5SDimitry Andric SourceLocation Loc = E->getExprLoc(); 919*0b57cec5SDimitry Andric if (LHSTy->isAnyComplexType()) { 920*0b57cec5SDimitry Andric ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 921*0b57cec5SDimitry Andric OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 922*0b57cec5SDimitry Andric } else { 923*0b57cec5SDimitry Andric llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 924*0b57cec5SDimitry Andric // For floating point real operands we can directly pass the scalar form 925*0b57cec5SDimitry Andric // to the binary operator emission and potentially get more efficient code. 926*0b57cec5SDimitry Andric if (LHSTy->isRealFloatingType()) { 927*0b57cec5SDimitry Andric if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 928*0b57cec5SDimitry Andric LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 929*0b57cec5SDimitry Andric OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 930*0b57cec5SDimitry Andric } else { 931*0b57cec5SDimitry Andric OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 932*0b57cec5SDimitry Andric } 933*0b57cec5SDimitry Andric } 934*0b57cec5SDimitry Andric 935*0b57cec5SDimitry Andric // Expand the binary operator. 936*0b57cec5SDimitry Andric ComplexPairTy Result = (this->*Func)(OpInfo); 937*0b57cec5SDimitry Andric 938*0b57cec5SDimitry Andric // Truncate the result and store it into the LHS lvalue. 939*0b57cec5SDimitry Andric if (LHSTy->isAnyComplexType()) { 940*0b57cec5SDimitry Andric ComplexPairTy ResVal = 941*0b57cec5SDimitry Andric EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 942*0b57cec5SDimitry Andric EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 943*0b57cec5SDimitry Andric Val = RValue::getComplex(ResVal); 944*0b57cec5SDimitry Andric } else { 945*0b57cec5SDimitry Andric llvm::Value *ResVal = 946*0b57cec5SDimitry Andric CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 947*0b57cec5SDimitry Andric CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 948*0b57cec5SDimitry Andric Val = RValue::get(ResVal); 949*0b57cec5SDimitry Andric } 950*0b57cec5SDimitry Andric 951*0b57cec5SDimitry Andric return LHS; 952*0b57cec5SDimitry Andric } 953*0b57cec5SDimitry Andric 954*0b57cec5SDimitry Andric // Compound assignments. 955*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter:: 956*0b57cec5SDimitry Andric EmitCompoundAssign(const CompoundAssignOperator *E, 957*0b57cec5SDimitry Andric ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 958*0b57cec5SDimitry Andric RValue Val; 959*0b57cec5SDimitry Andric LValue LV = EmitCompoundAssignLValue(E, Func, Val); 960*0b57cec5SDimitry Andric 961*0b57cec5SDimitry Andric // The result of an assignment in C is the assigned r-value. 962*0b57cec5SDimitry Andric if (!CGF.getLangOpts().CPlusPlus) 963*0b57cec5SDimitry Andric return Val.getComplexVal(); 964*0b57cec5SDimitry Andric 965*0b57cec5SDimitry Andric // If the lvalue is non-volatile, return the computed value of the assignment. 966*0b57cec5SDimitry Andric if (!LV.isVolatileQualified()) 967*0b57cec5SDimitry Andric return Val.getComplexVal(); 968*0b57cec5SDimitry Andric 969*0b57cec5SDimitry Andric return EmitLoadOfLValue(LV, E->getExprLoc()); 970*0b57cec5SDimitry Andric } 971*0b57cec5SDimitry Andric 972*0b57cec5SDimitry Andric LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 973*0b57cec5SDimitry Andric ComplexPairTy &Val) { 974*0b57cec5SDimitry Andric assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 975*0b57cec5SDimitry Andric E->getRHS()->getType()) && 976*0b57cec5SDimitry Andric "Invalid assignment"); 977*0b57cec5SDimitry Andric TestAndClearIgnoreReal(); 978*0b57cec5SDimitry Andric TestAndClearIgnoreImag(); 979*0b57cec5SDimitry Andric 980*0b57cec5SDimitry Andric // Emit the RHS. __block variables need the RHS evaluated first. 981*0b57cec5SDimitry Andric Val = Visit(E->getRHS()); 982*0b57cec5SDimitry Andric 983*0b57cec5SDimitry Andric // Compute the address to store into. 984*0b57cec5SDimitry Andric LValue LHS = CGF.EmitLValue(E->getLHS()); 985*0b57cec5SDimitry Andric 986*0b57cec5SDimitry Andric // Store the result value into the LHS lvalue. 987*0b57cec5SDimitry Andric EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 988*0b57cec5SDimitry Andric 989*0b57cec5SDimitry Andric return LHS; 990*0b57cec5SDimitry Andric } 991*0b57cec5SDimitry Andric 992*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 993*0b57cec5SDimitry Andric ComplexPairTy Val; 994*0b57cec5SDimitry Andric LValue LV = EmitBinAssignLValue(E, Val); 995*0b57cec5SDimitry Andric 996*0b57cec5SDimitry Andric // The result of an assignment in C is the assigned r-value. 997*0b57cec5SDimitry Andric if (!CGF.getLangOpts().CPlusPlus) 998*0b57cec5SDimitry Andric return Val; 999*0b57cec5SDimitry Andric 1000*0b57cec5SDimitry Andric // If the lvalue is non-volatile, return the computed value of the assignment. 1001*0b57cec5SDimitry Andric if (!LV.isVolatileQualified()) 1002*0b57cec5SDimitry Andric return Val; 1003*0b57cec5SDimitry Andric 1004*0b57cec5SDimitry Andric return EmitLoadOfLValue(LV, E->getExprLoc()); 1005*0b57cec5SDimitry Andric } 1006*0b57cec5SDimitry Andric 1007*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 1008*0b57cec5SDimitry Andric CGF.EmitIgnoredExpr(E->getLHS()); 1009*0b57cec5SDimitry Andric return Visit(E->getRHS()); 1010*0b57cec5SDimitry Andric } 1011*0b57cec5SDimitry Andric 1012*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter:: 1013*0b57cec5SDimitry Andric VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1014*0b57cec5SDimitry Andric TestAndClearIgnoreReal(); 1015*0b57cec5SDimitry Andric TestAndClearIgnoreImag(); 1016*0b57cec5SDimitry Andric llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1017*0b57cec5SDimitry Andric llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1018*0b57cec5SDimitry Andric llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1019*0b57cec5SDimitry Andric 1020*0b57cec5SDimitry Andric // Bind the common expression if necessary. 1021*0b57cec5SDimitry Andric CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1022*0b57cec5SDimitry Andric 1023*0b57cec5SDimitry Andric 1024*0b57cec5SDimitry Andric CodeGenFunction::ConditionalEvaluation eval(CGF); 1025*0b57cec5SDimitry Andric CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1026*0b57cec5SDimitry Andric CGF.getProfileCount(E)); 1027*0b57cec5SDimitry Andric 1028*0b57cec5SDimitry Andric eval.begin(CGF); 1029*0b57cec5SDimitry Andric CGF.EmitBlock(LHSBlock); 1030*0b57cec5SDimitry Andric CGF.incrementProfileCounter(E); 1031*0b57cec5SDimitry Andric ComplexPairTy LHS = Visit(E->getTrueExpr()); 1032*0b57cec5SDimitry Andric LHSBlock = Builder.GetInsertBlock(); 1033*0b57cec5SDimitry Andric CGF.EmitBranch(ContBlock); 1034*0b57cec5SDimitry Andric eval.end(CGF); 1035*0b57cec5SDimitry Andric 1036*0b57cec5SDimitry Andric eval.begin(CGF); 1037*0b57cec5SDimitry Andric CGF.EmitBlock(RHSBlock); 1038*0b57cec5SDimitry Andric ComplexPairTy RHS = Visit(E->getFalseExpr()); 1039*0b57cec5SDimitry Andric RHSBlock = Builder.GetInsertBlock(); 1040*0b57cec5SDimitry Andric CGF.EmitBlock(ContBlock); 1041*0b57cec5SDimitry Andric eval.end(CGF); 1042*0b57cec5SDimitry Andric 1043*0b57cec5SDimitry Andric // Create a PHI node for the real part. 1044*0b57cec5SDimitry Andric llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 1045*0b57cec5SDimitry Andric RealPN->addIncoming(LHS.first, LHSBlock); 1046*0b57cec5SDimitry Andric RealPN->addIncoming(RHS.first, RHSBlock); 1047*0b57cec5SDimitry Andric 1048*0b57cec5SDimitry Andric // Create a PHI node for the imaginary part. 1049*0b57cec5SDimitry Andric llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 1050*0b57cec5SDimitry Andric ImagPN->addIncoming(LHS.second, LHSBlock); 1051*0b57cec5SDimitry Andric ImagPN->addIncoming(RHS.second, RHSBlock); 1052*0b57cec5SDimitry Andric 1053*0b57cec5SDimitry Andric return ComplexPairTy(RealPN, ImagPN); 1054*0b57cec5SDimitry Andric } 1055*0b57cec5SDimitry Andric 1056*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 1057*0b57cec5SDimitry Andric return Visit(E->getChosenSubExpr()); 1058*0b57cec5SDimitry Andric } 1059*0b57cec5SDimitry Andric 1060*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 1061*0b57cec5SDimitry Andric bool Ignore = TestAndClearIgnoreReal(); 1062*0b57cec5SDimitry Andric (void)Ignore; 1063*0b57cec5SDimitry Andric assert (Ignore == false && "init list ignored"); 1064*0b57cec5SDimitry Andric Ignore = TestAndClearIgnoreImag(); 1065*0b57cec5SDimitry Andric (void)Ignore; 1066*0b57cec5SDimitry Andric assert (Ignore == false && "init list ignored"); 1067*0b57cec5SDimitry Andric 1068*0b57cec5SDimitry Andric if (E->getNumInits() == 2) { 1069*0b57cec5SDimitry Andric llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1070*0b57cec5SDimitry Andric llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1071*0b57cec5SDimitry Andric return ComplexPairTy(Real, Imag); 1072*0b57cec5SDimitry Andric } else if (E->getNumInits() == 1) { 1073*0b57cec5SDimitry Andric return Visit(E->getInit(0)); 1074*0b57cec5SDimitry Andric } 1075*0b57cec5SDimitry Andric 1076*0b57cec5SDimitry Andric // Empty init list initializes to null 1077*0b57cec5SDimitry Andric assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1078*0b57cec5SDimitry Andric QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1079*0b57cec5SDimitry Andric llvm::Type* LTy = CGF.ConvertType(Ty); 1080*0b57cec5SDimitry Andric llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1081*0b57cec5SDimitry Andric return ComplexPairTy(zeroConstant, zeroConstant); 1082*0b57cec5SDimitry Andric } 1083*0b57cec5SDimitry Andric 1084*0b57cec5SDimitry Andric ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1085*0b57cec5SDimitry Andric Address ArgValue = Address::invalid(); 1086*0b57cec5SDimitry Andric Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1087*0b57cec5SDimitry Andric 1088*0b57cec5SDimitry Andric if (!ArgPtr.isValid()) { 1089*0b57cec5SDimitry Andric CGF.ErrorUnsupported(E, "complex va_arg expression"); 1090*0b57cec5SDimitry Andric llvm::Type *EltTy = 1091*0b57cec5SDimitry Andric CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1092*0b57cec5SDimitry Andric llvm::Value *U = llvm::UndefValue::get(EltTy); 1093*0b57cec5SDimitry Andric return ComplexPairTy(U, U); 1094*0b57cec5SDimitry Andric } 1095*0b57cec5SDimitry Andric 1096*0b57cec5SDimitry Andric return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1097*0b57cec5SDimitry Andric E->getExprLoc()); 1098*0b57cec5SDimitry Andric } 1099*0b57cec5SDimitry Andric 1100*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 1101*0b57cec5SDimitry Andric // Entry Point into this File 1102*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 1103*0b57cec5SDimitry Andric 1104*0b57cec5SDimitry Andric /// EmitComplexExpr - Emit the computation of the specified expression of 1105*0b57cec5SDimitry Andric /// complex type, ignoring the result. 1106*0b57cec5SDimitry Andric ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1107*0b57cec5SDimitry Andric bool IgnoreImag) { 1108*0b57cec5SDimitry Andric assert(E && getComplexType(E->getType()) && 1109*0b57cec5SDimitry Andric "Invalid complex expression to emit"); 1110*0b57cec5SDimitry Andric 1111*0b57cec5SDimitry Andric return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1112*0b57cec5SDimitry Andric .Visit(const_cast<Expr *>(E)); 1113*0b57cec5SDimitry Andric } 1114*0b57cec5SDimitry Andric 1115*0b57cec5SDimitry Andric void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1116*0b57cec5SDimitry Andric bool isInit) { 1117*0b57cec5SDimitry Andric assert(E && getComplexType(E->getType()) && 1118*0b57cec5SDimitry Andric "Invalid complex expression to emit"); 1119*0b57cec5SDimitry Andric ComplexExprEmitter Emitter(*this); 1120*0b57cec5SDimitry Andric ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1121*0b57cec5SDimitry Andric Emitter.EmitStoreOfComplex(Val, dest, isInit); 1122*0b57cec5SDimitry Andric } 1123*0b57cec5SDimitry Andric 1124*0b57cec5SDimitry Andric /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1125*0b57cec5SDimitry Andric void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1126*0b57cec5SDimitry Andric bool isInit) { 1127*0b57cec5SDimitry Andric ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1128*0b57cec5SDimitry Andric } 1129*0b57cec5SDimitry Andric 1130*0b57cec5SDimitry Andric /// EmitLoadOfComplex - Load a complex number from the specified address. 1131*0b57cec5SDimitry Andric ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1132*0b57cec5SDimitry Andric SourceLocation loc) { 1133*0b57cec5SDimitry Andric return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1134*0b57cec5SDimitry Andric } 1135*0b57cec5SDimitry Andric 1136*0b57cec5SDimitry Andric LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1137*0b57cec5SDimitry Andric assert(E->getOpcode() == BO_Assign); 1138*0b57cec5SDimitry Andric ComplexPairTy Val; // ignored 1139*0b57cec5SDimitry Andric return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1140*0b57cec5SDimitry Andric } 1141*0b57cec5SDimitry Andric 1142*0b57cec5SDimitry Andric typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1143*0b57cec5SDimitry Andric const ComplexExprEmitter::BinOpInfo &); 1144*0b57cec5SDimitry Andric 1145*0b57cec5SDimitry Andric static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1146*0b57cec5SDimitry Andric switch (Op) { 1147*0b57cec5SDimitry Andric case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1148*0b57cec5SDimitry Andric case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1149*0b57cec5SDimitry Andric case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1150*0b57cec5SDimitry Andric case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1151*0b57cec5SDimitry Andric default: 1152*0b57cec5SDimitry Andric llvm_unreachable("unexpected complex compound assignment"); 1153*0b57cec5SDimitry Andric } 1154*0b57cec5SDimitry Andric } 1155*0b57cec5SDimitry Andric 1156*0b57cec5SDimitry Andric LValue CodeGenFunction:: 1157*0b57cec5SDimitry Andric EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1158*0b57cec5SDimitry Andric CompoundFunc Op = getComplexOp(E->getOpcode()); 1159*0b57cec5SDimitry Andric RValue Val; 1160*0b57cec5SDimitry Andric return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1161*0b57cec5SDimitry Andric } 1162*0b57cec5SDimitry Andric 1163*0b57cec5SDimitry Andric LValue CodeGenFunction:: 1164*0b57cec5SDimitry Andric EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1165*0b57cec5SDimitry Andric llvm::Value *&Result) { 1166*0b57cec5SDimitry Andric CompoundFunc Op = getComplexOp(E->getOpcode()); 1167*0b57cec5SDimitry Andric RValue Val; 1168*0b57cec5SDimitry Andric LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1169*0b57cec5SDimitry Andric Result = Val.getScalarVal(); 1170*0b57cec5SDimitry Andric return Ret; 1171*0b57cec5SDimitry Andric } 1172