10b57cec5SDimitry Andric //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This contains code to emit Expr nodes as LLVM code. 100b57cec5SDimitry Andric // 110b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 120b57cec5SDimitry Andric 13fe6060f1SDimitry Andric #include "CGCUDARuntime.h" 140b57cec5SDimitry Andric #include "CGCXXABI.h" 150b57cec5SDimitry Andric #include "CGCall.h" 160b57cec5SDimitry Andric #include "CGCleanup.h" 170b57cec5SDimitry Andric #include "CGDebugInfo.h" 180b57cec5SDimitry Andric #include "CGObjCRuntime.h" 190b57cec5SDimitry Andric #include "CGOpenMPRuntime.h" 200b57cec5SDimitry Andric #include "CGRecordLayout.h" 210b57cec5SDimitry Andric #include "CodeGenFunction.h" 220b57cec5SDimitry Andric #include "CodeGenModule.h" 230b57cec5SDimitry Andric #include "ConstantEmitter.h" 240b57cec5SDimitry Andric #include "TargetInfo.h" 250b57cec5SDimitry Andric #include "clang/AST/ASTContext.h" 260b57cec5SDimitry Andric #include "clang/AST/Attr.h" 270b57cec5SDimitry Andric #include "clang/AST/DeclObjC.h" 280b57cec5SDimitry Andric #include "clang/AST/NSAPI.h" 290b57cec5SDimitry Andric #include "clang/Basic/Builtins.h" 300b57cec5SDimitry Andric #include "clang/Basic/CodeGenOptions.h" 315ffd83dbSDimitry Andric #include "clang/Basic/SourceManager.h" 320b57cec5SDimitry Andric #include "llvm/ADT/Hashing.h" 330b57cec5SDimitry Andric #include "llvm/ADT/StringExtras.h" 340b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h" 350b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h" 36*fe013be4SDimitry Andric #include "llvm/IR/IntrinsicsWebAssembly.h" 370b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h" 380b57cec5SDimitry Andric #include "llvm/IR/MDBuilder.h" 39349cc55cSDimitry Andric #include "llvm/IR/MatrixBuilder.h" 40*fe013be4SDimitry Andric #include "llvm/Passes/OptimizationLevel.h" 410b57cec5SDimitry Andric #include "llvm/Support/ConvertUTF.h" 420b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h" 430b57cec5SDimitry Andric #include "llvm/Support/Path.h" 44fe6060f1SDimitry Andric #include "llvm/Support/SaveAndRestore.h" 45*fe013be4SDimitry Andric #include "llvm/Support/xxhash.h" 460b57cec5SDimitry Andric #include "llvm/Transforms/Utils/SanitizerStats.h" 470b57cec5SDimitry Andric 48bdd1243dSDimitry Andric #include <optional> 490b57cec5SDimitry Andric #include <string> 500b57cec5SDimitry Andric 510b57cec5SDimitry Andric using namespace clang; 520b57cec5SDimitry Andric using namespace CodeGen; 530b57cec5SDimitry Andric 540b57cec5SDimitry Andric //===--------------------------------------------------------------------===// 550b57cec5SDimitry Andric // Miscellaneous Helper Methods 560b57cec5SDimitry Andric //===--------------------------------------------------------------------===// 570b57cec5SDimitry Andric 580b57cec5SDimitry Andric /// CreateTempAlloca - This creates a alloca and inserts it into the entry 590b57cec5SDimitry Andric /// block. 600b57cec5SDimitry Andric Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 610b57cec5SDimitry Andric CharUnits Align, 620b57cec5SDimitry Andric const Twine &Name, 630b57cec5SDimitry Andric llvm::Value *ArraySize) { 640b57cec5SDimitry Andric auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 65a7dea167SDimitry Andric Alloca->setAlignment(Align.getAsAlign()); 66*fe013be4SDimitry Andric return Address(Alloca, Ty, Align, KnownNonNull); 670b57cec5SDimitry Andric } 680b57cec5SDimitry Andric 690b57cec5SDimitry Andric /// CreateTempAlloca - This creates a alloca and inserts it into the entry 700b57cec5SDimitry Andric /// block. The alloca is casted to default address space if necessary. 710b57cec5SDimitry Andric Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 720b57cec5SDimitry Andric const Twine &Name, 730b57cec5SDimitry Andric llvm::Value *ArraySize, 740b57cec5SDimitry Andric Address *AllocaAddr) { 750b57cec5SDimitry Andric auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 760b57cec5SDimitry Andric if (AllocaAddr) 770b57cec5SDimitry Andric *AllocaAddr = Alloca; 780b57cec5SDimitry Andric llvm::Value *V = Alloca.getPointer(); 790b57cec5SDimitry Andric // Alloca always returns a pointer in alloca address space, which may 800b57cec5SDimitry Andric // be different from the type defined by the language. For example, 810b57cec5SDimitry Andric // in C++ the auto variables are in the default address space. Therefore 820b57cec5SDimitry Andric // cast alloca to the default address space when necessary. 830b57cec5SDimitry Andric if (getASTAllocaAddressSpace() != LangAS::Default) { 840b57cec5SDimitry Andric auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 850b57cec5SDimitry Andric llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 860b57cec5SDimitry Andric // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 870b57cec5SDimitry Andric // otherwise alloca is inserted at the current insertion point of the 880b57cec5SDimitry Andric // builder. 890b57cec5SDimitry Andric if (!ArraySize) 90349cc55cSDimitry Andric Builder.SetInsertPoint(getPostAllocaInsertPoint()); 910b57cec5SDimitry Andric V = getTargetHooks().performAddrSpaceCast( 920b57cec5SDimitry Andric *this, V, getASTAllocaAddressSpace(), LangAS::Default, 930b57cec5SDimitry Andric Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 940b57cec5SDimitry Andric } 950b57cec5SDimitry Andric 96*fe013be4SDimitry Andric return Address(V, Ty, Align, KnownNonNull); 970b57cec5SDimitry Andric } 980b57cec5SDimitry Andric 990b57cec5SDimitry Andric /// CreateTempAlloca - This creates an alloca and inserts it into the entry 1000b57cec5SDimitry Andric /// block if \p ArraySize is nullptr, otherwise inserts it at the current 1010b57cec5SDimitry Andric /// insertion point of the builder. 1020b57cec5SDimitry Andric llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 1030b57cec5SDimitry Andric const Twine &Name, 1040b57cec5SDimitry Andric llvm::Value *ArraySize) { 1050b57cec5SDimitry Andric if (ArraySize) 1060b57cec5SDimitry Andric return Builder.CreateAlloca(Ty, ArraySize, Name); 1070b57cec5SDimitry Andric return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 1080b57cec5SDimitry Andric ArraySize, Name, AllocaInsertPt); 1090b57cec5SDimitry Andric } 1100b57cec5SDimitry Andric 1110b57cec5SDimitry Andric /// CreateDefaultAlignTempAlloca - This creates an alloca with the 1120b57cec5SDimitry Andric /// default alignment of the corresponding LLVM type, which is *not* 1130b57cec5SDimitry Andric /// guaranteed to be related in any way to the expected alignment of 1140b57cec5SDimitry Andric /// an AST type that might have been lowered to Ty. 1150b57cec5SDimitry Andric Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 1160b57cec5SDimitry Andric const Twine &Name) { 1170b57cec5SDimitry Andric CharUnits Align = 118bdd1243dSDimitry Andric CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlign(Ty)); 1190b57cec5SDimitry Andric return CreateTempAlloca(Ty, Align, Name); 1200b57cec5SDimitry Andric } 1210b57cec5SDimitry Andric 1220b57cec5SDimitry Andric Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 1230b57cec5SDimitry Andric CharUnits Align = getContext().getTypeAlignInChars(Ty); 1240b57cec5SDimitry Andric return CreateTempAlloca(ConvertType(Ty), Align, Name); 1250b57cec5SDimitry Andric } 1260b57cec5SDimitry Andric 1270b57cec5SDimitry Andric Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 1280b57cec5SDimitry Andric Address *Alloca) { 1290b57cec5SDimitry Andric // FIXME: Should we prefer the preferred type alignment here? 1300b57cec5SDimitry Andric return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 1310b57cec5SDimitry Andric } 1320b57cec5SDimitry Andric 1330b57cec5SDimitry Andric Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 1340b57cec5SDimitry Andric const Twine &Name, Address *Alloca) { 1355ffd83dbSDimitry Andric Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 1360b57cec5SDimitry Andric /*ArraySize=*/nullptr, Alloca); 1375ffd83dbSDimitry Andric 1385ffd83dbSDimitry Andric if (Ty->isConstantMatrixType()) { 1390eae32dcSDimitry Andric auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType()); 1405ffd83dbSDimitry Andric auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 1415ffd83dbSDimitry Andric ArrayTy->getNumElements()); 1425ffd83dbSDimitry Andric 1435ffd83dbSDimitry Andric Result = Address( 1445ffd83dbSDimitry Andric Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()), 145*fe013be4SDimitry Andric VectorTy, Result.getAlignment(), KnownNonNull); 1465ffd83dbSDimitry Andric } 1475ffd83dbSDimitry Andric return Result; 1480b57cec5SDimitry Andric } 1490b57cec5SDimitry Andric 1500b57cec5SDimitry Andric Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 1510b57cec5SDimitry Andric const Twine &Name) { 1520b57cec5SDimitry Andric return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 1530b57cec5SDimitry Andric } 1540b57cec5SDimitry Andric 1550b57cec5SDimitry Andric Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 1560b57cec5SDimitry Andric const Twine &Name) { 1570b57cec5SDimitry Andric return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 1580b57cec5SDimitry Andric Name); 1590b57cec5SDimitry Andric } 1600b57cec5SDimitry Andric 1610b57cec5SDimitry Andric /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1620b57cec5SDimitry Andric /// expression and compare the result against zero, returning an Int1Ty value. 1630b57cec5SDimitry Andric llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 1640b57cec5SDimitry Andric PGO.setCurrentStmt(E); 1650b57cec5SDimitry Andric if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 1660b57cec5SDimitry Andric llvm::Value *MemPtr = EmitScalarExpr(E); 1670b57cec5SDimitry Andric return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 1680b57cec5SDimitry Andric } 1690b57cec5SDimitry Andric 1700b57cec5SDimitry Andric QualType BoolTy = getContext().BoolTy; 1710b57cec5SDimitry Andric SourceLocation Loc = E->getExprLoc(); 172e8d8bef9SDimitry Andric CGFPOptionsRAII FPOptsRAII(*this, E); 1730b57cec5SDimitry Andric if (!E->getType()->isAnyComplexType()) 1740b57cec5SDimitry Andric return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 1750b57cec5SDimitry Andric 1760b57cec5SDimitry Andric return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 1770b57cec5SDimitry Andric Loc); 1780b57cec5SDimitry Andric } 1790b57cec5SDimitry Andric 1800b57cec5SDimitry Andric /// EmitIgnoredExpr - Emit code to compute the specified expression, 1810b57cec5SDimitry Andric /// ignoring the result. 1820b57cec5SDimitry Andric void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 183fe6060f1SDimitry Andric if (E->isPRValue()) 1840b57cec5SDimitry Andric return (void)EmitAnyExpr(E, AggValueSlot::ignored(), true); 1850b57cec5SDimitry Andric 18681ad6265SDimitry Andric // if this is a bitfield-resulting conditional operator, we can special case 18781ad6265SDimitry Andric // emit this. The normal 'EmitLValue' version of this is particularly 18881ad6265SDimitry Andric // difficult to codegen for, since creating a single "LValue" for two 18981ad6265SDimitry Andric // different sized arguments here is not particularly doable. 19081ad6265SDimitry Andric if (const auto *CondOp = dyn_cast<AbstractConditionalOperator>( 19181ad6265SDimitry Andric E->IgnoreParenNoopCasts(getContext()))) { 19281ad6265SDimitry Andric if (CondOp->getObjectKind() == OK_BitField) 19381ad6265SDimitry Andric return EmitIgnoredConditionalOperator(CondOp); 19481ad6265SDimitry Andric } 19581ad6265SDimitry Andric 1960b57cec5SDimitry Andric // Just emit it as an l-value and drop the result. 1970b57cec5SDimitry Andric EmitLValue(E); 1980b57cec5SDimitry Andric } 1990b57cec5SDimitry Andric 2000b57cec5SDimitry Andric /// EmitAnyExpr - Emit code to compute the specified expression which 2010b57cec5SDimitry Andric /// can have any type. The result is returned as an RValue struct. 2020b57cec5SDimitry Andric /// If this is an aggregate expression, AggSlot indicates where the 2030b57cec5SDimitry Andric /// result should be returned. 2040b57cec5SDimitry Andric RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 2050b57cec5SDimitry Andric AggValueSlot aggSlot, 2060b57cec5SDimitry Andric bool ignoreResult) { 2070b57cec5SDimitry Andric switch (getEvaluationKind(E->getType())) { 2080b57cec5SDimitry Andric case TEK_Scalar: 2090b57cec5SDimitry Andric return RValue::get(EmitScalarExpr(E, ignoreResult)); 2100b57cec5SDimitry Andric case TEK_Complex: 2110b57cec5SDimitry Andric return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 2120b57cec5SDimitry Andric case TEK_Aggregate: 2130b57cec5SDimitry Andric if (!ignoreResult && aggSlot.isIgnored()) 2140b57cec5SDimitry Andric aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 2150b57cec5SDimitry Andric EmitAggExpr(E, aggSlot); 2160b57cec5SDimitry Andric return aggSlot.asRValue(); 2170b57cec5SDimitry Andric } 2180b57cec5SDimitry Andric llvm_unreachable("bad evaluation kind"); 2190b57cec5SDimitry Andric } 2200b57cec5SDimitry Andric 2210b57cec5SDimitry Andric /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 2220b57cec5SDimitry Andric /// always be accessible even if no aggregate location is provided. 2230b57cec5SDimitry Andric RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 2240b57cec5SDimitry Andric AggValueSlot AggSlot = AggValueSlot::ignored(); 2250b57cec5SDimitry Andric 2260b57cec5SDimitry Andric if (hasAggregateEvaluationKind(E->getType())) 2270b57cec5SDimitry Andric AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 2280b57cec5SDimitry Andric return EmitAnyExpr(E, AggSlot); 2290b57cec5SDimitry Andric } 2300b57cec5SDimitry Andric 2310b57cec5SDimitry Andric /// EmitAnyExprToMem - Evaluate an expression into a given memory 2320b57cec5SDimitry Andric /// location. 2330b57cec5SDimitry Andric void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 2340b57cec5SDimitry Andric Address Location, 2350b57cec5SDimitry Andric Qualifiers Quals, 2360b57cec5SDimitry Andric bool IsInit) { 2370b57cec5SDimitry Andric // FIXME: This function should take an LValue as an argument. 2380b57cec5SDimitry Andric switch (getEvaluationKind(E->getType())) { 2390b57cec5SDimitry Andric case TEK_Complex: 2400b57cec5SDimitry Andric EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 2410b57cec5SDimitry Andric /*isInit*/ false); 2420b57cec5SDimitry Andric return; 2430b57cec5SDimitry Andric 2440b57cec5SDimitry Andric case TEK_Aggregate: { 2450b57cec5SDimitry Andric EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 2460b57cec5SDimitry Andric AggValueSlot::IsDestructed_t(IsInit), 2470b57cec5SDimitry Andric AggValueSlot::DoesNotNeedGCBarriers, 2480b57cec5SDimitry Andric AggValueSlot::IsAliased_t(!IsInit), 2490b57cec5SDimitry Andric AggValueSlot::MayOverlap)); 2500b57cec5SDimitry Andric return; 2510b57cec5SDimitry Andric } 2520b57cec5SDimitry Andric 2530b57cec5SDimitry Andric case TEK_Scalar: { 2540b57cec5SDimitry Andric RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 2550b57cec5SDimitry Andric LValue LV = MakeAddrLValue(Location, E->getType()); 2560b57cec5SDimitry Andric EmitStoreThroughLValue(RV, LV); 2570b57cec5SDimitry Andric return; 2580b57cec5SDimitry Andric } 2590b57cec5SDimitry Andric } 2600b57cec5SDimitry Andric llvm_unreachable("bad evaluation kind"); 2610b57cec5SDimitry Andric } 2620b57cec5SDimitry Andric 2630b57cec5SDimitry Andric static void 2640b57cec5SDimitry Andric pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 2650b57cec5SDimitry Andric const Expr *E, Address ReferenceTemporary) { 2660b57cec5SDimitry Andric // Objective-C++ ARC: 2670b57cec5SDimitry Andric // If we are binding a reference to a temporary that has ownership, we 2680b57cec5SDimitry Andric // need to perform retain/release operations on the temporary. 2690b57cec5SDimitry Andric // 2700b57cec5SDimitry Andric // FIXME: This should be looking at E, not M. 2710b57cec5SDimitry Andric if (auto Lifetime = M->getType().getObjCLifetime()) { 2720b57cec5SDimitry Andric switch (Lifetime) { 2730b57cec5SDimitry Andric case Qualifiers::OCL_None: 2740b57cec5SDimitry Andric case Qualifiers::OCL_ExplicitNone: 2750b57cec5SDimitry Andric // Carry on to normal cleanup handling. 2760b57cec5SDimitry Andric break; 2770b57cec5SDimitry Andric 2780b57cec5SDimitry Andric case Qualifiers::OCL_Autoreleasing: 2790b57cec5SDimitry Andric // Nothing to do; cleaned up by an autorelease pool. 2800b57cec5SDimitry Andric return; 2810b57cec5SDimitry Andric 2820b57cec5SDimitry Andric case Qualifiers::OCL_Strong: 2830b57cec5SDimitry Andric case Qualifiers::OCL_Weak: 2840b57cec5SDimitry Andric switch (StorageDuration Duration = M->getStorageDuration()) { 2850b57cec5SDimitry Andric case SD_Static: 2860b57cec5SDimitry Andric // Note: we intentionally do not register a cleanup to release 2870b57cec5SDimitry Andric // the object on program termination. 2880b57cec5SDimitry Andric return; 2890b57cec5SDimitry Andric 2900b57cec5SDimitry Andric case SD_Thread: 2910b57cec5SDimitry Andric // FIXME: We should probably register a cleanup in this case. 2920b57cec5SDimitry Andric return; 2930b57cec5SDimitry Andric 2940b57cec5SDimitry Andric case SD_Automatic: 2950b57cec5SDimitry Andric case SD_FullExpression: 2960b57cec5SDimitry Andric CodeGenFunction::Destroyer *Destroy; 2970b57cec5SDimitry Andric CleanupKind CleanupKind; 2980b57cec5SDimitry Andric if (Lifetime == Qualifiers::OCL_Strong) { 2990b57cec5SDimitry Andric const ValueDecl *VD = M->getExtendingDecl(); 3000b57cec5SDimitry Andric bool Precise = 3010b57cec5SDimitry Andric VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 3020b57cec5SDimitry Andric CleanupKind = CGF.getARCCleanupKind(); 3030b57cec5SDimitry Andric Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 3040b57cec5SDimitry Andric : &CodeGenFunction::destroyARCStrongImprecise; 3050b57cec5SDimitry Andric } else { 3060b57cec5SDimitry Andric // __weak objects always get EH cleanups; otherwise, exceptions 3070b57cec5SDimitry Andric // could cause really nasty crashes instead of mere leaks. 3080b57cec5SDimitry Andric CleanupKind = NormalAndEHCleanup; 3090b57cec5SDimitry Andric Destroy = &CodeGenFunction::destroyARCWeak; 3100b57cec5SDimitry Andric } 3110b57cec5SDimitry Andric if (Duration == SD_FullExpression) 3120b57cec5SDimitry Andric CGF.pushDestroy(CleanupKind, ReferenceTemporary, 3130b57cec5SDimitry Andric M->getType(), *Destroy, 3140b57cec5SDimitry Andric CleanupKind & EHCleanup); 3150b57cec5SDimitry Andric else 3160b57cec5SDimitry Andric CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 3170b57cec5SDimitry Andric M->getType(), 3180b57cec5SDimitry Andric *Destroy, CleanupKind & EHCleanup); 3190b57cec5SDimitry Andric return; 3200b57cec5SDimitry Andric 3210b57cec5SDimitry Andric case SD_Dynamic: 3220b57cec5SDimitry Andric llvm_unreachable("temporary cannot have dynamic storage duration"); 3230b57cec5SDimitry Andric } 3240b57cec5SDimitry Andric llvm_unreachable("unknown storage duration"); 3250b57cec5SDimitry Andric } 3260b57cec5SDimitry Andric } 3270b57cec5SDimitry Andric 3280b57cec5SDimitry Andric CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 3290b57cec5SDimitry Andric if (const RecordType *RT = 3300b57cec5SDimitry Andric E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 3310b57cec5SDimitry Andric // Get the destructor for the reference temporary. 3320b57cec5SDimitry Andric auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 3330b57cec5SDimitry Andric if (!ClassDecl->hasTrivialDestructor()) 3340b57cec5SDimitry Andric ReferenceTemporaryDtor = ClassDecl->getDestructor(); 3350b57cec5SDimitry Andric } 3360b57cec5SDimitry Andric 3370b57cec5SDimitry Andric if (!ReferenceTemporaryDtor) 3380b57cec5SDimitry Andric return; 3390b57cec5SDimitry Andric 3400b57cec5SDimitry Andric // Call the destructor for the temporary. 3410b57cec5SDimitry Andric switch (M->getStorageDuration()) { 3420b57cec5SDimitry Andric case SD_Static: 3430b57cec5SDimitry Andric case SD_Thread: { 3440b57cec5SDimitry Andric llvm::FunctionCallee CleanupFn; 3450b57cec5SDimitry Andric llvm::Constant *CleanupArg; 3460b57cec5SDimitry Andric if (E->getType()->isArrayType()) { 3470b57cec5SDimitry Andric CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 3480b57cec5SDimitry Andric ReferenceTemporary, E->getType(), 3490b57cec5SDimitry Andric CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 3500b57cec5SDimitry Andric dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 3510b57cec5SDimitry Andric CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 3520b57cec5SDimitry Andric } else { 3530b57cec5SDimitry Andric CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 3540b57cec5SDimitry Andric GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 3550b57cec5SDimitry Andric CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 3560b57cec5SDimitry Andric } 3570b57cec5SDimitry Andric CGF.CGM.getCXXABI().registerGlobalDtor( 3580b57cec5SDimitry Andric CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 3590b57cec5SDimitry Andric break; 3600b57cec5SDimitry Andric } 3610b57cec5SDimitry Andric 3620b57cec5SDimitry Andric case SD_FullExpression: 3630b57cec5SDimitry Andric CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 3640b57cec5SDimitry Andric CodeGenFunction::destroyCXXObject, 3650b57cec5SDimitry Andric CGF.getLangOpts().Exceptions); 3660b57cec5SDimitry Andric break; 3670b57cec5SDimitry Andric 3680b57cec5SDimitry Andric case SD_Automatic: 3690b57cec5SDimitry Andric CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 3700b57cec5SDimitry Andric ReferenceTemporary, E->getType(), 3710b57cec5SDimitry Andric CodeGenFunction::destroyCXXObject, 3720b57cec5SDimitry Andric CGF.getLangOpts().Exceptions); 3730b57cec5SDimitry Andric break; 3740b57cec5SDimitry Andric 3750b57cec5SDimitry Andric case SD_Dynamic: 3760b57cec5SDimitry Andric llvm_unreachable("temporary cannot have dynamic storage duration"); 3770b57cec5SDimitry Andric } 3780b57cec5SDimitry Andric } 3790b57cec5SDimitry Andric 3800b57cec5SDimitry Andric static Address createReferenceTemporary(CodeGenFunction &CGF, 3810b57cec5SDimitry Andric const MaterializeTemporaryExpr *M, 3820b57cec5SDimitry Andric const Expr *Inner, 3830b57cec5SDimitry Andric Address *Alloca = nullptr) { 3840b57cec5SDimitry Andric auto &TCG = CGF.getTargetHooks(); 3850b57cec5SDimitry Andric switch (M->getStorageDuration()) { 3860b57cec5SDimitry Andric case SD_FullExpression: 3870b57cec5SDimitry Andric case SD_Automatic: { 3880b57cec5SDimitry Andric // If we have a constant temporary array or record try to promote it into a 3890b57cec5SDimitry Andric // constant global under the same rules a normal constant would've been 3900b57cec5SDimitry Andric // promoted. This is easier on the optimizer and generally emits fewer 3910b57cec5SDimitry Andric // instructions. 3920b57cec5SDimitry Andric QualType Ty = Inner->getType(); 3930b57cec5SDimitry Andric if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 3940b57cec5SDimitry Andric (Ty->isArrayType() || Ty->isRecordType()) && 395*fe013be4SDimitry Andric CGF.CGM.isTypeConstant(Ty, true, false)) 3960b57cec5SDimitry Andric if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 397fe6060f1SDimitry Andric auto AS = CGF.CGM.GetGlobalConstantAddressSpace(); 3980b57cec5SDimitry Andric auto *GV = new llvm::GlobalVariable( 3990b57cec5SDimitry Andric CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 4000b57cec5SDimitry Andric llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 4010b57cec5SDimitry Andric llvm::GlobalValue::NotThreadLocal, 4020b57cec5SDimitry Andric CGF.getContext().getTargetAddressSpace(AS)); 4030b57cec5SDimitry Andric CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 404a7dea167SDimitry Andric GV->setAlignment(alignment.getAsAlign()); 4050b57cec5SDimitry Andric llvm::Constant *C = GV; 4060b57cec5SDimitry Andric if (AS != LangAS::Default) 4070b57cec5SDimitry Andric C = TCG.performAddrSpaceCast( 4080b57cec5SDimitry Andric CGF.CGM, GV, AS, LangAS::Default, 4090b57cec5SDimitry Andric GV->getValueType()->getPointerTo( 4100b57cec5SDimitry Andric CGF.getContext().getTargetAddressSpace(LangAS::Default))); 4110b57cec5SDimitry Andric // FIXME: Should we put the new global into a COMDAT? 41281ad6265SDimitry Andric return Address(C, GV->getValueType(), alignment); 4130b57cec5SDimitry Andric } 4140b57cec5SDimitry Andric return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 4150b57cec5SDimitry Andric } 4160b57cec5SDimitry Andric case SD_Thread: 4170b57cec5SDimitry Andric case SD_Static: 4180b57cec5SDimitry Andric return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 4190b57cec5SDimitry Andric 4200b57cec5SDimitry Andric case SD_Dynamic: 4210b57cec5SDimitry Andric llvm_unreachable("temporary can't have dynamic storage duration"); 4220b57cec5SDimitry Andric } 4230b57cec5SDimitry Andric llvm_unreachable("unknown storage duration"); 4240b57cec5SDimitry Andric } 4250b57cec5SDimitry Andric 4265ffd83dbSDimitry Andric /// Helper method to check if the underlying ABI is AAPCS 4275ffd83dbSDimitry Andric static bool isAAPCS(const TargetInfo &TargetInfo) { 4285ffd83dbSDimitry Andric return TargetInfo.getABI().startswith("aapcs"); 4295ffd83dbSDimitry Andric } 4305ffd83dbSDimitry Andric 4310b57cec5SDimitry Andric LValue CodeGenFunction:: 4320b57cec5SDimitry Andric EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 433480093f4SDimitry Andric const Expr *E = M->getSubExpr(); 4340b57cec5SDimitry Andric 4350b57cec5SDimitry Andric assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 4360b57cec5SDimitry Andric !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 4370b57cec5SDimitry Andric "Reference should never be pseudo-strong!"); 4380b57cec5SDimitry Andric 4390b57cec5SDimitry Andric // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 4400b57cec5SDimitry Andric // as that will cause the lifetime adjustment to be lost for ARC 4410b57cec5SDimitry Andric auto ownership = M->getType().getObjCLifetime(); 4420b57cec5SDimitry Andric if (ownership != Qualifiers::OCL_None && 4430b57cec5SDimitry Andric ownership != Qualifiers::OCL_ExplicitNone) { 4440b57cec5SDimitry Andric Address Object = createReferenceTemporary(*this, M, E); 4450b57cec5SDimitry Andric if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 44681ad6265SDimitry Andric llvm::Type *Ty = ConvertTypeForMem(E->getType()); 44781ad6265SDimitry Andric Object = Address(llvm::ConstantExpr::getBitCast( 44881ad6265SDimitry Andric Var, Ty->getPointerTo(Object.getAddressSpace())), 44981ad6265SDimitry Andric Ty, Object.getAlignment()); 4500b57cec5SDimitry Andric 4510b57cec5SDimitry Andric // createReferenceTemporary will promote the temporary to a global with a 4520b57cec5SDimitry Andric // constant initializer if it can. It can only do this to a value of 4530b57cec5SDimitry Andric // ARC-manageable type if the value is global and therefore "immune" to 4540b57cec5SDimitry Andric // ref-counting operations. Therefore we have no need to emit either a 4550b57cec5SDimitry Andric // dynamic initialization or a cleanup and we can just return the address 4560b57cec5SDimitry Andric // of the temporary. 4570b57cec5SDimitry Andric if (Var->hasInitializer()) 4580b57cec5SDimitry Andric return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 4590b57cec5SDimitry Andric 4600b57cec5SDimitry Andric Var->setInitializer(CGM.EmitNullConstant(E->getType())); 4610b57cec5SDimitry Andric } 4620b57cec5SDimitry Andric LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 4630b57cec5SDimitry Andric AlignmentSource::Decl); 4640b57cec5SDimitry Andric 4650b57cec5SDimitry Andric switch (getEvaluationKind(E->getType())) { 4660b57cec5SDimitry Andric default: llvm_unreachable("expected scalar or aggregate expression"); 4670b57cec5SDimitry Andric case TEK_Scalar: 4680b57cec5SDimitry Andric EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 4690b57cec5SDimitry Andric break; 4700b57cec5SDimitry Andric case TEK_Aggregate: { 4710b57cec5SDimitry Andric EmitAggExpr(E, AggValueSlot::forAddr(Object, 4720b57cec5SDimitry Andric E->getType().getQualifiers(), 4730b57cec5SDimitry Andric AggValueSlot::IsDestructed, 4740b57cec5SDimitry Andric AggValueSlot::DoesNotNeedGCBarriers, 4750b57cec5SDimitry Andric AggValueSlot::IsNotAliased, 4760b57cec5SDimitry Andric AggValueSlot::DoesNotOverlap)); 4770b57cec5SDimitry Andric break; 4780b57cec5SDimitry Andric } 4790b57cec5SDimitry Andric } 4800b57cec5SDimitry Andric 4810b57cec5SDimitry Andric pushTemporaryCleanup(*this, M, E, Object); 4820b57cec5SDimitry Andric return RefTempDst; 4830b57cec5SDimitry Andric } 4840b57cec5SDimitry Andric 4850b57cec5SDimitry Andric SmallVector<const Expr *, 2> CommaLHSs; 4860b57cec5SDimitry Andric SmallVector<SubobjectAdjustment, 2> Adjustments; 4870b57cec5SDimitry Andric E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 4880b57cec5SDimitry Andric 4890b57cec5SDimitry Andric for (const auto &Ignored : CommaLHSs) 4900b57cec5SDimitry Andric EmitIgnoredExpr(Ignored); 4910b57cec5SDimitry Andric 4920b57cec5SDimitry Andric if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 4930b57cec5SDimitry Andric if (opaque->getType()->isRecordType()) { 4940b57cec5SDimitry Andric assert(Adjustments.empty()); 4950b57cec5SDimitry Andric return EmitOpaqueValueLValue(opaque); 4960b57cec5SDimitry Andric } 4970b57cec5SDimitry Andric } 4980b57cec5SDimitry Andric 4990b57cec5SDimitry Andric // Create and initialize the reference temporary. 5000b57cec5SDimitry Andric Address Alloca = Address::invalid(); 5010b57cec5SDimitry Andric Address Object = createReferenceTemporary(*this, M, E, &Alloca); 5020b57cec5SDimitry Andric if (auto *Var = dyn_cast<llvm::GlobalVariable>( 5030b57cec5SDimitry Andric Object.getPointer()->stripPointerCasts())) { 50481ad6265SDimitry Andric llvm::Type *TemporaryType = ConvertTypeForMem(E->getType()); 5050b57cec5SDimitry Andric Object = Address(llvm::ConstantExpr::getBitCast( 5060b57cec5SDimitry Andric cast<llvm::Constant>(Object.getPointer()), 50781ad6265SDimitry Andric TemporaryType->getPointerTo()), 50881ad6265SDimitry Andric TemporaryType, 5090b57cec5SDimitry Andric Object.getAlignment()); 5100b57cec5SDimitry Andric // If the temporary is a global and has a constant initializer or is a 5110b57cec5SDimitry Andric // constant temporary that we promoted to a global, we may have already 5120b57cec5SDimitry Andric // initialized it. 5130b57cec5SDimitry Andric if (!Var->hasInitializer()) { 5140b57cec5SDimitry Andric Var->setInitializer(CGM.EmitNullConstant(E->getType())); 5150b57cec5SDimitry Andric EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 5160b57cec5SDimitry Andric } 5170b57cec5SDimitry Andric } else { 5180b57cec5SDimitry Andric switch (M->getStorageDuration()) { 5190b57cec5SDimitry Andric case SD_Automatic: 5200b57cec5SDimitry Andric if (auto *Size = EmitLifetimeStart( 5210b57cec5SDimitry Andric CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 5220b57cec5SDimitry Andric Alloca.getPointer())) { 5230b57cec5SDimitry Andric pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 5240b57cec5SDimitry Andric Alloca, Size); 5250b57cec5SDimitry Andric } 5260b57cec5SDimitry Andric break; 5270b57cec5SDimitry Andric 5280b57cec5SDimitry Andric case SD_FullExpression: { 5290b57cec5SDimitry Andric if (!ShouldEmitLifetimeMarkers) 5300b57cec5SDimitry Andric break; 5310b57cec5SDimitry Andric 5320b57cec5SDimitry Andric // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 5330b57cec5SDimitry Andric // marker. Instead, start the lifetime of a conditional temporary earlier 534a7dea167SDimitry Andric // so that it's unconditional. Don't do this with sanitizers which need 535*fe013be4SDimitry Andric // more precise lifetime marks. However when inside an "await.suspend" 536*fe013be4SDimitry Andric // block, we should always avoid conditional cleanup because it creates 537*fe013be4SDimitry Andric // boolean marker that lives across await_suspend, which can destroy coro 538*fe013be4SDimitry Andric // frame. 5390b57cec5SDimitry Andric ConditionalEvaluation *OldConditional = nullptr; 5400b57cec5SDimitry Andric CGBuilderTy::InsertPoint OldIP; 5410b57cec5SDimitry Andric if (isInConditionalBranch() && !E->getType().isDestructedType() && 542*fe013be4SDimitry Andric ((!SanOpts.has(SanitizerKind::HWAddress) && 543a7dea167SDimitry Andric !SanOpts.has(SanitizerKind::Memory) && 544*fe013be4SDimitry Andric !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) || 545*fe013be4SDimitry Andric inSuspendBlock())) { 5460b57cec5SDimitry Andric OldConditional = OutermostConditional; 5470b57cec5SDimitry Andric OutermostConditional = nullptr; 5480b57cec5SDimitry Andric 5490b57cec5SDimitry Andric OldIP = Builder.saveIP(); 5500b57cec5SDimitry Andric llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 5510b57cec5SDimitry Andric Builder.restoreIP(CGBuilderTy::InsertPoint( 5520b57cec5SDimitry Andric Block, llvm::BasicBlock::iterator(Block->back()))); 5530b57cec5SDimitry Andric } 5540b57cec5SDimitry Andric 5550b57cec5SDimitry Andric if (auto *Size = EmitLifetimeStart( 5560b57cec5SDimitry Andric CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 5570b57cec5SDimitry Andric Alloca.getPointer())) { 5580b57cec5SDimitry Andric pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 5590b57cec5SDimitry Andric Size); 5600b57cec5SDimitry Andric } 5610b57cec5SDimitry Andric 5620b57cec5SDimitry Andric if (OldConditional) { 5630b57cec5SDimitry Andric OutermostConditional = OldConditional; 5640b57cec5SDimitry Andric Builder.restoreIP(OldIP); 5650b57cec5SDimitry Andric } 5660b57cec5SDimitry Andric break; 5670b57cec5SDimitry Andric } 5680b57cec5SDimitry Andric 5690b57cec5SDimitry Andric default: 5700b57cec5SDimitry Andric break; 5710b57cec5SDimitry Andric } 5720b57cec5SDimitry Andric EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 5730b57cec5SDimitry Andric } 5740b57cec5SDimitry Andric pushTemporaryCleanup(*this, M, E, Object); 5750b57cec5SDimitry Andric 5760b57cec5SDimitry Andric // Perform derived-to-base casts and/or field accesses, to get from the 5770b57cec5SDimitry Andric // temporary object we created (and, potentially, for which we extended 5780b57cec5SDimitry Andric // the lifetime) to the subobject we're binding the reference to. 579349cc55cSDimitry Andric for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) { 5800b57cec5SDimitry Andric switch (Adjustment.Kind) { 5810b57cec5SDimitry Andric case SubobjectAdjustment::DerivedToBaseAdjustment: 5820b57cec5SDimitry Andric Object = 5830b57cec5SDimitry Andric GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 5840b57cec5SDimitry Andric Adjustment.DerivedToBase.BasePath->path_begin(), 5850b57cec5SDimitry Andric Adjustment.DerivedToBase.BasePath->path_end(), 5860b57cec5SDimitry Andric /*NullCheckValue=*/ false, E->getExprLoc()); 5870b57cec5SDimitry Andric break; 5880b57cec5SDimitry Andric 5890b57cec5SDimitry Andric case SubobjectAdjustment::FieldAdjustment: { 5900b57cec5SDimitry Andric LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 5910b57cec5SDimitry Andric LV = EmitLValueForField(LV, Adjustment.Field); 5920b57cec5SDimitry Andric assert(LV.isSimple() && 5930b57cec5SDimitry Andric "materialized temporary field is not a simple lvalue"); 594480093f4SDimitry Andric Object = LV.getAddress(*this); 5950b57cec5SDimitry Andric break; 5960b57cec5SDimitry Andric } 5970b57cec5SDimitry Andric 5980b57cec5SDimitry Andric case SubobjectAdjustment::MemberPointerAdjustment: { 5990b57cec5SDimitry Andric llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 6000b57cec5SDimitry Andric Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 6010b57cec5SDimitry Andric Adjustment.Ptr.MPT); 6020b57cec5SDimitry Andric break; 6030b57cec5SDimitry Andric } 6040b57cec5SDimitry Andric } 6050b57cec5SDimitry Andric } 6060b57cec5SDimitry Andric 6070b57cec5SDimitry Andric return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 6080b57cec5SDimitry Andric } 6090b57cec5SDimitry Andric 6100b57cec5SDimitry Andric RValue 6110b57cec5SDimitry Andric CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 6120b57cec5SDimitry Andric // Emit the expression as an lvalue. 6130b57cec5SDimitry Andric LValue LV = EmitLValue(E); 6140b57cec5SDimitry Andric assert(LV.isSimple()); 615480093f4SDimitry Andric llvm::Value *Value = LV.getPointer(*this); 6160b57cec5SDimitry Andric 6170b57cec5SDimitry Andric if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 6180b57cec5SDimitry Andric // C++11 [dcl.ref]p5 (as amended by core issue 453): 6190b57cec5SDimitry Andric // If a glvalue to which a reference is directly bound designates neither 6200b57cec5SDimitry Andric // an existing object or function of an appropriate type nor a region of 6210b57cec5SDimitry Andric // storage of suitable size and alignment to contain an object of the 6220b57cec5SDimitry Andric // reference's type, the behavior is undefined. 6230b57cec5SDimitry Andric QualType Ty = E->getType(); 6240b57cec5SDimitry Andric EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 6250b57cec5SDimitry Andric } 6260b57cec5SDimitry Andric 6270b57cec5SDimitry Andric return RValue::get(Value); 6280b57cec5SDimitry Andric } 6290b57cec5SDimitry Andric 6300b57cec5SDimitry Andric 6310b57cec5SDimitry Andric /// getAccessedFieldNo - Given an encoded value and a result number, return the 6320b57cec5SDimitry Andric /// input field number being accessed. 6330b57cec5SDimitry Andric unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 6340b57cec5SDimitry Andric const llvm::Constant *Elts) { 6350b57cec5SDimitry Andric return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 6360b57cec5SDimitry Andric ->getZExtValue(); 6370b57cec5SDimitry Andric } 6380b57cec5SDimitry Andric 6390b57cec5SDimitry Andric /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 6400b57cec5SDimitry Andric static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 6410b57cec5SDimitry Andric llvm::Value *High) { 6420b57cec5SDimitry Andric llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 6430b57cec5SDimitry Andric llvm::Value *K47 = Builder.getInt64(47); 6440b57cec5SDimitry Andric llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 6450b57cec5SDimitry Andric llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 6460b57cec5SDimitry Andric llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 6470b57cec5SDimitry Andric llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 6480b57cec5SDimitry Andric return Builder.CreateMul(B1, KMul); 6490b57cec5SDimitry Andric } 6500b57cec5SDimitry Andric 6510b57cec5SDimitry Andric bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 6520b57cec5SDimitry Andric return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 6530b57cec5SDimitry Andric TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 6540b57cec5SDimitry Andric } 6550b57cec5SDimitry Andric 6560b57cec5SDimitry Andric bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 6570b57cec5SDimitry Andric CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 6580b57cec5SDimitry Andric return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 6590b57cec5SDimitry Andric (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 6600b57cec5SDimitry Andric TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 6610b57cec5SDimitry Andric TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 6620b57cec5SDimitry Andric } 6630b57cec5SDimitry Andric 6640b57cec5SDimitry Andric bool CodeGenFunction::sanitizePerformTypeCheck() const { 665349cc55cSDimitry Andric return SanOpts.has(SanitizerKind::Null) || 666349cc55cSDimitry Andric SanOpts.has(SanitizerKind::Alignment) || 667349cc55cSDimitry Andric SanOpts.has(SanitizerKind::ObjectSize) || 6680b57cec5SDimitry Andric SanOpts.has(SanitizerKind::Vptr); 6690b57cec5SDimitry Andric } 6700b57cec5SDimitry Andric 6710b57cec5SDimitry Andric void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 6720b57cec5SDimitry Andric llvm::Value *Ptr, QualType Ty, 6730b57cec5SDimitry Andric CharUnits Alignment, 6740b57cec5SDimitry Andric SanitizerSet SkippedChecks, 6750b57cec5SDimitry Andric llvm::Value *ArraySize) { 6760b57cec5SDimitry Andric if (!sanitizePerformTypeCheck()) 6770b57cec5SDimitry Andric return; 6780b57cec5SDimitry Andric 6790b57cec5SDimitry Andric // Don't check pointers outside the default address space. The null check 6800b57cec5SDimitry Andric // isn't correct, the object-size check isn't supported by LLVM, and we can't 6810b57cec5SDimitry Andric // communicate the addresses to the runtime handler for the vptr check. 6820b57cec5SDimitry Andric if (Ptr->getType()->getPointerAddressSpace()) 6830b57cec5SDimitry Andric return; 6840b57cec5SDimitry Andric 6850b57cec5SDimitry Andric // Don't check pointers to volatile data. The behavior here is implementation- 6860b57cec5SDimitry Andric // defined. 6870b57cec5SDimitry Andric if (Ty.isVolatileQualified()) 6880b57cec5SDimitry Andric return; 6890b57cec5SDimitry Andric 6900b57cec5SDimitry Andric SanitizerScope SanScope(this); 6910b57cec5SDimitry Andric 6920b57cec5SDimitry Andric SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 6930b57cec5SDimitry Andric llvm::BasicBlock *Done = nullptr; 6940b57cec5SDimitry Andric 6950b57cec5SDimitry Andric // Quickly determine whether we have a pointer to an alloca. It's possible 6960b57cec5SDimitry Andric // to skip null checks, and some alignment checks, for these pointers. This 6970b57cec5SDimitry Andric // can reduce compile-time significantly. 698a7dea167SDimitry Andric auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 6990b57cec5SDimitry Andric 7000b57cec5SDimitry Andric llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 7010b57cec5SDimitry Andric llvm::Value *IsNonNull = nullptr; 7020b57cec5SDimitry Andric bool IsGuaranteedNonNull = 7030b57cec5SDimitry Andric SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 7040b57cec5SDimitry Andric bool AllowNullPointers = isNullPointerAllowed(TCK); 7050b57cec5SDimitry Andric if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 7060b57cec5SDimitry Andric !IsGuaranteedNonNull) { 7070b57cec5SDimitry Andric // The glvalue must not be an empty glvalue. 7080b57cec5SDimitry Andric IsNonNull = Builder.CreateIsNotNull(Ptr); 7090b57cec5SDimitry Andric 7100b57cec5SDimitry Andric // The IR builder can constant-fold the null check if the pointer points to 7110b57cec5SDimitry Andric // a constant. 7120b57cec5SDimitry Andric IsGuaranteedNonNull = IsNonNull == True; 7130b57cec5SDimitry Andric 7140b57cec5SDimitry Andric // Skip the null check if the pointer is known to be non-null. 7150b57cec5SDimitry Andric if (!IsGuaranteedNonNull) { 7160b57cec5SDimitry Andric if (AllowNullPointers) { 7170b57cec5SDimitry Andric // When performing pointer casts, it's OK if the value is null. 7180b57cec5SDimitry Andric // Skip the remaining checks in that case. 7190b57cec5SDimitry Andric Done = createBasicBlock("null"); 7200b57cec5SDimitry Andric llvm::BasicBlock *Rest = createBasicBlock("not.null"); 7210b57cec5SDimitry Andric Builder.CreateCondBr(IsNonNull, Rest, Done); 7220b57cec5SDimitry Andric EmitBlock(Rest); 7230b57cec5SDimitry Andric } else { 7240b57cec5SDimitry Andric Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 7250b57cec5SDimitry Andric } 7260b57cec5SDimitry Andric } 7270b57cec5SDimitry Andric } 7280b57cec5SDimitry Andric 7290b57cec5SDimitry Andric if (SanOpts.has(SanitizerKind::ObjectSize) && 7300b57cec5SDimitry Andric !SkippedChecks.has(SanitizerKind::ObjectSize) && 7310b57cec5SDimitry Andric !Ty->isIncompleteType()) { 7325ffd83dbSDimitry Andric uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 7330b57cec5SDimitry Andric llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 7340b57cec5SDimitry Andric if (ArraySize) 7350b57cec5SDimitry Andric Size = Builder.CreateMul(Size, ArraySize); 7360b57cec5SDimitry Andric 7370b57cec5SDimitry Andric // Degenerate case: new X[0] does not need an objectsize check. 7380b57cec5SDimitry Andric llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 7390b57cec5SDimitry Andric if (!ConstantSize || !ConstantSize->isNullValue()) { 7400b57cec5SDimitry Andric // The glvalue must refer to a large enough storage region. 7410b57cec5SDimitry Andric // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 7420b57cec5SDimitry Andric // to check this. 7430b57cec5SDimitry Andric // FIXME: Get object address space 7440b57cec5SDimitry Andric llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 7450b57cec5SDimitry Andric llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 7460b57cec5SDimitry Andric llvm::Value *Min = Builder.getFalse(); 7470b57cec5SDimitry Andric llvm::Value *NullIsUnknown = Builder.getFalse(); 7480b57cec5SDimitry Andric llvm::Value *Dynamic = Builder.getFalse(); 7490b57cec5SDimitry Andric llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 7500b57cec5SDimitry Andric llvm::Value *LargeEnough = Builder.CreateICmpUGE( 7510b57cec5SDimitry Andric Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 7520b57cec5SDimitry Andric Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 7530b57cec5SDimitry Andric } 7540b57cec5SDimitry Andric } 7550b57cec5SDimitry Andric 75681ad6265SDimitry Andric llvm::MaybeAlign AlignVal; 7570b57cec5SDimitry Andric llvm::Value *PtrAsInt = nullptr; 7580b57cec5SDimitry Andric 7590b57cec5SDimitry Andric if (SanOpts.has(SanitizerKind::Alignment) && 7600b57cec5SDimitry Andric !SkippedChecks.has(SanitizerKind::Alignment)) { 76181ad6265SDimitry Andric AlignVal = Alignment.getAsMaybeAlign(); 7620b57cec5SDimitry Andric if (!Ty->isIncompleteType() && !AlignVal) 7635ffd83dbSDimitry Andric AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr, 7645ffd83dbSDimitry Andric /*ForPointeeType=*/true) 76581ad6265SDimitry Andric .getAsMaybeAlign(); 7660b57cec5SDimitry Andric 7670b57cec5SDimitry Andric // The glvalue must be suitably aligned. 76881ad6265SDimitry Andric if (AlignVal && *AlignVal > llvm::Align(1) && 76981ad6265SDimitry Andric (!PtrToAlloca || PtrToAlloca->getAlign() < *AlignVal)) { 7700b57cec5SDimitry Andric PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 7710b57cec5SDimitry Andric llvm::Value *Align = Builder.CreateAnd( 77281ad6265SDimitry Andric PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal->value() - 1)); 7730b57cec5SDimitry Andric llvm::Value *Aligned = 7740b57cec5SDimitry Andric Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 7750b57cec5SDimitry Andric if (Aligned != True) 7760b57cec5SDimitry Andric Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 7770b57cec5SDimitry Andric } 7780b57cec5SDimitry Andric } 7790b57cec5SDimitry Andric 7800b57cec5SDimitry Andric if (Checks.size() > 0) { 7810b57cec5SDimitry Andric llvm::Constant *StaticData[] = { 7820b57cec5SDimitry Andric EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 78381ad6265SDimitry Andric llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2(*AlignVal) : 1), 7840b57cec5SDimitry Andric llvm::ConstantInt::get(Int8Ty, TCK)}; 7850b57cec5SDimitry Andric EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 7860b57cec5SDimitry Andric PtrAsInt ? PtrAsInt : Ptr); 7870b57cec5SDimitry Andric } 7880b57cec5SDimitry Andric 7890b57cec5SDimitry Andric // If possible, check that the vptr indicates that there is a subobject of 7900b57cec5SDimitry Andric // type Ty at offset zero within this object. 7910b57cec5SDimitry Andric // 7920b57cec5SDimitry Andric // C++11 [basic.life]p5,6: 7930b57cec5SDimitry Andric // [For storage which does not refer to an object within its lifetime] 7940b57cec5SDimitry Andric // The program has undefined behavior if: 7950b57cec5SDimitry Andric // -- the [pointer or glvalue] is used to access a non-static data member 7960b57cec5SDimitry Andric // or call a non-static member function 7970b57cec5SDimitry Andric if (SanOpts.has(SanitizerKind::Vptr) && 7980b57cec5SDimitry Andric !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 7990b57cec5SDimitry Andric // Ensure that the pointer is non-null before loading it. If there is no 8000b57cec5SDimitry Andric // compile-time guarantee, reuse the run-time null check or emit a new one. 8010b57cec5SDimitry Andric if (!IsGuaranteedNonNull) { 8020b57cec5SDimitry Andric if (!IsNonNull) 8030b57cec5SDimitry Andric IsNonNull = Builder.CreateIsNotNull(Ptr); 8040b57cec5SDimitry Andric if (!Done) 8050b57cec5SDimitry Andric Done = createBasicBlock("vptr.null"); 8060b57cec5SDimitry Andric llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 8070b57cec5SDimitry Andric Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 8080b57cec5SDimitry Andric EmitBlock(VptrNotNull); 8090b57cec5SDimitry Andric } 8100b57cec5SDimitry Andric 8110b57cec5SDimitry Andric // Compute a hash of the mangled name of the type. 8120b57cec5SDimitry Andric // 8130b57cec5SDimitry Andric // FIXME: This is not guaranteed to be deterministic! Move to a 8140b57cec5SDimitry Andric // fingerprinting mechanism once LLVM provides one. For the time 8150b57cec5SDimitry Andric // being the implementation happens to be deterministic. 8160b57cec5SDimitry Andric SmallString<64> MangledName; 8170b57cec5SDimitry Andric llvm::raw_svector_ostream Out(MangledName); 8180b57cec5SDimitry Andric CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 8190b57cec5SDimitry Andric Out); 8200b57cec5SDimitry Andric 821fe6060f1SDimitry Andric // Contained in NoSanitizeList based on the mangled type. 822fe6060f1SDimitry Andric if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr, 823fe6060f1SDimitry Andric Out.str())) { 8240b57cec5SDimitry Andric llvm::hash_code TypeHash = hash_value(Out.str()); 8250b57cec5SDimitry Andric 8260b57cec5SDimitry Andric // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 8270b57cec5SDimitry Andric llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 8280b57cec5SDimitry Andric llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 82981ad6265SDimitry Andric Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), IntPtrTy, 83081ad6265SDimitry Andric getPointerAlign()); 8310b57cec5SDimitry Andric llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 8320b57cec5SDimitry Andric llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 8330b57cec5SDimitry Andric 8340b57cec5SDimitry Andric llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 8350b57cec5SDimitry Andric Hash = Builder.CreateTrunc(Hash, IntPtrTy); 8360b57cec5SDimitry Andric 8370b57cec5SDimitry Andric // Look the hash up in our cache. 8380b57cec5SDimitry Andric const int CacheSize = 128; 8390b57cec5SDimitry Andric llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 8400b57cec5SDimitry Andric llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 8410b57cec5SDimitry Andric "__ubsan_vptr_type_cache"); 8420b57cec5SDimitry Andric llvm::Value *Slot = Builder.CreateAnd(Hash, 8430b57cec5SDimitry Andric llvm::ConstantInt::get(IntPtrTy, 8440b57cec5SDimitry Andric CacheSize-1)); 8450b57cec5SDimitry Andric llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 846fe6060f1SDimitry Andric llvm::Value *CacheVal = Builder.CreateAlignedLoad( 847fe6060f1SDimitry Andric IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices), 8480b57cec5SDimitry Andric getPointerAlign()); 8490b57cec5SDimitry Andric 8500b57cec5SDimitry Andric // If the hash isn't in the cache, call a runtime handler to perform the 8510b57cec5SDimitry Andric // hard work of checking whether the vptr is for an object of the right 8520b57cec5SDimitry Andric // type. This will either fill in the cache and return, or produce a 8530b57cec5SDimitry Andric // diagnostic. 8540b57cec5SDimitry Andric llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 8550b57cec5SDimitry Andric llvm::Constant *StaticData[] = { 8560b57cec5SDimitry Andric EmitCheckSourceLocation(Loc), 8570b57cec5SDimitry Andric EmitCheckTypeDescriptor(Ty), 8580b57cec5SDimitry Andric CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 8590b57cec5SDimitry Andric llvm::ConstantInt::get(Int8Ty, TCK) 8600b57cec5SDimitry Andric }; 8610b57cec5SDimitry Andric llvm::Value *DynamicData[] = { Ptr, Hash }; 8620b57cec5SDimitry Andric EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 8630b57cec5SDimitry Andric SanitizerHandler::DynamicTypeCacheMiss, StaticData, 8640b57cec5SDimitry Andric DynamicData); 8650b57cec5SDimitry Andric } 8660b57cec5SDimitry Andric } 8670b57cec5SDimitry Andric 8680b57cec5SDimitry Andric if (Done) { 8690b57cec5SDimitry Andric Builder.CreateBr(Done); 8700b57cec5SDimitry Andric EmitBlock(Done); 8710b57cec5SDimitry Andric } 8720b57cec5SDimitry Andric } 8730b57cec5SDimitry Andric 8740b57cec5SDimitry Andric llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 8750b57cec5SDimitry Andric QualType EltTy) { 8760b57cec5SDimitry Andric ASTContext &C = getContext(); 8770b57cec5SDimitry Andric uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 8780b57cec5SDimitry Andric if (!EltSize) 8790b57cec5SDimitry Andric return nullptr; 8800b57cec5SDimitry Andric 8810b57cec5SDimitry Andric auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 8820b57cec5SDimitry Andric if (!ArrayDeclRef) 8830b57cec5SDimitry Andric return nullptr; 8840b57cec5SDimitry Andric 8850b57cec5SDimitry Andric auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 8860b57cec5SDimitry Andric if (!ParamDecl) 8870b57cec5SDimitry Andric return nullptr; 8880b57cec5SDimitry Andric 8890b57cec5SDimitry Andric auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 8900b57cec5SDimitry Andric if (!POSAttr) 8910b57cec5SDimitry Andric return nullptr; 8920b57cec5SDimitry Andric 8930b57cec5SDimitry Andric // Don't load the size if it's a lower bound. 8940b57cec5SDimitry Andric int POSType = POSAttr->getType(); 8950b57cec5SDimitry Andric if (POSType != 0 && POSType != 1) 8960b57cec5SDimitry Andric return nullptr; 8970b57cec5SDimitry Andric 8980b57cec5SDimitry Andric // Find the implicit size parameter. 8990b57cec5SDimitry Andric auto PassedSizeIt = SizeArguments.find(ParamDecl); 9000b57cec5SDimitry Andric if (PassedSizeIt == SizeArguments.end()) 9010b57cec5SDimitry Andric return nullptr; 9020b57cec5SDimitry Andric 9030b57cec5SDimitry Andric const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 9040b57cec5SDimitry Andric assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 9050b57cec5SDimitry Andric Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 9060b57cec5SDimitry Andric llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 9070b57cec5SDimitry Andric C.getSizeType(), E->getExprLoc()); 9080b57cec5SDimitry Andric llvm::Value *SizeOfElement = 9090b57cec5SDimitry Andric llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 9100b57cec5SDimitry Andric return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 9110b57cec5SDimitry Andric } 9120b57cec5SDimitry Andric 9130b57cec5SDimitry Andric /// If Base is known to point to the start of an array, return the length of 9140b57cec5SDimitry Andric /// that array. Return 0 if the length cannot be determined. 915fcaf7f86SDimitry Andric static llvm::Value *getArrayIndexingBound(CodeGenFunction &CGF, 916fcaf7f86SDimitry Andric const Expr *Base, 917fcaf7f86SDimitry Andric QualType &IndexedType, 918bdd1243dSDimitry Andric LangOptions::StrictFlexArraysLevelKind 919bdd1243dSDimitry Andric StrictFlexArraysLevel) { 9200b57cec5SDimitry Andric // For the vector indexing extension, the bound is the number of elements. 9210b57cec5SDimitry Andric if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 9220b57cec5SDimitry Andric IndexedType = Base->getType(); 9230b57cec5SDimitry Andric return CGF.Builder.getInt32(VT->getNumElements()); 9240b57cec5SDimitry Andric } 9250b57cec5SDimitry Andric 9260b57cec5SDimitry Andric Base = Base->IgnoreParens(); 9270b57cec5SDimitry Andric 9280b57cec5SDimitry Andric if (const auto *CE = dyn_cast<CastExpr>(Base)) { 9290b57cec5SDimitry Andric if (CE->getCastKind() == CK_ArrayToPointerDecay && 930bdd1243dSDimitry Andric !CE->getSubExpr()->isFlexibleArrayMemberLike(CGF.getContext(), 931bdd1243dSDimitry Andric StrictFlexArraysLevel)) { 9320b57cec5SDimitry Andric IndexedType = CE->getSubExpr()->getType(); 9330b57cec5SDimitry Andric const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 9340b57cec5SDimitry Andric if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 9350b57cec5SDimitry Andric return CGF.Builder.getInt(CAT->getSize()); 9360b57cec5SDimitry Andric else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 9370b57cec5SDimitry Andric return CGF.getVLASize(VAT).NumElts; 9380b57cec5SDimitry Andric // Ignore pass_object_size here. It's not applicable on decayed pointers. 9390b57cec5SDimitry Andric } 9400b57cec5SDimitry Andric } 9410b57cec5SDimitry Andric 9420b57cec5SDimitry Andric QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 9430b57cec5SDimitry Andric if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 9440b57cec5SDimitry Andric IndexedType = Base->getType(); 9450b57cec5SDimitry Andric return POS; 9460b57cec5SDimitry Andric } 9470b57cec5SDimitry Andric 9480b57cec5SDimitry Andric return nullptr; 9490b57cec5SDimitry Andric } 9500b57cec5SDimitry Andric 9510b57cec5SDimitry Andric void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 9520b57cec5SDimitry Andric llvm::Value *Index, QualType IndexType, 9530b57cec5SDimitry Andric bool Accessed) { 9540b57cec5SDimitry Andric assert(SanOpts.has(SanitizerKind::ArrayBounds) && 9550b57cec5SDimitry Andric "should not be called unless adding bounds checks"); 9560b57cec5SDimitry Andric SanitizerScope SanScope(this); 9570b57cec5SDimitry Andric 958bdd1243dSDimitry Andric const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel = 959bdd1243dSDimitry Andric getLangOpts().getStrictFlexArraysLevel(); 960fcaf7f86SDimitry Andric 9610b57cec5SDimitry Andric QualType IndexedType; 962fcaf7f86SDimitry Andric llvm::Value *Bound = 963fcaf7f86SDimitry Andric getArrayIndexingBound(*this, Base, IndexedType, StrictFlexArraysLevel); 9640b57cec5SDimitry Andric if (!Bound) 9650b57cec5SDimitry Andric return; 9660b57cec5SDimitry Andric 9670b57cec5SDimitry Andric bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 9680b57cec5SDimitry Andric llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 9690b57cec5SDimitry Andric llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 9700b57cec5SDimitry Andric 9710b57cec5SDimitry Andric llvm::Constant *StaticData[] = { 9720b57cec5SDimitry Andric EmitCheckSourceLocation(E->getExprLoc()), 9730b57cec5SDimitry Andric EmitCheckTypeDescriptor(IndexedType), 9740b57cec5SDimitry Andric EmitCheckTypeDescriptor(IndexType) 9750b57cec5SDimitry Andric }; 9760b57cec5SDimitry Andric llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 9770b57cec5SDimitry Andric : Builder.CreateICmpULE(IndexVal, BoundVal); 9780b57cec5SDimitry Andric EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 9790b57cec5SDimitry Andric SanitizerHandler::OutOfBounds, StaticData, Index); 9800b57cec5SDimitry Andric } 9810b57cec5SDimitry Andric 9820b57cec5SDimitry Andric 9830b57cec5SDimitry Andric CodeGenFunction::ComplexPairTy CodeGenFunction:: 9840b57cec5SDimitry Andric EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 9850b57cec5SDimitry Andric bool isInc, bool isPre) { 9860b57cec5SDimitry Andric ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 9870b57cec5SDimitry Andric 9880b57cec5SDimitry Andric llvm::Value *NextVal; 9890b57cec5SDimitry Andric if (isa<llvm::IntegerType>(InVal.first->getType())) { 9900b57cec5SDimitry Andric uint64_t AmountVal = isInc ? 1 : -1; 9910b57cec5SDimitry Andric NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 9920b57cec5SDimitry Andric 9930b57cec5SDimitry Andric // Add the inc/dec to the real part. 9940b57cec5SDimitry Andric NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 9950b57cec5SDimitry Andric } else { 996a7dea167SDimitry Andric QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 9970b57cec5SDimitry Andric llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 9980b57cec5SDimitry Andric if (!isInc) 9990b57cec5SDimitry Andric FVal.changeSign(); 10000b57cec5SDimitry Andric NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 10010b57cec5SDimitry Andric 10020b57cec5SDimitry Andric // Add the inc/dec to the real part. 10030b57cec5SDimitry Andric NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 10040b57cec5SDimitry Andric } 10050b57cec5SDimitry Andric 10060b57cec5SDimitry Andric ComplexPairTy IncVal(NextVal, InVal.second); 10070b57cec5SDimitry Andric 10080b57cec5SDimitry Andric // Store the updated result through the lvalue. 10090b57cec5SDimitry Andric EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1010480093f4SDimitry Andric if (getLangOpts().OpenMP) 1011480093f4SDimitry Andric CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1012480093f4SDimitry Andric E->getSubExpr()); 10130b57cec5SDimitry Andric 10140b57cec5SDimitry Andric // If this is a postinc, return the value read from memory, otherwise use the 10150b57cec5SDimitry Andric // updated value. 10160b57cec5SDimitry Andric return isPre ? IncVal : InVal; 10170b57cec5SDimitry Andric } 10180b57cec5SDimitry Andric 10190b57cec5SDimitry Andric void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 10200b57cec5SDimitry Andric CodeGenFunction *CGF) { 10210b57cec5SDimitry Andric // Bind VLAs in the cast type. 10220b57cec5SDimitry Andric if (CGF && E->getType()->isVariablyModifiedType()) 10230b57cec5SDimitry Andric CGF->EmitVariablyModifiedType(E->getType()); 10240b57cec5SDimitry Andric 10250b57cec5SDimitry Andric if (CGDebugInfo *DI = getModuleDebugInfo()) 10260b57cec5SDimitry Andric DI->EmitExplicitCastType(E->getType()); 10270b57cec5SDimitry Andric } 10280b57cec5SDimitry Andric 10290b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 10300b57cec5SDimitry Andric // LValue Expression Emission 10310b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 10320b57cec5SDimitry Andric 1033*fe013be4SDimitry Andric static Address EmitPointerWithAlignment(const Expr *E, LValueBaseInfo *BaseInfo, 1034*fe013be4SDimitry Andric TBAAAccessInfo *TBAAInfo, 1035*fe013be4SDimitry Andric KnownNonNull_t IsKnownNonNull, 1036*fe013be4SDimitry Andric CodeGenFunction &CGF) { 10370b57cec5SDimitry Andric // We allow this with ObjC object pointers because of fragile ABIs. 10380b57cec5SDimitry Andric assert(E->getType()->isPointerType() || 10390b57cec5SDimitry Andric E->getType()->isObjCObjectPointerType()); 10400b57cec5SDimitry Andric E = E->IgnoreParens(); 10410b57cec5SDimitry Andric 10420b57cec5SDimitry Andric // Casts: 10430b57cec5SDimitry Andric if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 10440b57cec5SDimitry Andric if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1045*fe013be4SDimitry Andric CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 10460b57cec5SDimitry Andric 10470b57cec5SDimitry Andric switch (CE->getCastKind()) { 10480b57cec5SDimitry Andric // Non-converting casts (but not C's implicit conversion from void*). 10490b57cec5SDimitry Andric case CK_BitCast: 10500b57cec5SDimitry Andric case CK_NoOp: 10510b57cec5SDimitry Andric case CK_AddressSpaceConversion: 10520b57cec5SDimitry Andric if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 10530b57cec5SDimitry Andric if (PtrTy->getPointeeType()->isVoidType()) 10540b57cec5SDimitry Andric break; 10550b57cec5SDimitry Andric 10560b57cec5SDimitry Andric LValueBaseInfo InnerBaseInfo; 10570b57cec5SDimitry Andric TBAAAccessInfo InnerTBAAInfo; 1058*fe013be4SDimitry Andric Address Addr = CGF.EmitPointerWithAlignment( 1059*fe013be4SDimitry Andric CE->getSubExpr(), &InnerBaseInfo, &InnerTBAAInfo, IsKnownNonNull); 10600b57cec5SDimitry Andric if (BaseInfo) *BaseInfo = InnerBaseInfo; 10610b57cec5SDimitry Andric if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 10620b57cec5SDimitry Andric 10630b57cec5SDimitry Andric if (isa<ExplicitCastExpr>(CE)) { 10640b57cec5SDimitry Andric LValueBaseInfo TargetTypeBaseInfo; 10650b57cec5SDimitry Andric TBAAAccessInfo TargetTypeTBAAInfo; 1066*fe013be4SDimitry Andric CharUnits Align = CGF.CGM.getNaturalPointeeTypeAlignment( 10675ffd83dbSDimitry Andric E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo); 10680b57cec5SDimitry Andric if (TBAAInfo) 1069*fe013be4SDimitry Andric *TBAAInfo = 1070*fe013be4SDimitry Andric CGF.CGM.mergeTBAAInfoForCast(*TBAAInfo, TargetTypeTBAAInfo); 10710b57cec5SDimitry Andric // If the source l-value is opaque, honor the alignment of the 10720b57cec5SDimitry Andric // casted-to type. 10730b57cec5SDimitry Andric if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 10740b57cec5SDimitry Andric if (BaseInfo) 10750b57cec5SDimitry Andric BaseInfo->mergeForCast(TargetTypeBaseInfo); 1076*fe013be4SDimitry Andric Addr = Address(Addr.getPointer(), Addr.getElementType(), Align, 1077*fe013be4SDimitry Andric IsKnownNonNull); 10780b57cec5SDimitry Andric } 10790b57cec5SDimitry Andric } 10800b57cec5SDimitry Andric 1081*fe013be4SDimitry Andric if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 10820b57cec5SDimitry Andric CE->getCastKind() == CK_BitCast) { 10830b57cec5SDimitry Andric if (auto PT = E->getType()->getAs<PointerType>()) 1084*fe013be4SDimitry Andric CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr, 10850b57cec5SDimitry Andric /*MayBeNull=*/true, 10860b57cec5SDimitry Andric CodeGenFunction::CFITCK_UnrelatedCast, 10870b57cec5SDimitry Andric CE->getBeginLoc()); 10880b57cec5SDimitry Andric } 10890eae32dcSDimitry Andric 1090*fe013be4SDimitry Andric llvm::Type *ElemTy = 1091*fe013be4SDimitry Andric CGF.ConvertTypeForMem(E->getType()->getPointeeType()); 1092*fe013be4SDimitry Andric Addr = Addr.withElementType(ElemTy); 109381ad6265SDimitry Andric if (CE->getCastKind() == CK_AddressSpaceConversion) 1094*fe013be4SDimitry Andric Addr = CGF.Builder.CreateAddrSpaceCast(Addr, 1095*fe013be4SDimitry Andric CGF.ConvertType(E->getType())); 109681ad6265SDimitry Andric return Addr; 10970b57cec5SDimitry Andric } 10980b57cec5SDimitry Andric break; 10990b57cec5SDimitry Andric 11000b57cec5SDimitry Andric // Array-to-pointer decay. 11010b57cec5SDimitry Andric case CK_ArrayToPointerDecay: 1102*fe013be4SDimitry Andric return CGF.EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 11030b57cec5SDimitry Andric 11040b57cec5SDimitry Andric // Derived-to-base conversions. 11050b57cec5SDimitry Andric case CK_UncheckedDerivedToBase: 11060b57cec5SDimitry Andric case CK_DerivedToBase: { 11070b57cec5SDimitry Andric // TODO: Support accesses to members of base classes in TBAA. For now, we 11080b57cec5SDimitry Andric // conservatively pretend that the complete object is of the base class 11090b57cec5SDimitry Andric // type. 11100b57cec5SDimitry Andric if (TBAAInfo) 1111*fe013be4SDimitry Andric *TBAAInfo = CGF.CGM.getTBAAAccessInfo(E->getType()); 1112*fe013be4SDimitry Andric Address Addr = CGF.EmitPointerWithAlignment( 1113*fe013be4SDimitry Andric CE->getSubExpr(), BaseInfo, nullptr, 1114*fe013be4SDimitry Andric (KnownNonNull_t)(IsKnownNonNull || 1115*fe013be4SDimitry Andric CE->getCastKind() == CK_UncheckedDerivedToBase)); 11160b57cec5SDimitry Andric auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1117*fe013be4SDimitry Andric return CGF.GetAddressOfBaseClass( 1118*fe013be4SDimitry Andric Addr, Derived, CE->path_begin(), CE->path_end(), 1119*fe013be4SDimitry Andric CGF.ShouldNullCheckClassCastValue(CE), CE->getExprLoc()); 11200b57cec5SDimitry Andric } 11210b57cec5SDimitry Andric 11220b57cec5SDimitry Andric // TODO: Is there any reason to treat base-to-derived conversions 11230b57cec5SDimitry Andric // specially? 11240b57cec5SDimitry Andric default: 11250b57cec5SDimitry Andric break; 11260b57cec5SDimitry Andric } 11270b57cec5SDimitry Andric } 11280b57cec5SDimitry Andric 11290b57cec5SDimitry Andric // Unary &. 11300b57cec5SDimitry Andric if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 11310b57cec5SDimitry Andric if (UO->getOpcode() == UO_AddrOf) { 1132*fe013be4SDimitry Andric LValue LV = CGF.EmitLValue(UO->getSubExpr(), IsKnownNonNull); 11330b57cec5SDimitry Andric if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 11340b57cec5SDimitry Andric if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1135*fe013be4SDimitry Andric return LV.getAddress(CGF); 11360b57cec5SDimitry Andric } 11370b57cec5SDimitry Andric } 11380b57cec5SDimitry Andric 113981ad6265SDimitry Andric // std::addressof and variants. 114081ad6265SDimitry Andric if (auto *Call = dyn_cast<CallExpr>(E)) { 114181ad6265SDimitry Andric switch (Call->getBuiltinCallee()) { 114281ad6265SDimitry Andric default: 114381ad6265SDimitry Andric break; 114481ad6265SDimitry Andric case Builtin::BIaddressof: 114581ad6265SDimitry Andric case Builtin::BI__addressof: 114681ad6265SDimitry Andric case Builtin::BI__builtin_addressof: { 1147*fe013be4SDimitry Andric LValue LV = CGF.EmitLValue(Call->getArg(0), IsKnownNonNull); 114881ad6265SDimitry Andric if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 114981ad6265SDimitry Andric if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1150*fe013be4SDimitry Andric return LV.getAddress(CGF); 115181ad6265SDimitry Andric } 115281ad6265SDimitry Andric } 115381ad6265SDimitry Andric } 115481ad6265SDimitry Andric 11550b57cec5SDimitry Andric // TODO: conditional operators, comma. 11560b57cec5SDimitry Andric 11570b57cec5SDimitry Andric // Otherwise, use the alignment of the type. 11585ffd83dbSDimitry Andric CharUnits Align = 1159*fe013be4SDimitry Andric CGF.CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo); 1160*fe013be4SDimitry Andric llvm::Type *ElemTy = CGF.ConvertTypeForMem(E->getType()->getPointeeType()); 1161*fe013be4SDimitry Andric return Address(CGF.EmitScalarExpr(E), ElemTy, Align, IsKnownNonNull); 1162*fe013be4SDimitry Andric } 1163*fe013be4SDimitry Andric 1164*fe013be4SDimitry Andric /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1165*fe013be4SDimitry Andric /// derive a more accurate bound on the alignment of the pointer. 1166*fe013be4SDimitry Andric Address CodeGenFunction::EmitPointerWithAlignment( 1167*fe013be4SDimitry Andric const Expr *E, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo, 1168*fe013be4SDimitry Andric KnownNonNull_t IsKnownNonNull) { 1169*fe013be4SDimitry Andric Address Addr = 1170*fe013be4SDimitry Andric ::EmitPointerWithAlignment(E, BaseInfo, TBAAInfo, IsKnownNonNull, *this); 1171*fe013be4SDimitry Andric if (IsKnownNonNull && !Addr.isKnownNonNull()) 1172*fe013be4SDimitry Andric Addr.setKnownNonNull(); 1173*fe013be4SDimitry Andric return Addr; 11740b57cec5SDimitry Andric } 11750b57cec5SDimitry Andric 1176e8d8bef9SDimitry Andric llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) { 1177e8d8bef9SDimitry Andric llvm::Value *V = RV.getScalarVal(); 1178e8d8bef9SDimitry Andric if (auto MPT = T->getAs<MemberPointerType>()) 1179e8d8bef9SDimitry Andric return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT); 1180e8d8bef9SDimitry Andric return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 1181e8d8bef9SDimitry Andric } 1182e8d8bef9SDimitry Andric 11830b57cec5SDimitry Andric RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 11840b57cec5SDimitry Andric if (Ty->isVoidType()) 11850b57cec5SDimitry Andric return RValue::get(nullptr); 11860b57cec5SDimitry Andric 11870b57cec5SDimitry Andric switch (getEvaluationKind(Ty)) { 11880b57cec5SDimitry Andric case TEK_Complex: { 11890b57cec5SDimitry Andric llvm::Type *EltTy = 11900b57cec5SDimitry Andric ConvertType(Ty->castAs<ComplexType>()->getElementType()); 11910b57cec5SDimitry Andric llvm::Value *U = llvm::UndefValue::get(EltTy); 11920b57cec5SDimitry Andric return RValue::getComplex(std::make_pair(U, U)); 11930b57cec5SDimitry Andric } 11940b57cec5SDimitry Andric 11950b57cec5SDimitry Andric // If this is a use of an undefined aggregate type, the aggregate must have an 11960b57cec5SDimitry Andric // identifiable address. Just because the contents of the value are undefined 11970b57cec5SDimitry Andric // doesn't mean that the address can't be taken and compared. 11980b57cec5SDimitry Andric case TEK_Aggregate: { 11990b57cec5SDimitry Andric Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 12000b57cec5SDimitry Andric return RValue::getAggregate(DestPtr); 12010b57cec5SDimitry Andric } 12020b57cec5SDimitry Andric 12030b57cec5SDimitry Andric case TEK_Scalar: 12040b57cec5SDimitry Andric return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 12050b57cec5SDimitry Andric } 12060b57cec5SDimitry Andric llvm_unreachable("bad evaluation kind"); 12070b57cec5SDimitry Andric } 12080b57cec5SDimitry Andric 12090b57cec5SDimitry Andric RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 12100b57cec5SDimitry Andric const char *Name) { 12110b57cec5SDimitry Andric ErrorUnsupported(E, Name); 12120b57cec5SDimitry Andric return GetUndefRValue(E->getType()); 12130b57cec5SDimitry Andric } 12140b57cec5SDimitry Andric 12150b57cec5SDimitry Andric LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 12160b57cec5SDimitry Andric const char *Name) { 12170b57cec5SDimitry Andric ErrorUnsupported(E, Name); 121881ad6265SDimitry Andric llvm::Type *ElTy = ConvertType(E->getType()); 121981ad6265SDimitry Andric llvm::Type *Ty = llvm::PointerType::getUnqual(ElTy); 122081ad6265SDimitry Andric return MakeAddrLValue( 122181ad6265SDimitry Andric Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType()); 12220b57cec5SDimitry Andric } 12230b57cec5SDimitry Andric 12240b57cec5SDimitry Andric bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 12250b57cec5SDimitry Andric const Expr *Base = Obj; 12260b57cec5SDimitry Andric while (!isa<CXXThisExpr>(Base)) { 12270b57cec5SDimitry Andric // The result of a dynamic_cast can be null. 12280b57cec5SDimitry Andric if (isa<CXXDynamicCastExpr>(Base)) 12290b57cec5SDimitry Andric return false; 12300b57cec5SDimitry Andric 12310b57cec5SDimitry Andric if (const auto *CE = dyn_cast<CastExpr>(Base)) { 12320b57cec5SDimitry Andric Base = CE->getSubExpr(); 12330b57cec5SDimitry Andric } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 12340b57cec5SDimitry Andric Base = PE->getSubExpr(); 12350b57cec5SDimitry Andric } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 12360b57cec5SDimitry Andric if (UO->getOpcode() == UO_Extension) 12370b57cec5SDimitry Andric Base = UO->getSubExpr(); 12380b57cec5SDimitry Andric else 12390b57cec5SDimitry Andric return false; 12400b57cec5SDimitry Andric } else { 12410b57cec5SDimitry Andric return false; 12420b57cec5SDimitry Andric } 12430b57cec5SDimitry Andric } 12440b57cec5SDimitry Andric return true; 12450b57cec5SDimitry Andric } 12460b57cec5SDimitry Andric 12470b57cec5SDimitry Andric LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 12480b57cec5SDimitry Andric LValue LV; 12490b57cec5SDimitry Andric if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 12500b57cec5SDimitry Andric LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 12510b57cec5SDimitry Andric else 12520b57cec5SDimitry Andric LV = EmitLValue(E); 12530b57cec5SDimitry Andric if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 12540b57cec5SDimitry Andric SanitizerSet SkippedChecks; 12550b57cec5SDimitry Andric if (const auto *ME = dyn_cast<MemberExpr>(E)) { 12560b57cec5SDimitry Andric bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 12570b57cec5SDimitry Andric if (IsBaseCXXThis) 12580b57cec5SDimitry Andric SkippedChecks.set(SanitizerKind::Alignment, true); 12590b57cec5SDimitry Andric if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 12600b57cec5SDimitry Andric SkippedChecks.set(SanitizerKind::Null, true); 12610b57cec5SDimitry Andric } 1262480093f4SDimitry Andric EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1263480093f4SDimitry Andric LV.getAlignment(), SkippedChecks); 12640b57cec5SDimitry Andric } 12650b57cec5SDimitry Andric return LV; 12660b57cec5SDimitry Andric } 12670b57cec5SDimitry Andric 12680b57cec5SDimitry Andric /// EmitLValue - Emit code to compute a designator that specifies the location 12690b57cec5SDimitry Andric /// of the expression. 12700b57cec5SDimitry Andric /// 12710b57cec5SDimitry Andric /// This can return one of two things: a simple address or a bitfield reference. 12720b57cec5SDimitry Andric /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 12730b57cec5SDimitry Andric /// an LLVM pointer type. 12740b57cec5SDimitry Andric /// 12750b57cec5SDimitry Andric /// If this returns a bitfield reference, nothing about the pointee type of the 12760b57cec5SDimitry Andric /// LLVM value is known: For example, it may not be a pointer to an integer. 12770b57cec5SDimitry Andric /// 12780b57cec5SDimitry Andric /// If this returns a normal address, and if the lvalue's C type is fixed size, 12790b57cec5SDimitry Andric /// this method guarantees that the returned pointer type will point to an LLVM 12800b57cec5SDimitry Andric /// type of the same size of the lvalue's type. If the lvalue has a variable 12810b57cec5SDimitry Andric /// length type, this is not possible. 12820b57cec5SDimitry Andric /// 1283*fe013be4SDimitry Andric LValue CodeGenFunction::EmitLValue(const Expr *E, 1284*fe013be4SDimitry Andric KnownNonNull_t IsKnownNonNull) { 1285*fe013be4SDimitry Andric LValue LV = EmitLValueHelper(E, IsKnownNonNull); 1286*fe013be4SDimitry Andric if (IsKnownNonNull && !LV.isKnownNonNull()) 1287*fe013be4SDimitry Andric LV.setKnownNonNull(); 1288*fe013be4SDimitry Andric return LV; 1289*fe013be4SDimitry Andric } 1290*fe013be4SDimitry Andric 1291*fe013be4SDimitry Andric LValue CodeGenFunction::EmitLValueHelper(const Expr *E, 1292*fe013be4SDimitry Andric KnownNonNull_t IsKnownNonNull) { 12930b57cec5SDimitry Andric ApplyDebugLocation DL(*this, E); 12940b57cec5SDimitry Andric switch (E->getStmtClass()) { 12950b57cec5SDimitry Andric default: return EmitUnsupportedLValue(E, "l-value expression"); 12960b57cec5SDimitry Andric 12970b57cec5SDimitry Andric case Expr::ObjCPropertyRefExprClass: 12980b57cec5SDimitry Andric llvm_unreachable("cannot emit a property reference directly"); 12990b57cec5SDimitry Andric 13000b57cec5SDimitry Andric case Expr::ObjCSelectorExprClass: 13010b57cec5SDimitry Andric return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 13020b57cec5SDimitry Andric case Expr::ObjCIsaExprClass: 13030b57cec5SDimitry Andric return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 13040b57cec5SDimitry Andric case Expr::BinaryOperatorClass: 13050b57cec5SDimitry Andric return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 13060b57cec5SDimitry Andric case Expr::CompoundAssignOperatorClass: { 13070b57cec5SDimitry Andric QualType Ty = E->getType(); 13080b57cec5SDimitry Andric if (const AtomicType *AT = Ty->getAs<AtomicType>()) 13090b57cec5SDimitry Andric Ty = AT->getValueType(); 13100b57cec5SDimitry Andric if (!Ty->isAnyComplexType()) 13110b57cec5SDimitry Andric return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 13120b57cec5SDimitry Andric return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 13130b57cec5SDimitry Andric } 13140b57cec5SDimitry Andric case Expr::CallExprClass: 13150b57cec5SDimitry Andric case Expr::CXXMemberCallExprClass: 13160b57cec5SDimitry Andric case Expr::CXXOperatorCallExprClass: 13170b57cec5SDimitry Andric case Expr::UserDefinedLiteralClass: 13180b57cec5SDimitry Andric return EmitCallExprLValue(cast<CallExpr>(E)); 1319a7dea167SDimitry Andric case Expr::CXXRewrittenBinaryOperatorClass: 1320*fe013be4SDimitry Andric return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(), 1321*fe013be4SDimitry Andric IsKnownNonNull); 13220b57cec5SDimitry Andric case Expr::VAArgExprClass: 13230b57cec5SDimitry Andric return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 13240b57cec5SDimitry Andric case Expr::DeclRefExprClass: 13250b57cec5SDimitry Andric return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 13265ffd83dbSDimitry Andric case Expr::ConstantExprClass: { 13275ffd83dbSDimitry Andric const ConstantExpr *CE = cast<ConstantExpr>(E); 13285ffd83dbSDimitry Andric if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) { 13295ffd83dbSDimitry Andric QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit()) 13300eae32dcSDimitry Andric ->getCallReturnType(getContext()) 13310eae32dcSDimitry Andric ->getPointeeType(); 13325ffd83dbSDimitry Andric return MakeNaturalAlignAddrLValue(Result, RetType); 13335ffd83dbSDimitry Andric } 1334*fe013be4SDimitry Andric return EmitLValue(cast<ConstantExpr>(E)->getSubExpr(), IsKnownNonNull); 13355ffd83dbSDimitry Andric } 13360b57cec5SDimitry Andric case Expr::ParenExprClass: 1337*fe013be4SDimitry Andric return EmitLValue(cast<ParenExpr>(E)->getSubExpr(), IsKnownNonNull); 13380b57cec5SDimitry Andric case Expr::GenericSelectionExprClass: 1339*fe013be4SDimitry Andric return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr(), 1340*fe013be4SDimitry Andric IsKnownNonNull); 13410b57cec5SDimitry Andric case Expr::PredefinedExprClass: 13420b57cec5SDimitry Andric return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 13430b57cec5SDimitry Andric case Expr::StringLiteralClass: 13440b57cec5SDimitry Andric return EmitStringLiteralLValue(cast<StringLiteral>(E)); 13450b57cec5SDimitry Andric case Expr::ObjCEncodeExprClass: 13460b57cec5SDimitry Andric return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 13470b57cec5SDimitry Andric case Expr::PseudoObjectExprClass: 13480b57cec5SDimitry Andric return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 13490b57cec5SDimitry Andric case Expr::InitListExprClass: 13500b57cec5SDimitry Andric return EmitInitListLValue(cast<InitListExpr>(E)); 13510b57cec5SDimitry Andric case Expr::CXXTemporaryObjectExprClass: 13520b57cec5SDimitry Andric case Expr::CXXConstructExprClass: 13530b57cec5SDimitry Andric return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 13540b57cec5SDimitry Andric case Expr::CXXBindTemporaryExprClass: 13550b57cec5SDimitry Andric return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 13560b57cec5SDimitry Andric case Expr::CXXUuidofExprClass: 13570b57cec5SDimitry Andric return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 13580b57cec5SDimitry Andric case Expr::LambdaExprClass: 13590b57cec5SDimitry Andric return EmitAggExprToLValue(E); 13600b57cec5SDimitry Andric 13610b57cec5SDimitry Andric case Expr::ExprWithCleanupsClass: { 13620b57cec5SDimitry Andric const auto *cleanups = cast<ExprWithCleanups>(E); 13630b57cec5SDimitry Andric RunCleanupsScope Scope(*this); 1364*fe013be4SDimitry Andric LValue LV = EmitLValue(cleanups->getSubExpr(), IsKnownNonNull); 13650b57cec5SDimitry Andric if (LV.isSimple()) { 13660b57cec5SDimitry Andric // Defend against branches out of gnu statement expressions surrounded by 13670b57cec5SDimitry Andric // cleanups. 13680eae32dcSDimitry Andric Address Addr = LV.getAddress(*this); 13690eae32dcSDimitry Andric llvm::Value *V = Addr.getPointer(); 13700b57cec5SDimitry Andric Scope.ForceCleanup({&V}); 1371*fe013be4SDimitry Andric return LValue::MakeAddr(Addr.withPointer(V, Addr.isKnownNonNull()), 1372*fe013be4SDimitry Andric LV.getType(), getContext(), LV.getBaseInfo(), 1373*fe013be4SDimitry Andric LV.getTBAAInfo()); 13740b57cec5SDimitry Andric } 13750b57cec5SDimitry Andric // FIXME: Is it possible to create an ExprWithCleanups that produces a 13760b57cec5SDimitry Andric // bitfield lvalue or some other non-simple lvalue? 13770b57cec5SDimitry Andric return LV; 13780b57cec5SDimitry Andric } 13790b57cec5SDimitry Andric 13800b57cec5SDimitry Andric case Expr::CXXDefaultArgExprClass: { 13810b57cec5SDimitry Andric auto *DAE = cast<CXXDefaultArgExpr>(E); 13820b57cec5SDimitry Andric CXXDefaultArgExprScope Scope(*this, DAE); 1383*fe013be4SDimitry Andric return EmitLValue(DAE->getExpr(), IsKnownNonNull); 13840b57cec5SDimitry Andric } 13850b57cec5SDimitry Andric case Expr::CXXDefaultInitExprClass: { 13860b57cec5SDimitry Andric auto *DIE = cast<CXXDefaultInitExpr>(E); 13870b57cec5SDimitry Andric CXXDefaultInitExprScope Scope(*this, DIE); 1388*fe013be4SDimitry Andric return EmitLValue(DIE->getExpr(), IsKnownNonNull); 13890b57cec5SDimitry Andric } 13900b57cec5SDimitry Andric case Expr::CXXTypeidExprClass: 13910b57cec5SDimitry Andric return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 13920b57cec5SDimitry Andric 13930b57cec5SDimitry Andric case Expr::ObjCMessageExprClass: 13940b57cec5SDimitry Andric return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 13950b57cec5SDimitry Andric case Expr::ObjCIvarRefExprClass: 13960b57cec5SDimitry Andric return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 13970b57cec5SDimitry Andric case Expr::StmtExprClass: 13980b57cec5SDimitry Andric return EmitStmtExprLValue(cast<StmtExpr>(E)); 13990b57cec5SDimitry Andric case Expr::UnaryOperatorClass: 14000b57cec5SDimitry Andric return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 14010b57cec5SDimitry Andric case Expr::ArraySubscriptExprClass: 14020b57cec5SDimitry Andric return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 14035ffd83dbSDimitry Andric case Expr::MatrixSubscriptExprClass: 14045ffd83dbSDimitry Andric return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E)); 14050b57cec5SDimitry Andric case Expr::OMPArraySectionExprClass: 14060b57cec5SDimitry Andric return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 14070b57cec5SDimitry Andric case Expr::ExtVectorElementExprClass: 14080b57cec5SDimitry Andric return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1409bdd1243dSDimitry Andric case Expr::CXXThisExprClass: 1410bdd1243dSDimitry Andric return MakeAddrLValue(LoadCXXThisAddress(), E->getType()); 14110b57cec5SDimitry Andric case Expr::MemberExprClass: 14120b57cec5SDimitry Andric return EmitMemberExpr(cast<MemberExpr>(E)); 14130b57cec5SDimitry Andric case Expr::CompoundLiteralExprClass: 14140b57cec5SDimitry Andric return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 14150b57cec5SDimitry Andric case Expr::ConditionalOperatorClass: 14160b57cec5SDimitry Andric return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 14170b57cec5SDimitry Andric case Expr::BinaryConditionalOperatorClass: 14180b57cec5SDimitry Andric return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 14190b57cec5SDimitry Andric case Expr::ChooseExprClass: 1420*fe013be4SDimitry Andric return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(), IsKnownNonNull); 14210b57cec5SDimitry Andric case Expr::OpaqueValueExprClass: 14220b57cec5SDimitry Andric return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 14230b57cec5SDimitry Andric case Expr::SubstNonTypeTemplateParmExprClass: 1424*fe013be4SDimitry Andric return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), 1425*fe013be4SDimitry Andric IsKnownNonNull); 14260b57cec5SDimitry Andric case Expr::ImplicitCastExprClass: 14270b57cec5SDimitry Andric case Expr::CStyleCastExprClass: 14280b57cec5SDimitry Andric case Expr::CXXFunctionalCastExprClass: 14290b57cec5SDimitry Andric case Expr::CXXStaticCastExprClass: 14300b57cec5SDimitry Andric case Expr::CXXDynamicCastExprClass: 14310b57cec5SDimitry Andric case Expr::CXXReinterpretCastExprClass: 14320b57cec5SDimitry Andric case Expr::CXXConstCastExprClass: 14335ffd83dbSDimitry Andric case Expr::CXXAddrspaceCastExprClass: 14340b57cec5SDimitry Andric case Expr::ObjCBridgedCastExprClass: 14350b57cec5SDimitry Andric return EmitCastLValue(cast<CastExpr>(E)); 14360b57cec5SDimitry Andric 14370b57cec5SDimitry Andric case Expr::MaterializeTemporaryExprClass: 14380b57cec5SDimitry Andric return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 14390b57cec5SDimitry Andric 14400b57cec5SDimitry Andric case Expr::CoawaitExprClass: 14410b57cec5SDimitry Andric return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 14420b57cec5SDimitry Andric case Expr::CoyieldExprClass: 14430b57cec5SDimitry Andric return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 14440b57cec5SDimitry Andric } 14450b57cec5SDimitry Andric } 14460b57cec5SDimitry Andric 14470b57cec5SDimitry Andric /// Given an object of the given canonical type, can we safely copy a 14480b57cec5SDimitry Andric /// value out of it based on its initializer? 14490b57cec5SDimitry Andric static bool isConstantEmittableObjectType(QualType type) { 14500b57cec5SDimitry Andric assert(type.isCanonical()); 14510b57cec5SDimitry Andric assert(!type->isReferenceType()); 14520b57cec5SDimitry Andric 14530b57cec5SDimitry Andric // Must be const-qualified but non-volatile. 14540b57cec5SDimitry Andric Qualifiers qs = type.getLocalQualifiers(); 14550b57cec5SDimitry Andric if (!qs.hasConst() || qs.hasVolatile()) return false; 14560b57cec5SDimitry Andric 14570b57cec5SDimitry Andric // Otherwise, all object types satisfy this except C++ classes with 14580b57cec5SDimitry Andric // mutable subobjects or non-trivial copy/destroy behavior. 14590b57cec5SDimitry Andric if (const auto *RT = dyn_cast<RecordType>(type)) 14600b57cec5SDimitry Andric if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 14610b57cec5SDimitry Andric if (RD->hasMutableFields() || !RD->isTrivial()) 14620b57cec5SDimitry Andric return false; 14630b57cec5SDimitry Andric 14640b57cec5SDimitry Andric return true; 14650b57cec5SDimitry Andric } 14660b57cec5SDimitry Andric 14670b57cec5SDimitry Andric /// Can we constant-emit a load of a reference to a variable of the 14680b57cec5SDimitry Andric /// given type? This is different from predicates like 14690b57cec5SDimitry Andric /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 14700b57cec5SDimitry Andric /// in situations that don't necessarily satisfy the language's rules 14710b57cec5SDimitry Andric /// for this (e.g. C++'s ODR-use rules). For example, we want to able 14720b57cec5SDimitry Andric /// to do this with const float variables even if those variables 14730b57cec5SDimitry Andric /// aren't marked 'constexpr'. 14740b57cec5SDimitry Andric enum ConstantEmissionKind { 14750b57cec5SDimitry Andric CEK_None, 14760b57cec5SDimitry Andric CEK_AsReferenceOnly, 14770b57cec5SDimitry Andric CEK_AsValueOrReference, 14780b57cec5SDimitry Andric CEK_AsValueOnly 14790b57cec5SDimitry Andric }; 14800b57cec5SDimitry Andric static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 14810b57cec5SDimitry Andric type = type.getCanonicalType(); 14820b57cec5SDimitry Andric if (const auto *ref = dyn_cast<ReferenceType>(type)) { 14830b57cec5SDimitry Andric if (isConstantEmittableObjectType(ref->getPointeeType())) 14840b57cec5SDimitry Andric return CEK_AsValueOrReference; 14850b57cec5SDimitry Andric return CEK_AsReferenceOnly; 14860b57cec5SDimitry Andric } 14870b57cec5SDimitry Andric if (isConstantEmittableObjectType(type)) 14880b57cec5SDimitry Andric return CEK_AsValueOnly; 14890b57cec5SDimitry Andric return CEK_None; 14900b57cec5SDimitry Andric } 14910b57cec5SDimitry Andric 14920b57cec5SDimitry Andric /// Try to emit a reference to the given value without producing it as 14930b57cec5SDimitry Andric /// an l-value. This is just an optimization, but it avoids us needing 14940b57cec5SDimitry Andric /// to emit global copies of variables if they're named without triggering 14950b57cec5SDimitry Andric /// a formal use in a context where we can't emit a direct reference to them, 14960b57cec5SDimitry Andric /// for instance if a block or lambda or a member of a local class uses a 14970b57cec5SDimitry Andric /// const int variable or constexpr variable from an enclosing function. 14980b57cec5SDimitry Andric CodeGenFunction::ConstantEmission 14990b57cec5SDimitry Andric CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 15000b57cec5SDimitry Andric ValueDecl *value = refExpr->getDecl(); 15010b57cec5SDimitry Andric 15020b57cec5SDimitry Andric // The value needs to be an enum constant or a constant variable. 15030b57cec5SDimitry Andric ConstantEmissionKind CEK; 15040b57cec5SDimitry Andric if (isa<ParmVarDecl>(value)) { 15050b57cec5SDimitry Andric CEK = CEK_None; 15060b57cec5SDimitry Andric } else if (auto *var = dyn_cast<VarDecl>(value)) { 15070b57cec5SDimitry Andric CEK = checkVarTypeForConstantEmission(var->getType()); 15080b57cec5SDimitry Andric } else if (isa<EnumConstantDecl>(value)) { 15090b57cec5SDimitry Andric CEK = CEK_AsValueOnly; 15100b57cec5SDimitry Andric } else { 15110b57cec5SDimitry Andric CEK = CEK_None; 15120b57cec5SDimitry Andric } 15130b57cec5SDimitry Andric if (CEK == CEK_None) return ConstantEmission(); 15140b57cec5SDimitry Andric 15150b57cec5SDimitry Andric Expr::EvalResult result; 15160b57cec5SDimitry Andric bool resultIsReference; 15170b57cec5SDimitry Andric QualType resultType; 15180b57cec5SDimitry Andric 15190b57cec5SDimitry Andric // It's best to evaluate all the way as an r-value if that's permitted. 15200b57cec5SDimitry Andric if (CEK != CEK_AsReferenceOnly && 15210b57cec5SDimitry Andric refExpr->EvaluateAsRValue(result, getContext())) { 15220b57cec5SDimitry Andric resultIsReference = false; 15230b57cec5SDimitry Andric resultType = refExpr->getType(); 15240b57cec5SDimitry Andric 15250b57cec5SDimitry Andric // Otherwise, try to evaluate as an l-value. 15260b57cec5SDimitry Andric } else if (CEK != CEK_AsValueOnly && 15270b57cec5SDimitry Andric refExpr->EvaluateAsLValue(result, getContext())) { 15280b57cec5SDimitry Andric resultIsReference = true; 15290b57cec5SDimitry Andric resultType = value->getType(); 15300b57cec5SDimitry Andric 15310b57cec5SDimitry Andric // Failure. 15320b57cec5SDimitry Andric } else { 15330b57cec5SDimitry Andric return ConstantEmission(); 15340b57cec5SDimitry Andric } 15350b57cec5SDimitry Andric 15360b57cec5SDimitry Andric // In any case, if the initializer has side-effects, abandon ship. 15370b57cec5SDimitry Andric if (result.HasSideEffects) 15380b57cec5SDimitry Andric return ConstantEmission(); 15390b57cec5SDimitry Andric 1540e8d8bef9SDimitry Andric // In CUDA/HIP device compilation, a lambda may capture a reference variable 1541e8d8bef9SDimitry Andric // referencing a global host variable by copy. In this case the lambda should 1542e8d8bef9SDimitry Andric // make a copy of the value of the global host variable. The DRE of the 1543e8d8bef9SDimitry Andric // captured reference variable cannot be emitted as load from the host 1544e8d8bef9SDimitry Andric // global variable as compile time constant, since the host variable is not 1545e8d8bef9SDimitry Andric // accessible on device. The DRE of the captured reference variable has to be 1546e8d8bef9SDimitry Andric // loaded from captures. 1547e8d8bef9SDimitry Andric if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() && 1548e8d8bef9SDimitry Andric refExpr->refersToEnclosingVariableOrCapture()) { 1549e8d8bef9SDimitry Andric auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl); 1550e8d8bef9SDimitry Andric if (MD && MD->getParent()->isLambda() && 1551e8d8bef9SDimitry Andric MD->getOverloadedOperator() == OO_Call) { 1552e8d8bef9SDimitry Andric const APValue::LValueBase &base = result.Val.getLValueBase(); 1553e8d8bef9SDimitry Andric if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) { 1554e8d8bef9SDimitry Andric if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) { 1555e8d8bef9SDimitry Andric if (!VD->hasAttr<CUDADeviceAttr>()) { 1556e8d8bef9SDimitry Andric return ConstantEmission(); 1557e8d8bef9SDimitry Andric } 1558e8d8bef9SDimitry Andric } 1559e8d8bef9SDimitry Andric } 1560e8d8bef9SDimitry Andric } 1561e8d8bef9SDimitry Andric } 1562e8d8bef9SDimitry Andric 15630b57cec5SDimitry Andric // Emit as a constant. 15640b57cec5SDimitry Andric auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 15650b57cec5SDimitry Andric result.Val, resultType); 15660b57cec5SDimitry Andric 15670b57cec5SDimitry Andric // Make sure we emit a debug reference to the global variable. 15680b57cec5SDimitry Andric // This should probably fire even for 15690b57cec5SDimitry Andric if (isa<VarDecl>(value)) { 15700b57cec5SDimitry Andric if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 15710b57cec5SDimitry Andric EmitDeclRefExprDbgValue(refExpr, result.Val); 15720b57cec5SDimitry Andric } else { 15730b57cec5SDimitry Andric assert(isa<EnumConstantDecl>(value)); 15740b57cec5SDimitry Andric EmitDeclRefExprDbgValue(refExpr, result.Val); 15750b57cec5SDimitry Andric } 15760b57cec5SDimitry Andric 15770b57cec5SDimitry Andric // If we emitted a reference constant, we need to dereference that. 15780b57cec5SDimitry Andric if (resultIsReference) 15790b57cec5SDimitry Andric return ConstantEmission::forReference(C); 15800b57cec5SDimitry Andric 15810b57cec5SDimitry Andric return ConstantEmission::forValue(C); 15820b57cec5SDimitry Andric } 15830b57cec5SDimitry Andric 15840b57cec5SDimitry Andric static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 15850b57cec5SDimitry Andric const MemberExpr *ME) { 15860b57cec5SDimitry Andric if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 15870b57cec5SDimitry Andric // Try to emit static variable member expressions as DREs. 15880b57cec5SDimitry Andric return DeclRefExpr::Create( 15890b57cec5SDimitry Andric CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 15900b57cec5SDimitry Andric /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 15910b57cec5SDimitry Andric ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 15920b57cec5SDimitry Andric } 15930b57cec5SDimitry Andric return nullptr; 15940b57cec5SDimitry Andric } 15950b57cec5SDimitry Andric 15960b57cec5SDimitry Andric CodeGenFunction::ConstantEmission 15970b57cec5SDimitry Andric CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 15980b57cec5SDimitry Andric if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 15990b57cec5SDimitry Andric return tryEmitAsConstant(DRE); 16000b57cec5SDimitry Andric return ConstantEmission(); 16010b57cec5SDimitry Andric } 16020b57cec5SDimitry Andric 16030b57cec5SDimitry Andric llvm::Value *CodeGenFunction::emitScalarConstant( 16040b57cec5SDimitry Andric const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 16050b57cec5SDimitry Andric assert(Constant && "not a constant"); 16060b57cec5SDimitry Andric if (Constant.isReference()) 16070b57cec5SDimitry Andric return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 16080b57cec5SDimitry Andric E->getExprLoc()) 16090b57cec5SDimitry Andric .getScalarVal(); 16100b57cec5SDimitry Andric return Constant.getValue(); 16110b57cec5SDimitry Andric } 16120b57cec5SDimitry Andric 16130b57cec5SDimitry Andric llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 16140b57cec5SDimitry Andric SourceLocation Loc) { 1615480093f4SDimitry Andric return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 16160b57cec5SDimitry Andric lvalue.getType(), Loc, lvalue.getBaseInfo(), 16170b57cec5SDimitry Andric lvalue.getTBAAInfo(), lvalue.isNontemporal()); 16180b57cec5SDimitry Andric } 16190b57cec5SDimitry Andric 16200b57cec5SDimitry Andric static bool hasBooleanRepresentation(QualType Ty) { 16210b57cec5SDimitry Andric if (Ty->isBooleanType()) 16220b57cec5SDimitry Andric return true; 16230b57cec5SDimitry Andric 16240b57cec5SDimitry Andric if (const EnumType *ET = Ty->getAs<EnumType>()) 16250b57cec5SDimitry Andric return ET->getDecl()->getIntegerType()->isBooleanType(); 16260b57cec5SDimitry Andric 16270b57cec5SDimitry Andric if (const AtomicType *AT = Ty->getAs<AtomicType>()) 16280b57cec5SDimitry Andric return hasBooleanRepresentation(AT->getValueType()); 16290b57cec5SDimitry Andric 16300b57cec5SDimitry Andric return false; 16310b57cec5SDimitry Andric } 16320b57cec5SDimitry Andric 16330b57cec5SDimitry Andric static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 16340b57cec5SDimitry Andric llvm::APInt &Min, llvm::APInt &End, 16350b57cec5SDimitry Andric bool StrictEnums, bool IsBool) { 16360b57cec5SDimitry Andric const EnumType *ET = Ty->getAs<EnumType>(); 16370b57cec5SDimitry Andric bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 16380b57cec5SDimitry Andric ET && !ET->getDecl()->isFixed(); 16390b57cec5SDimitry Andric if (!IsBool && !IsRegularCPlusPlusEnum) 16400b57cec5SDimitry Andric return false; 16410b57cec5SDimitry Andric 16420b57cec5SDimitry Andric if (IsBool) { 16430b57cec5SDimitry Andric Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 16440b57cec5SDimitry Andric End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 16450b57cec5SDimitry Andric } else { 16460b57cec5SDimitry Andric const EnumDecl *ED = ET->getDecl(); 1647bdd1243dSDimitry Andric ED->getValueRange(End, Min); 16480b57cec5SDimitry Andric } 16490b57cec5SDimitry Andric return true; 16500b57cec5SDimitry Andric } 16510b57cec5SDimitry Andric 16520b57cec5SDimitry Andric llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 16530b57cec5SDimitry Andric llvm::APInt Min, End; 16540b57cec5SDimitry Andric if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 16550b57cec5SDimitry Andric hasBooleanRepresentation(Ty))) 16560b57cec5SDimitry Andric return nullptr; 16570b57cec5SDimitry Andric 16580b57cec5SDimitry Andric llvm::MDBuilder MDHelper(getLLVMContext()); 16590b57cec5SDimitry Andric return MDHelper.createRange(Min, End); 16600b57cec5SDimitry Andric } 16610b57cec5SDimitry Andric 16620b57cec5SDimitry Andric bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 16630b57cec5SDimitry Andric SourceLocation Loc) { 16640b57cec5SDimitry Andric bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 16650b57cec5SDimitry Andric bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 16660b57cec5SDimitry Andric if (!HasBoolCheck && !HasEnumCheck) 16670b57cec5SDimitry Andric return false; 16680b57cec5SDimitry Andric 16690b57cec5SDimitry Andric bool IsBool = hasBooleanRepresentation(Ty) || 16700b57cec5SDimitry Andric NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 16710b57cec5SDimitry Andric bool NeedsBoolCheck = HasBoolCheck && IsBool; 16720b57cec5SDimitry Andric bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 16730b57cec5SDimitry Andric if (!NeedsBoolCheck && !NeedsEnumCheck) 16740b57cec5SDimitry Andric return false; 16750b57cec5SDimitry Andric 16760b57cec5SDimitry Andric // Single-bit booleans don't need to be checked. Special-case this to avoid 16770b57cec5SDimitry Andric // a bit width mismatch when handling bitfield values. This is handled by 16780b57cec5SDimitry Andric // EmitFromMemory for the non-bitfield case. 16790b57cec5SDimitry Andric if (IsBool && 16800b57cec5SDimitry Andric cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 16810b57cec5SDimitry Andric return false; 16820b57cec5SDimitry Andric 16830b57cec5SDimitry Andric llvm::APInt Min, End; 16840b57cec5SDimitry Andric if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 16850b57cec5SDimitry Andric return true; 16860b57cec5SDimitry Andric 16870b57cec5SDimitry Andric auto &Ctx = getLLVMContext(); 16880b57cec5SDimitry Andric SanitizerScope SanScope(this); 16890b57cec5SDimitry Andric llvm::Value *Check; 16900b57cec5SDimitry Andric --End; 16910b57cec5SDimitry Andric if (!Min) { 16920b57cec5SDimitry Andric Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 16930b57cec5SDimitry Andric } else { 16940b57cec5SDimitry Andric llvm::Value *Upper = 16950b57cec5SDimitry Andric Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 16960b57cec5SDimitry Andric llvm::Value *Lower = 16970b57cec5SDimitry Andric Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 16980b57cec5SDimitry Andric Check = Builder.CreateAnd(Upper, Lower); 16990b57cec5SDimitry Andric } 17000b57cec5SDimitry Andric llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 17010b57cec5SDimitry Andric EmitCheckTypeDescriptor(Ty)}; 17020b57cec5SDimitry Andric SanitizerMask Kind = 17030b57cec5SDimitry Andric NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 17040b57cec5SDimitry Andric EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 17050b57cec5SDimitry Andric StaticArgs, EmitCheckValue(Value)); 17060b57cec5SDimitry Andric return true; 17070b57cec5SDimitry Andric } 17080b57cec5SDimitry Andric 17090b57cec5SDimitry Andric llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 17100b57cec5SDimitry Andric QualType Ty, 17110b57cec5SDimitry Andric SourceLocation Loc, 17120b57cec5SDimitry Andric LValueBaseInfo BaseInfo, 17130b57cec5SDimitry Andric TBAAAccessInfo TBAAInfo, 17140b57cec5SDimitry Andric bool isNontemporal) { 1715bdd1243dSDimitry Andric if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getPointer())) 1716bdd1243dSDimitry Andric if (GV->isThreadLocal()) 1717*fe013be4SDimitry Andric Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV), 1718*fe013be4SDimitry Andric NotKnownNonNull); 1719bdd1243dSDimitry Andric 172081ad6265SDimitry Andric if (const auto *ClangVecTy = Ty->getAs<VectorType>()) { 172181ad6265SDimitry Andric // Boolean vectors use `iN` as storage type. 172281ad6265SDimitry Andric if (ClangVecTy->isExtVectorBoolType()) { 172381ad6265SDimitry Andric llvm::Type *ValTy = ConvertType(Ty); 172481ad6265SDimitry Andric unsigned ValNumElems = 172581ad6265SDimitry Andric cast<llvm::FixedVectorType>(ValTy)->getNumElements(); 172681ad6265SDimitry Andric // Load the `iP` storage object (P is the padded vector size). 172781ad6265SDimitry Andric auto *RawIntV = Builder.CreateLoad(Addr, Volatile, "load_bits"); 172881ad6265SDimitry Andric const auto *RawIntTy = RawIntV->getType(); 172981ad6265SDimitry Andric assert(RawIntTy->isIntegerTy() && "compressed iN storage for bitvectors"); 173081ad6265SDimitry Andric // Bitcast iP --> <P x i1>. 173181ad6265SDimitry Andric auto *PaddedVecTy = llvm::FixedVectorType::get( 173281ad6265SDimitry Andric Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits()); 173381ad6265SDimitry Andric llvm::Value *V = Builder.CreateBitCast(RawIntV, PaddedVecTy); 173481ad6265SDimitry Andric // Shuffle <P x i1> --> <N x i1> (N is the actual bit size). 173581ad6265SDimitry Andric V = emitBoolVecConversion(V, ValNumElems, "extractvec"); 17360b57cec5SDimitry Andric 173781ad6265SDimitry Andric return EmitFromMemory(V, Ty); 173881ad6265SDimitry Andric } 17390b57cec5SDimitry Andric 17400b57cec5SDimitry Andric // Handle vectors of size 3 like size 4 for better performance. 174181ad6265SDimitry Andric const llvm::Type *EltTy = Addr.getElementType(); 174281ad6265SDimitry Andric const auto *VTy = cast<llvm::FixedVectorType>(EltTy); 174381ad6265SDimitry Andric 174481ad6265SDimitry Andric if (!CGM.getCodeGenOpts().PreserveVec3Type && VTy->getNumElements() == 3) { 17450b57cec5SDimitry Andric 174681ad6265SDimitry Andric llvm::VectorType *vec4Ty = 174781ad6265SDimitry Andric llvm::FixedVectorType::get(VTy->getElementType(), 4); 1748*fe013be4SDimitry Andric Address Cast = Addr.withElementType(vec4Ty); 17490b57cec5SDimitry Andric // Now load value. 17500b57cec5SDimitry Andric llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 17510b57cec5SDimitry Andric 17520b57cec5SDimitry Andric // Shuffle vector to get vec3. 175381ad6265SDimitry Andric V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, "extractVec"); 17540b57cec5SDimitry Andric return EmitFromMemory(V, Ty); 17550b57cec5SDimitry Andric } 17560b57cec5SDimitry Andric } 17570b57cec5SDimitry Andric 17580b57cec5SDimitry Andric // Atomic operations have to be done on integral types. 17590b57cec5SDimitry Andric LValue AtomicLValue = 17600b57cec5SDimitry Andric LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 17610b57cec5SDimitry Andric if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 17620b57cec5SDimitry Andric return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 17630b57cec5SDimitry Andric } 17640b57cec5SDimitry Andric 17650b57cec5SDimitry Andric llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 17660b57cec5SDimitry Andric if (isNontemporal) { 17670b57cec5SDimitry Andric llvm::MDNode *Node = llvm::MDNode::get( 17680b57cec5SDimitry Andric Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1769*fe013be4SDimitry Andric Load->setMetadata(llvm::LLVMContext::MD_nontemporal, Node); 17700b57cec5SDimitry Andric } 17710b57cec5SDimitry Andric 17720b57cec5SDimitry Andric CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 17730b57cec5SDimitry Andric 17740b57cec5SDimitry Andric if (EmitScalarRangeCheck(Load, Ty, Loc)) { 17750b57cec5SDimitry Andric // In order to prevent the optimizer from throwing away the check, don't 17760b57cec5SDimitry Andric // attach range metadata to the load. 17770b57cec5SDimitry Andric } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1778bdd1243dSDimitry Andric if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) { 17790b57cec5SDimitry Andric Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1780bdd1243dSDimitry Andric Load->setMetadata(llvm::LLVMContext::MD_noundef, 1781bdd1243dSDimitry Andric llvm::MDNode::get(getLLVMContext(), std::nullopt)); 1782bdd1243dSDimitry Andric } 17830b57cec5SDimitry Andric 17840b57cec5SDimitry Andric return EmitFromMemory(Load, Ty); 17850b57cec5SDimitry Andric } 17860b57cec5SDimitry Andric 17870b57cec5SDimitry Andric llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 17880b57cec5SDimitry Andric // Bool has a different representation in memory than in registers. 17890b57cec5SDimitry Andric if (hasBooleanRepresentation(Ty)) { 17900b57cec5SDimitry Andric // This should really always be an i1, but sometimes it's already 17910b57cec5SDimitry Andric // an i8, and it's awkward to track those cases down. 17920b57cec5SDimitry Andric if (Value->getType()->isIntegerTy(1)) 17930b57cec5SDimitry Andric return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 17940b57cec5SDimitry Andric assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 17950b57cec5SDimitry Andric "wrong value rep of bool"); 17960b57cec5SDimitry Andric } 17970b57cec5SDimitry Andric 17980b57cec5SDimitry Andric return Value; 17990b57cec5SDimitry Andric } 18000b57cec5SDimitry Andric 18010b57cec5SDimitry Andric llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 18020b57cec5SDimitry Andric // Bool has a different representation in memory than in registers. 18030b57cec5SDimitry Andric if (hasBooleanRepresentation(Ty)) { 18040b57cec5SDimitry Andric assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 18050b57cec5SDimitry Andric "wrong value rep of bool"); 18060b57cec5SDimitry Andric return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 18070b57cec5SDimitry Andric } 180881ad6265SDimitry Andric if (Ty->isExtVectorBoolType()) { 180981ad6265SDimitry Andric const auto *RawIntTy = Value->getType(); 181081ad6265SDimitry Andric // Bitcast iP --> <P x i1>. 181181ad6265SDimitry Andric auto *PaddedVecTy = llvm::FixedVectorType::get( 181281ad6265SDimitry Andric Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits()); 181381ad6265SDimitry Andric auto *V = Builder.CreateBitCast(Value, PaddedVecTy); 181481ad6265SDimitry Andric // Shuffle <P x i1> --> <N x i1> (N is the actual bit size). 181581ad6265SDimitry Andric llvm::Type *ValTy = ConvertType(Ty); 181681ad6265SDimitry Andric unsigned ValNumElems = cast<llvm::FixedVectorType>(ValTy)->getNumElements(); 181781ad6265SDimitry Andric return emitBoolVecConversion(V, ValNumElems, "extractvec"); 181881ad6265SDimitry Andric } 18190b57cec5SDimitry Andric 18200b57cec5SDimitry Andric return Value; 18210b57cec5SDimitry Andric } 18220b57cec5SDimitry Andric 18235ffd83dbSDimitry Andric // Convert the pointer of \p Addr to a pointer to a vector (the value type of 18245ffd83dbSDimitry Andric // MatrixType), if it points to a array (the memory type of MatrixType). 18255ffd83dbSDimitry Andric static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF, 18265ffd83dbSDimitry Andric bool IsVector = true) { 18270eae32dcSDimitry Andric auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType()); 18285ffd83dbSDimitry Andric if (ArrayTy && IsVector) { 18295ffd83dbSDimitry Andric auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 18305ffd83dbSDimitry Andric ArrayTy->getNumElements()); 18315ffd83dbSDimitry Andric 1832*fe013be4SDimitry Andric return Addr.withElementType(VectorTy); 18335ffd83dbSDimitry Andric } 18340eae32dcSDimitry Andric auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType()); 18355ffd83dbSDimitry Andric if (VectorTy && !IsVector) { 1836e8d8bef9SDimitry Andric auto *ArrayTy = llvm::ArrayType::get( 1837e8d8bef9SDimitry Andric VectorTy->getElementType(), 1838e8d8bef9SDimitry Andric cast<llvm::FixedVectorType>(VectorTy)->getNumElements()); 18395ffd83dbSDimitry Andric 1840*fe013be4SDimitry Andric return Addr.withElementType(ArrayTy); 18415ffd83dbSDimitry Andric } 18425ffd83dbSDimitry Andric 18435ffd83dbSDimitry Andric return Addr; 18445ffd83dbSDimitry Andric } 18455ffd83dbSDimitry Andric 18465ffd83dbSDimitry Andric // Emit a store of a matrix LValue. This may require casting the original 18475ffd83dbSDimitry Andric // pointer to memory address (ArrayType) to a pointer to the value type 18485ffd83dbSDimitry Andric // (VectorType). 18495ffd83dbSDimitry Andric static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue, 18505ffd83dbSDimitry Andric bool isInit, CodeGenFunction &CGF) { 18515ffd83dbSDimitry Andric Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF, 18525ffd83dbSDimitry Andric value->getType()->isVectorTy()); 18535ffd83dbSDimitry Andric CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(), 18545ffd83dbSDimitry Andric lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit, 18555ffd83dbSDimitry Andric lvalue.isNontemporal()); 18565ffd83dbSDimitry Andric } 18575ffd83dbSDimitry Andric 18580b57cec5SDimitry Andric void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 18590b57cec5SDimitry Andric bool Volatile, QualType Ty, 18600b57cec5SDimitry Andric LValueBaseInfo BaseInfo, 18610b57cec5SDimitry Andric TBAAAccessInfo TBAAInfo, 18620b57cec5SDimitry Andric bool isInit, bool isNontemporal) { 1863bdd1243dSDimitry Andric if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getPointer())) 1864bdd1243dSDimitry Andric if (GV->isThreadLocal()) 1865*fe013be4SDimitry Andric Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV), 1866*fe013be4SDimitry Andric NotKnownNonNull); 1867bdd1243dSDimitry Andric 18680b57cec5SDimitry Andric llvm::Type *SrcTy = Value->getType(); 186981ad6265SDimitry Andric if (const auto *ClangVecTy = Ty->getAs<VectorType>()) { 187081ad6265SDimitry Andric auto *VecTy = dyn_cast<llvm::FixedVectorType>(SrcTy); 187181ad6265SDimitry Andric if (VecTy && ClangVecTy->isExtVectorBoolType()) { 187281ad6265SDimitry Andric auto *MemIntTy = cast<llvm::IntegerType>(Addr.getElementType()); 187381ad6265SDimitry Andric // Expand to the memory bit width. 187481ad6265SDimitry Andric unsigned MemNumElems = MemIntTy->getPrimitiveSizeInBits(); 187581ad6265SDimitry Andric // <N x i1> --> <P x i1>. 187681ad6265SDimitry Andric Value = emitBoolVecConversion(Value, MemNumElems, "insertvec"); 187781ad6265SDimitry Andric // <P x i1> --> iP. 187881ad6265SDimitry Andric Value = Builder.CreateBitCast(Value, MemIntTy); 187981ad6265SDimitry Andric } else if (!CGM.getCodeGenOpts().PreserveVec3Type) { 18800b57cec5SDimitry Andric // Handle vec3 special. 1881e8d8bef9SDimitry Andric if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) { 18820b57cec5SDimitry Andric // Our source is a vec3, do a shuffle vector to make it a vec4. 1883e8d8bef9SDimitry Andric Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1}, 18845ffd83dbSDimitry Andric "extractVec"); 18855ffd83dbSDimitry Andric SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4); 18860b57cec5SDimitry Andric } 18870b57cec5SDimitry Andric if (Addr.getElementType() != SrcTy) { 1888*fe013be4SDimitry Andric Addr = Addr.withElementType(SrcTy); 18890b57cec5SDimitry Andric } 18900b57cec5SDimitry Andric } 18910b57cec5SDimitry Andric } 18920b57cec5SDimitry Andric 18930b57cec5SDimitry Andric Value = EmitToMemory(Value, Ty); 18940b57cec5SDimitry Andric 18950b57cec5SDimitry Andric LValue AtomicLValue = 18960b57cec5SDimitry Andric LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 18970b57cec5SDimitry Andric if (Ty->isAtomicType() || 18980b57cec5SDimitry Andric (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 18990b57cec5SDimitry Andric EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 19000b57cec5SDimitry Andric return; 19010b57cec5SDimitry Andric } 19020b57cec5SDimitry Andric 19030b57cec5SDimitry Andric llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 19040b57cec5SDimitry Andric if (isNontemporal) { 19050b57cec5SDimitry Andric llvm::MDNode *Node = 19060b57cec5SDimitry Andric llvm::MDNode::get(Store->getContext(), 19070b57cec5SDimitry Andric llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1908*fe013be4SDimitry Andric Store->setMetadata(llvm::LLVMContext::MD_nontemporal, Node); 19090b57cec5SDimitry Andric } 19100b57cec5SDimitry Andric 19110b57cec5SDimitry Andric CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 19120b57cec5SDimitry Andric } 19130b57cec5SDimitry Andric 19140b57cec5SDimitry Andric void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 19150b57cec5SDimitry Andric bool isInit) { 19165ffd83dbSDimitry Andric if (lvalue.getType()->isConstantMatrixType()) { 19175ffd83dbSDimitry Andric EmitStoreOfMatrixScalar(value, lvalue, isInit, *this); 19185ffd83dbSDimitry Andric return; 19195ffd83dbSDimitry Andric } 19205ffd83dbSDimitry Andric 1921480093f4SDimitry Andric EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 19220b57cec5SDimitry Andric lvalue.getType(), lvalue.getBaseInfo(), 19230b57cec5SDimitry Andric lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 19240b57cec5SDimitry Andric } 19250b57cec5SDimitry Andric 19265ffd83dbSDimitry Andric // Emit a load of a LValue of matrix type. This may require casting the pointer 19275ffd83dbSDimitry Andric // to memory address (ArrayType) to a pointer to the value type (VectorType). 19285ffd83dbSDimitry Andric static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc, 19295ffd83dbSDimitry Andric CodeGenFunction &CGF) { 19305ffd83dbSDimitry Andric assert(LV.getType()->isConstantMatrixType()); 19315ffd83dbSDimitry Andric Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF); 19325ffd83dbSDimitry Andric LV.setAddress(Addr); 19335ffd83dbSDimitry Andric return RValue::get(CGF.EmitLoadOfScalar(LV, Loc)); 19345ffd83dbSDimitry Andric } 19355ffd83dbSDimitry Andric 19360b57cec5SDimitry Andric /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 19370b57cec5SDimitry Andric /// method emits the address of the lvalue, then loads the result as an rvalue, 19380b57cec5SDimitry Andric /// returning the rvalue. 19390b57cec5SDimitry Andric RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 19400b57cec5SDimitry Andric if (LV.isObjCWeak()) { 19410b57cec5SDimitry Andric // load of a __weak object. 1942480093f4SDimitry Andric Address AddrWeakObj = LV.getAddress(*this); 19430b57cec5SDimitry Andric return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 19440b57cec5SDimitry Andric AddrWeakObj)); 19450b57cec5SDimitry Andric } 19460b57cec5SDimitry Andric if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 19470b57cec5SDimitry Andric // In MRC mode, we do a load+autorelease. 19480b57cec5SDimitry Andric if (!getLangOpts().ObjCAutoRefCount) { 1949480093f4SDimitry Andric return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 19500b57cec5SDimitry Andric } 19510b57cec5SDimitry Andric 19520b57cec5SDimitry Andric // In ARC mode, we load retained and then consume the value. 1953480093f4SDimitry Andric llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 19540b57cec5SDimitry Andric Object = EmitObjCConsumeObject(LV.getType(), Object); 19550b57cec5SDimitry Andric return RValue::get(Object); 19560b57cec5SDimitry Andric } 19570b57cec5SDimitry Andric 19580b57cec5SDimitry Andric if (LV.isSimple()) { 19590b57cec5SDimitry Andric assert(!LV.getType()->isFunctionType()); 19600b57cec5SDimitry Andric 19615ffd83dbSDimitry Andric if (LV.getType()->isConstantMatrixType()) 19625ffd83dbSDimitry Andric return EmitLoadOfMatrixLValue(LV, Loc, *this); 19635ffd83dbSDimitry Andric 19640b57cec5SDimitry Andric // Everything needs a load. 19650b57cec5SDimitry Andric return RValue::get(EmitLoadOfScalar(LV, Loc)); 19660b57cec5SDimitry Andric } 19670b57cec5SDimitry Andric 19680b57cec5SDimitry Andric if (LV.isVectorElt()) { 19690b57cec5SDimitry Andric llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 19700b57cec5SDimitry Andric LV.isVolatileQualified()); 19710b57cec5SDimitry Andric return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 19720b57cec5SDimitry Andric "vecext")); 19730b57cec5SDimitry Andric } 19740b57cec5SDimitry Andric 19750b57cec5SDimitry Andric // If this is a reference to a subset of the elements of a vector, either 19760b57cec5SDimitry Andric // shuffle the input or extract/insert them as appropriate. 19775ffd83dbSDimitry Andric if (LV.isExtVectorElt()) { 19780b57cec5SDimitry Andric return EmitLoadOfExtVectorElementLValue(LV); 19795ffd83dbSDimitry Andric } 19800b57cec5SDimitry Andric 19810b57cec5SDimitry Andric // Global Register variables always invoke intrinsics 19820b57cec5SDimitry Andric if (LV.isGlobalReg()) 19830b57cec5SDimitry Andric return EmitLoadOfGlobalRegLValue(LV); 19840b57cec5SDimitry Andric 19855ffd83dbSDimitry Andric if (LV.isMatrixElt()) { 1986349cc55cSDimitry Andric llvm::Value *Idx = LV.getMatrixIdx(); 1987349cc55cSDimitry Andric if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 198804eeddc0SDimitry Andric const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>(); 198981ad6265SDimitry Andric llvm::MatrixBuilder MB(Builder); 1990349cc55cSDimitry Andric MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 1991349cc55cSDimitry Andric } 19925ffd83dbSDimitry Andric llvm::LoadInst *Load = 19935ffd83dbSDimitry Andric Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified()); 1994349cc55cSDimitry Andric return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext")); 19955ffd83dbSDimitry Andric } 19965ffd83dbSDimitry Andric 19970b57cec5SDimitry Andric assert(LV.isBitField() && "Unknown LValue type!"); 19980b57cec5SDimitry Andric return EmitLoadOfBitfieldLValue(LV, Loc); 19990b57cec5SDimitry Andric } 20000b57cec5SDimitry Andric 20010b57cec5SDimitry Andric RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 20020b57cec5SDimitry Andric SourceLocation Loc) { 20030b57cec5SDimitry Andric const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 20040b57cec5SDimitry Andric 20050b57cec5SDimitry Andric // Get the output type. 20060b57cec5SDimitry Andric llvm::Type *ResLTy = ConvertType(LV.getType()); 20070b57cec5SDimitry Andric 20080b57cec5SDimitry Andric Address Ptr = LV.getBitFieldAddress(); 2009e8d8bef9SDimitry Andric llvm::Value *Val = 2010e8d8bef9SDimitry Andric Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 20110b57cec5SDimitry Andric 2012e8d8bef9SDimitry Andric bool UseVolatile = LV.isVolatileQualified() && 2013e8d8bef9SDimitry Andric Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2014e8d8bef9SDimitry Andric const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 2015e8d8bef9SDimitry Andric const unsigned StorageSize = 2016e8d8bef9SDimitry Andric UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 20170b57cec5SDimitry Andric if (Info.IsSigned) { 2018e8d8bef9SDimitry Andric assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize); 2019e8d8bef9SDimitry Andric unsigned HighBits = StorageSize - Offset - Info.Size; 20200b57cec5SDimitry Andric if (HighBits) 20210b57cec5SDimitry Andric Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 2022e8d8bef9SDimitry Andric if (Offset + HighBits) 2023e8d8bef9SDimitry Andric Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr"); 20240b57cec5SDimitry Andric } else { 2025e8d8bef9SDimitry Andric if (Offset) 2026e8d8bef9SDimitry Andric Val = Builder.CreateLShr(Val, Offset, "bf.lshr"); 2027e8d8bef9SDimitry Andric if (static_cast<unsigned>(Offset) + Info.Size < StorageSize) 2028e8d8bef9SDimitry Andric Val = Builder.CreateAnd( 2029e8d8bef9SDimitry Andric Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear"); 20300b57cec5SDimitry Andric } 20310b57cec5SDimitry Andric Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 20320b57cec5SDimitry Andric EmitScalarRangeCheck(Val, LV.getType(), Loc); 20330b57cec5SDimitry Andric return RValue::get(Val); 20340b57cec5SDimitry Andric } 20350b57cec5SDimitry Andric 20360b57cec5SDimitry Andric // If this is a reference to a subset of the elements of a vector, create an 20370b57cec5SDimitry Andric // appropriate shufflevector. 20380b57cec5SDimitry Andric RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 20390b57cec5SDimitry Andric llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 20400b57cec5SDimitry Andric LV.isVolatileQualified()); 20410b57cec5SDimitry Andric 20420b57cec5SDimitry Andric const llvm::Constant *Elts = LV.getExtVectorElts(); 20430b57cec5SDimitry Andric 20440b57cec5SDimitry Andric // If the result of the expression is a non-vector type, we must be extracting 20450b57cec5SDimitry Andric // a single element. Just codegen as an extractelement. 20460b57cec5SDimitry Andric const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 20470b57cec5SDimitry Andric if (!ExprVT) { 20480b57cec5SDimitry Andric unsigned InIdx = getAccessedFieldNo(0, Elts); 20490b57cec5SDimitry Andric llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 20500b57cec5SDimitry Andric return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 20510b57cec5SDimitry Andric } 20520b57cec5SDimitry Andric 20530b57cec5SDimitry Andric // Always use shuffle vector to try to retain the original program structure 20540b57cec5SDimitry Andric unsigned NumResultElts = ExprVT->getNumElements(); 20550b57cec5SDimitry Andric 20565ffd83dbSDimitry Andric SmallVector<int, 4> Mask; 20570b57cec5SDimitry Andric for (unsigned i = 0; i != NumResultElts; ++i) 20585ffd83dbSDimitry Andric Mask.push_back(getAccessedFieldNo(i, Elts)); 20590b57cec5SDimitry Andric 2060e8d8bef9SDimitry Andric Vec = Builder.CreateShuffleVector(Vec, Mask); 20610b57cec5SDimitry Andric return RValue::get(Vec); 20620b57cec5SDimitry Andric } 20630b57cec5SDimitry Andric 20640b57cec5SDimitry Andric /// Generates lvalue for partial ext_vector access. 20650b57cec5SDimitry Andric Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 20660b57cec5SDimitry Andric Address VectorAddress = LV.getExtVectorAddress(); 2067480093f4SDimitry Andric QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 20680b57cec5SDimitry Andric llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 20690b57cec5SDimitry Andric 2070*fe013be4SDimitry Andric Address CastToPointerElement = VectorAddress.withElementType(VectorElementTy); 20710b57cec5SDimitry Andric 20720b57cec5SDimitry Andric const llvm::Constant *Elts = LV.getExtVectorElts(); 20730b57cec5SDimitry Andric unsigned ix = getAccessedFieldNo(0, Elts); 20740b57cec5SDimitry Andric 20750b57cec5SDimitry Andric Address VectorBasePtrPlusIx = 20760b57cec5SDimitry Andric Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 20770b57cec5SDimitry Andric "vector.elt"); 20780b57cec5SDimitry Andric 20790b57cec5SDimitry Andric return VectorBasePtrPlusIx; 20800b57cec5SDimitry Andric } 20810b57cec5SDimitry Andric 20820b57cec5SDimitry Andric /// Load of global gamed gegisters are always calls to intrinsics. 20830b57cec5SDimitry Andric RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 20840b57cec5SDimitry Andric assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 20850b57cec5SDimitry Andric "Bad type for register variable"); 20860b57cec5SDimitry Andric llvm::MDNode *RegName = cast<llvm::MDNode>( 20870b57cec5SDimitry Andric cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 20880b57cec5SDimitry Andric 20890b57cec5SDimitry Andric // We accept integer and pointer types only 20900b57cec5SDimitry Andric llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 20910b57cec5SDimitry Andric llvm::Type *Ty = OrigTy; 20920b57cec5SDimitry Andric if (OrigTy->isPointerTy()) 20930b57cec5SDimitry Andric Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 20940b57cec5SDimitry Andric llvm::Type *Types[] = { Ty }; 20950b57cec5SDimitry Andric 20960b57cec5SDimitry Andric llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 20970b57cec5SDimitry Andric llvm::Value *Call = Builder.CreateCall( 20980b57cec5SDimitry Andric F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 20990b57cec5SDimitry Andric if (OrigTy->isPointerTy()) 21000b57cec5SDimitry Andric Call = Builder.CreateIntToPtr(Call, OrigTy); 21010b57cec5SDimitry Andric return RValue::get(Call); 21020b57cec5SDimitry Andric } 21030b57cec5SDimitry Andric 21040b57cec5SDimitry Andric /// EmitStoreThroughLValue - Store the specified rvalue into the specified 21050b57cec5SDimitry Andric /// lvalue, where both are guaranteed to the have the same type, and that type 21060b57cec5SDimitry Andric /// is 'Ty'. 21070b57cec5SDimitry Andric void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 21080b57cec5SDimitry Andric bool isInit) { 21090b57cec5SDimitry Andric if (!Dst.isSimple()) { 21100b57cec5SDimitry Andric if (Dst.isVectorElt()) { 21110b57cec5SDimitry Andric // Read/modify/write the vector, inserting the new element. 21120b57cec5SDimitry Andric llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 21130b57cec5SDimitry Andric Dst.isVolatileQualified()); 211481ad6265SDimitry Andric auto *IRStoreTy = dyn_cast<llvm::IntegerType>(Vec->getType()); 211581ad6265SDimitry Andric if (IRStoreTy) { 211681ad6265SDimitry Andric auto *IRVecTy = llvm::FixedVectorType::get( 211781ad6265SDimitry Andric Builder.getInt1Ty(), IRStoreTy->getPrimitiveSizeInBits()); 211881ad6265SDimitry Andric Vec = Builder.CreateBitCast(Vec, IRVecTy); 211981ad6265SDimitry Andric // iN --> <N x i1>. 212081ad6265SDimitry Andric } 21210b57cec5SDimitry Andric Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 21220b57cec5SDimitry Andric Dst.getVectorIdx(), "vecins"); 212381ad6265SDimitry Andric if (IRStoreTy) { 212481ad6265SDimitry Andric // <N x i1> --> <iN>. 212581ad6265SDimitry Andric Vec = Builder.CreateBitCast(Vec, IRStoreTy); 212681ad6265SDimitry Andric } 21270b57cec5SDimitry Andric Builder.CreateStore(Vec, Dst.getVectorAddress(), 21280b57cec5SDimitry Andric Dst.isVolatileQualified()); 21290b57cec5SDimitry Andric return; 21300b57cec5SDimitry Andric } 21310b57cec5SDimitry Andric 21320b57cec5SDimitry Andric // If this is an update of extended vector elements, insert them as 21330b57cec5SDimitry Andric // appropriate. 21340b57cec5SDimitry Andric if (Dst.isExtVectorElt()) 21350b57cec5SDimitry Andric return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 21360b57cec5SDimitry Andric 21370b57cec5SDimitry Andric if (Dst.isGlobalReg()) 21380b57cec5SDimitry Andric return EmitStoreThroughGlobalRegLValue(Src, Dst); 21390b57cec5SDimitry Andric 21405ffd83dbSDimitry Andric if (Dst.isMatrixElt()) { 2141349cc55cSDimitry Andric llvm::Value *Idx = Dst.getMatrixIdx(); 2142349cc55cSDimitry Andric if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 214304eeddc0SDimitry Andric const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>(); 214481ad6265SDimitry Andric llvm::MatrixBuilder MB(Builder); 2145349cc55cSDimitry Andric MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 2146349cc55cSDimitry Andric } 2147349cc55cSDimitry Andric llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress()); 2148349cc55cSDimitry Andric llvm::Value *Vec = 2149349cc55cSDimitry Andric Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins"); 21505ffd83dbSDimitry Andric Builder.CreateStore(Vec, Dst.getMatrixAddress(), 21515ffd83dbSDimitry Andric Dst.isVolatileQualified()); 21525ffd83dbSDimitry Andric return; 21535ffd83dbSDimitry Andric } 21545ffd83dbSDimitry Andric 21550b57cec5SDimitry Andric assert(Dst.isBitField() && "Unknown LValue type"); 21560b57cec5SDimitry Andric return EmitStoreThroughBitfieldLValue(Src, Dst); 21570b57cec5SDimitry Andric } 21580b57cec5SDimitry Andric 21590b57cec5SDimitry Andric // There's special magic for assigning into an ARC-qualified l-value. 21600b57cec5SDimitry Andric if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 21610b57cec5SDimitry Andric switch (Lifetime) { 21620b57cec5SDimitry Andric case Qualifiers::OCL_None: 21630b57cec5SDimitry Andric llvm_unreachable("present but none"); 21640b57cec5SDimitry Andric 21650b57cec5SDimitry Andric case Qualifiers::OCL_ExplicitNone: 21660b57cec5SDimitry Andric // nothing special 21670b57cec5SDimitry Andric break; 21680b57cec5SDimitry Andric 21690b57cec5SDimitry Andric case Qualifiers::OCL_Strong: 21700b57cec5SDimitry Andric if (isInit) { 21710b57cec5SDimitry Andric Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 21720b57cec5SDimitry Andric break; 21730b57cec5SDimitry Andric } 21740b57cec5SDimitry Andric EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 21750b57cec5SDimitry Andric return; 21760b57cec5SDimitry Andric 21770b57cec5SDimitry Andric case Qualifiers::OCL_Weak: 21780b57cec5SDimitry Andric if (isInit) 21790b57cec5SDimitry Andric // Initialize and then skip the primitive store. 2180480093f4SDimitry Andric EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 21810b57cec5SDimitry Andric else 2182480093f4SDimitry Andric EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 2183480093f4SDimitry Andric /*ignore*/ true); 21840b57cec5SDimitry Andric return; 21850b57cec5SDimitry Andric 21860b57cec5SDimitry Andric case Qualifiers::OCL_Autoreleasing: 21870b57cec5SDimitry Andric Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 21880b57cec5SDimitry Andric Src.getScalarVal())); 21890b57cec5SDimitry Andric // fall into the normal path 21900b57cec5SDimitry Andric break; 21910b57cec5SDimitry Andric } 21920b57cec5SDimitry Andric } 21930b57cec5SDimitry Andric 21940b57cec5SDimitry Andric if (Dst.isObjCWeak() && !Dst.isNonGC()) { 21950b57cec5SDimitry Andric // load of a __weak object. 2196480093f4SDimitry Andric Address LvalueDst = Dst.getAddress(*this); 21970b57cec5SDimitry Andric llvm::Value *src = Src.getScalarVal(); 21980b57cec5SDimitry Andric CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 21990b57cec5SDimitry Andric return; 22000b57cec5SDimitry Andric } 22010b57cec5SDimitry Andric 22020b57cec5SDimitry Andric if (Dst.isObjCStrong() && !Dst.isNonGC()) { 22030b57cec5SDimitry Andric // load of a __strong object. 2204480093f4SDimitry Andric Address LvalueDst = Dst.getAddress(*this); 22050b57cec5SDimitry Andric llvm::Value *src = Src.getScalarVal(); 22060b57cec5SDimitry Andric if (Dst.isObjCIvar()) { 22070b57cec5SDimitry Andric assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 22080b57cec5SDimitry Andric llvm::Type *ResultType = IntPtrTy; 22090b57cec5SDimitry Andric Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 22100b57cec5SDimitry Andric llvm::Value *RHS = dst.getPointer(); 22110b57cec5SDimitry Andric RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 22120b57cec5SDimitry Andric llvm::Value *LHS = 22130b57cec5SDimitry Andric Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 22140b57cec5SDimitry Andric "sub.ptr.lhs.cast"); 22150b57cec5SDimitry Andric llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 22160b57cec5SDimitry Andric CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 22170b57cec5SDimitry Andric BytesBetween); 22180b57cec5SDimitry Andric } else if (Dst.isGlobalObjCRef()) { 22190b57cec5SDimitry Andric CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 22200b57cec5SDimitry Andric Dst.isThreadLocalRef()); 22210b57cec5SDimitry Andric } 22220b57cec5SDimitry Andric else 22230b57cec5SDimitry Andric CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 22240b57cec5SDimitry Andric return; 22250b57cec5SDimitry Andric } 22260b57cec5SDimitry Andric 22270b57cec5SDimitry Andric assert(Src.isScalar() && "Can't emit an agg store with this method"); 22280b57cec5SDimitry Andric EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 22290b57cec5SDimitry Andric } 22300b57cec5SDimitry Andric 22310b57cec5SDimitry Andric void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 22320b57cec5SDimitry Andric llvm::Value **Result) { 22330b57cec5SDimitry Andric const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 22340b57cec5SDimitry Andric llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 22350b57cec5SDimitry Andric Address Ptr = Dst.getBitFieldAddress(); 22360b57cec5SDimitry Andric 22370b57cec5SDimitry Andric // Get the source value, truncated to the width of the bit-field. 22380b57cec5SDimitry Andric llvm::Value *SrcVal = Src.getScalarVal(); 22390b57cec5SDimitry Andric 22400b57cec5SDimitry Andric // Cast the source to the storage type and shift it into place. 22410b57cec5SDimitry Andric SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 22420b57cec5SDimitry Andric /*isSigned=*/false); 22430b57cec5SDimitry Andric llvm::Value *MaskedVal = SrcVal; 22440b57cec5SDimitry Andric 2245e8d8bef9SDimitry Andric const bool UseVolatile = 2246e8d8bef9SDimitry Andric CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() && 2247e8d8bef9SDimitry Andric Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2248e8d8bef9SDimitry Andric const unsigned StorageSize = 2249e8d8bef9SDimitry Andric UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 2250e8d8bef9SDimitry Andric const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 22510b57cec5SDimitry Andric // See if there are other bits in the bitfield's storage we'll need to load 22520b57cec5SDimitry Andric // and mask together with source before storing. 2253e8d8bef9SDimitry Andric if (StorageSize != Info.Size) { 2254e8d8bef9SDimitry Andric assert(StorageSize > Info.Size && "Invalid bitfield size."); 22550b57cec5SDimitry Andric llvm::Value *Val = 22560b57cec5SDimitry Andric Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 22570b57cec5SDimitry Andric 22580b57cec5SDimitry Andric // Mask the source value as needed. 22590b57cec5SDimitry Andric if (!hasBooleanRepresentation(Dst.getType())) 2260e8d8bef9SDimitry Andric SrcVal = Builder.CreateAnd( 2261e8d8bef9SDimitry Andric SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), 22620b57cec5SDimitry Andric "bf.value"); 22630b57cec5SDimitry Andric MaskedVal = SrcVal; 2264e8d8bef9SDimitry Andric if (Offset) 2265e8d8bef9SDimitry Andric SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl"); 22660b57cec5SDimitry Andric 22670b57cec5SDimitry Andric // Mask out the original value. 2268e8d8bef9SDimitry Andric Val = Builder.CreateAnd( 2269e8d8bef9SDimitry Andric Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size), 22700b57cec5SDimitry Andric "bf.clear"); 22710b57cec5SDimitry Andric 22720b57cec5SDimitry Andric // Or together the unchanged values and the source value. 22730b57cec5SDimitry Andric SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 22740b57cec5SDimitry Andric } else { 2275e8d8bef9SDimitry Andric assert(Offset == 0); 22765ffd83dbSDimitry Andric // According to the AACPS: 22775ffd83dbSDimitry Andric // When a volatile bit-field is written, and its container does not overlap 2278e8d8bef9SDimitry Andric // with any non-bit-field member, its container must be read exactly once 2279e8d8bef9SDimitry Andric // and written exactly once using the access width appropriate to the type 2280e8d8bef9SDimitry Andric // of the container. The two accesses are not atomic. 22815ffd83dbSDimitry Andric if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 22825ffd83dbSDimitry Andric CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 22835ffd83dbSDimitry Andric Builder.CreateLoad(Ptr, true, "bf.load"); 22840b57cec5SDimitry Andric } 22850b57cec5SDimitry Andric 22860b57cec5SDimitry Andric // Write the new value back out. 22870b57cec5SDimitry Andric Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 22880b57cec5SDimitry Andric 22890b57cec5SDimitry Andric // Return the new value of the bit-field, if requested. 22900b57cec5SDimitry Andric if (Result) { 22910b57cec5SDimitry Andric llvm::Value *ResultVal = MaskedVal; 22920b57cec5SDimitry Andric 22930b57cec5SDimitry Andric // Sign extend the value if needed. 22940b57cec5SDimitry Andric if (Info.IsSigned) { 2295e8d8bef9SDimitry Andric assert(Info.Size <= StorageSize); 2296e8d8bef9SDimitry Andric unsigned HighBits = StorageSize - Info.Size; 22970b57cec5SDimitry Andric if (HighBits) { 22980b57cec5SDimitry Andric ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 22990b57cec5SDimitry Andric ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 23000b57cec5SDimitry Andric } 23010b57cec5SDimitry Andric } 23020b57cec5SDimitry Andric 23030b57cec5SDimitry Andric ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 23040b57cec5SDimitry Andric "bf.result.cast"); 23050b57cec5SDimitry Andric *Result = EmitFromMemory(ResultVal, Dst.getType()); 23060b57cec5SDimitry Andric } 23070b57cec5SDimitry Andric } 23080b57cec5SDimitry Andric 23090b57cec5SDimitry Andric void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 23100b57cec5SDimitry Andric LValue Dst) { 23110b57cec5SDimitry Andric // This access turns into a read/modify/write of the vector. Load the input 23120b57cec5SDimitry Andric // value now. 23130b57cec5SDimitry Andric llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 23140b57cec5SDimitry Andric Dst.isVolatileQualified()); 23150b57cec5SDimitry Andric const llvm::Constant *Elts = Dst.getExtVectorElts(); 23160b57cec5SDimitry Andric 23170b57cec5SDimitry Andric llvm::Value *SrcVal = Src.getScalarVal(); 23180b57cec5SDimitry Andric 23190b57cec5SDimitry Andric if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 23200b57cec5SDimitry Andric unsigned NumSrcElts = VTy->getNumElements(); 23215ffd83dbSDimitry Andric unsigned NumDstElts = 2322e8d8bef9SDimitry Andric cast<llvm::FixedVectorType>(Vec->getType())->getNumElements(); 23230b57cec5SDimitry Andric if (NumDstElts == NumSrcElts) { 23240b57cec5SDimitry Andric // Use shuffle vector is the src and destination are the same number of 23250b57cec5SDimitry Andric // elements and restore the vector mask since it is on the side it will be 23260b57cec5SDimitry Andric // stored. 23275ffd83dbSDimitry Andric SmallVector<int, 4> Mask(NumDstElts); 23280b57cec5SDimitry Andric for (unsigned i = 0; i != NumSrcElts; ++i) 23295ffd83dbSDimitry Andric Mask[getAccessedFieldNo(i, Elts)] = i; 23300b57cec5SDimitry Andric 2331e8d8bef9SDimitry Andric Vec = Builder.CreateShuffleVector(SrcVal, Mask); 23320b57cec5SDimitry Andric } else if (NumDstElts > NumSrcElts) { 23330b57cec5SDimitry Andric // Extended the source vector to the same length and then shuffle it 23340b57cec5SDimitry Andric // into the destination. 23350b57cec5SDimitry Andric // FIXME: since we're shuffling with undef, can we just use the indices 23360b57cec5SDimitry Andric // into that? This could be simpler. 23375ffd83dbSDimitry Andric SmallVector<int, 4> ExtMask; 23380b57cec5SDimitry Andric for (unsigned i = 0; i != NumSrcElts; ++i) 23395ffd83dbSDimitry Andric ExtMask.push_back(i); 23405ffd83dbSDimitry Andric ExtMask.resize(NumDstElts, -1); 2341e8d8bef9SDimitry Andric llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask); 23420b57cec5SDimitry Andric // build identity 23435ffd83dbSDimitry Andric SmallVector<int, 4> Mask; 23440b57cec5SDimitry Andric for (unsigned i = 0; i != NumDstElts; ++i) 23455ffd83dbSDimitry Andric Mask.push_back(i); 23460b57cec5SDimitry Andric 23470b57cec5SDimitry Andric // When the vector size is odd and .odd or .hi is used, the last element 23480b57cec5SDimitry Andric // of the Elts constant array will be one past the size of the vector. 23490b57cec5SDimitry Andric // Ignore the last element here, if it is greater than the mask size. 23500b57cec5SDimitry Andric if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 23510b57cec5SDimitry Andric NumSrcElts--; 23520b57cec5SDimitry Andric 23530b57cec5SDimitry Andric // modify when what gets shuffled in 23540b57cec5SDimitry Andric for (unsigned i = 0; i != NumSrcElts; ++i) 23555ffd83dbSDimitry Andric Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts; 23565ffd83dbSDimitry Andric Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask); 23570b57cec5SDimitry Andric } else { 23580b57cec5SDimitry Andric // We should never shorten the vector 23590b57cec5SDimitry Andric llvm_unreachable("unexpected shorten vector length"); 23600b57cec5SDimitry Andric } 23610b57cec5SDimitry Andric } else { 23620b57cec5SDimitry Andric // If the Src is a scalar (not a vector) it must be updating one element. 23630b57cec5SDimitry Andric unsigned InIdx = getAccessedFieldNo(0, Elts); 23640b57cec5SDimitry Andric llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 23650b57cec5SDimitry Andric Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 23660b57cec5SDimitry Andric } 23670b57cec5SDimitry Andric 23680b57cec5SDimitry Andric Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 23690b57cec5SDimitry Andric Dst.isVolatileQualified()); 23700b57cec5SDimitry Andric } 23710b57cec5SDimitry Andric 23720b57cec5SDimitry Andric /// Store of global named registers are always calls to intrinsics. 23730b57cec5SDimitry Andric void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 23740b57cec5SDimitry Andric assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 23750b57cec5SDimitry Andric "Bad type for register variable"); 23760b57cec5SDimitry Andric llvm::MDNode *RegName = cast<llvm::MDNode>( 23770b57cec5SDimitry Andric cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 23780b57cec5SDimitry Andric assert(RegName && "Register LValue is not metadata"); 23790b57cec5SDimitry Andric 23800b57cec5SDimitry Andric // We accept integer and pointer types only 23810b57cec5SDimitry Andric llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 23820b57cec5SDimitry Andric llvm::Type *Ty = OrigTy; 23830b57cec5SDimitry Andric if (OrigTy->isPointerTy()) 23840b57cec5SDimitry Andric Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 23850b57cec5SDimitry Andric llvm::Type *Types[] = { Ty }; 23860b57cec5SDimitry Andric 23870b57cec5SDimitry Andric llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 23880b57cec5SDimitry Andric llvm::Value *Value = Src.getScalarVal(); 23890b57cec5SDimitry Andric if (OrigTy->isPointerTy()) 23900b57cec5SDimitry Andric Value = Builder.CreatePtrToInt(Value, Ty); 23910b57cec5SDimitry Andric Builder.CreateCall( 23920b57cec5SDimitry Andric F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 23930b57cec5SDimitry Andric } 23940b57cec5SDimitry Andric 23950b57cec5SDimitry Andric // setObjCGCLValueClass - sets class of the lvalue for the purpose of 23960b57cec5SDimitry Andric // generating write-barries API. It is currently a global, ivar, 23970b57cec5SDimitry Andric // or neither. 23980b57cec5SDimitry Andric static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 23990b57cec5SDimitry Andric LValue &LV, 24000b57cec5SDimitry Andric bool IsMemberAccess=false) { 24010b57cec5SDimitry Andric if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 24020b57cec5SDimitry Andric return; 24030b57cec5SDimitry Andric 24040b57cec5SDimitry Andric if (isa<ObjCIvarRefExpr>(E)) { 24050b57cec5SDimitry Andric QualType ExpTy = E->getType(); 24060b57cec5SDimitry Andric if (IsMemberAccess && ExpTy->isPointerType()) { 24070b57cec5SDimitry Andric // If ivar is a structure pointer, assigning to field of 24080b57cec5SDimitry Andric // this struct follows gcc's behavior and makes it a non-ivar 24090b57cec5SDimitry Andric // writer-barrier conservatively. 2410a7dea167SDimitry Andric ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 24110b57cec5SDimitry Andric if (ExpTy->isRecordType()) { 24120b57cec5SDimitry Andric LV.setObjCIvar(false); 24130b57cec5SDimitry Andric return; 24140b57cec5SDimitry Andric } 24150b57cec5SDimitry Andric } 24160b57cec5SDimitry Andric LV.setObjCIvar(true); 24170b57cec5SDimitry Andric auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 24180b57cec5SDimitry Andric LV.setBaseIvarExp(Exp->getBase()); 24190b57cec5SDimitry Andric LV.setObjCArray(E->getType()->isArrayType()); 24200b57cec5SDimitry Andric return; 24210b57cec5SDimitry Andric } 24220b57cec5SDimitry Andric 24230b57cec5SDimitry Andric if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 24240b57cec5SDimitry Andric if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 24250b57cec5SDimitry Andric if (VD->hasGlobalStorage()) { 24260b57cec5SDimitry Andric LV.setGlobalObjCRef(true); 24270b57cec5SDimitry Andric LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 24280b57cec5SDimitry Andric } 24290b57cec5SDimitry Andric } 24300b57cec5SDimitry Andric LV.setObjCArray(E->getType()->isArrayType()); 24310b57cec5SDimitry Andric return; 24320b57cec5SDimitry Andric } 24330b57cec5SDimitry Andric 24340b57cec5SDimitry Andric if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 24350b57cec5SDimitry Andric setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 24360b57cec5SDimitry Andric return; 24370b57cec5SDimitry Andric } 24380b57cec5SDimitry Andric 24390b57cec5SDimitry Andric if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 24400b57cec5SDimitry Andric setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 24410b57cec5SDimitry Andric if (LV.isObjCIvar()) { 24420b57cec5SDimitry Andric // If cast is to a structure pointer, follow gcc's behavior and make it 24430b57cec5SDimitry Andric // a non-ivar write-barrier. 24440b57cec5SDimitry Andric QualType ExpTy = E->getType(); 24450b57cec5SDimitry Andric if (ExpTy->isPointerType()) 2446a7dea167SDimitry Andric ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 24470b57cec5SDimitry Andric if (ExpTy->isRecordType()) 24480b57cec5SDimitry Andric LV.setObjCIvar(false); 24490b57cec5SDimitry Andric } 24500b57cec5SDimitry Andric return; 24510b57cec5SDimitry Andric } 24520b57cec5SDimitry Andric 24530b57cec5SDimitry Andric if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 24540b57cec5SDimitry Andric setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 24550b57cec5SDimitry Andric return; 24560b57cec5SDimitry Andric } 24570b57cec5SDimitry Andric 24580b57cec5SDimitry Andric if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 24590b57cec5SDimitry Andric setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 24600b57cec5SDimitry Andric return; 24610b57cec5SDimitry Andric } 24620b57cec5SDimitry Andric 24630b57cec5SDimitry Andric if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 24640b57cec5SDimitry Andric setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 24650b57cec5SDimitry Andric return; 24660b57cec5SDimitry Andric } 24670b57cec5SDimitry Andric 24680b57cec5SDimitry Andric if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 24690b57cec5SDimitry Andric setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 24700b57cec5SDimitry Andric return; 24710b57cec5SDimitry Andric } 24720b57cec5SDimitry Andric 24730b57cec5SDimitry Andric if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 24740b57cec5SDimitry Andric setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 24750b57cec5SDimitry Andric if (LV.isObjCIvar() && !LV.isObjCArray()) 24760b57cec5SDimitry Andric // Using array syntax to assigning to what an ivar points to is not 24770b57cec5SDimitry Andric // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 24780b57cec5SDimitry Andric LV.setObjCIvar(false); 24790b57cec5SDimitry Andric else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 24800b57cec5SDimitry Andric // Using array syntax to assigning to what global points to is not 24810b57cec5SDimitry Andric // same as assigning to the global itself. {id *G;} G[i] = 0; 24820b57cec5SDimitry Andric LV.setGlobalObjCRef(false); 24830b57cec5SDimitry Andric return; 24840b57cec5SDimitry Andric } 24850b57cec5SDimitry Andric 24860b57cec5SDimitry Andric if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 24870b57cec5SDimitry Andric setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 24880b57cec5SDimitry Andric // We don't know if member is an 'ivar', but this flag is looked at 24890b57cec5SDimitry Andric // only in the context of LV.isObjCIvar(). 24900b57cec5SDimitry Andric LV.setObjCArray(E->getType()->isArrayType()); 24910b57cec5SDimitry Andric return; 24920b57cec5SDimitry Andric } 24930b57cec5SDimitry Andric } 24940b57cec5SDimitry Andric 24950b57cec5SDimitry Andric static llvm::Value * 24960b57cec5SDimitry Andric EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 24970b57cec5SDimitry Andric llvm::Value *V, llvm::Type *IRType, 24980b57cec5SDimitry Andric StringRef Name = StringRef()) { 24990b57cec5SDimitry Andric unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 25000b57cec5SDimitry Andric return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 25010b57cec5SDimitry Andric } 25020b57cec5SDimitry Andric 25030b57cec5SDimitry Andric static LValue EmitThreadPrivateVarDeclLValue( 25040b57cec5SDimitry Andric CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 25050b57cec5SDimitry Andric llvm::Type *RealVarTy, SourceLocation Loc) { 25065ffd83dbSDimitry Andric if (CGF.CGM.getLangOpts().OpenMPIRBuilder) 25075ffd83dbSDimitry Andric Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 25085ffd83dbSDimitry Andric CGF, VD, Addr, Loc); 25095ffd83dbSDimitry Andric else 25105ffd83dbSDimitry Andric Addr = 25115ffd83dbSDimitry Andric CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 25125ffd83dbSDimitry Andric 2513*fe013be4SDimitry Andric Addr = Addr.withElementType(RealVarTy); 25140b57cec5SDimitry Andric return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 25150b57cec5SDimitry Andric } 25160b57cec5SDimitry Andric 25170b57cec5SDimitry Andric static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 25180b57cec5SDimitry Andric const VarDecl *VD, QualType T) { 2519bdd1243dSDimitry Andric std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 25200b57cec5SDimitry Andric OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2521bdd1243dSDimitry Andric // Return an invalid address if variable is MT_To (or MT_Enter starting with 2522bdd1243dSDimitry Andric // OpenMP 5.2) and unified memory is not enabled. For all other cases: MT_Link 2523bdd1243dSDimitry Andric // and MT_To (or MT_Enter) with unified memory, return a valid address. 2524bdd1243dSDimitry Andric if (!Res || ((*Res == OMPDeclareTargetDeclAttr::MT_To || 2525bdd1243dSDimitry Andric *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 25260b57cec5SDimitry Andric !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 25270b57cec5SDimitry Andric return Address::invalid(); 25280b57cec5SDimitry Andric assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2529bdd1243dSDimitry Andric ((*Res == OMPDeclareTargetDeclAttr::MT_To || 2530bdd1243dSDimitry Andric *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 25310b57cec5SDimitry Andric CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 25320b57cec5SDimitry Andric "Expected link clause OR to clause with unified memory enabled."); 25330b57cec5SDimitry Andric QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 25340b57cec5SDimitry Andric Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 25350b57cec5SDimitry Andric return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 25360b57cec5SDimitry Andric } 25370b57cec5SDimitry Andric 25380b57cec5SDimitry Andric Address 25390b57cec5SDimitry Andric CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 25400b57cec5SDimitry Andric LValueBaseInfo *PointeeBaseInfo, 25410b57cec5SDimitry Andric TBAAAccessInfo *PointeeTBAAInfo) { 2542480093f4SDimitry Andric llvm::LoadInst *Load = 2543480093f4SDimitry Andric Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 25440b57cec5SDimitry Andric CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 25450b57cec5SDimitry Andric 25460eae32dcSDimitry Andric QualType PointeeType = RefLVal.getType()->getPointeeType(); 25475ffd83dbSDimitry Andric CharUnits Align = CGM.getNaturalTypeAlignment( 25480eae32dcSDimitry Andric PointeeType, PointeeBaseInfo, PointeeTBAAInfo, 25490b57cec5SDimitry Andric /* forPointeeType= */ true); 25500eae32dcSDimitry Andric return Address(Load, ConvertTypeForMem(PointeeType), Align); 25510b57cec5SDimitry Andric } 25520b57cec5SDimitry Andric 25530b57cec5SDimitry Andric LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 25540b57cec5SDimitry Andric LValueBaseInfo PointeeBaseInfo; 25550b57cec5SDimitry Andric TBAAAccessInfo PointeeTBAAInfo; 25560b57cec5SDimitry Andric Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 25570b57cec5SDimitry Andric &PointeeTBAAInfo); 25580b57cec5SDimitry Andric return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 25590b57cec5SDimitry Andric PointeeBaseInfo, PointeeTBAAInfo); 25600b57cec5SDimitry Andric } 25610b57cec5SDimitry Andric 25620b57cec5SDimitry Andric Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 25630b57cec5SDimitry Andric const PointerType *PtrTy, 25640b57cec5SDimitry Andric LValueBaseInfo *BaseInfo, 25650b57cec5SDimitry Andric TBAAAccessInfo *TBAAInfo) { 25660b57cec5SDimitry Andric llvm::Value *Addr = Builder.CreateLoad(Ptr); 256781ad6265SDimitry Andric return Address(Addr, ConvertTypeForMem(PtrTy->getPointeeType()), 256881ad6265SDimitry Andric CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), BaseInfo, 256981ad6265SDimitry Andric TBAAInfo, 25700b57cec5SDimitry Andric /*forPointeeType=*/true)); 25710b57cec5SDimitry Andric } 25720b57cec5SDimitry Andric 25730b57cec5SDimitry Andric LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 25740b57cec5SDimitry Andric const PointerType *PtrTy) { 25750b57cec5SDimitry Andric LValueBaseInfo BaseInfo; 25760b57cec5SDimitry Andric TBAAAccessInfo TBAAInfo; 25770b57cec5SDimitry Andric Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 25780b57cec5SDimitry Andric return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 25790b57cec5SDimitry Andric } 25800b57cec5SDimitry Andric 25810b57cec5SDimitry Andric static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 25820b57cec5SDimitry Andric const Expr *E, const VarDecl *VD) { 25830b57cec5SDimitry Andric QualType T = E->getType(); 25840b57cec5SDimitry Andric 25850b57cec5SDimitry Andric // If it's thread_local, emit a call to its wrapper function instead. 25860b57cec5SDimitry Andric if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2587a7dea167SDimitry Andric CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 25880b57cec5SDimitry Andric return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 25890b57cec5SDimitry Andric // Check if the variable is marked as declare target with link clause in 25900b57cec5SDimitry Andric // device codegen. 2591*fe013be4SDimitry Andric if (CGF.getLangOpts().OpenMPIsTargetDevice) { 25920b57cec5SDimitry Andric Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 25930b57cec5SDimitry Andric if (Addr.isValid()) 25940b57cec5SDimitry Andric return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 25950b57cec5SDimitry Andric } 25960b57cec5SDimitry Andric 25970b57cec5SDimitry Andric llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2598bdd1243dSDimitry Andric 2599bdd1243dSDimitry Andric if (VD->getTLSKind() != VarDecl::TLS_None) 2600bdd1243dSDimitry Andric V = CGF.Builder.CreateThreadLocalAddress(V); 2601bdd1243dSDimitry Andric 26020b57cec5SDimitry Andric llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 26030b57cec5SDimitry Andric V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 26040b57cec5SDimitry Andric CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 26050eae32dcSDimitry Andric Address Addr(V, RealVarTy, Alignment); 26060b57cec5SDimitry Andric // Emit reference to the private copy of the variable if it is an OpenMP 26070b57cec5SDimitry Andric // threadprivate variable. 26080b57cec5SDimitry Andric if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 26090b57cec5SDimitry Andric VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 26100b57cec5SDimitry Andric return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 26110b57cec5SDimitry Andric E->getExprLoc()); 26120b57cec5SDimitry Andric } 26130b57cec5SDimitry Andric LValue LV = VD->getType()->isReferenceType() ? 26140b57cec5SDimitry Andric CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 26150b57cec5SDimitry Andric AlignmentSource::Decl) : 26160b57cec5SDimitry Andric CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 26170b57cec5SDimitry Andric setObjCGCLValueClass(CGF.getContext(), E, LV); 26180b57cec5SDimitry Andric return LV; 26190b57cec5SDimitry Andric } 26200b57cec5SDimitry Andric 26210b57cec5SDimitry Andric static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 26225ffd83dbSDimitry Andric GlobalDecl GD) { 26235ffd83dbSDimitry Andric const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 26240b57cec5SDimitry Andric if (FD->hasAttr<WeakRefAttr>()) { 26250b57cec5SDimitry Andric ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 26260b57cec5SDimitry Andric return aliasee.getPointer(); 26270b57cec5SDimitry Andric } 26280b57cec5SDimitry Andric 26295ffd83dbSDimitry Andric llvm::Constant *V = CGM.GetAddrOfFunction(GD); 26300b57cec5SDimitry Andric if (!FD->hasPrototype()) { 26310b57cec5SDimitry Andric if (const FunctionProtoType *Proto = 26320b57cec5SDimitry Andric FD->getType()->getAs<FunctionProtoType>()) { 26330b57cec5SDimitry Andric // Ugly case: for a K&R-style definition, the type of the definition 26340b57cec5SDimitry Andric // isn't the same as the type of a use. Correct for this with a 26350b57cec5SDimitry Andric // bitcast. 26360b57cec5SDimitry Andric QualType NoProtoType = 26370b57cec5SDimitry Andric CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 26380b57cec5SDimitry Andric NoProtoType = CGM.getContext().getPointerType(NoProtoType); 26390b57cec5SDimitry Andric V = llvm::ConstantExpr::getBitCast(V, 26400b57cec5SDimitry Andric CGM.getTypes().ConvertType(NoProtoType)); 26410b57cec5SDimitry Andric } 26420b57cec5SDimitry Andric } 26430b57cec5SDimitry Andric return V; 26440b57cec5SDimitry Andric } 26450b57cec5SDimitry Andric 26465ffd83dbSDimitry Andric static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, 26475ffd83dbSDimitry Andric GlobalDecl GD) { 26485ffd83dbSDimitry Andric const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 26495ffd83dbSDimitry Andric llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD); 26500b57cec5SDimitry Andric CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 26510b57cec5SDimitry Andric return CGF.MakeAddrLValue(V, E->getType(), Alignment, 26520b57cec5SDimitry Andric AlignmentSource::Decl); 26530b57cec5SDimitry Andric } 26540b57cec5SDimitry Andric 26550b57cec5SDimitry Andric static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 26560b57cec5SDimitry Andric llvm::Value *ThisValue) { 26570b57cec5SDimitry Andric QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 26580b57cec5SDimitry Andric LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 26590b57cec5SDimitry Andric return CGF.EmitLValueForField(LV, FD); 26600b57cec5SDimitry Andric } 26610b57cec5SDimitry Andric 26620b57cec5SDimitry Andric /// Named Registers are named metadata pointing to the register name 26630b57cec5SDimitry Andric /// which will be read from/written to as an argument to the intrinsic 26640b57cec5SDimitry Andric /// @llvm.read/write_register. 26650b57cec5SDimitry Andric /// So far, only the name is being passed down, but other options such as 26660b57cec5SDimitry Andric /// register type, allocation type or even optimization options could be 26670b57cec5SDimitry Andric /// passed down via the metadata node. 26680b57cec5SDimitry Andric static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 26690b57cec5SDimitry Andric SmallString<64> Name("llvm.named.register."); 26700b57cec5SDimitry Andric AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 26710b57cec5SDimitry Andric assert(Asm->getLabel().size() < 64-Name.size() && 26720b57cec5SDimitry Andric "Register name too big"); 26730b57cec5SDimitry Andric Name.append(Asm->getLabel()); 26740b57cec5SDimitry Andric llvm::NamedMDNode *M = 26750b57cec5SDimitry Andric CGM.getModule().getOrInsertNamedMetadata(Name); 26760b57cec5SDimitry Andric if (M->getNumOperands() == 0) { 26770b57cec5SDimitry Andric llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 26780b57cec5SDimitry Andric Asm->getLabel()); 26790b57cec5SDimitry Andric llvm::Metadata *Ops[] = {Str}; 26800b57cec5SDimitry Andric M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 26810b57cec5SDimitry Andric } 26820b57cec5SDimitry Andric 26830b57cec5SDimitry Andric CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 26840b57cec5SDimitry Andric 26850b57cec5SDimitry Andric llvm::Value *Ptr = 26860b57cec5SDimitry Andric llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 26870eae32dcSDimitry Andric return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType()); 26880b57cec5SDimitry Andric } 26890b57cec5SDimitry Andric 26900b57cec5SDimitry Andric /// Determine whether we can emit a reference to \p VD from the current 26910b57cec5SDimitry Andric /// context, despite not necessarily having seen an odr-use of the variable in 26920b57cec5SDimitry Andric /// this context. 26930b57cec5SDimitry Andric static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 26940b57cec5SDimitry Andric const DeclRefExpr *E, 26950b57cec5SDimitry Andric const VarDecl *VD, 26960b57cec5SDimitry Andric bool IsConstant) { 26970b57cec5SDimitry Andric // For a variable declared in an enclosing scope, do not emit a spurious 26980b57cec5SDimitry Andric // reference even if we have a capture, as that will emit an unwarranted 26990b57cec5SDimitry Andric // reference to our capture state, and will likely generate worse code than 27000b57cec5SDimitry Andric // emitting a local copy. 27010b57cec5SDimitry Andric if (E->refersToEnclosingVariableOrCapture()) 27020b57cec5SDimitry Andric return false; 27030b57cec5SDimitry Andric 27040b57cec5SDimitry Andric // For a local declaration declared in this function, we can always reference 27050b57cec5SDimitry Andric // it even if we don't have an odr-use. 27060b57cec5SDimitry Andric if (VD->hasLocalStorage()) { 27070b57cec5SDimitry Andric return VD->getDeclContext() == 27080b57cec5SDimitry Andric dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 27090b57cec5SDimitry Andric } 27100b57cec5SDimitry Andric 27110b57cec5SDimitry Andric // For a global declaration, we can emit a reference to it if we know 27120b57cec5SDimitry Andric // for sure that we are able to emit a definition of it. 27130b57cec5SDimitry Andric VD = VD->getDefinition(CGF.getContext()); 27140b57cec5SDimitry Andric if (!VD) 27150b57cec5SDimitry Andric return false; 27160b57cec5SDimitry Andric 27170b57cec5SDimitry Andric // Don't emit a spurious reference if it might be to a variable that only 27180b57cec5SDimitry Andric // exists on a different device / target. 27190b57cec5SDimitry Andric // FIXME: This is unnecessarily broad. Check whether this would actually be a 27200b57cec5SDimitry Andric // cross-target reference. 27210b57cec5SDimitry Andric if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 27220b57cec5SDimitry Andric CGF.getLangOpts().OpenCL) { 27230b57cec5SDimitry Andric return false; 27240b57cec5SDimitry Andric } 27250b57cec5SDimitry Andric 27260b57cec5SDimitry Andric // We can emit a spurious reference only if the linkage implies that we'll 27270b57cec5SDimitry Andric // be emitting a non-interposable symbol that will be retained until link 27280b57cec5SDimitry Andric // time. 27290b57cec5SDimitry Andric switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 27300b57cec5SDimitry Andric case llvm::GlobalValue::ExternalLinkage: 27310b57cec5SDimitry Andric case llvm::GlobalValue::LinkOnceODRLinkage: 27320b57cec5SDimitry Andric case llvm::GlobalValue::WeakODRLinkage: 27330b57cec5SDimitry Andric case llvm::GlobalValue::InternalLinkage: 27340b57cec5SDimitry Andric case llvm::GlobalValue::PrivateLinkage: 27350b57cec5SDimitry Andric return true; 27360b57cec5SDimitry Andric default: 27370b57cec5SDimitry Andric return false; 27380b57cec5SDimitry Andric } 27390b57cec5SDimitry Andric } 27400b57cec5SDimitry Andric 27410b57cec5SDimitry Andric LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 27420b57cec5SDimitry Andric const NamedDecl *ND = E->getDecl(); 27430b57cec5SDimitry Andric QualType T = E->getType(); 27440b57cec5SDimitry Andric 27450b57cec5SDimitry Andric assert(E->isNonOdrUse() != NOUR_Unevaluated && 27460b57cec5SDimitry Andric "should not emit an unevaluated operand"); 27470b57cec5SDimitry Andric 27480b57cec5SDimitry Andric if (const auto *VD = dyn_cast<VarDecl>(ND)) { 27490b57cec5SDimitry Andric // Global Named registers access via intrinsics only 27500b57cec5SDimitry Andric if (VD->getStorageClass() == SC_Register && 27510b57cec5SDimitry Andric VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 27520b57cec5SDimitry Andric return EmitGlobalNamedRegister(VD, CGM); 27530b57cec5SDimitry Andric 27540b57cec5SDimitry Andric // If this DeclRefExpr does not constitute an odr-use of the variable, 27550b57cec5SDimitry Andric // we're not permitted to emit a reference to it in general, and it might 27560b57cec5SDimitry Andric // not be captured if capture would be necessary for a use. Emit the 27570b57cec5SDimitry Andric // constant value directly instead. 27580b57cec5SDimitry Andric if (E->isNonOdrUse() == NOUR_Constant && 27590b57cec5SDimitry Andric (VD->getType()->isReferenceType() || 27600b57cec5SDimitry Andric !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 27610b57cec5SDimitry Andric VD->getAnyInitializer(VD); 27620b57cec5SDimitry Andric llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 27630b57cec5SDimitry Andric E->getLocation(), *VD->evaluateValue(), VD->getType()); 27640b57cec5SDimitry Andric assert(Val && "failed to emit constant expression"); 27650b57cec5SDimitry Andric 27660b57cec5SDimitry Andric Address Addr = Address::invalid(); 27670b57cec5SDimitry Andric if (!VD->getType()->isReferenceType()) { 27680b57cec5SDimitry Andric // Spill the constant value to a global. 27690b57cec5SDimitry Andric Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 27700b57cec5SDimitry Andric getContext().getDeclAlign(VD)); 2771c14a5a88SDimitry Andric llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2772c14a5a88SDimitry Andric auto *PTy = llvm::PointerType::get( 2773bdd1243dSDimitry Andric VarTy, getTypes().getTargetAddressSpace(VD->getType())); 277481ad6265SDimitry Andric Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy, VarTy); 27750b57cec5SDimitry Andric } else { 27760b57cec5SDimitry Andric // Should we be using the alignment of the constant pointer we emitted? 27770b57cec5SDimitry Andric CharUnits Alignment = 27785ffd83dbSDimitry Andric CGM.getNaturalTypeAlignment(E->getType(), 27790b57cec5SDimitry Andric /* BaseInfo= */ nullptr, 27800b57cec5SDimitry Andric /* TBAAInfo= */ nullptr, 27810b57cec5SDimitry Andric /* forPointeeType= */ true); 27820eae32dcSDimitry Andric Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment); 27830b57cec5SDimitry Andric } 27840b57cec5SDimitry Andric return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 27850b57cec5SDimitry Andric } 27860b57cec5SDimitry Andric 27870b57cec5SDimitry Andric // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 27880b57cec5SDimitry Andric 27890b57cec5SDimitry Andric // Check for captured variables. 27900b57cec5SDimitry Andric if (E->refersToEnclosingVariableOrCapture()) { 27910b57cec5SDimitry Andric VD = VD->getCanonicalDecl(); 27920b57cec5SDimitry Andric if (auto *FD = LambdaCaptureFields.lookup(VD)) 27930b57cec5SDimitry Andric return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2794480093f4SDimitry Andric if (CapturedStmtInfo) { 27950b57cec5SDimitry Andric auto I = LocalDeclMap.find(VD); 27960b57cec5SDimitry Andric if (I != LocalDeclMap.end()) { 2797480093f4SDimitry Andric LValue CapLVal; 27980b57cec5SDimitry Andric if (VD->getType()->isReferenceType()) 2799480093f4SDimitry Andric CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 28000b57cec5SDimitry Andric AlignmentSource::Decl); 2801480093f4SDimitry Andric else 2802480093f4SDimitry Andric CapLVal = MakeAddrLValue(I->second, T); 2803480093f4SDimitry Andric // Mark lvalue as nontemporal if the variable is marked as nontemporal 2804480093f4SDimitry Andric // in simd context. 2805480093f4SDimitry Andric if (getLangOpts().OpenMP && 2806480093f4SDimitry Andric CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2807480093f4SDimitry Andric CapLVal.setNontemporal(/*Value=*/true); 2808480093f4SDimitry Andric return CapLVal; 28090b57cec5SDimitry Andric } 28100b57cec5SDimitry Andric LValue CapLVal = 28110b57cec5SDimitry Andric EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 28120b57cec5SDimitry Andric CapturedStmtInfo->getContextValue()); 281381ad6265SDimitry Andric Address LValueAddress = CapLVal.getAddress(*this); 2814480093f4SDimitry Andric CapLVal = MakeAddrLValue( 281581ad6265SDimitry Andric Address(LValueAddress.getPointer(), LValueAddress.getElementType(), 281681ad6265SDimitry Andric getContext().getDeclAlign(VD)), 28170b57cec5SDimitry Andric CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 28180b57cec5SDimitry Andric CapLVal.getTBAAInfo()); 2819480093f4SDimitry Andric // Mark lvalue as nontemporal if the variable is marked as nontemporal 2820480093f4SDimitry Andric // in simd context. 2821480093f4SDimitry Andric if (getLangOpts().OpenMP && 2822480093f4SDimitry Andric CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2823480093f4SDimitry Andric CapLVal.setNontemporal(/*Value=*/true); 2824480093f4SDimitry Andric return CapLVal; 28250b57cec5SDimitry Andric } 28260b57cec5SDimitry Andric 28270b57cec5SDimitry Andric assert(isa<BlockDecl>(CurCodeDecl)); 28280b57cec5SDimitry Andric Address addr = GetAddrOfBlockDecl(VD); 28290b57cec5SDimitry Andric return MakeAddrLValue(addr, T, AlignmentSource::Decl); 28300b57cec5SDimitry Andric } 28310b57cec5SDimitry Andric } 28320b57cec5SDimitry Andric 28330b57cec5SDimitry Andric // FIXME: We should be able to assert this for FunctionDecls as well! 28340b57cec5SDimitry Andric // FIXME: We should be able to assert this for all DeclRefExprs, not just 28350b57cec5SDimitry Andric // those with a valid source location. 28360b57cec5SDimitry Andric assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 28370b57cec5SDimitry Andric !E->getLocation().isValid()) && 28380b57cec5SDimitry Andric "Should not use decl without marking it used!"); 28390b57cec5SDimitry Andric 28400b57cec5SDimitry Andric if (ND->hasAttr<WeakRefAttr>()) { 28410b57cec5SDimitry Andric const auto *VD = cast<ValueDecl>(ND); 28420b57cec5SDimitry Andric ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 28430b57cec5SDimitry Andric return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 28440b57cec5SDimitry Andric } 28450b57cec5SDimitry Andric 28460b57cec5SDimitry Andric if (const auto *VD = dyn_cast<VarDecl>(ND)) { 28470b57cec5SDimitry Andric // Check if this is a global variable. 28480b57cec5SDimitry Andric if (VD->hasLinkage() || VD->isStaticDataMember()) 28490b57cec5SDimitry Andric return EmitGlobalVarDeclLValue(*this, E, VD); 28500b57cec5SDimitry Andric 28510b57cec5SDimitry Andric Address addr = Address::invalid(); 28520b57cec5SDimitry Andric 28530b57cec5SDimitry Andric // The variable should generally be present in the local decl map. 28540b57cec5SDimitry Andric auto iter = LocalDeclMap.find(VD); 28550b57cec5SDimitry Andric if (iter != LocalDeclMap.end()) { 28560b57cec5SDimitry Andric addr = iter->second; 28570b57cec5SDimitry Andric 28580b57cec5SDimitry Andric // Otherwise, it might be static local we haven't emitted yet for 28590b57cec5SDimitry Andric // some reason; most likely, because it's in an outer function. 28600b57cec5SDimitry Andric } else if (VD->isStaticLocal()) { 28610eae32dcSDimitry Andric llvm::Constant *var = CGM.getOrCreateStaticVarDecl( 28620eae32dcSDimitry Andric *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)); 28630eae32dcSDimitry Andric addr = Address( 28640eae32dcSDimitry Andric var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD)); 28650b57cec5SDimitry Andric 28660b57cec5SDimitry Andric // No other cases for now. 28670b57cec5SDimitry Andric } else { 28680b57cec5SDimitry Andric llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 28690b57cec5SDimitry Andric } 28700b57cec5SDimitry Andric 2871bdd1243dSDimitry Andric // Handle threadlocal function locals. 2872bdd1243dSDimitry Andric if (VD->getTLSKind() != VarDecl::TLS_None) 2873*fe013be4SDimitry Andric addr = addr.withPointer( 2874*fe013be4SDimitry Andric Builder.CreateThreadLocalAddress(addr.getPointer()), NotKnownNonNull); 28750b57cec5SDimitry Andric 28760b57cec5SDimitry Andric // Check for OpenMP threadprivate variables. 28770b57cec5SDimitry Andric if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 28780b57cec5SDimitry Andric VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 28790b57cec5SDimitry Andric return EmitThreadPrivateVarDeclLValue( 28800b57cec5SDimitry Andric *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 28810b57cec5SDimitry Andric E->getExprLoc()); 28820b57cec5SDimitry Andric } 28830b57cec5SDimitry Andric 28840b57cec5SDimitry Andric // Drill into block byref variables. 28850b57cec5SDimitry Andric bool isBlockByref = VD->isEscapingByref(); 28860b57cec5SDimitry Andric if (isBlockByref) { 28870b57cec5SDimitry Andric addr = emitBlockByrefAddress(addr, VD); 28880b57cec5SDimitry Andric } 28890b57cec5SDimitry Andric 28900b57cec5SDimitry Andric // Drill into reference types. 28910b57cec5SDimitry Andric LValue LV = VD->getType()->isReferenceType() ? 28920b57cec5SDimitry Andric EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 28930b57cec5SDimitry Andric MakeAddrLValue(addr, T, AlignmentSource::Decl); 28940b57cec5SDimitry Andric 28950b57cec5SDimitry Andric bool isLocalStorage = VD->hasLocalStorage(); 28960b57cec5SDimitry Andric 28970b57cec5SDimitry Andric bool NonGCable = isLocalStorage && 28980b57cec5SDimitry Andric !VD->getType()->isReferenceType() && 28990b57cec5SDimitry Andric !isBlockByref; 29000b57cec5SDimitry Andric if (NonGCable) { 29010b57cec5SDimitry Andric LV.getQuals().removeObjCGCAttr(); 29020b57cec5SDimitry Andric LV.setNonGC(true); 29030b57cec5SDimitry Andric } 29040b57cec5SDimitry Andric 29050b57cec5SDimitry Andric bool isImpreciseLifetime = 29060b57cec5SDimitry Andric (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 29070b57cec5SDimitry Andric if (isImpreciseLifetime) 29080b57cec5SDimitry Andric LV.setARCPreciseLifetime(ARCImpreciseLifetime); 29090b57cec5SDimitry Andric setObjCGCLValueClass(getContext(), E, LV); 29100b57cec5SDimitry Andric return LV; 29110b57cec5SDimitry Andric } 29120b57cec5SDimitry Andric 2913fe6060f1SDimitry Andric if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 2914fe6060f1SDimitry Andric LValue LV = EmitFunctionDeclLValue(*this, E, FD); 2915fe6060f1SDimitry Andric 2916fe6060f1SDimitry Andric // Emit debuginfo for the function declaration if the target wants to. 2917fe6060f1SDimitry Andric if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) { 2918fe6060f1SDimitry Andric if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) { 2919fe6060f1SDimitry Andric auto *Fn = 2920fe6060f1SDimitry Andric cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts()); 2921fe6060f1SDimitry Andric if (!Fn->getSubprogram()) 2922fe6060f1SDimitry Andric DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn); 2923fe6060f1SDimitry Andric } 2924fe6060f1SDimitry Andric } 2925fe6060f1SDimitry Andric 2926fe6060f1SDimitry Andric return LV; 2927fe6060f1SDimitry Andric } 29280b57cec5SDimitry Andric 29290b57cec5SDimitry Andric // FIXME: While we're emitting a binding from an enclosing scope, all other 29300b57cec5SDimitry Andric // DeclRefExprs we see should be implicitly treated as if they also refer to 29310b57cec5SDimitry Andric // an enclosing scope. 2932bdd1243dSDimitry Andric if (const auto *BD = dyn_cast<BindingDecl>(ND)) { 2933bdd1243dSDimitry Andric if (E->refersToEnclosingVariableOrCapture()) { 2934bdd1243dSDimitry Andric auto *FD = LambdaCaptureFields.lookup(BD); 2935bdd1243dSDimitry Andric return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2936bdd1243dSDimitry Andric } 29370b57cec5SDimitry Andric return EmitLValue(BD->getBinding()); 2938bdd1243dSDimitry Andric } 29390b57cec5SDimitry Andric 29405ffd83dbSDimitry Andric // We can form DeclRefExprs naming GUID declarations when reconstituting 29415ffd83dbSDimitry Andric // non-type template parameters into expressions. 29425ffd83dbSDimitry Andric if (const auto *GD = dyn_cast<MSGuidDecl>(ND)) 29435ffd83dbSDimitry Andric return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T, 29445ffd83dbSDimitry Andric AlignmentSource::Decl); 29455ffd83dbSDimitry Andric 2946e8d8bef9SDimitry Andric if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) 2947e8d8bef9SDimitry Andric return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T, 2948e8d8bef9SDimitry Andric AlignmentSource::Decl); 2949e8d8bef9SDimitry Andric 29500b57cec5SDimitry Andric llvm_unreachable("Unhandled DeclRefExpr"); 29510b57cec5SDimitry Andric } 29520b57cec5SDimitry Andric 29530b57cec5SDimitry Andric LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 29540b57cec5SDimitry Andric // __extension__ doesn't affect lvalue-ness. 29550b57cec5SDimitry Andric if (E->getOpcode() == UO_Extension) 29560b57cec5SDimitry Andric return EmitLValue(E->getSubExpr()); 29570b57cec5SDimitry Andric 29580b57cec5SDimitry Andric QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 29590b57cec5SDimitry Andric switch (E->getOpcode()) { 29600b57cec5SDimitry Andric default: llvm_unreachable("Unknown unary operator lvalue!"); 29610b57cec5SDimitry Andric case UO_Deref: { 29620b57cec5SDimitry Andric QualType T = E->getSubExpr()->getType()->getPointeeType(); 29630b57cec5SDimitry Andric assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 29640b57cec5SDimitry Andric 29650b57cec5SDimitry Andric LValueBaseInfo BaseInfo; 29660b57cec5SDimitry Andric TBAAAccessInfo TBAAInfo; 29670b57cec5SDimitry Andric Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 29680b57cec5SDimitry Andric &TBAAInfo); 29690b57cec5SDimitry Andric LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 29700b57cec5SDimitry Andric LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 29710b57cec5SDimitry Andric 29720b57cec5SDimitry Andric // We should not generate __weak write barrier on indirect reference 29730b57cec5SDimitry Andric // of a pointer to object; as in void foo (__weak id *param); *param = 0; 29740b57cec5SDimitry Andric // But, we continue to generate __strong write barrier on indirect write 29750b57cec5SDimitry Andric // into a pointer to object. 29760b57cec5SDimitry Andric if (getLangOpts().ObjC && 29770b57cec5SDimitry Andric getLangOpts().getGC() != LangOptions::NonGC && 29780b57cec5SDimitry Andric LV.isObjCWeak()) 29790b57cec5SDimitry Andric LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 29800b57cec5SDimitry Andric return LV; 29810b57cec5SDimitry Andric } 29820b57cec5SDimitry Andric case UO_Real: 29830b57cec5SDimitry Andric case UO_Imag: { 29840b57cec5SDimitry Andric LValue LV = EmitLValue(E->getSubExpr()); 29850b57cec5SDimitry Andric assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 29860b57cec5SDimitry Andric 29870b57cec5SDimitry Andric // __real is valid on scalars. This is a faster way of testing that. 29880b57cec5SDimitry Andric // __imag can only produce an rvalue on scalars. 29890b57cec5SDimitry Andric if (E->getOpcode() == UO_Real && 2990480093f4SDimitry Andric !LV.getAddress(*this).getElementType()->isStructTy()) { 29910b57cec5SDimitry Andric assert(E->getSubExpr()->getType()->isArithmeticType()); 29920b57cec5SDimitry Andric return LV; 29930b57cec5SDimitry Andric } 29940b57cec5SDimitry Andric 29950b57cec5SDimitry Andric QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 29960b57cec5SDimitry Andric 29970b57cec5SDimitry Andric Address Component = 29980b57cec5SDimitry Andric (E->getOpcode() == UO_Real 2999480093f4SDimitry Andric ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 3000480093f4SDimitry Andric : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 30010b57cec5SDimitry Andric LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 30020b57cec5SDimitry Andric CGM.getTBAAInfoForSubobject(LV, T)); 30030b57cec5SDimitry Andric ElemLV.getQuals().addQualifiers(LV.getQuals()); 30040b57cec5SDimitry Andric return ElemLV; 30050b57cec5SDimitry Andric } 30060b57cec5SDimitry Andric case UO_PreInc: 30070b57cec5SDimitry Andric case UO_PreDec: { 30080b57cec5SDimitry Andric LValue LV = EmitLValue(E->getSubExpr()); 30090b57cec5SDimitry Andric bool isInc = E->getOpcode() == UO_PreInc; 30100b57cec5SDimitry Andric 30110b57cec5SDimitry Andric if (E->getType()->isAnyComplexType()) 30120b57cec5SDimitry Andric EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 30130b57cec5SDimitry Andric else 30140b57cec5SDimitry Andric EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 30150b57cec5SDimitry Andric return LV; 30160b57cec5SDimitry Andric } 30170b57cec5SDimitry Andric } 30180b57cec5SDimitry Andric } 30190b57cec5SDimitry Andric 30200b57cec5SDimitry Andric LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 30210b57cec5SDimitry Andric return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 30220b57cec5SDimitry Andric E->getType(), AlignmentSource::Decl); 30230b57cec5SDimitry Andric } 30240b57cec5SDimitry Andric 30250b57cec5SDimitry Andric LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 30260b57cec5SDimitry Andric return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 30270b57cec5SDimitry Andric E->getType(), AlignmentSource::Decl); 30280b57cec5SDimitry Andric } 30290b57cec5SDimitry Andric 30300b57cec5SDimitry Andric LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 30310b57cec5SDimitry Andric auto SL = E->getFunctionName(); 30320b57cec5SDimitry Andric assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 30330b57cec5SDimitry Andric StringRef FnName = CurFn->getName(); 30340b57cec5SDimitry Andric if (FnName.startswith("\01")) 30350b57cec5SDimitry Andric FnName = FnName.substr(1); 30360b57cec5SDimitry Andric StringRef NameItems[] = { 30370b57cec5SDimitry Andric PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 30380b57cec5SDimitry Andric std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 30390b57cec5SDimitry Andric if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 30405ffd83dbSDimitry Andric std::string Name = std::string(SL->getString()); 30410b57cec5SDimitry Andric if (!Name.empty()) { 30420b57cec5SDimitry Andric unsigned Discriminator = 30430b57cec5SDimitry Andric CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 30440b57cec5SDimitry Andric if (Discriminator) 30450b57cec5SDimitry Andric Name += "_" + Twine(Discriminator + 1).str(); 30460b57cec5SDimitry Andric auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 30470b57cec5SDimitry Andric return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 30480b57cec5SDimitry Andric } else { 30495ffd83dbSDimitry Andric auto C = 30505ffd83dbSDimitry Andric CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 30510b57cec5SDimitry Andric return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 30520b57cec5SDimitry Andric } 30530b57cec5SDimitry Andric } 30540b57cec5SDimitry Andric auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 30550b57cec5SDimitry Andric return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 30560b57cec5SDimitry Andric } 30570b57cec5SDimitry Andric 30580b57cec5SDimitry Andric /// Emit a type description suitable for use by a runtime sanitizer library. The 30590b57cec5SDimitry Andric /// format of a type descriptor is 30600b57cec5SDimitry Andric /// 30610b57cec5SDimitry Andric /// \code 30620b57cec5SDimitry Andric /// { i16 TypeKind, i16 TypeInfo } 30630b57cec5SDimitry Andric /// \endcode 30640b57cec5SDimitry Andric /// 30650b57cec5SDimitry Andric /// followed by an array of i8 containing the type name. TypeKind is 0 for an 30660b57cec5SDimitry Andric /// integer, 1 for a floating point value, and -1 for anything else. 30670b57cec5SDimitry Andric llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 30680b57cec5SDimitry Andric // Only emit each type's descriptor once. 30690b57cec5SDimitry Andric if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 30700b57cec5SDimitry Andric return C; 30710b57cec5SDimitry Andric 30720b57cec5SDimitry Andric uint16_t TypeKind = -1; 30730b57cec5SDimitry Andric uint16_t TypeInfo = 0; 30740b57cec5SDimitry Andric 30750b57cec5SDimitry Andric if (T->isIntegerType()) { 30760b57cec5SDimitry Andric TypeKind = 0; 30770b57cec5SDimitry Andric TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 30780b57cec5SDimitry Andric (T->isSignedIntegerType() ? 1 : 0); 30790b57cec5SDimitry Andric } else if (T->isFloatingType()) { 30800b57cec5SDimitry Andric TypeKind = 1; 30810b57cec5SDimitry Andric TypeInfo = getContext().getTypeSize(T); 30820b57cec5SDimitry Andric } 30830b57cec5SDimitry Andric 30840b57cec5SDimitry Andric // Format the type name as if for a diagnostic, including quotes and 30850b57cec5SDimitry Andric // optionally an 'aka'. 30860b57cec5SDimitry Andric SmallString<32> Buffer; 3087bdd1243dSDimitry Andric CGM.getDiags().ConvertArgToString( 3088bdd1243dSDimitry Andric DiagnosticsEngine::ak_qualtype, (intptr_t)T.getAsOpaquePtr(), StringRef(), 3089bdd1243dSDimitry Andric StringRef(), std::nullopt, Buffer, std::nullopt); 30900b57cec5SDimitry Andric 30910b57cec5SDimitry Andric llvm::Constant *Components[] = { 30920b57cec5SDimitry Andric Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 30930b57cec5SDimitry Andric llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 30940b57cec5SDimitry Andric }; 30950b57cec5SDimitry Andric llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 30960b57cec5SDimitry Andric 30970b57cec5SDimitry Andric auto *GV = new llvm::GlobalVariable( 30980b57cec5SDimitry Andric CGM.getModule(), Descriptor->getType(), 30990b57cec5SDimitry Andric /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 31000b57cec5SDimitry Andric GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 31010b57cec5SDimitry Andric CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 31020b57cec5SDimitry Andric 31030b57cec5SDimitry Andric // Remember the descriptor for this type. 31040b57cec5SDimitry Andric CGM.setTypeDescriptorInMap(T, GV); 31050b57cec5SDimitry Andric 31060b57cec5SDimitry Andric return GV; 31070b57cec5SDimitry Andric } 31080b57cec5SDimitry Andric 31090b57cec5SDimitry Andric llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 31100b57cec5SDimitry Andric llvm::Type *TargetTy = IntPtrTy; 31110b57cec5SDimitry Andric 31120b57cec5SDimitry Andric if (V->getType() == TargetTy) 31130b57cec5SDimitry Andric return V; 31140b57cec5SDimitry Andric 31150b57cec5SDimitry Andric // Floating-point types which fit into intptr_t are bitcast to integers 31160b57cec5SDimitry Andric // and then passed directly (after zero-extension, if necessary). 31170b57cec5SDimitry Andric if (V->getType()->isFloatingPointTy()) { 3118bdd1243dSDimitry Andric unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedValue(); 31190b57cec5SDimitry Andric if (Bits <= TargetTy->getIntegerBitWidth()) 31200b57cec5SDimitry Andric V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 31210b57cec5SDimitry Andric Bits)); 31220b57cec5SDimitry Andric } 31230b57cec5SDimitry Andric 31240b57cec5SDimitry Andric // Integers which fit in intptr_t are zero-extended and passed directly. 31250b57cec5SDimitry Andric if (V->getType()->isIntegerTy() && 31260b57cec5SDimitry Andric V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 31270b57cec5SDimitry Andric return Builder.CreateZExt(V, TargetTy); 31280b57cec5SDimitry Andric 31290b57cec5SDimitry Andric // Pointers are passed directly, everything else is passed by address. 31300b57cec5SDimitry Andric if (!V->getType()->isPointerTy()) { 31310b57cec5SDimitry Andric Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 31320b57cec5SDimitry Andric Builder.CreateStore(V, Ptr); 31330b57cec5SDimitry Andric V = Ptr.getPointer(); 31340b57cec5SDimitry Andric } 31350b57cec5SDimitry Andric return Builder.CreatePtrToInt(V, TargetTy); 31360b57cec5SDimitry Andric } 31370b57cec5SDimitry Andric 31380b57cec5SDimitry Andric /// Emit a representation of a SourceLocation for passing to a handler 31390b57cec5SDimitry Andric /// in a sanitizer runtime library. The format for this data is: 31400b57cec5SDimitry Andric /// \code 31410b57cec5SDimitry Andric /// struct SourceLocation { 31420b57cec5SDimitry Andric /// const char *Filename; 31430b57cec5SDimitry Andric /// int32_t Line, Column; 31440b57cec5SDimitry Andric /// }; 31450b57cec5SDimitry Andric /// \endcode 31460b57cec5SDimitry Andric /// For an invalid SourceLocation, the Filename pointer is null. 31470b57cec5SDimitry Andric llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 31480b57cec5SDimitry Andric llvm::Constant *Filename; 31490b57cec5SDimitry Andric int Line, Column; 31500b57cec5SDimitry Andric 31510b57cec5SDimitry Andric PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 31520b57cec5SDimitry Andric if (PLoc.isValid()) { 31530b57cec5SDimitry Andric StringRef FilenameString = PLoc.getFilename(); 31540b57cec5SDimitry Andric 31550b57cec5SDimitry Andric int PathComponentsToStrip = 31560b57cec5SDimitry Andric CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 31570b57cec5SDimitry Andric if (PathComponentsToStrip < 0) { 31580b57cec5SDimitry Andric assert(PathComponentsToStrip != INT_MIN); 31590b57cec5SDimitry Andric int PathComponentsToKeep = -PathComponentsToStrip; 31600b57cec5SDimitry Andric auto I = llvm::sys::path::rbegin(FilenameString); 31610b57cec5SDimitry Andric auto E = llvm::sys::path::rend(FilenameString); 31620b57cec5SDimitry Andric while (I != E && --PathComponentsToKeep) 31630b57cec5SDimitry Andric ++I; 31640b57cec5SDimitry Andric 31650b57cec5SDimitry Andric FilenameString = FilenameString.substr(I - E); 31660b57cec5SDimitry Andric } else if (PathComponentsToStrip > 0) { 31670b57cec5SDimitry Andric auto I = llvm::sys::path::begin(FilenameString); 31680b57cec5SDimitry Andric auto E = llvm::sys::path::end(FilenameString); 31690b57cec5SDimitry Andric while (I != E && PathComponentsToStrip--) 31700b57cec5SDimitry Andric ++I; 31710b57cec5SDimitry Andric 31720b57cec5SDimitry Andric if (I != E) 31730b57cec5SDimitry Andric FilenameString = 31740b57cec5SDimitry Andric FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 31750b57cec5SDimitry Andric else 31760b57cec5SDimitry Andric FilenameString = llvm::sys::path::filename(FilenameString); 31770b57cec5SDimitry Andric } 31780b57cec5SDimitry Andric 31795ffd83dbSDimitry Andric auto FilenameGV = 31805ffd83dbSDimitry Andric CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 31810b57cec5SDimitry Andric CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 3182bdd1243dSDimitry Andric cast<llvm::GlobalVariable>( 3183bdd1243dSDimitry Andric FilenameGV.getPointer()->stripPointerCasts())); 31840b57cec5SDimitry Andric Filename = FilenameGV.getPointer(); 31850b57cec5SDimitry Andric Line = PLoc.getLine(); 31860b57cec5SDimitry Andric Column = PLoc.getColumn(); 31870b57cec5SDimitry Andric } else { 31880b57cec5SDimitry Andric Filename = llvm::Constant::getNullValue(Int8PtrTy); 31890b57cec5SDimitry Andric Line = Column = 0; 31900b57cec5SDimitry Andric } 31910b57cec5SDimitry Andric 31920b57cec5SDimitry Andric llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 31930b57cec5SDimitry Andric Builder.getInt32(Column)}; 31940b57cec5SDimitry Andric 31950b57cec5SDimitry Andric return llvm::ConstantStruct::getAnon(Data); 31960b57cec5SDimitry Andric } 31970b57cec5SDimitry Andric 31980b57cec5SDimitry Andric namespace { 31990b57cec5SDimitry Andric /// Specify under what conditions this check can be recovered 32000b57cec5SDimitry Andric enum class CheckRecoverableKind { 32010b57cec5SDimitry Andric /// Always terminate program execution if this check fails. 32020b57cec5SDimitry Andric Unrecoverable, 32030b57cec5SDimitry Andric /// Check supports recovering, runtime has both fatal (noreturn) and 32040b57cec5SDimitry Andric /// non-fatal handlers for this check. 32050b57cec5SDimitry Andric Recoverable, 32060b57cec5SDimitry Andric /// Runtime conditionally aborts, always need to support recovery. 32070b57cec5SDimitry Andric AlwaysRecoverable 32080b57cec5SDimitry Andric }; 32090b57cec5SDimitry Andric } 32100b57cec5SDimitry Andric 32110b57cec5SDimitry Andric static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 32120b57cec5SDimitry Andric assert(Kind.countPopulation() == 1); 3213*fe013be4SDimitry Andric if (Kind == SanitizerKind::Vptr) 32140b57cec5SDimitry Andric return CheckRecoverableKind::AlwaysRecoverable; 32150b57cec5SDimitry Andric else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 32160b57cec5SDimitry Andric return CheckRecoverableKind::Unrecoverable; 32170b57cec5SDimitry Andric else 32180b57cec5SDimitry Andric return CheckRecoverableKind::Recoverable; 32190b57cec5SDimitry Andric } 32200b57cec5SDimitry Andric 32210b57cec5SDimitry Andric namespace { 32220b57cec5SDimitry Andric struct SanitizerHandlerInfo { 32230b57cec5SDimitry Andric char const *const Name; 32240b57cec5SDimitry Andric unsigned Version; 32250b57cec5SDimitry Andric }; 32260b57cec5SDimitry Andric } 32270b57cec5SDimitry Andric 32280b57cec5SDimitry Andric const SanitizerHandlerInfo SanitizerHandlers[] = { 32290b57cec5SDimitry Andric #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 32300b57cec5SDimitry Andric LIST_SANITIZER_CHECKS 32310b57cec5SDimitry Andric #undef SANITIZER_CHECK 32320b57cec5SDimitry Andric }; 32330b57cec5SDimitry Andric 32340b57cec5SDimitry Andric static void emitCheckHandlerCall(CodeGenFunction &CGF, 32350b57cec5SDimitry Andric llvm::FunctionType *FnType, 32360b57cec5SDimitry Andric ArrayRef<llvm::Value *> FnArgs, 32370b57cec5SDimitry Andric SanitizerHandler CheckHandler, 32380b57cec5SDimitry Andric CheckRecoverableKind RecoverKind, bool IsFatal, 32390b57cec5SDimitry Andric llvm::BasicBlock *ContBB) { 32400b57cec5SDimitry Andric assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 3241bdd1243dSDimitry Andric std::optional<ApplyDebugLocation> DL; 32420b57cec5SDimitry Andric if (!CGF.Builder.getCurrentDebugLocation()) { 32430b57cec5SDimitry Andric // Ensure that the call has at least an artificial debug location. 32440b57cec5SDimitry Andric DL.emplace(CGF, SourceLocation()); 32450b57cec5SDimitry Andric } 32460b57cec5SDimitry Andric bool NeedsAbortSuffix = 32470b57cec5SDimitry Andric IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 32480b57cec5SDimitry Andric bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 32490b57cec5SDimitry Andric const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 32500b57cec5SDimitry Andric const StringRef CheckName = CheckInfo.Name; 32510b57cec5SDimitry Andric std::string FnName = "__ubsan_handle_" + CheckName.str(); 32520b57cec5SDimitry Andric if (CheckInfo.Version && !MinimalRuntime) 32530b57cec5SDimitry Andric FnName += "_v" + llvm::utostr(CheckInfo.Version); 32540b57cec5SDimitry Andric if (MinimalRuntime) 32550b57cec5SDimitry Andric FnName += "_minimal"; 32560b57cec5SDimitry Andric if (NeedsAbortSuffix) 32570b57cec5SDimitry Andric FnName += "_abort"; 32580b57cec5SDimitry Andric bool MayReturn = 32590b57cec5SDimitry Andric !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 32600b57cec5SDimitry Andric 326104eeddc0SDimitry Andric llvm::AttrBuilder B(CGF.getLLVMContext()); 32620b57cec5SDimitry Andric if (!MayReturn) { 32630b57cec5SDimitry Andric B.addAttribute(llvm::Attribute::NoReturn) 32640b57cec5SDimitry Andric .addAttribute(llvm::Attribute::NoUnwind); 32650b57cec5SDimitry Andric } 326681ad6265SDimitry Andric B.addUWTableAttr(llvm::UWTableKind::Default); 32670b57cec5SDimitry Andric 32680b57cec5SDimitry Andric llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 32690b57cec5SDimitry Andric FnType, FnName, 32700b57cec5SDimitry Andric llvm::AttributeList::get(CGF.getLLVMContext(), 32710b57cec5SDimitry Andric llvm::AttributeList::FunctionIndex, B), 32720b57cec5SDimitry Andric /*Local=*/true); 32730b57cec5SDimitry Andric llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 32740b57cec5SDimitry Andric if (!MayReturn) { 32750b57cec5SDimitry Andric HandlerCall->setDoesNotReturn(); 32760b57cec5SDimitry Andric CGF.Builder.CreateUnreachable(); 32770b57cec5SDimitry Andric } else { 32780b57cec5SDimitry Andric CGF.Builder.CreateBr(ContBB); 32790b57cec5SDimitry Andric } 32800b57cec5SDimitry Andric } 32810b57cec5SDimitry Andric 32820b57cec5SDimitry Andric void CodeGenFunction::EmitCheck( 32830b57cec5SDimitry Andric ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 32840b57cec5SDimitry Andric SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 32850b57cec5SDimitry Andric ArrayRef<llvm::Value *> DynamicArgs) { 32860b57cec5SDimitry Andric assert(IsSanitizerScope); 32870b57cec5SDimitry Andric assert(Checked.size() > 0); 32880b57cec5SDimitry Andric assert(CheckHandler >= 0 && 3289bdd1243dSDimitry Andric size_t(CheckHandler) < std::size(SanitizerHandlers)); 32900b57cec5SDimitry Andric const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 32910b57cec5SDimitry Andric 32920b57cec5SDimitry Andric llvm::Value *FatalCond = nullptr; 32930b57cec5SDimitry Andric llvm::Value *RecoverableCond = nullptr; 32940b57cec5SDimitry Andric llvm::Value *TrapCond = nullptr; 32950b57cec5SDimitry Andric for (int i = 0, n = Checked.size(); i < n; ++i) { 32960b57cec5SDimitry Andric llvm::Value *Check = Checked[i].first; 32970b57cec5SDimitry Andric // -fsanitize-trap= overrides -fsanitize-recover=. 32980b57cec5SDimitry Andric llvm::Value *&Cond = 32990b57cec5SDimitry Andric CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 33000b57cec5SDimitry Andric ? TrapCond 33010b57cec5SDimitry Andric : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 33020b57cec5SDimitry Andric ? RecoverableCond 33030b57cec5SDimitry Andric : FatalCond; 33040b57cec5SDimitry Andric Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 33050b57cec5SDimitry Andric } 33060b57cec5SDimitry Andric 33070b57cec5SDimitry Andric if (TrapCond) 3308e8d8bef9SDimitry Andric EmitTrapCheck(TrapCond, CheckHandler); 33090b57cec5SDimitry Andric if (!FatalCond && !RecoverableCond) 33100b57cec5SDimitry Andric return; 33110b57cec5SDimitry Andric 33120b57cec5SDimitry Andric llvm::Value *JointCond; 33130b57cec5SDimitry Andric if (FatalCond && RecoverableCond) 33140b57cec5SDimitry Andric JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 33150b57cec5SDimitry Andric else 33160b57cec5SDimitry Andric JointCond = FatalCond ? FatalCond : RecoverableCond; 33170b57cec5SDimitry Andric assert(JointCond); 33180b57cec5SDimitry Andric 33190b57cec5SDimitry Andric CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 33200b57cec5SDimitry Andric assert(SanOpts.has(Checked[0].second)); 33210b57cec5SDimitry Andric #ifndef NDEBUG 33220b57cec5SDimitry Andric for (int i = 1, n = Checked.size(); i < n; ++i) { 33230b57cec5SDimitry Andric assert(RecoverKind == getRecoverableKind(Checked[i].second) && 33240b57cec5SDimitry Andric "All recoverable kinds in a single check must be same!"); 33250b57cec5SDimitry Andric assert(SanOpts.has(Checked[i].second)); 33260b57cec5SDimitry Andric } 33270b57cec5SDimitry Andric #endif 33280b57cec5SDimitry Andric 33290b57cec5SDimitry Andric llvm::BasicBlock *Cont = createBasicBlock("cont"); 33300b57cec5SDimitry Andric llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 33310b57cec5SDimitry Andric llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 33320b57cec5SDimitry Andric // Give hint that we very much don't expect to execute the handler 33330b57cec5SDimitry Andric // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 33340b57cec5SDimitry Andric llvm::MDBuilder MDHelper(getLLVMContext()); 33350b57cec5SDimitry Andric llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 33360b57cec5SDimitry Andric Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 33370b57cec5SDimitry Andric EmitBlock(Handlers); 33380b57cec5SDimitry Andric 33390b57cec5SDimitry Andric // Handler functions take an i8* pointing to the (handler-specific) static 33400b57cec5SDimitry Andric // information block, followed by a sequence of intptr_t arguments 33410b57cec5SDimitry Andric // representing operand values. 33420b57cec5SDimitry Andric SmallVector<llvm::Value *, 4> Args; 33430b57cec5SDimitry Andric SmallVector<llvm::Type *, 4> ArgTypes; 33440b57cec5SDimitry Andric if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 33450b57cec5SDimitry Andric Args.reserve(DynamicArgs.size() + 1); 33460b57cec5SDimitry Andric ArgTypes.reserve(DynamicArgs.size() + 1); 33470b57cec5SDimitry Andric 33480b57cec5SDimitry Andric // Emit handler arguments and create handler function type. 33490b57cec5SDimitry Andric if (!StaticArgs.empty()) { 33500b57cec5SDimitry Andric llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3351bdd1243dSDimitry Andric auto *InfoPtr = new llvm::GlobalVariable( 3352bdd1243dSDimitry Andric CGM.getModule(), Info->getType(), false, 3353bdd1243dSDimitry Andric llvm::GlobalVariable::PrivateLinkage, Info, "", nullptr, 3354bdd1243dSDimitry Andric llvm::GlobalVariable::NotThreadLocal, 3355bdd1243dSDimitry Andric CGM.getDataLayout().getDefaultGlobalsAddressSpace()); 33560b57cec5SDimitry Andric InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 33570b57cec5SDimitry Andric CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3358*fe013be4SDimitry Andric Args.push_back(InfoPtr); 3359bdd1243dSDimitry Andric ArgTypes.push_back(Args.back()->getType()); 33600b57cec5SDimitry Andric } 33610b57cec5SDimitry Andric 33620b57cec5SDimitry Andric for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 33630b57cec5SDimitry Andric Args.push_back(EmitCheckValue(DynamicArgs[i])); 33640b57cec5SDimitry Andric ArgTypes.push_back(IntPtrTy); 33650b57cec5SDimitry Andric } 33660b57cec5SDimitry Andric } 33670b57cec5SDimitry Andric 33680b57cec5SDimitry Andric llvm::FunctionType *FnType = 33690b57cec5SDimitry Andric llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 33700b57cec5SDimitry Andric 33710b57cec5SDimitry Andric if (!FatalCond || !RecoverableCond) { 33720b57cec5SDimitry Andric // Simple case: we need to generate a single handler call, either 33730b57cec5SDimitry Andric // fatal, or non-fatal. 33740b57cec5SDimitry Andric emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 33750b57cec5SDimitry Andric (FatalCond != nullptr), Cont); 33760b57cec5SDimitry Andric } else { 33770b57cec5SDimitry Andric // Emit two handler calls: first one for set of unrecoverable checks, 33780b57cec5SDimitry Andric // another one for recoverable. 33790b57cec5SDimitry Andric llvm::BasicBlock *NonFatalHandlerBB = 33800b57cec5SDimitry Andric createBasicBlock("non_fatal." + CheckName); 33810b57cec5SDimitry Andric llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 33820b57cec5SDimitry Andric Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 33830b57cec5SDimitry Andric EmitBlock(FatalHandlerBB); 33840b57cec5SDimitry Andric emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 33850b57cec5SDimitry Andric NonFatalHandlerBB); 33860b57cec5SDimitry Andric EmitBlock(NonFatalHandlerBB); 33870b57cec5SDimitry Andric emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 33880b57cec5SDimitry Andric Cont); 33890b57cec5SDimitry Andric } 33900b57cec5SDimitry Andric 33910b57cec5SDimitry Andric EmitBlock(Cont); 33920b57cec5SDimitry Andric } 33930b57cec5SDimitry Andric 33940b57cec5SDimitry Andric void CodeGenFunction::EmitCfiSlowPathCheck( 33950b57cec5SDimitry Andric SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 33960b57cec5SDimitry Andric llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 33970b57cec5SDimitry Andric llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 33980b57cec5SDimitry Andric 33990b57cec5SDimitry Andric llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 34000b57cec5SDimitry Andric llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 34010b57cec5SDimitry Andric 34020b57cec5SDimitry Andric llvm::MDBuilder MDHelper(getLLVMContext()); 34030b57cec5SDimitry Andric llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 34040b57cec5SDimitry Andric BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 34050b57cec5SDimitry Andric 34060b57cec5SDimitry Andric EmitBlock(CheckBB); 34070b57cec5SDimitry Andric 34080b57cec5SDimitry Andric bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 34090b57cec5SDimitry Andric 34100b57cec5SDimitry Andric llvm::CallInst *CheckCall; 34110b57cec5SDimitry Andric llvm::FunctionCallee SlowPathFn; 34120b57cec5SDimitry Andric if (WithDiag) { 34130b57cec5SDimitry Andric llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 34140b57cec5SDimitry Andric auto *InfoPtr = 34150b57cec5SDimitry Andric new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 34160b57cec5SDimitry Andric llvm::GlobalVariable::PrivateLinkage, Info); 34170b57cec5SDimitry Andric InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 34180b57cec5SDimitry Andric CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 34190b57cec5SDimitry Andric 34200b57cec5SDimitry Andric SlowPathFn = CGM.getModule().getOrInsertFunction( 34210b57cec5SDimitry Andric "__cfi_slowpath_diag", 34220b57cec5SDimitry Andric llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 34230b57cec5SDimitry Andric false)); 34240b57cec5SDimitry Andric CheckCall = Builder.CreateCall( 34250b57cec5SDimitry Andric SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 34260b57cec5SDimitry Andric } else { 34270b57cec5SDimitry Andric SlowPathFn = CGM.getModule().getOrInsertFunction( 34280b57cec5SDimitry Andric "__cfi_slowpath", 34290b57cec5SDimitry Andric llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 34300b57cec5SDimitry Andric CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 34310b57cec5SDimitry Andric } 34320b57cec5SDimitry Andric 34330b57cec5SDimitry Andric CGM.setDSOLocal( 34340b57cec5SDimitry Andric cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 34350b57cec5SDimitry Andric CheckCall->setDoesNotThrow(); 34360b57cec5SDimitry Andric 34370b57cec5SDimitry Andric EmitBlock(Cont); 34380b57cec5SDimitry Andric } 34390b57cec5SDimitry Andric 34400b57cec5SDimitry Andric // Emit a stub for __cfi_check function so that the linker knows about this 34410b57cec5SDimitry Andric // symbol in LTO mode. 34420b57cec5SDimitry Andric void CodeGenFunction::EmitCfiCheckStub() { 34430b57cec5SDimitry Andric llvm::Module *M = &CGM.getModule(); 34440b57cec5SDimitry Andric auto &Ctx = M->getContext(); 34450b57cec5SDimitry Andric llvm::Function *F = llvm::Function::Create( 34460b57cec5SDimitry Andric llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 34470b57cec5SDimitry Andric llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 34480b57cec5SDimitry Andric CGM.setDSOLocal(F); 34490b57cec5SDimitry Andric llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 34500b57cec5SDimitry Andric // FIXME: consider emitting an intrinsic call like 34510b57cec5SDimitry Andric // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 34520b57cec5SDimitry Andric // which can be lowered in CrossDSOCFI pass to the actual contents of 34530b57cec5SDimitry Andric // __cfi_check. This would allow inlining of __cfi_check calls. 34540b57cec5SDimitry Andric llvm::CallInst::Create( 34550b57cec5SDimitry Andric llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 34560b57cec5SDimitry Andric llvm::ReturnInst::Create(Ctx, nullptr, BB); 34570b57cec5SDimitry Andric } 34580b57cec5SDimitry Andric 34590b57cec5SDimitry Andric // This function is basically a switch over the CFI failure kind, which is 34600b57cec5SDimitry Andric // extracted from CFICheckFailData (1st function argument). Each case is either 34610b57cec5SDimitry Andric // llvm.trap or a call to one of the two runtime handlers, based on 34620b57cec5SDimitry Andric // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 34630b57cec5SDimitry Andric // failure kind) traps, but this should really never happen. CFICheckFailData 34640b57cec5SDimitry Andric // can be nullptr if the calling module has -fsanitize-trap behavior for this 34650b57cec5SDimitry Andric // check kind; in this case __cfi_check_fail traps as well. 34660b57cec5SDimitry Andric void CodeGenFunction::EmitCfiCheckFail() { 34670b57cec5SDimitry Andric SanitizerScope SanScope(this); 34680b57cec5SDimitry Andric FunctionArgList Args; 34690b57cec5SDimitry Andric ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 34700b57cec5SDimitry Andric ImplicitParamDecl::Other); 34710b57cec5SDimitry Andric ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 34720b57cec5SDimitry Andric ImplicitParamDecl::Other); 34730b57cec5SDimitry Andric Args.push_back(&ArgData); 34740b57cec5SDimitry Andric Args.push_back(&ArgAddr); 34750b57cec5SDimitry Andric 34760b57cec5SDimitry Andric const CGFunctionInfo &FI = 34770b57cec5SDimitry Andric CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 34780b57cec5SDimitry Andric 34790b57cec5SDimitry Andric llvm::Function *F = llvm::Function::Create( 34800b57cec5SDimitry Andric llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 34810b57cec5SDimitry Andric llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3482480093f4SDimitry Andric 3483fe6060f1SDimitry Andric CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false); 3484480093f4SDimitry Andric CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 34850b57cec5SDimitry Andric F->setVisibility(llvm::GlobalValue::HiddenVisibility); 34860b57cec5SDimitry Andric 34870b57cec5SDimitry Andric StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 34880b57cec5SDimitry Andric SourceLocation()); 34890b57cec5SDimitry Andric 3490fe6060f1SDimitry Andric // This function is not affected by NoSanitizeList. This function does 34910b57cec5SDimitry Andric // not have a source location, but "src:*" would still apply. Revert any 34920b57cec5SDimitry Andric // changes to SanOpts made in StartFunction. 34930b57cec5SDimitry Andric SanOpts = CGM.getLangOpts().Sanitize; 34940b57cec5SDimitry Andric 34950b57cec5SDimitry Andric llvm::Value *Data = 34960b57cec5SDimitry Andric EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 34970b57cec5SDimitry Andric CGM.getContext().VoidPtrTy, ArgData.getLocation()); 34980b57cec5SDimitry Andric llvm::Value *Addr = 34990b57cec5SDimitry Andric EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 35000b57cec5SDimitry Andric CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 35010b57cec5SDimitry Andric 35020b57cec5SDimitry Andric // Data == nullptr means the calling module has trap behaviour for this check. 35030b57cec5SDimitry Andric llvm::Value *DataIsNotNullPtr = 35040b57cec5SDimitry Andric Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3505e8d8bef9SDimitry Andric EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail); 35060b57cec5SDimitry Andric 35070b57cec5SDimitry Andric llvm::StructType *SourceLocationTy = 35080b57cec5SDimitry Andric llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 35090b57cec5SDimitry Andric llvm::StructType *CfiCheckFailDataTy = 35100b57cec5SDimitry Andric llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 35110b57cec5SDimitry Andric 35120b57cec5SDimitry Andric llvm::Value *V = Builder.CreateConstGEP2_32( 35130b57cec5SDimitry Andric CfiCheckFailDataTy, 35140b57cec5SDimitry Andric Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 35150b57cec5SDimitry Andric 0); 351681ad6265SDimitry Andric 351781ad6265SDimitry Andric Address CheckKindAddr(V, Int8Ty, getIntAlign()); 35180b57cec5SDimitry Andric llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 35190b57cec5SDimitry Andric 35200b57cec5SDimitry Andric llvm::Value *AllVtables = llvm::MetadataAsValue::get( 35210b57cec5SDimitry Andric CGM.getLLVMContext(), 35220b57cec5SDimitry Andric llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 35230b57cec5SDimitry Andric llvm::Value *ValidVtable = Builder.CreateZExt( 35240b57cec5SDimitry Andric Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 35250b57cec5SDimitry Andric {Addr, AllVtables}), 35260b57cec5SDimitry Andric IntPtrTy); 35270b57cec5SDimitry Andric 35280b57cec5SDimitry Andric const std::pair<int, SanitizerMask> CheckKinds[] = { 35290b57cec5SDimitry Andric {CFITCK_VCall, SanitizerKind::CFIVCall}, 35300b57cec5SDimitry Andric {CFITCK_NVCall, SanitizerKind::CFINVCall}, 35310b57cec5SDimitry Andric {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 35320b57cec5SDimitry Andric {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 35330b57cec5SDimitry Andric {CFITCK_ICall, SanitizerKind::CFIICall}}; 35340b57cec5SDimitry Andric 35350b57cec5SDimitry Andric SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 35360b57cec5SDimitry Andric for (auto CheckKindMaskPair : CheckKinds) { 35370b57cec5SDimitry Andric int Kind = CheckKindMaskPair.first; 35380b57cec5SDimitry Andric SanitizerMask Mask = CheckKindMaskPair.second; 35390b57cec5SDimitry Andric llvm::Value *Cond = 35400b57cec5SDimitry Andric Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 35410b57cec5SDimitry Andric if (CGM.getLangOpts().Sanitize.has(Mask)) 35420b57cec5SDimitry Andric EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 35430b57cec5SDimitry Andric {Data, Addr, ValidVtable}); 35440b57cec5SDimitry Andric else 3545e8d8bef9SDimitry Andric EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail); 35460b57cec5SDimitry Andric } 35470b57cec5SDimitry Andric 35480b57cec5SDimitry Andric FinishFunction(); 35490b57cec5SDimitry Andric // The only reference to this function will be created during LTO link. 35500b57cec5SDimitry Andric // Make sure it survives until then. 35510b57cec5SDimitry Andric CGM.addUsedGlobal(F); 35520b57cec5SDimitry Andric } 35530b57cec5SDimitry Andric 35540b57cec5SDimitry Andric void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 35550b57cec5SDimitry Andric if (SanOpts.has(SanitizerKind::Unreachable)) { 35560b57cec5SDimitry Andric SanitizerScope SanScope(this); 35570b57cec5SDimitry Andric EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 35580b57cec5SDimitry Andric SanitizerKind::Unreachable), 35590b57cec5SDimitry Andric SanitizerHandler::BuiltinUnreachable, 3560bdd1243dSDimitry Andric EmitCheckSourceLocation(Loc), std::nullopt); 35610b57cec5SDimitry Andric } 35620b57cec5SDimitry Andric Builder.CreateUnreachable(); 35630b57cec5SDimitry Andric } 35640b57cec5SDimitry Andric 3565e8d8bef9SDimitry Andric void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked, 3566e8d8bef9SDimitry Andric SanitizerHandler CheckHandlerID) { 35670b57cec5SDimitry Andric llvm::BasicBlock *Cont = createBasicBlock("cont"); 35680b57cec5SDimitry Andric 35690b57cec5SDimitry Andric // If we're optimizing, collapse all calls to trap down to just one per 3570e8d8bef9SDimitry Andric // check-type per function to save on code size. 3571e8d8bef9SDimitry Andric if (TrapBBs.size() <= CheckHandlerID) 3572e8d8bef9SDimitry Andric TrapBBs.resize(CheckHandlerID + 1); 3573e8d8bef9SDimitry Andric llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID]; 3574e8d8bef9SDimitry Andric 3575bdd1243dSDimitry Andric if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB || 3576bdd1243dSDimitry Andric (CurCodeDecl && CurCodeDecl->hasAttr<OptimizeNoneAttr>())) { 35770b57cec5SDimitry Andric TrapBB = createBasicBlock("trap"); 35780b57cec5SDimitry Andric Builder.CreateCondBr(Checked, Cont, TrapBB); 35790b57cec5SDimitry Andric EmitBlock(TrapBB); 3580e8d8bef9SDimitry Andric 3581e8d8bef9SDimitry Andric llvm::CallInst *TrapCall = 3582e8d8bef9SDimitry Andric Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap), 3583e8d8bef9SDimitry Andric llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID)); 3584e8d8bef9SDimitry Andric 3585e8d8bef9SDimitry Andric if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3586e8d8bef9SDimitry Andric auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3587e8d8bef9SDimitry Andric CGM.getCodeGenOpts().TrapFuncName); 3588349cc55cSDimitry Andric TrapCall->addFnAttr(A); 3589e8d8bef9SDimitry Andric } 35900b57cec5SDimitry Andric TrapCall->setDoesNotReturn(); 35910b57cec5SDimitry Andric TrapCall->setDoesNotThrow(); 35920b57cec5SDimitry Andric Builder.CreateUnreachable(); 35930b57cec5SDimitry Andric } else { 3594e8d8bef9SDimitry Andric auto Call = TrapBB->begin(); 3595e8d8bef9SDimitry Andric assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB"); 3596e8d8bef9SDimitry Andric 3597e8d8bef9SDimitry Andric Call->applyMergedLocation(Call->getDebugLoc(), 3598e8d8bef9SDimitry Andric Builder.getCurrentDebugLocation()); 35990b57cec5SDimitry Andric Builder.CreateCondBr(Checked, Cont, TrapBB); 36000b57cec5SDimitry Andric } 36010b57cec5SDimitry Andric 36020b57cec5SDimitry Andric EmitBlock(Cont); 36030b57cec5SDimitry Andric } 36040b57cec5SDimitry Andric 36050b57cec5SDimitry Andric llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3606e8d8bef9SDimitry Andric llvm::CallInst *TrapCall = 3607e8d8bef9SDimitry Andric Builder.CreateCall(CGM.getIntrinsic(IntrID)); 36080b57cec5SDimitry Andric 36090b57cec5SDimitry Andric if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 36100b57cec5SDimitry Andric auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 36110b57cec5SDimitry Andric CGM.getCodeGenOpts().TrapFuncName); 3612349cc55cSDimitry Andric TrapCall->addFnAttr(A); 36130b57cec5SDimitry Andric } 36140b57cec5SDimitry Andric 36150b57cec5SDimitry Andric return TrapCall; 36160b57cec5SDimitry Andric } 36170b57cec5SDimitry Andric 36180b57cec5SDimitry Andric Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 36190b57cec5SDimitry Andric LValueBaseInfo *BaseInfo, 36200b57cec5SDimitry Andric TBAAAccessInfo *TBAAInfo) { 36210b57cec5SDimitry Andric assert(E->getType()->isArrayType() && 36220b57cec5SDimitry Andric "Array to pointer decay must have array source type!"); 36230b57cec5SDimitry Andric 36240b57cec5SDimitry Andric // Expressions of array type can't be bitfields or vector elements. 36250b57cec5SDimitry Andric LValue LV = EmitLValue(E); 3626480093f4SDimitry Andric Address Addr = LV.getAddress(*this); 36270b57cec5SDimitry Andric 36280b57cec5SDimitry Andric // If the array type was an incomplete type, we need to make sure 36290b57cec5SDimitry Andric // the decay ends up being the right type. 36300b57cec5SDimitry Andric llvm::Type *NewTy = ConvertType(E->getType()); 3631*fe013be4SDimitry Andric Addr = Addr.withElementType(NewTy); 36320b57cec5SDimitry Andric 36330b57cec5SDimitry Andric // Note that VLA pointers are always decayed, so we don't need to do 36340b57cec5SDimitry Andric // anything here. 36350b57cec5SDimitry Andric if (!E->getType()->isVariableArrayType()) { 36360b57cec5SDimitry Andric assert(isa<llvm::ArrayType>(Addr.getElementType()) && 36370b57cec5SDimitry Andric "Expected pointer to array"); 36380b57cec5SDimitry Andric Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 36390b57cec5SDimitry Andric } 36400b57cec5SDimitry Andric 36410b57cec5SDimitry Andric // The result of this decay conversion points to an array element within the 36420b57cec5SDimitry Andric // base lvalue. However, since TBAA currently does not support representing 36430b57cec5SDimitry Andric // accesses to elements of member arrays, we conservatively represent accesses 36440b57cec5SDimitry Andric // to the pointee object as if it had no any base lvalue specified. 36450b57cec5SDimitry Andric // TODO: Support TBAA for member arrays. 36460b57cec5SDimitry Andric QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 36470b57cec5SDimitry Andric if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 36480b57cec5SDimitry Andric if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 36490b57cec5SDimitry Andric 3650*fe013be4SDimitry Andric return Addr.withElementType(ConvertTypeForMem(EltType)); 36510b57cec5SDimitry Andric } 36520b57cec5SDimitry Andric 36530b57cec5SDimitry Andric /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 36540b57cec5SDimitry Andric /// array to pointer, return the array subexpression. 36550b57cec5SDimitry Andric static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 36560b57cec5SDimitry Andric // If this isn't just an array->pointer decay, bail out. 36570b57cec5SDimitry Andric const auto *CE = dyn_cast<CastExpr>(E); 36580b57cec5SDimitry Andric if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 36590b57cec5SDimitry Andric return nullptr; 36600b57cec5SDimitry Andric 36610b57cec5SDimitry Andric // If this is a decay from variable width array, bail out. 36620b57cec5SDimitry Andric const Expr *SubExpr = CE->getSubExpr(); 36630b57cec5SDimitry Andric if (SubExpr->getType()->isVariableArrayType()) 36640b57cec5SDimitry Andric return nullptr; 36650b57cec5SDimitry Andric 36660b57cec5SDimitry Andric return SubExpr; 36670b57cec5SDimitry Andric } 36680b57cec5SDimitry Andric 36690b57cec5SDimitry Andric static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3670fe6060f1SDimitry Andric llvm::Type *elemType, 36710b57cec5SDimitry Andric llvm::Value *ptr, 36720b57cec5SDimitry Andric ArrayRef<llvm::Value*> indices, 36730b57cec5SDimitry Andric bool inbounds, 36740b57cec5SDimitry Andric bool signedIndices, 36750b57cec5SDimitry Andric SourceLocation loc, 36760b57cec5SDimitry Andric const llvm::Twine &name = "arrayidx") { 36770b57cec5SDimitry Andric if (inbounds) { 36780eae32dcSDimitry Andric return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices, 36790b57cec5SDimitry Andric CodeGenFunction::NotSubtraction, loc, 36800b57cec5SDimitry Andric name); 36810b57cec5SDimitry Andric } else { 3682fe6060f1SDimitry Andric return CGF.Builder.CreateGEP(elemType, ptr, indices, name); 36830b57cec5SDimitry Andric } 36840b57cec5SDimitry Andric } 36850b57cec5SDimitry Andric 36860b57cec5SDimitry Andric static CharUnits getArrayElementAlign(CharUnits arrayAlign, 36870b57cec5SDimitry Andric llvm::Value *idx, 36880b57cec5SDimitry Andric CharUnits eltSize) { 36890b57cec5SDimitry Andric // If we have a constant index, we can use the exact offset of the 36900b57cec5SDimitry Andric // element we're accessing. 36910b57cec5SDimitry Andric if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 36920b57cec5SDimitry Andric CharUnits offset = constantIdx->getZExtValue() * eltSize; 36930b57cec5SDimitry Andric return arrayAlign.alignmentAtOffset(offset); 36940b57cec5SDimitry Andric 36950b57cec5SDimitry Andric // Otherwise, use the worst-case alignment for any element. 36960b57cec5SDimitry Andric } else { 36970b57cec5SDimitry Andric return arrayAlign.alignmentOfArrayElement(eltSize); 36980b57cec5SDimitry Andric } 36990b57cec5SDimitry Andric } 37000b57cec5SDimitry Andric 37010b57cec5SDimitry Andric static QualType getFixedSizeElementType(const ASTContext &ctx, 37020b57cec5SDimitry Andric const VariableArrayType *vla) { 37030b57cec5SDimitry Andric QualType eltType; 37040b57cec5SDimitry Andric do { 37050b57cec5SDimitry Andric eltType = vla->getElementType(); 37060b57cec5SDimitry Andric } while ((vla = ctx.getAsVariableArrayType(eltType))); 37070b57cec5SDimitry Andric return eltType; 37080b57cec5SDimitry Andric } 37090b57cec5SDimitry Andric 3710480093f4SDimitry Andric /// Given an array base, check whether its member access belongs to a record 3711480093f4SDimitry Andric /// with preserve_access_index attribute or not. 3712480093f4SDimitry Andric static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3713480093f4SDimitry Andric if (!ArrayBase || !CGF.getDebugInfo()) 3714480093f4SDimitry Andric return false; 3715480093f4SDimitry Andric 3716480093f4SDimitry Andric // Only support base as either a MemberExpr or DeclRefExpr. 3717480093f4SDimitry Andric // DeclRefExpr to cover cases like: 3718480093f4SDimitry Andric // struct s { int a; int b[10]; }; 3719480093f4SDimitry Andric // struct s *p; 3720480093f4SDimitry Andric // p[1].a 3721480093f4SDimitry Andric // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3722480093f4SDimitry Andric // p->b[5] is a MemberExpr example. 3723480093f4SDimitry Andric const Expr *E = ArrayBase->IgnoreImpCasts(); 3724480093f4SDimitry Andric if (const auto *ME = dyn_cast<MemberExpr>(E)) 3725480093f4SDimitry Andric return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3726480093f4SDimitry Andric 3727480093f4SDimitry Andric if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3728480093f4SDimitry Andric const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3729480093f4SDimitry Andric if (!VarDef) 3730480093f4SDimitry Andric return false; 3731480093f4SDimitry Andric 3732480093f4SDimitry Andric const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3733480093f4SDimitry Andric if (!PtrT) 3734480093f4SDimitry Andric return false; 3735480093f4SDimitry Andric 3736480093f4SDimitry Andric const auto *PointeeT = PtrT->getPointeeType() 3737480093f4SDimitry Andric ->getUnqualifiedDesugaredType(); 3738480093f4SDimitry Andric if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3739480093f4SDimitry Andric return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3740480093f4SDimitry Andric return false; 3741480093f4SDimitry Andric } 3742480093f4SDimitry Andric 3743480093f4SDimitry Andric return false; 3744480093f4SDimitry Andric } 3745480093f4SDimitry Andric 37460b57cec5SDimitry Andric static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 37470b57cec5SDimitry Andric ArrayRef<llvm::Value *> indices, 37480b57cec5SDimitry Andric QualType eltType, bool inbounds, 37490b57cec5SDimitry Andric bool signedIndices, SourceLocation loc, 3750a7dea167SDimitry Andric QualType *arrayType = nullptr, 3751480093f4SDimitry Andric const Expr *Base = nullptr, 37520b57cec5SDimitry Andric const llvm::Twine &name = "arrayidx") { 37530b57cec5SDimitry Andric // All the indices except that last must be zero. 37540b57cec5SDimitry Andric #ifndef NDEBUG 3755bdd1243dSDimitry Andric for (auto *idx : indices.drop_back()) 37560b57cec5SDimitry Andric assert(isa<llvm::ConstantInt>(idx) && 37570b57cec5SDimitry Andric cast<llvm::ConstantInt>(idx)->isZero()); 37580b57cec5SDimitry Andric #endif 37590b57cec5SDimitry Andric 37600b57cec5SDimitry Andric // Determine the element size of the statically-sized base. This is 37610b57cec5SDimitry Andric // the thing that the indices are expressed in terms of. 37620b57cec5SDimitry Andric if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 37630b57cec5SDimitry Andric eltType = getFixedSizeElementType(CGF.getContext(), vla); 37640b57cec5SDimitry Andric } 37650b57cec5SDimitry Andric 37660b57cec5SDimitry Andric // We can use that to compute the best alignment of the element. 37670b57cec5SDimitry Andric CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 37680b57cec5SDimitry Andric CharUnits eltAlign = 37690b57cec5SDimitry Andric getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 37700b57cec5SDimitry Andric 37710b57cec5SDimitry Andric llvm::Value *eltPtr; 37720b57cec5SDimitry Andric auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3773480093f4SDimitry Andric if (!LastIndex || 3774480093f4SDimitry Andric (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 37750b57cec5SDimitry Andric eltPtr = emitArraySubscriptGEP( 3776fe6060f1SDimitry Andric CGF, addr.getElementType(), addr.getPointer(), indices, inbounds, 3777fe6060f1SDimitry Andric signedIndices, loc, name); 37780b57cec5SDimitry Andric } else { 37790b57cec5SDimitry Andric // Remember the original array subscript for bpf target 37800b57cec5SDimitry Andric unsigned idx = LastIndex->getZExtValue(); 3781a7dea167SDimitry Andric llvm::DIType *DbgInfo = nullptr; 3782a7dea167SDimitry Andric if (arrayType) 3783a7dea167SDimitry Andric DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3784480093f4SDimitry Andric eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3785480093f4SDimitry Andric addr.getPointer(), 37860b57cec5SDimitry Andric indices.size() - 1, 3787a7dea167SDimitry Andric idx, DbgInfo); 37880b57cec5SDimitry Andric } 37890b57cec5SDimitry Andric 37900eae32dcSDimitry Andric return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign); 37910b57cec5SDimitry Andric } 37920b57cec5SDimitry Andric 37930b57cec5SDimitry Andric LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 37940b57cec5SDimitry Andric bool Accessed) { 37950b57cec5SDimitry Andric // The index must always be an integer, which is not an aggregate. Emit it 37960b57cec5SDimitry Andric // in lexical order (this complexity is, sadly, required by C++17). 37970b57cec5SDimitry Andric llvm::Value *IdxPre = 37980b57cec5SDimitry Andric (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 37990b57cec5SDimitry Andric bool SignedIndices = false; 38000b57cec5SDimitry Andric auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 38010b57cec5SDimitry Andric auto *Idx = IdxPre; 38020b57cec5SDimitry Andric if (E->getLHS() != E->getIdx()) { 38030b57cec5SDimitry Andric assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 38040b57cec5SDimitry Andric Idx = EmitScalarExpr(E->getIdx()); 38050b57cec5SDimitry Andric } 38060b57cec5SDimitry Andric 38070b57cec5SDimitry Andric QualType IdxTy = E->getIdx()->getType(); 38080b57cec5SDimitry Andric bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 38090b57cec5SDimitry Andric SignedIndices |= IdxSigned; 38100b57cec5SDimitry Andric 38110b57cec5SDimitry Andric if (SanOpts.has(SanitizerKind::ArrayBounds)) 38120b57cec5SDimitry Andric EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 38130b57cec5SDimitry Andric 38140b57cec5SDimitry Andric // Extend or truncate the index type to 32 or 64-bits. 38150b57cec5SDimitry Andric if (Promote && Idx->getType() != IntPtrTy) 38160b57cec5SDimitry Andric Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 38170b57cec5SDimitry Andric 38180b57cec5SDimitry Andric return Idx; 38190b57cec5SDimitry Andric }; 38200b57cec5SDimitry Andric IdxPre = nullptr; 38210b57cec5SDimitry Andric 38220b57cec5SDimitry Andric // If the base is a vector type, then we are forming a vector element lvalue 38230b57cec5SDimitry Andric // with this subscript. 38240b57cec5SDimitry Andric if (E->getBase()->getType()->isVectorType() && 38250b57cec5SDimitry Andric !isa<ExtVectorElementExpr>(E->getBase())) { 38260b57cec5SDimitry Andric // Emit the vector as an lvalue to get its address. 38270b57cec5SDimitry Andric LValue LHS = EmitLValue(E->getBase()); 38280b57cec5SDimitry Andric auto *Idx = EmitIdxAfterBase(/*Promote*/false); 38290b57cec5SDimitry Andric assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3830480093f4SDimitry Andric return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3831480093f4SDimitry Andric E->getBase()->getType(), LHS.getBaseInfo(), 3832480093f4SDimitry Andric TBAAAccessInfo()); 38330b57cec5SDimitry Andric } 38340b57cec5SDimitry Andric 38350b57cec5SDimitry Andric // All the other cases basically behave like simple offsetting. 38360b57cec5SDimitry Andric 38370b57cec5SDimitry Andric // Handle the extvector case we ignored above. 38380b57cec5SDimitry Andric if (isa<ExtVectorElementExpr>(E->getBase())) { 38390b57cec5SDimitry Andric LValue LV = EmitLValue(E->getBase()); 38400b57cec5SDimitry Andric auto *Idx = EmitIdxAfterBase(/*Promote*/true); 38410b57cec5SDimitry Andric Address Addr = EmitExtVectorElementLValue(LV); 38420b57cec5SDimitry Andric 38430b57cec5SDimitry Andric QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 38440b57cec5SDimitry Andric Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 38450b57cec5SDimitry Andric SignedIndices, E->getExprLoc()); 38460b57cec5SDimitry Andric return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 38470b57cec5SDimitry Andric CGM.getTBAAInfoForSubobject(LV, EltType)); 38480b57cec5SDimitry Andric } 38490b57cec5SDimitry Andric 38500b57cec5SDimitry Andric LValueBaseInfo EltBaseInfo; 38510b57cec5SDimitry Andric TBAAAccessInfo EltTBAAInfo; 38520b57cec5SDimitry Andric Address Addr = Address::invalid(); 38530b57cec5SDimitry Andric if (const VariableArrayType *vla = 38540b57cec5SDimitry Andric getContext().getAsVariableArrayType(E->getType())) { 38550b57cec5SDimitry Andric // The base must be a pointer, which is not an aggregate. Emit 38560b57cec5SDimitry Andric // it. It needs to be emitted first in case it's what captures 38570b57cec5SDimitry Andric // the VLA bounds. 38580b57cec5SDimitry Andric Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 38590b57cec5SDimitry Andric auto *Idx = EmitIdxAfterBase(/*Promote*/true); 38600b57cec5SDimitry Andric 38610b57cec5SDimitry Andric // The element count here is the total number of non-VLA elements. 38620b57cec5SDimitry Andric llvm::Value *numElements = getVLASize(vla).NumElts; 38630b57cec5SDimitry Andric 38640b57cec5SDimitry Andric // Effectively, the multiply by the VLA size is part of the GEP. 38650b57cec5SDimitry Andric // GEP indexes are signed, and scaling an index isn't permitted to 38660b57cec5SDimitry Andric // signed-overflow, so we use the same semantics for our explicit 38670b57cec5SDimitry Andric // multiply. We suppress this if overflow is not undefined behavior. 38680b57cec5SDimitry Andric if (getLangOpts().isSignedOverflowDefined()) { 38690b57cec5SDimitry Andric Idx = Builder.CreateMul(Idx, numElements); 38700b57cec5SDimitry Andric } else { 38710b57cec5SDimitry Andric Idx = Builder.CreateNSWMul(Idx, numElements); 38720b57cec5SDimitry Andric } 38730b57cec5SDimitry Andric 38740b57cec5SDimitry Andric Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 38750b57cec5SDimitry Andric !getLangOpts().isSignedOverflowDefined(), 38760b57cec5SDimitry Andric SignedIndices, E->getExprLoc()); 38770b57cec5SDimitry Andric 38780b57cec5SDimitry Andric } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 38790b57cec5SDimitry Andric // Indexing over an interface, as in "NSString *P; P[4];" 38800b57cec5SDimitry Andric 38810b57cec5SDimitry Andric // Emit the base pointer. 38820b57cec5SDimitry Andric Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 38830b57cec5SDimitry Andric auto *Idx = EmitIdxAfterBase(/*Promote*/true); 38840b57cec5SDimitry Andric 38850b57cec5SDimitry Andric CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 38860b57cec5SDimitry Andric llvm::Value *InterfaceSizeVal = 38870b57cec5SDimitry Andric llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 38880b57cec5SDimitry Andric 38890b57cec5SDimitry Andric llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 38900b57cec5SDimitry Andric 38910b57cec5SDimitry Andric // We don't necessarily build correct LLVM struct types for ObjC 38920b57cec5SDimitry Andric // interfaces, so we can't rely on GEP to do this scaling 38930b57cec5SDimitry Andric // correctly, so we need to cast to i8*. FIXME: is this actually 38940b57cec5SDimitry Andric // true? A lot of other things in the fragile ABI would break... 389581ad6265SDimitry Andric llvm::Type *OrigBaseElemTy = Addr.getElementType(); 38960b57cec5SDimitry Andric 38970b57cec5SDimitry Andric // Do the GEP. 38980b57cec5SDimitry Andric CharUnits EltAlign = 38990b57cec5SDimitry Andric getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 39000b57cec5SDimitry Andric llvm::Value *EltPtr = 3901*fe013be4SDimitry Andric emitArraySubscriptGEP(*this, Int8Ty, Addr.getPointer(), ScaledIdx, 3902*fe013be4SDimitry Andric false, SignedIndices, E->getExprLoc()); 3903*fe013be4SDimitry Andric Addr = Address(EltPtr, OrigBaseElemTy, EltAlign); 39040b57cec5SDimitry Andric } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 39050b57cec5SDimitry Andric // If this is A[i] where A is an array, the frontend will have decayed the 39060b57cec5SDimitry Andric // base to be a ArrayToPointerDecay implicit cast. While correct, it is 39070b57cec5SDimitry Andric // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 39080b57cec5SDimitry Andric // "gep x, i" here. Emit one "gep A, 0, i". 39090b57cec5SDimitry Andric assert(Array->getType()->isArrayType() && 39100b57cec5SDimitry Andric "Array to pointer decay must have array source type!"); 39110b57cec5SDimitry Andric LValue ArrayLV; 39120b57cec5SDimitry Andric // For simple multidimensional array indexing, set the 'accessed' flag for 39130b57cec5SDimitry Andric // better bounds-checking of the base expression. 39140b57cec5SDimitry Andric if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 39150b57cec5SDimitry Andric ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 39160b57cec5SDimitry Andric else 39170b57cec5SDimitry Andric ArrayLV = EmitLValue(Array); 39180b57cec5SDimitry Andric auto *Idx = EmitIdxAfterBase(/*Promote*/true); 39190b57cec5SDimitry Andric 39200b57cec5SDimitry Andric // Propagate the alignment from the array itself to the result. 3921a7dea167SDimitry Andric QualType arrayType = Array->getType(); 39220b57cec5SDimitry Andric Addr = emitArraySubscriptGEP( 3923480093f4SDimitry Andric *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 39240b57cec5SDimitry Andric E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3925480093f4SDimitry Andric E->getExprLoc(), &arrayType, E->getBase()); 39260b57cec5SDimitry Andric EltBaseInfo = ArrayLV.getBaseInfo(); 39270b57cec5SDimitry Andric EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 39280b57cec5SDimitry Andric } else { 39290b57cec5SDimitry Andric // The base must be a pointer; emit it with an estimate of its alignment. 39300b57cec5SDimitry Andric Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 39310b57cec5SDimitry Andric auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3932a7dea167SDimitry Andric QualType ptrType = E->getBase()->getType(); 39330b57cec5SDimitry Andric Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 39340b57cec5SDimitry Andric !getLangOpts().isSignedOverflowDefined(), 3935480093f4SDimitry Andric SignedIndices, E->getExprLoc(), &ptrType, 3936480093f4SDimitry Andric E->getBase()); 39370b57cec5SDimitry Andric } 39380b57cec5SDimitry Andric 39390b57cec5SDimitry Andric LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 39400b57cec5SDimitry Andric 39410b57cec5SDimitry Andric if (getLangOpts().ObjC && 39420b57cec5SDimitry Andric getLangOpts().getGC() != LangOptions::NonGC) { 39430b57cec5SDimitry Andric LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 39440b57cec5SDimitry Andric setObjCGCLValueClass(getContext(), E, LV); 39450b57cec5SDimitry Andric } 39460b57cec5SDimitry Andric return LV; 39470b57cec5SDimitry Andric } 39480b57cec5SDimitry Andric 39495ffd83dbSDimitry Andric LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) { 39505ffd83dbSDimitry Andric assert( 39515ffd83dbSDimitry Andric !E->isIncomplete() && 39525ffd83dbSDimitry Andric "incomplete matrix subscript expressions should be rejected during Sema"); 39535ffd83dbSDimitry Andric LValue Base = EmitLValue(E->getBase()); 39545ffd83dbSDimitry Andric llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx()); 39555ffd83dbSDimitry Andric llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx()); 39565ffd83dbSDimitry Andric llvm::Value *NumRows = Builder.getIntN( 39575ffd83dbSDimitry Andric RowIdx->getType()->getScalarSizeInBits(), 3958e8d8bef9SDimitry Andric E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows()); 39595ffd83dbSDimitry Andric llvm::Value *FinalIdx = 39605ffd83dbSDimitry Andric Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx); 39615ffd83dbSDimitry Andric return LValue::MakeMatrixElt( 39625ffd83dbSDimitry Andric MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx, 39635ffd83dbSDimitry Andric E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo()); 39645ffd83dbSDimitry Andric } 39655ffd83dbSDimitry Andric 39660b57cec5SDimitry Andric static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 39670b57cec5SDimitry Andric LValueBaseInfo &BaseInfo, 39680b57cec5SDimitry Andric TBAAAccessInfo &TBAAInfo, 39690b57cec5SDimitry Andric QualType BaseTy, QualType ElTy, 39700b57cec5SDimitry Andric bool IsLowerBound) { 39710b57cec5SDimitry Andric LValue BaseLVal; 39720b57cec5SDimitry Andric if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 39730b57cec5SDimitry Andric BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 39740b57cec5SDimitry Andric if (BaseTy->isArrayType()) { 3975480093f4SDimitry Andric Address Addr = BaseLVal.getAddress(CGF); 39760b57cec5SDimitry Andric BaseInfo = BaseLVal.getBaseInfo(); 39770b57cec5SDimitry Andric 39780b57cec5SDimitry Andric // If the array type was an incomplete type, we need to make sure 39790b57cec5SDimitry Andric // the decay ends up being the right type. 39800b57cec5SDimitry Andric llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3981*fe013be4SDimitry Andric Addr = Addr.withElementType(NewTy); 39820b57cec5SDimitry Andric 39830b57cec5SDimitry Andric // Note that VLA pointers are always decayed, so we don't need to do 39840b57cec5SDimitry Andric // anything here. 39850b57cec5SDimitry Andric if (!BaseTy->isVariableArrayType()) { 39860b57cec5SDimitry Andric assert(isa<llvm::ArrayType>(Addr.getElementType()) && 39870b57cec5SDimitry Andric "Expected pointer to array"); 39880b57cec5SDimitry Andric Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 39890b57cec5SDimitry Andric } 39900b57cec5SDimitry Andric 3991*fe013be4SDimitry Andric return Addr.withElementType(CGF.ConvertTypeForMem(ElTy)); 39920b57cec5SDimitry Andric } 39930b57cec5SDimitry Andric LValueBaseInfo TypeBaseInfo; 39940b57cec5SDimitry Andric TBAAAccessInfo TypeTBAAInfo; 39955ffd83dbSDimitry Andric CharUnits Align = 39965ffd83dbSDimitry Andric CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo); 39970b57cec5SDimitry Andric BaseInfo.mergeForCast(TypeBaseInfo); 39980b57cec5SDimitry Andric TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 399981ad6265SDimitry Andric return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), 400081ad6265SDimitry Andric CGF.ConvertTypeForMem(ElTy), Align); 40010b57cec5SDimitry Andric } 40020b57cec5SDimitry Andric return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 40030b57cec5SDimitry Andric } 40040b57cec5SDimitry Andric 40050b57cec5SDimitry Andric LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 40060b57cec5SDimitry Andric bool IsLowerBound) { 40070b57cec5SDimitry Andric QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 40080b57cec5SDimitry Andric QualType ResultExprTy; 40090b57cec5SDimitry Andric if (auto *AT = getContext().getAsArrayType(BaseTy)) 40100b57cec5SDimitry Andric ResultExprTy = AT->getElementType(); 40110b57cec5SDimitry Andric else 40120b57cec5SDimitry Andric ResultExprTy = BaseTy->getPointeeType(); 40130b57cec5SDimitry Andric llvm::Value *Idx = nullptr; 40145ffd83dbSDimitry Andric if (IsLowerBound || E->getColonLocFirst().isInvalid()) { 40150b57cec5SDimitry Andric // Requesting lower bound or upper bound, but without provided length and 40160b57cec5SDimitry Andric // without ':' symbol for the default length -> length = 1. 40170b57cec5SDimitry Andric // Idx = LowerBound ?: 0; 40180b57cec5SDimitry Andric if (auto *LowerBound = E->getLowerBound()) { 40190b57cec5SDimitry Andric Idx = Builder.CreateIntCast( 40200b57cec5SDimitry Andric EmitScalarExpr(LowerBound), IntPtrTy, 40210b57cec5SDimitry Andric LowerBound->getType()->hasSignedIntegerRepresentation()); 40220b57cec5SDimitry Andric } else 40230b57cec5SDimitry Andric Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 40240b57cec5SDimitry Andric } else { 40250b57cec5SDimitry Andric // Try to emit length or lower bound as constant. If this is possible, 1 40260b57cec5SDimitry Andric // is subtracted from constant length or lower bound. Otherwise, emit LLVM 40270b57cec5SDimitry Andric // IR (LB + Len) - 1. 40280b57cec5SDimitry Andric auto &C = CGM.getContext(); 40290b57cec5SDimitry Andric auto *Length = E->getLength(); 40300b57cec5SDimitry Andric llvm::APSInt ConstLength; 40310b57cec5SDimitry Andric if (Length) { 40320b57cec5SDimitry Andric // Idx = LowerBound + Length - 1; 4033bdd1243dSDimitry Andric if (std::optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) { 4034e8d8bef9SDimitry Andric ConstLength = CL->zextOrTrunc(PointerWidthInBits); 40350b57cec5SDimitry Andric Length = nullptr; 40360b57cec5SDimitry Andric } 40370b57cec5SDimitry Andric auto *LowerBound = E->getLowerBound(); 40380b57cec5SDimitry Andric llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 4039e8d8bef9SDimitry Andric if (LowerBound) { 4040bdd1243dSDimitry Andric if (std::optional<llvm::APSInt> LB = 4041bdd1243dSDimitry Andric LowerBound->getIntegerConstantExpr(C)) { 4042e8d8bef9SDimitry Andric ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits); 40430b57cec5SDimitry Andric LowerBound = nullptr; 40440b57cec5SDimitry Andric } 4045e8d8bef9SDimitry Andric } 40460b57cec5SDimitry Andric if (!Length) 40470b57cec5SDimitry Andric --ConstLength; 40480b57cec5SDimitry Andric else if (!LowerBound) 40490b57cec5SDimitry Andric --ConstLowerBound; 40500b57cec5SDimitry Andric 40510b57cec5SDimitry Andric if (Length || LowerBound) { 40520b57cec5SDimitry Andric auto *LowerBoundVal = 40530b57cec5SDimitry Andric LowerBound 40540b57cec5SDimitry Andric ? Builder.CreateIntCast( 40550b57cec5SDimitry Andric EmitScalarExpr(LowerBound), IntPtrTy, 40560b57cec5SDimitry Andric LowerBound->getType()->hasSignedIntegerRepresentation()) 40570b57cec5SDimitry Andric : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 40580b57cec5SDimitry Andric auto *LengthVal = 40590b57cec5SDimitry Andric Length 40600b57cec5SDimitry Andric ? Builder.CreateIntCast( 40610b57cec5SDimitry Andric EmitScalarExpr(Length), IntPtrTy, 40620b57cec5SDimitry Andric Length->getType()->hasSignedIntegerRepresentation()) 40630b57cec5SDimitry Andric : llvm::ConstantInt::get(IntPtrTy, ConstLength); 40640b57cec5SDimitry Andric Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 40650b57cec5SDimitry Andric /*HasNUW=*/false, 40660b57cec5SDimitry Andric !getLangOpts().isSignedOverflowDefined()); 40670b57cec5SDimitry Andric if (Length && LowerBound) { 40680b57cec5SDimitry Andric Idx = Builder.CreateSub( 40690b57cec5SDimitry Andric Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 40700b57cec5SDimitry Andric /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 40710b57cec5SDimitry Andric } 40720b57cec5SDimitry Andric } else 40730b57cec5SDimitry Andric Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 40740b57cec5SDimitry Andric } else { 40750b57cec5SDimitry Andric // Idx = ArraySize - 1; 40760b57cec5SDimitry Andric QualType ArrayTy = BaseTy->isPointerType() 40770b57cec5SDimitry Andric ? E->getBase()->IgnoreParenImpCasts()->getType() 40780b57cec5SDimitry Andric : BaseTy; 40790b57cec5SDimitry Andric if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 40800b57cec5SDimitry Andric Length = VAT->getSizeExpr(); 4081bdd1243dSDimitry Andric if (std::optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) { 4082e8d8bef9SDimitry Andric ConstLength = *L; 40830b57cec5SDimitry Andric Length = nullptr; 4084e8d8bef9SDimitry Andric } 40850b57cec5SDimitry Andric } else { 40860b57cec5SDimitry Andric auto *CAT = C.getAsConstantArrayType(ArrayTy); 4087*fe013be4SDimitry Andric assert(CAT && "unexpected type for array initializer"); 40880b57cec5SDimitry Andric ConstLength = CAT->getSize(); 40890b57cec5SDimitry Andric } 40900b57cec5SDimitry Andric if (Length) { 40910b57cec5SDimitry Andric auto *LengthVal = Builder.CreateIntCast( 40920b57cec5SDimitry Andric EmitScalarExpr(Length), IntPtrTy, 40930b57cec5SDimitry Andric Length->getType()->hasSignedIntegerRepresentation()); 40940b57cec5SDimitry Andric Idx = Builder.CreateSub( 40950b57cec5SDimitry Andric LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 40960b57cec5SDimitry Andric /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 40970b57cec5SDimitry Andric } else { 40980b57cec5SDimitry Andric ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 40990b57cec5SDimitry Andric --ConstLength; 41000b57cec5SDimitry Andric Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 41010b57cec5SDimitry Andric } 41020b57cec5SDimitry Andric } 41030b57cec5SDimitry Andric } 41040b57cec5SDimitry Andric assert(Idx); 41050b57cec5SDimitry Andric 41060b57cec5SDimitry Andric Address EltPtr = Address::invalid(); 41070b57cec5SDimitry Andric LValueBaseInfo BaseInfo; 41080b57cec5SDimitry Andric TBAAAccessInfo TBAAInfo; 41090b57cec5SDimitry Andric if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 41100b57cec5SDimitry Andric // The base must be a pointer, which is not an aggregate. Emit 41110b57cec5SDimitry Andric // it. It needs to be emitted first in case it's what captures 41120b57cec5SDimitry Andric // the VLA bounds. 41130b57cec5SDimitry Andric Address Base = 41140b57cec5SDimitry Andric emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 41150b57cec5SDimitry Andric BaseTy, VLA->getElementType(), IsLowerBound); 41160b57cec5SDimitry Andric // The element count here is the total number of non-VLA elements. 41170b57cec5SDimitry Andric llvm::Value *NumElements = getVLASize(VLA).NumElts; 41180b57cec5SDimitry Andric 41190b57cec5SDimitry Andric // Effectively, the multiply by the VLA size is part of the GEP. 41200b57cec5SDimitry Andric // GEP indexes are signed, and scaling an index isn't permitted to 41210b57cec5SDimitry Andric // signed-overflow, so we use the same semantics for our explicit 41220b57cec5SDimitry Andric // multiply. We suppress this if overflow is not undefined behavior. 41230b57cec5SDimitry Andric if (getLangOpts().isSignedOverflowDefined()) 41240b57cec5SDimitry Andric Idx = Builder.CreateMul(Idx, NumElements); 41250b57cec5SDimitry Andric else 41260b57cec5SDimitry Andric Idx = Builder.CreateNSWMul(Idx, NumElements); 41270b57cec5SDimitry Andric EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 41280b57cec5SDimitry Andric !getLangOpts().isSignedOverflowDefined(), 41290b57cec5SDimitry Andric /*signedIndices=*/false, E->getExprLoc()); 41300b57cec5SDimitry Andric } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 41310b57cec5SDimitry Andric // If this is A[i] where A is an array, the frontend will have decayed the 41320b57cec5SDimitry Andric // base to be a ArrayToPointerDecay implicit cast. While correct, it is 41330b57cec5SDimitry Andric // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 41340b57cec5SDimitry Andric // "gep x, i" here. Emit one "gep A, 0, i". 41350b57cec5SDimitry Andric assert(Array->getType()->isArrayType() && 41360b57cec5SDimitry Andric "Array to pointer decay must have array source type!"); 41370b57cec5SDimitry Andric LValue ArrayLV; 41380b57cec5SDimitry Andric // For simple multidimensional array indexing, set the 'accessed' flag for 41390b57cec5SDimitry Andric // better bounds-checking of the base expression. 41400b57cec5SDimitry Andric if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 41410b57cec5SDimitry Andric ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 41420b57cec5SDimitry Andric else 41430b57cec5SDimitry Andric ArrayLV = EmitLValue(Array); 41440b57cec5SDimitry Andric 41450b57cec5SDimitry Andric // Propagate the alignment from the array itself to the result. 41460b57cec5SDimitry Andric EltPtr = emitArraySubscriptGEP( 4147480093f4SDimitry Andric *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 41480b57cec5SDimitry Andric ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 41490b57cec5SDimitry Andric /*signedIndices=*/false, E->getExprLoc()); 41500b57cec5SDimitry Andric BaseInfo = ArrayLV.getBaseInfo(); 41510b57cec5SDimitry Andric TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 41520b57cec5SDimitry Andric } else { 41530b57cec5SDimitry Andric Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 41540b57cec5SDimitry Andric TBAAInfo, BaseTy, ResultExprTy, 41550b57cec5SDimitry Andric IsLowerBound); 41560b57cec5SDimitry Andric EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 41570b57cec5SDimitry Andric !getLangOpts().isSignedOverflowDefined(), 41580b57cec5SDimitry Andric /*signedIndices=*/false, E->getExprLoc()); 41590b57cec5SDimitry Andric } 41600b57cec5SDimitry Andric 41610b57cec5SDimitry Andric return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 41620b57cec5SDimitry Andric } 41630b57cec5SDimitry Andric 41640b57cec5SDimitry Andric LValue CodeGenFunction:: 41650b57cec5SDimitry Andric EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 41660b57cec5SDimitry Andric // Emit the base vector as an l-value. 41670b57cec5SDimitry Andric LValue Base; 41680b57cec5SDimitry Andric 41690b57cec5SDimitry Andric // ExtVectorElementExpr's base can either be a vector or pointer to vector. 41700b57cec5SDimitry Andric if (E->isArrow()) { 41710b57cec5SDimitry Andric // If it is a pointer to a vector, emit the address and form an lvalue with 41720b57cec5SDimitry Andric // it. 41730b57cec5SDimitry Andric LValueBaseInfo BaseInfo; 41740b57cec5SDimitry Andric TBAAAccessInfo TBAAInfo; 41750b57cec5SDimitry Andric Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 4176480093f4SDimitry Andric const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 41770b57cec5SDimitry Andric Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 41780b57cec5SDimitry Andric Base.getQuals().removeObjCGCAttr(); 41790b57cec5SDimitry Andric } else if (E->getBase()->isGLValue()) { 41800b57cec5SDimitry Andric // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 41810b57cec5SDimitry Andric // emit the base as an lvalue. 41820b57cec5SDimitry Andric assert(E->getBase()->getType()->isVectorType()); 41830b57cec5SDimitry Andric Base = EmitLValue(E->getBase()); 41840b57cec5SDimitry Andric } else { 41850b57cec5SDimitry Andric // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 41860b57cec5SDimitry Andric assert(E->getBase()->getType()->isVectorType() && 41870b57cec5SDimitry Andric "Result must be a vector"); 41880b57cec5SDimitry Andric llvm::Value *Vec = EmitScalarExpr(E->getBase()); 41890b57cec5SDimitry Andric 41900b57cec5SDimitry Andric // Store the vector to memory (because LValue wants an address). 41910b57cec5SDimitry Andric Address VecMem = CreateMemTemp(E->getBase()->getType()); 41920b57cec5SDimitry Andric Builder.CreateStore(Vec, VecMem); 41930b57cec5SDimitry Andric Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 41940b57cec5SDimitry Andric AlignmentSource::Decl); 41950b57cec5SDimitry Andric } 41960b57cec5SDimitry Andric 41970b57cec5SDimitry Andric QualType type = 41980b57cec5SDimitry Andric E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 41990b57cec5SDimitry Andric 42000b57cec5SDimitry Andric // Encode the element access list into a vector of unsigned indices. 42010b57cec5SDimitry Andric SmallVector<uint32_t, 4> Indices; 42020b57cec5SDimitry Andric E->getEncodedElementAccess(Indices); 42030b57cec5SDimitry Andric 42040b57cec5SDimitry Andric if (Base.isSimple()) { 42050b57cec5SDimitry Andric llvm::Constant *CV = 42060b57cec5SDimitry Andric llvm::ConstantDataVector::get(getLLVMContext(), Indices); 4207480093f4SDimitry Andric return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 42080b57cec5SDimitry Andric Base.getBaseInfo(), TBAAAccessInfo()); 42090b57cec5SDimitry Andric } 42100b57cec5SDimitry Andric assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 42110b57cec5SDimitry Andric 42120b57cec5SDimitry Andric llvm::Constant *BaseElts = Base.getExtVectorElts(); 42130b57cec5SDimitry Andric SmallVector<llvm::Constant *, 4> CElts; 42140b57cec5SDimitry Andric 42150b57cec5SDimitry Andric for (unsigned i = 0, e = Indices.size(); i != e; ++i) 42160b57cec5SDimitry Andric CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 42170b57cec5SDimitry Andric llvm::Constant *CV = llvm::ConstantVector::get(CElts); 42180b57cec5SDimitry Andric return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 42190b57cec5SDimitry Andric Base.getBaseInfo(), TBAAAccessInfo()); 42200b57cec5SDimitry Andric } 42210b57cec5SDimitry Andric 42220b57cec5SDimitry Andric LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 42230b57cec5SDimitry Andric if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 42240b57cec5SDimitry Andric EmitIgnoredExpr(E->getBase()); 42250b57cec5SDimitry Andric return EmitDeclRefLValue(DRE); 42260b57cec5SDimitry Andric } 42270b57cec5SDimitry Andric 42280b57cec5SDimitry Andric Expr *BaseExpr = E->getBase(); 42290b57cec5SDimitry Andric // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 42300b57cec5SDimitry Andric LValue BaseLV; 42310b57cec5SDimitry Andric if (E->isArrow()) { 42320b57cec5SDimitry Andric LValueBaseInfo BaseInfo; 42330b57cec5SDimitry Andric TBAAAccessInfo TBAAInfo; 42340b57cec5SDimitry Andric Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 42350b57cec5SDimitry Andric QualType PtrTy = BaseExpr->getType()->getPointeeType(); 42360b57cec5SDimitry Andric SanitizerSet SkippedChecks; 42370b57cec5SDimitry Andric bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 42380b57cec5SDimitry Andric if (IsBaseCXXThis) 42390b57cec5SDimitry Andric SkippedChecks.set(SanitizerKind::Alignment, true); 42400b57cec5SDimitry Andric if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 42410b57cec5SDimitry Andric SkippedChecks.set(SanitizerKind::Null, true); 42420b57cec5SDimitry Andric EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 42430b57cec5SDimitry Andric /*Alignment=*/CharUnits::Zero(), SkippedChecks); 42440b57cec5SDimitry Andric BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 42450b57cec5SDimitry Andric } else 42460b57cec5SDimitry Andric BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 42470b57cec5SDimitry Andric 42480b57cec5SDimitry Andric NamedDecl *ND = E->getMemberDecl(); 42490b57cec5SDimitry Andric if (auto *Field = dyn_cast<FieldDecl>(ND)) { 42500b57cec5SDimitry Andric LValue LV = EmitLValueForField(BaseLV, Field); 42510b57cec5SDimitry Andric setObjCGCLValueClass(getContext(), E, LV); 4252480093f4SDimitry Andric if (getLangOpts().OpenMP) { 4253480093f4SDimitry Andric // If the member was explicitly marked as nontemporal, mark it as 4254480093f4SDimitry Andric // nontemporal. If the base lvalue is marked as nontemporal, mark access 4255480093f4SDimitry Andric // to children as nontemporal too. 4256480093f4SDimitry Andric if ((IsWrappedCXXThis(BaseExpr) && 4257480093f4SDimitry Andric CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 4258480093f4SDimitry Andric BaseLV.isNontemporal()) 4259480093f4SDimitry Andric LV.setNontemporal(/*Value=*/true); 4260480093f4SDimitry Andric } 42610b57cec5SDimitry Andric return LV; 42620b57cec5SDimitry Andric } 42630b57cec5SDimitry Andric 42640b57cec5SDimitry Andric if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 42650b57cec5SDimitry Andric return EmitFunctionDeclLValue(*this, E, FD); 42660b57cec5SDimitry Andric 42670b57cec5SDimitry Andric llvm_unreachable("Unhandled member declaration!"); 42680b57cec5SDimitry Andric } 42690b57cec5SDimitry Andric 42700b57cec5SDimitry Andric /// Given that we are currently emitting a lambda, emit an l-value for 42710b57cec5SDimitry Andric /// one of its members. 42720b57cec5SDimitry Andric LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 4273fe6060f1SDimitry Andric if (CurCodeDecl) { 42740b57cec5SDimitry Andric assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 42750b57cec5SDimitry Andric assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 4276fe6060f1SDimitry Andric } 42770b57cec5SDimitry Andric QualType LambdaTagType = 42780b57cec5SDimitry Andric getContext().getTagDeclType(Field->getParent()); 42790b57cec5SDimitry Andric LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 42800b57cec5SDimitry Andric return EmitLValueForField(LambdaLV, Field); 42810b57cec5SDimitry Andric } 42820b57cec5SDimitry Andric 42830b57cec5SDimitry Andric /// Get the field index in the debug info. The debug info structure/union 42840b57cec5SDimitry Andric /// will ignore the unnamed bitfields. 42850b57cec5SDimitry Andric unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 42860b57cec5SDimitry Andric unsigned FieldIndex) { 42870b57cec5SDimitry Andric unsigned I = 0, Skipped = 0; 42880b57cec5SDimitry Andric 4289bdd1243dSDimitry Andric for (auto *F : Rec->getDefinition()->fields()) { 42900b57cec5SDimitry Andric if (I == FieldIndex) 42910b57cec5SDimitry Andric break; 42920b57cec5SDimitry Andric if (F->isUnnamedBitfield()) 42930b57cec5SDimitry Andric Skipped++; 42940b57cec5SDimitry Andric I++; 42950b57cec5SDimitry Andric } 42960b57cec5SDimitry Andric 42970b57cec5SDimitry Andric return FieldIndex - Skipped; 42980b57cec5SDimitry Andric } 42990b57cec5SDimitry Andric 43000b57cec5SDimitry Andric /// Get the address of a zero-sized field within a record. The resulting 43010b57cec5SDimitry Andric /// address doesn't necessarily have the right type. 43020b57cec5SDimitry Andric static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 43030b57cec5SDimitry Andric const FieldDecl *Field) { 43040b57cec5SDimitry Andric CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 43050b57cec5SDimitry Andric CGF.getContext().getFieldOffset(Field)); 43060b57cec5SDimitry Andric if (Offset.isZero()) 43070b57cec5SDimitry Andric return Base; 4308*fe013be4SDimitry Andric Base = Base.withElementType(CGF.Int8Ty); 43090b57cec5SDimitry Andric return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 43100b57cec5SDimitry Andric } 43110b57cec5SDimitry Andric 43120b57cec5SDimitry Andric /// Drill down to the storage of a field without walking into 43130b57cec5SDimitry Andric /// reference types. 43140b57cec5SDimitry Andric /// 43150b57cec5SDimitry Andric /// The resulting address doesn't necessarily have the right type. 43160b57cec5SDimitry Andric static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 43170b57cec5SDimitry Andric const FieldDecl *field) { 43180b57cec5SDimitry Andric if (field->isZeroSize(CGF.getContext())) 43190b57cec5SDimitry Andric return emitAddrOfZeroSizeField(CGF, base, field); 43200b57cec5SDimitry Andric 43210b57cec5SDimitry Andric const RecordDecl *rec = field->getParent(); 43220b57cec5SDimitry Andric 43230b57cec5SDimitry Andric unsigned idx = 43240b57cec5SDimitry Andric CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 43250b57cec5SDimitry Andric 43260b57cec5SDimitry Andric return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 43270b57cec5SDimitry Andric } 43280b57cec5SDimitry Andric 43295ffd83dbSDimitry Andric static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 43305ffd83dbSDimitry Andric Address addr, const FieldDecl *field) { 43310b57cec5SDimitry Andric const RecordDecl *rec = field->getParent(); 43325ffd83dbSDimitry Andric llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 43335ffd83dbSDimitry Andric base.getType(), rec->getLocation()); 43340b57cec5SDimitry Andric 43350b57cec5SDimitry Andric unsigned idx = 43360b57cec5SDimitry Andric CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 43370b57cec5SDimitry Andric 43380b57cec5SDimitry Andric return CGF.Builder.CreatePreserveStructAccessIndex( 43395ffd83dbSDimitry Andric addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 43400b57cec5SDimitry Andric } 43410b57cec5SDimitry Andric 43420b57cec5SDimitry Andric static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 43430b57cec5SDimitry Andric const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 43440b57cec5SDimitry Andric if (!RD) 43450b57cec5SDimitry Andric return false; 43460b57cec5SDimitry Andric 43470b57cec5SDimitry Andric if (RD->isDynamicClass()) 43480b57cec5SDimitry Andric return true; 43490b57cec5SDimitry Andric 43500b57cec5SDimitry Andric for (const auto &Base : RD->bases()) 43510b57cec5SDimitry Andric if (hasAnyVptr(Base.getType(), Context)) 43520b57cec5SDimitry Andric return true; 43530b57cec5SDimitry Andric 43540b57cec5SDimitry Andric for (const FieldDecl *Field : RD->fields()) 43550b57cec5SDimitry Andric if (hasAnyVptr(Field->getType(), Context)) 43560b57cec5SDimitry Andric return true; 43570b57cec5SDimitry Andric 43580b57cec5SDimitry Andric return false; 43590b57cec5SDimitry Andric } 43600b57cec5SDimitry Andric 43610b57cec5SDimitry Andric LValue CodeGenFunction::EmitLValueForField(LValue base, 43620b57cec5SDimitry Andric const FieldDecl *field) { 43630b57cec5SDimitry Andric LValueBaseInfo BaseInfo = base.getBaseInfo(); 43640b57cec5SDimitry Andric 43650b57cec5SDimitry Andric if (field->isBitField()) { 43660b57cec5SDimitry Andric const CGRecordLayout &RL = 43670b57cec5SDimitry Andric CGM.getTypes().getCGRecordLayout(field->getParent()); 43680b57cec5SDimitry Andric const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4369e8d8bef9SDimitry Andric const bool UseVolatile = isAAPCS(CGM.getTarget()) && 4370e8d8bef9SDimitry Andric CGM.getCodeGenOpts().AAPCSBitfieldWidth && 4371e8d8bef9SDimitry Andric Info.VolatileStorageSize != 0 && 4372e8d8bef9SDimitry Andric field->getType() 4373e8d8bef9SDimitry Andric .withCVRQualifiers(base.getVRQualifiers()) 4374e8d8bef9SDimitry Andric .isVolatileQualified(); 4375480093f4SDimitry Andric Address Addr = base.getAddress(*this); 43760b57cec5SDimitry Andric unsigned Idx = RL.getLLVMFieldNo(field); 4377480093f4SDimitry Andric const RecordDecl *rec = field->getParent(); 4378e8d8bef9SDimitry Andric if (!UseVolatile) { 4379480093f4SDimitry Andric if (!IsInPreservedAIRegion && 4380480093f4SDimitry Andric (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 43810b57cec5SDimitry Andric if (Idx != 0) 43820b57cec5SDimitry Andric // For structs, we GEP to the field that the record layout suggests. 43830b57cec5SDimitry Andric Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4384a7dea167SDimitry Andric } else { 4385a7dea167SDimitry Andric llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4386a7dea167SDimitry Andric getContext().getRecordType(rec), rec->getLocation()); 4387e8d8bef9SDimitry Andric Addr = Builder.CreatePreserveStructAccessIndex( 4388e8d8bef9SDimitry Andric Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()), 4389a7dea167SDimitry Andric DbgInfo); 4390a7dea167SDimitry Andric } 4391e8d8bef9SDimitry Andric } 4392e8d8bef9SDimitry Andric const unsigned SS = 4393e8d8bef9SDimitry Andric UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 43940b57cec5SDimitry Andric // Get the access type. 4395e8d8bef9SDimitry Andric llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS); 4396*fe013be4SDimitry Andric Addr = Addr.withElementType(FieldIntTy); 4397e8d8bef9SDimitry Andric if (UseVolatile) { 4398e8d8bef9SDimitry Andric const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity(); 4399e8d8bef9SDimitry Andric if (VolatileOffset) 4400e8d8bef9SDimitry Andric Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset); 4401e8d8bef9SDimitry Andric } 44020b57cec5SDimitry Andric 44030b57cec5SDimitry Andric QualType fieldType = 44040b57cec5SDimitry Andric field->getType().withCVRQualifiers(base.getVRQualifiers()); 44050b57cec5SDimitry Andric // TODO: Support TBAA for bit fields. 44060b57cec5SDimitry Andric LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 44070b57cec5SDimitry Andric return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 44080b57cec5SDimitry Andric TBAAAccessInfo()); 44090b57cec5SDimitry Andric } 44100b57cec5SDimitry Andric 44110b57cec5SDimitry Andric // Fields of may-alias structures are may-alias themselves. 44120b57cec5SDimitry Andric // FIXME: this should get propagated down through anonymous structs 44130b57cec5SDimitry Andric // and unions. 44140b57cec5SDimitry Andric QualType FieldType = field->getType(); 44150b57cec5SDimitry Andric const RecordDecl *rec = field->getParent(); 44160b57cec5SDimitry Andric AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 44170b57cec5SDimitry Andric LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 44180b57cec5SDimitry Andric TBAAAccessInfo FieldTBAAInfo; 44190b57cec5SDimitry Andric if (base.getTBAAInfo().isMayAlias() || 44200b57cec5SDimitry Andric rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 44210b57cec5SDimitry Andric FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 44220b57cec5SDimitry Andric } else if (rec->isUnion()) { 44230b57cec5SDimitry Andric // TODO: Support TBAA for unions. 44240b57cec5SDimitry Andric FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 44250b57cec5SDimitry Andric } else { 44260b57cec5SDimitry Andric // If no base type been assigned for the base access, then try to generate 44270b57cec5SDimitry Andric // one for this base lvalue. 44280b57cec5SDimitry Andric FieldTBAAInfo = base.getTBAAInfo(); 44290b57cec5SDimitry Andric if (!FieldTBAAInfo.BaseType) { 44300b57cec5SDimitry Andric FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 44310b57cec5SDimitry Andric assert(!FieldTBAAInfo.Offset && 44320b57cec5SDimitry Andric "Nonzero offset for an access with no base type!"); 44330b57cec5SDimitry Andric } 44340b57cec5SDimitry Andric 44350b57cec5SDimitry Andric // Adjust offset to be relative to the base type. 44360b57cec5SDimitry Andric const ASTRecordLayout &Layout = 44370b57cec5SDimitry Andric getContext().getASTRecordLayout(field->getParent()); 44380b57cec5SDimitry Andric unsigned CharWidth = getContext().getCharWidth(); 44390b57cec5SDimitry Andric if (FieldTBAAInfo.BaseType) 44400b57cec5SDimitry Andric FieldTBAAInfo.Offset += 44410b57cec5SDimitry Andric Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 44420b57cec5SDimitry Andric 44430b57cec5SDimitry Andric // Update the final access type and size. 44440b57cec5SDimitry Andric FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 44450b57cec5SDimitry Andric FieldTBAAInfo.Size = 44460b57cec5SDimitry Andric getContext().getTypeSizeInChars(FieldType).getQuantity(); 44470b57cec5SDimitry Andric } 44480b57cec5SDimitry Andric 4449480093f4SDimitry Andric Address addr = base.getAddress(*this); 44500b57cec5SDimitry Andric if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 44510b57cec5SDimitry Andric if (CGM.getCodeGenOpts().StrictVTablePointers && 44520b57cec5SDimitry Andric ClassDef->isDynamicClass()) { 44530b57cec5SDimitry Andric // Getting to any field of dynamic object requires stripping dynamic 44540b57cec5SDimitry Andric // information provided by invariant.group. This is because accessing 44550b57cec5SDimitry Andric // fields may leak the real address of dynamic object, which could result 44560b57cec5SDimitry Andric // in miscompilation when leaked pointer would be compared. 44570b57cec5SDimitry Andric auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 445881ad6265SDimitry Andric addr = Address(stripped, addr.getElementType(), addr.getAlignment()); 44590b57cec5SDimitry Andric } 44600b57cec5SDimitry Andric } 44610b57cec5SDimitry Andric 44620b57cec5SDimitry Andric unsigned RecordCVR = base.getVRQualifiers(); 44630b57cec5SDimitry Andric if (rec->isUnion()) { 44640b57cec5SDimitry Andric // For unions, there is no pointer adjustment. 44650b57cec5SDimitry Andric if (CGM.getCodeGenOpts().StrictVTablePointers && 44660b57cec5SDimitry Andric hasAnyVptr(FieldType, getContext())) 44670b57cec5SDimitry Andric // Because unions can easily skip invariant.barriers, we need to add 44680b57cec5SDimitry Andric // a barrier every time CXXRecord field with vptr is referenced. 44690eae32dcSDimitry Andric addr = Builder.CreateLaunderInvariantGroup(addr); 44700b57cec5SDimitry Andric 4471480093f4SDimitry Andric if (IsInPreservedAIRegion || 4472480093f4SDimitry Andric (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 44730b57cec5SDimitry Andric // Remember the original union field index 44745ffd83dbSDimitry Andric llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 44755ffd83dbSDimitry Andric rec->getLocation()); 44760b57cec5SDimitry Andric addr = Address( 44770b57cec5SDimitry Andric Builder.CreatePreserveUnionAccessIndex( 44780b57cec5SDimitry Andric addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 447981ad6265SDimitry Andric addr.getElementType(), addr.getAlignment()); 44800b57cec5SDimitry Andric } 44810b57cec5SDimitry Andric 4482a7dea167SDimitry Andric if (FieldType->isReferenceType()) 4483*fe013be4SDimitry Andric addr = addr.withElementType(CGM.getTypes().ConvertTypeForMem(FieldType)); 4484a7dea167SDimitry Andric } else { 4485480093f4SDimitry Andric if (!IsInPreservedAIRegion && 4486480093f4SDimitry Andric (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 44870b57cec5SDimitry Andric // For structs, we GEP to the field that the record layout suggests. 44880b57cec5SDimitry Andric addr = emitAddrOfFieldStorage(*this, addr, field); 44890b57cec5SDimitry Andric else 44900b57cec5SDimitry Andric // Remember the original struct field index 44915ffd83dbSDimitry Andric addr = emitPreserveStructAccess(*this, base, addr, field); 4492a7dea167SDimitry Andric } 44930b57cec5SDimitry Andric 44940b57cec5SDimitry Andric // If this is a reference field, load the reference right now. 44950b57cec5SDimitry Andric if (FieldType->isReferenceType()) { 4496a7dea167SDimitry Andric LValue RefLVal = 4497a7dea167SDimitry Andric MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 44980b57cec5SDimitry Andric if (RecordCVR & Qualifiers::Volatile) 44990b57cec5SDimitry Andric RefLVal.getQuals().addVolatile(); 45000b57cec5SDimitry Andric addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 45010b57cec5SDimitry Andric 45020b57cec5SDimitry Andric // Qualifiers on the struct don't apply to the referencee. 45030b57cec5SDimitry Andric RecordCVR = 0; 45040b57cec5SDimitry Andric FieldType = FieldType->getPointeeType(); 45050b57cec5SDimitry Andric } 45060b57cec5SDimitry Andric 45070b57cec5SDimitry Andric // Make sure that the address is pointing to the right type. This is critical 4508*fe013be4SDimitry Andric // for both unions and structs. 4509*fe013be4SDimitry Andric addr = addr.withElementType(CGM.getTypes().ConvertTypeForMem(FieldType)); 45100b57cec5SDimitry Andric 45110b57cec5SDimitry Andric if (field->hasAttr<AnnotateAttr>()) 45120b57cec5SDimitry Andric addr = EmitFieldAnnotations(field, addr); 45130b57cec5SDimitry Andric 45140b57cec5SDimitry Andric LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 45150b57cec5SDimitry Andric LV.getQuals().addCVRQualifiers(RecordCVR); 45160b57cec5SDimitry Andric 45170b57cec5SDimitry Andric // __weak attribute on a field is ignored. 45180b57cec5SDimitry Andric if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 45190b57cec5SDimitry Andric LV.getQuals().removeObjCGCAttr(); 45200b57cec5SDimitry Andric 45210b57cec5SDimitry Andric return LV; 45220b57cec5SDimitry Andric } 45230b57cec5SDimitry Andric 45240b57cec5SDimitry Andric LValue 45250b57cec5SDimitry Andric CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 45260b57cec5SDimitry Andric const FieldDecl *Field) { 45270b57cec5SDimitry Andric QualType FieldType = Field->getType(); 45280b57cec5SDimitry Andric 45290b57cec5SDimitry Andric if (!FieldType->isReferenceType()) 45300b57cec5SDimitry Andric return EmitLValueForField(Base, Field); 45310b57cec5SDimitry Andric 4532480093f4SDimitry Andric Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 45330b57cec5SDimitry Andric 45340b57cec5SDimitry Andric // Make sure that the address is pointing to the right type. 45350b57cec5SDimitry Andric llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4536*fe013be4SDimitry Andric V = V.withElementType(llvmType); 45370b57cec5SDimitry Andric 45380b57cec5SDimitry Andric // TODO: Generate TBAA information that describes this access as a structure 45390b57cec5SDimitry Andric // member access and not just an access to an object of the field's type. This 45400b57cec5SDimitry Andric // should be similar to what we do in EmitLValueForField(). 45410b57cec5SDimitry Andric LValueBaseInfo BaseInfo = Base.getBaseInfo(); 45420b57cec5SDimitry Andric AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 45430b57cec5SDimitry Andric LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 45440b57cec5SDimitry Andric return MakeAddrLValue(V, FieldType, FieldBaseInfo, 45450b57cec5SDimitry Andric CGM.getTBAAInfoForSubobject(Base, FieldType)); 45460b57cec5SDimitry Andric } 45470b57cec5SDimitry Andric 45480b57cec5SDimitry Andric LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 45490b57cec5SDimitry Andric if (E->isFileScope()) { 45500b57cec5SDimitry Andric ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 45510b57cec5SDimitry Andric return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 45520b57cec5SDimitry Andric } 45530b57cec5SDimitry Andric if (E->getType()->isVariablyModifiedType()) 45540b57cec5SDimitry Andric // make sure to emit the VLA size. 45550b57cec5SDimitry Andric EmitVariablyModifiedType(E->getType()); 45560b57cec5SDimitry Andric 45570b57cec5SDimitry Andric Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 45580b57cec5SDimitry Andric const Expr *InitExpr = E->getInitializer(); 45590b57cec5SDimitry Andric LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 45600b57cec5SDimitry Andric 45610b57cec5SDimitry Andric EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 45620b57cec5SDimitry Andric /*Init*/ true); 45630b57cec5SDimitry Andric 45645ffd83dbSDimitry Andric // Block-scope compound literals are destroyed at the end of the enclosing 45655ffd83dbSDimitry Andric // scope in C. 45665ffd83dbSDimitry Andric if (!getLangOpts().CPlusPlus) 45675ffd83dbSDimitry Andric if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 45685ffd83dbSDimitry Andric pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr, 45695ffd83dbSDimitry Andric E->getType(), getDestroyer(DtorKind), 45705ffd83dbSDimitry Andric DtorKind & EHCleanup); 45715ffd83dbSDimitry Andric 45720b57cec5SDimitry Andric return Result; 45730b57cec5SDimitry Andric } 45740b57cec5SDimitry Andric 45750b57cec5SDimitry Andric LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 45760b57cec5SDimitry Andric if (!E->isGLValue()) 45770b57cec5SDimitry Andric // Initializing an aggregate temporary in C++11: T{...}. 45780b57cec5SDimitry Andric return EmitAggExprToLValue(E); 45790b57cec5SDimitry Andric 45800b57cec5SDimitry Andric // An lvalue initializer list must be initializing a reference. 45810b57cec5SDimitry Andric assert(E->isTransparent() && "non-transparent glvalue init list"); 45820b57cec5SDimitry Andric return EmitLValue(E->getInit(0)); 45830b57cec5SDimitry Andric } 45840b57cec5SDimitry Andric 45850b57cec5SDimitry Andric /// Emit the operand of a glvalue conditional operator. This is either a glvalue 45860b57cec5SDimitry Andric /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 45870b57cec5SDimitry Andric /// LValue is returned and the current block has been terminated. 4588bdd1243dSDimitry Andric static std::optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 45890b57cec5SDimitry Andric const Expr *Operand) { 45900b57cec5SDimitry Andric if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 45910b57cec5SDimitry Andric CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4592bdd1243dSDimitry Andric return std::nullopt; 45930b57cec5SDimitry Andric } 45940b57cec5SDimitry Andric 45950b57cec5SDimitry Andric return CGF.EmitLValue(Operand); 45960b57cec5SDimitry Andric } 45970b57cec5SDimitry Andric 459881ad6265SDimitry Andric namespace { 459981ad6265SDimitry Andric // Handle the case where the condition is a constant evaluatable simple integer, 460081ad6265SDimitry Andric // which means we don't have to separately handle the true/false blocks. 4601bdd1243dSDimitry Andric std::optional<LValue> HandleConditionalOperatorLValueSimpleCase( 460281ad6265SDimitry Andric CodeGenFunction &CGF, const AbstractConditionalOperator *E) { 460381ad6265SDimitry Andric const Expr *condExpr = E->getCond(); 460481ad6265SDimitry Andric bool CondExprBool; 460581ad6265SDimitry Andric if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 460681ad6265SDimitry Andric const Expr *Live = E->getTrueExpr(), *Dead = E->getFalseExpr(); 460781ad6265SDimitry Andric if (!CondExprBool) 460881ad6265SDimitry Andric std::swap(Live, Dead); 460981ad6265SDimitry Andric 461081ad6265SDimitry Andric if (!CGF.ContainsLabel(Dead)) { 461181ad6265SDimitry Andric // If the true case is live, we need to track its region. 461281ad6265SDimitry Andric if (CondExprBool) 461381ad6265SDimitry Andric CGF.incrementProfileCounter(E); 461481ad6265SDimitry Andric // If a throw expression we emit it and return an undefined lvalue 461581ad6265SDimitry Andric // because it can't be used. 461681ad6265SDimitry Andric if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Live->IgnoreParens())) { 461781ad6265SDimitry Andric CGF.EmitCXXThrowExpr(ThrowExpr); 461881ad6265SDimitry Andric llvm::Type *ElemTy = CGF.ConvertType(Dead->getType()); 461981ad6265SDimitry Andric llvm::Type *Ty = llvm::PointerType::getUnqual(ElemTy); 462081ad6265SDimitry Andric return CGF.MakeAddrLValue( 462181ad6265SDimitry Andric Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()), 462281ad6265SDimitry Andric Dead->getType()); 462381ad6265SDimitry Andric } 462481ad6265SDimitry Andric return CGF.EmitLValue(Live); 462581ad6265SDimitry Andric } 462681ad6265SDimitry Andric } 4627bdd1243dSDimitry Andric return std::nullopt; 462881ad6265SDimitry Andric } 462981ad6265SDimitry Andric struct ConditionalInfo { 463081ad6265SDimitry Andric llvm::BasicBlock *lhsBlock, *rhsBlock; 4631bdd1243dSDimitry Andric std::optional<LValue> LHS, RHS; 463281ad6265SDimitry Andric }; 463381ad6265SDimitry Andric 463481ad6265SDimitry Andric // Create and generate the 3 blocks for a conditional operator. 463581ad6265SDimitry Andric // Leaves the 'current block' in the continuation basic block. 463681ad6265SDimitry Andric template<typename FuncTy> 463781ad6265SDimitry Andric ConditionalInfo EmitConditionalBlocks(CodeGenFunction &CGF, 463881ad6265SDimitry Andric const AbstractConditionalOperator *E, 463981ad6265SDimitry Andric const FuncTy &BranchGenFunc) { 464081ad6265SDimitry Andric ConditionalInfo Info{CGF.createBasicBlock("cond.true"), 4641bdd1243dSDimitry Andric CGF.createBasicBlock("cond.false"), std::nullopt, 4642bdd1243dSDimitry Andric std::nullopt}; 464381ad6265SDimitry Andric llvm::BasicBlock *endBlock = CGF.createBasicBlock("cond.end"); 464481ad6265SDimitry Andric 464581ad6265SDimitry Andric CodeGenFunction::ConditionalEvaluation eval(CGF); 464681ad6265SDimitry Andric CGF.EmitBranchOnBoolExpr(E->getCond(), Info.lhsBlock, Info.rhsBlock, 464781ad6265SDimitry Andric CGF.getProfileCount(E)); 464881ad6265SDimitry Andric 464981ad6265SDimitry Andric // Any temporaries created here are conditional. 465081ad6265SDimitry Andric CGF.EmitBlock(Info.lhsBlock); 465181ad6265SDimitry Andric CGF.incrementProfileCounter(E); 465281ad6265SDimitry Andric eval.begin(CGF); 465381ad6265SDimitry Andric Info.LHS = BranchGenFunc(CGF, E->getTrueExpr()); 465481ad6265SDimitry Andric eval.end(CGF); 465581ad6265SDimitry Andric Info.lhsBlock = CGF.Builder.GetInsertBlock(); 465681ad6265SDimitry Andric 465781ad6265SDimitry Andric if (Info.LHS) 465881ad6265SDimitry Andric CGF.Builder.CreateBr(endBlock); 465981ad6265SDimitry Andric 466081ad6265SDimitry Andric // Any temporaries created here are conditional. 466181ad6265SDimitry Andric CGF.EmitBlock(Info.rhsBlock); 466281ad6265SDimitry Andric eval.begin(CGF); 466381ad6265SDimitry Andric Info.RHS = BranchGenFunc(CGF, E->getFalseExpr()); 466481ad6265SDimitry Andric eval.end(CGF); 466581ad6265SDimitry Andric Info.rhsBlock = CGF.Builder.GetInsertBlock(); 466681ad6265SDimitry Andric CGF.EmitBlock(endBlock); 466781ad6265SDimitry Andric 466881ad6265SDimitry Andric return Info; 466981ad6265SDimitry Andric } 467081ad6265SDimitry Andric } // namespace 467181ad6265SDimitry Andric 467281ad6265SDimitry Andric void CodeGenFunction::EmitIgnoredConditionalOperator( 467381ad6265SDimitry Andric const AbstractConditionalOperator *E) { 467481ad6265SDimitry Andric if (!E->isGLValue()) { 467581ad6265SDimitry Andric // ?: here should be an aggregate. 467681ad6265SDimitry Andric assert(hasAggregateEvaluationKind(E->getType()) && 467781ad6265SDimitry Andric "Unexpected conditional operator!"); 467881ad6265SDimitry Andric return (void)EmitAggExprToLValue(E); 467981ad6265SDimitry Andric } 468081ad6265SDimitry Andric 468181ad6265SDimitry Andric OpaqueValueMapping binding(*this, E); 468281ad6265SDimitry Andric if (HandleConditionalOperatorLValueSimpleCase(*this, E)) 468381ad6265SDimitry Andric return; 468481ad6265SDimitry Andric 468581ad6265SDimitry Andric EmitConditionalBlocks(*this, E, [](CodeGenFunction &CGF, const Expr *E) { 468681ad6265SDimitry Andric CGF.EmitIgnoredExpr(E); 468781ad6265SDimitry Andric return LValue{}; 468881ad6265SDimitry Andric }); 468981ad6265SDimitry Andric } 469081ad6265SDimitry Andric LValue CodeGenFunction::EmitConditionalOperatorLValue( 469181ad6265SDimitry Andric const AbstractConditionalOperator *expr) { 46920b57cec5SDimitry Andric if (!expr->isGLValue()) { 46930b57cec5SDimitry Andric // ?: here should be an aggregate. 46940b57cec5SDimitry Andric assert(hasAggregateEvaluationKind(expr->getType()) && 46950b57cec5SDimitry Andric "Unexpected conditional operator!"); 46960b57cec5SDimitry Andric return EmitAggExprToLValue(expr); 46970b57cec5SDimitry Andric } 46980b57cec5SDimitry Andric 46990b57cec5SDimitry Andric OpaqueValueMapping binding(*this, expr); 4700bdd1243dSDimitry Andric if (std::optional<LValue> Res = 470181ad6265SDimitry Andric HandleConditionalOperatorLValueSimpleCase(*this, expr)) 470281ad6265SDimitry Andric return *Res; 47030b57cec5SDimitry Andric 470481ad6265SDimitry Andric ConditionalInfo Info = EmitConditionalBlocks( 470581ad6265SDimitry Andric *this, expr, [](CodeGenFunction &CGF, const Expr *E) { 470681ad6265SDimitry Andric return EmitLValueOrThrowExpression(CGF, E); 470781ad6265SDimitry Andric }); 47080b57cec5SDimitry Andric 470981ad6265SDimitry Andric if ((Info.LHS && !Info.LHS->isSimple()) || 471081ad6265SDimitry Andric (Info.RHS && !Info.RHS->isSimple())) 47110b57cec5SDimitry Andric return EmitUnsupportedLValue(expr, "conditional operator"); 47120b57cec5SDimitry Andric 471381ad6265SDimitry Andric if (Info.LHS && Info.RHS) { 471481ad6265SDimitry Andric Address lhsAddr = Info.LHS->getAddress(*this); 471581ad6265SDimitry Andric Address rhsAddr = Info.RHS->getAddress(*this); 47160eae32dcSDimitry Andric llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue"); 471781ad6265SDimitry Andric phi->addIncoming(lhsAddr.getPointer(), Info.lhsBlock); 471881ad6265SDimitry Andric phi->addIncoming(rhsAddr.getPointer(), Info.rhsBlock); 47190eae32dcSDimitry Andric Address result(phi, lhsAddr.getElementType(), 47200eae32dcSDimitry Andric std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment())); 47210b57cec5SDimitry Andric AlignmentSource alignSource = 472281ad6265SDimitry Andric std::max(Info.LHS->getBaseInfo().getAlignmentSource(), 472381ad6265SDimitry Andric Info.RHS->getBaseInfo().getAlignmentSource()); 47240b57cec5SDimitry Andric TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 472581ad6265SDimitry Andric Info.LHS->getTBAAInfo(), Info.RHS->getTBAAInfo()); 47260b57cec5SDimitry Andric return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 47270b57cec5SDimitry Andric TBAAInfo); 47280b57cec5SDimitry Andric } else { 472981ad6265SDimitry Andric assert((Info.LHS || Info.RHS) && 47300b57cec5SDimitry Andric "both operands of glvalue conditional are throw-expressions?"); 473181ad6265SDimitry Andric return Info.LHS ? *Info.LHS : *Info.RHS; 47320b57cec5SDimitry Andric } 47330b57cec5SDimitry Andric } 47340b57cec5SDimitry Andric 47350b57cec5SDimitry Andric /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 47360b57cec5SDimitry Andric /// type. If the cast is to a reference, we can have the usual lvalue result, 47370b57cec5SDimitry Andric /// otherwise if a cast is needed by the code generator in an lvalue context, 47380b57cec5SDimitry Andric /// then it must mean that we need the address of an aggregate in order to 47390b57cec5SDimitry Andric /// access one of its members. This can happen for all the reasons that casts 47400b57cec5SDimitry Andric /// are permitted with aggregate result, including noop aggregate casts, and 47410b57cec5SDimitry Andric /// cast from scalar to union. 47420b57cec5SDimitry Andric LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 47430b57cec5SDimitry Andric switch (E->getCastKind()) { 47440b57cec5SDimitry Andric case CK_ToVoid: 47450b57cec5SDimitry Andric case CK_BitCast: 47460b57cec5SDimitry Andric case CK_LValueToRValueBitCast: 47470b57cec5SDimitry Andric case CK_ArrayToPointerDecay: 47480b57cec5SDimitry Andric case CK_FunctionToPointerDecay: 47490b57cec5SDimitry Andric case CK_NullToMemberPointer: 47500b57cec5SDimitry Andric case CK_NullToPointer: 47510b57cec5SDimitry Andric case CK_IntegralToPointer: 47520b57cec5SDimitry Andric case CK_PointerToIntegral: 47530b57cec5SDimitry Andric case CK_PointerToBoolean: 47540b57cec5SDimitry Andric case CK_VectorSplat: 47550b57cec5SDimitry Andric case CK_IntegralCast: 47560b57cec5SDimitry Andric case CK_BooleanToSignedIntegral: 47570b57cec5SDimitry Andric case CK_IntegralToBoolean: 47580b57cec5SDimitry Andric case CK_IntegralToFloating: 47590b57cec5SDimitry Andric case CK_FloatingToIntegral: 47600b57cec5SDimitry Andric case CK_FloatingToBoolean: 47610b57cec5SDimitry Andric case CK_FloatingCast: 47620b57cec5SDimitry Andric case CK_FloatingRealToComplex: 47630b57cec5SDimitry Andric case CK_FloatingComplexToReal: 47640b57cec5SDimitry Andric case CK_FloatingComplexToBoolean: 47650b57cec5SDimitry Andric case CK_FloatingComplexCast: 47660b57cec5SDimitry Andric case CK_FloatingComplexToIntegralComplex: 47670b57cec5SDimitry Andric case CK_IntegralRealToComplex: 47680b57cec5SDimitry Andric case CK_IntegralComplexToReal: 47690b57cec5SDimitry Andric case CK_IntegralComplexToBoolean: 47700b57cec5SDimitry Andric case CK_IntegralComplexCast: 47710b57cec5SDimitry Andric case CK_IntegralComplexToFloatingComplex: 47720b57cec5SDimitry Andric case CK_DerivedToBaseMemberPointer: 47730b57cec5SDimitry Andric case CK_BaseToDerivedMemberPointer: 47740b57cec5SDimitry Andric case CK_MemberPointerToBoolean: 47750b57cec5SDimitry Andric case CK_ReinterpretMemberPointer: 47760b57cec5SDimitry Andric case CK_AnyPointerToBlockPointerCast: 47770b57cec5SDimitry Andric case CK_ARCProduceObject: 47780b57cec5SDimitry Andric case CK_ARCConsumeObject: 47790b57cec5SDimitry Andric case CK_ARCReclaimReturnedObject: 47800b57cec5SDimitry Andric case CK_ARCExtendBlockObject: 47810b57cec5SDimitry Andric case CK_CopyAndAutoreleaseBlockObject: 47820b57cec5SDimitry Andric case CK_IntToOCLSampler: 4783e8d8bef9SDimitry Andric case CK_FloatingToFixedPoint: 4784e8d8bef9SDimitry Andric case CK_FixedPointToFloating: 47850b57cec5SDimitry Andric case CK_FixedPointCast: 47860b57cec5SDimitry Andric case CK_FixedPointToBoolean: 47870b57cec5SDimitry Andric case CK_FixedPointToIntegral: 47880b57cec5SDimitry Andric case CK_IntegralToFixedPoint: 4789fe6060f1SDimitry Andric case CK_MatrixCast: 47900b57cec5SDimitry Andric return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 47910b57cec5SDimitry Andric 47920b57cec5SDimitry Andric case CK_Dependent: 47930b57cec5SDimitry Andric llvm_unreachable("dependent cast kind in IR gen!"); 47940b57cec5SDimitry Andric 47950b57cec5SDimitry Andric case CK_BuiltinFnToFnPtr: 47960b57cec5SDimitry Andric llvm_unreachable("builtin functions are handled elsewhere"); 47970b57cec5SDimitry Andric 47980b57cec5SDimitry Andric // These are never l-values; just use the aggregate emission code. 47990b57cec5SDimitry Andric case CK_NonAtomicToAtomic: 48000b57cec5SDimitry Andric case CK_AtomicToNonAtomic: 48010b57cec5SDimitry Andric return EmitAggExprToLValue(E); 48020b57cec5SDimitry Andric 48030b57cec5SDimitry Andric case CK_Dynamic: { 48040b57cec5SDimitry Andric LValue LV = EmitLValue(E->getSubExpr()); 4805480093f4SDimitry Andric Address V = LV.getAddress(*this); 48060b57cec5SDimitry Andric const auto *DCE = cast<CXXDynamicCastExpr>(E); 48070b57cec5SDimitry Andric return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 48080b57cec5SDimitry Andric } 48090b57cec5SDimitry Andric 48100b57cec5SDimitry Andric case CK_ConstructorConversion: 48110b57cec5SDimitry Andric case CK_UserDefinedConversion: 48120b57cec5SDimitry Andric case CK_CPointerToObjCPointerCast: 48130b57cec5SDimitry Andric case CK_BlockPointerToObjCPointerCast: 48140b57cec5SDimitry Andric case CK_LValueToRValue: 48150b57cec5SDimitry Andric return EmitLValue(E->getSubExpr()); 48160b57cec5SDimitry Andric 4817349cc55cSDimitry Andric case CK_NoOp: { 4818349cc55cSDimitry Andric // CK_NoOp can model a qualification conversion, which can remove an array 4819349cc55cSDimitry Andric // bound and change the IR type. 4820349cc55cSDimitry Andric // FIXME: Once pointee types are removed from IR, remove this. 4821349cc55cSDimitry Andric LValue LV = EmitLValue(E->getSubExpr()); 4822349cc55cSDimitry Andric if (LV.isSimple()) { 4823349cc55cSDimitry Andric Address V = LV.getAddress(*this); 4824349cc55cSDimitry Andric if (V.isValid()) { 482504eeddc0SDimitry Andric llvm::Type *T = ConvertTypeForMem(E->getType()); 482604eeddc0SDimitry Andric if (V.getElementType() != T) 4827*fe013be4SDimitry Andric LV.setAddress(V.withElementType(T)); 4828349cc55cSDimitry Andric } 4829349cc55cSDimitry Andric } 4830349cc55cSDimitry Andric return LV; 4831349cc55cSDimitry Andric } 4832349cc55cSDimitry Andric 48330b57cec5SDimitry Andric case CK_UncheckedDerivedToBase: 48340b57cec5SDimitry Andric case CK_DerivedToBase: { 4835480093f4SDimitry Andric const auto *DerivedClassTy = 4836480093f4SDimitry Andric E->getSubExpr()->getType()->castAs<RecordType>(); 48370b57cec5SDimitry Andric auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 48380b57cec5SDimitry Andric 48390b57cec5SDimitry Andric LValue LV = EmitLValue(E->getSubExpr()); 4840480093f4SDimitry Andric Address This = LV.getAddress(*this); 48410b57cec5SDimitry Andric 48420b57cec5SDimitry Andric // Perform the derived-to-base conversion 48430b57cec5SDimitry Andric Address Base = GetAddressOfBaseClass( 48440b57cec5SDimitry Andric This, DerivedClassDecl, E->path_begin(), E->path_end(), 48450b57cec5SDimitry Andric /*NullCheckValue=*/false, E->getExprLoc()); 48460b57cec5SDimitry Andric 48470b57cec5SDimitry Andric // TODO: Support accesses to members of base classes in TBAA. For now, we 48480b57cec5SDimitry Andric // conservatively pretend that the complete object is of the base class 48490b57cec5SDimitry Andric // type. 48500b57cec5SDimitry Andric return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 48510b57cec5SDimitry Andric CGM.getTBAAInfoForSubobject(LV, E->getType())); 48520b57cec5SDimitry Andric } 48530b57cec5SDimitry Andric case CK_ToUnion: 48540b57cec5SDimitry Andric return EmitAggExprToLValue(E); 48550b57cec5SDimitry Andric case CK_BaseToDerived: { 4856480093f4SDimitry Andric const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 48570b57cec5SDimitry Andric auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 48580b57cec5SDimitry Andric 48590b57cec5SDimitry Andric LValue LV = EmitLValue(E->getSubExpr()); 48600b57cec5SDimitry Andric 48610b57cec5SDimitry Andric // Perform the base-to-derived conversion 4862480093f4SDimitry Andric Address Derived = GetAddressOfDerivedClass( 4863480093f4SDimitry Andric LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 48640b57cec5SDimitry Andric /*NullCheckValue=*/false); 48650b57cec5SDimitry Andric 48660b57cec5SDimitry Andric // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 48670b57cec5SDimitry Andric // performed and the object is not of the derived type. 48680b57cec5SDimitry Andric if (sanitizePerformTypeCheck()) 48690b57cec5SDimitry Andric EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 48700b57cec5SDimitry Andric Derived.getPointer(), E->getType()); 48710b57cec5SDimitry Andric 48720b57cec5SDimitry Andric if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 487381ad6265SDimitry Andric EmitVTablePtrCheckForCast(E->getType(), Derived, 48740b57cec5SDimitry Andric /*MayBeNull=*/false, CFITCK_DerivedCast, 48750b57cec5SDimitry Andric E->getBeginLoc()); 48760b57cec5SDimitry Andric 48770b57cec5SDimitry Andric return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 48780b57cec5SDimitry Andric CGM.getTBAAInfoForSubobject(LV, E->getType())); 48790b57cec5SDimitry Andric } 48800b57cec5SDimitry Andric case CK_LValueBitCast: { 48810b57cec5SDimitry Andric // This must be a reinterpret_cast (or c-style equivalent). 48820b57cec5SDimitry Andric const auto *CE = cast<ExplicitCastExpr>(E); 48830b57cec5SDimitry Andric 48840b57cec5SDimitry Andric CGM.EmitExplicitCastExprType(CE, this); 48850b57cec5SDimitry Andric LValue LV = EmitLValue(E->getSubExpr()); 4886*fe013be4SDimitry Andric Address V = LV.getAddress(*this).withElementType( 488704eeddc0SDimitry Andric ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType())); 48880b57cec5SDimitry Andric 48890b57cec5SDimitry Andric if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 489081ad6265SDimitry Andric EmitVTablePtrCheckForCast(E->getType(), V, 48910b57cec5SDimitry Andric /*MayBeNull=*/false, CFITCK_UnrelatedCast, 48920b57cec5SDimitry Andric E->getBeginLoc()); 48930b57cec5SDimitry Andric 48940b57cec5SDimitry Andric return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 48950b57cec5SDimitry Andric CGM.getTBAAInfoForSubobject(LV, E->getType())); 48960b57cec5SDimitry Andric } 48970b57cec5SDimitry Andric case CK_AddressSpaceConversion: { 48980b57cec5SDimitry Andric LValue LV = EmitLValue(E->getSubExpr()); 48990b57cec5SDimitry Andric QualType DestTy = getContext().getPointerType(E->getType()); 49000b57cec5SDimitry Andric llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4901480093f4SDimitry Andric *this, LV.getPointer(*this), 4902480093f4SDimitry Andric E->getSubExpr()->getType().getAddressSpace(), 49030b57cec5SDimitry Andric E->getType().getAddressSpace(), ConvertType(DestTy)); 490481ad6265SDimitry Andric return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()), 490581ad6265SDimitry Andric LV.getAddress(*this).getAlignment()), 49060b57cec5SDimitry Andric E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 49070b57cec5SDimitry Andric } 49080b57cec5SDimitry Andric case CK_ObjCObjectLValueCast: { 49090b57cec5SDimitry Andric LValue LV = EmitLValue(E->getSubExpr()); 4910*fe013be4SDimitry Andric Address V = LV.getAddress(*this).withElementType(ConvertType(E->getType())); 49110b57cec5SDimitry Andric return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 49120b57cec5SDimitry Andric CGM.getTBAAInfoForSubobject(LV, E->getType())); 49130b57cec5SDimitry Andric } 49140b57cec5SDimitry Andric case CK_ZeroToOCLOpaqueType: 49150b57cec5SDimitry Andric llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 49160b57cec5SDimitry Andric } 49170b57cec5SDimitry Andric 49180b57cec5SDimitry Andric llvm_unreachable("Unhandled lvalue cast kind?"); 49190b57cec5SDimitry Andric } 49200b57cec5SDimitry Andric 49210b57cec5SDimitry Andric LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 49220b57cec5SDimitry Andric assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 49230b57cec5SDimitry Andric return getOrCreateOpaqueLValueMapping(e); 49240b57cec5SDimitry Andric } 49250b57cec5SDimitry Andric 49260b57cec5SDimitry Andric LValue 49270b57cec5SDimitry Andric CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 49280b57cec5SDimitry Andric assert(OpaqueValueMapping::shouldBindAsLValue(e)); 49290b57cec5SDimitry Andric 49300b57cec5SDimitry Andric llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 49310b57cec5SDimitry Andric it = OpaqueLValues.find(e); 49320b57cec5SDimitry Andric 49330b57cec5SDimitry Andric if (it != OpaqueLValues.end()) 49340b57cec5SDimitry Andric return it->second; 49350b57cec5SDimitry Andric 49360b57cec5SDimitry Andric assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 49370b57cec5SDimitry Andric return EmitLValue(e->getSourceExpr()); 49380b57cec5SDimitry Andric } 49390b57cec5SDimitry Andric 49400b57cec5SDimitry Andric RValue 49410b57cec5SDimitry Andric CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 49420b57cec5SDimitry Andric assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 49430b57cec5SDimitry Andric 49440b57cec5SDimitry Andric llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 49450b57cec5SDimitry Andric it = OpaqueRValues.find(e); 49460b57cec5SDimitry Andric 49470b57cec5SDimitry Andric if (it != OpaqueRValues.end()) 49480b57cec5SDimitry Andric return it->second; 49490b57cec5SDimitry Andric 49500b57cec5SDimitry Andric assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 49510b57cec5SDimitry Andric return EmitAnyExpr(e->getSourceExpr()); 49520b57cec5SDimitry Andric } 49530b57cec5SDimitry Andric 49540b57cec5SDimitry Andric RValue CodeGenFunction::EmitRValueForField(LValue LV, 49550b57cec5SDimitry Andric const FieldDecl *FD, 49560b57cec5SDimitry Andric SourceLocation Loc) { 49570b57cec5SDimitry Andric QualType FT = FD->getType(); 49580b57cec5SDimitry Andric LValue FieldLV = EmitLValueForField(LV, FD); 49590b57cec5SDimitry Andric switch (getEvaluationKind(FT)) { 49600b57cec5SDimitry Andric case TEK_Complex: 49610b57cec5SDimitry Andric return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 49620b57cec5SDimitry Andric case TEK_Aggregate: 4963480093f4SDimitry Andric return FieldLV.asAggregateRValue(*this); 49640b57cec5SDimitry Andric case TEK_Scalar: 49650b57cec5SDimitry Andric // This routine is used to load fields one-by-one to perform a copy, so 49660b57cec5SDimitry Andric // don't load reference fields. 49670b57cec5SDimitry Andric if (FD->getType()->isReferenceType()) 4968480093f4SDimitry Andric return RValue::get(FieldLV.getPointer(*this)); 4969480093f4SDimitry Andric // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4970480093f4SDimitry Andric // primitive load. 4971480093f4SDimitry Andric if (FieldLV.isBitField()) 49720b57cec5SDimitry Andric return EmitLoadOfLValue(FieldLV, Loc); 4973480093f4SDimitry Andric return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 49740b57cec5SDimitry Andric } 49750b57cec5SDimitry Andric llvm_unreachable("bad evaluation kind"); 49760b57cec5SDimitry Andric } 49770b57cec5SDimitry Andric 49780b57cec5SDimitry Andric //===--------------------------------------------------------------------===// 49790b57cec5SDimitry Andric // Expression Emission 49800b57cec5SDimitry Andric //===--------------------------------------------------------------------===// 49810b57cec5SDimitry Andric 49820b57cec5SDimitry Andric RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 49830b57cec5SDimitry Andric ReturnValueSlot ReturnValue) { 49840b57cec5SDimitry Andric // Builtins never have block type. 49850b57cec5SDimitry Andric if (E->getCallee()->getType()->isBlockPointerType()) 49860b57cec5SDimitry Andric return EmitBlockCallExpr(E, ReturnValue); 49870b57cec5SDimitry Andric 49880b57cec5SDimitry Andric if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 49890b57cec5SDimitry Andric return EmitCXXMemberCallExpr(CE, ReturnValue); 49900b57cec5SDimitry Andric 49910b57cec5SDimitry Andric if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 49920b57cec5SDimitry Andric return EmitCUDAKernelCallExpr(CE, ReturnValue); 49930b57cec5SDimitry Andric 49940b57cec5SDimitry Andric if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 49950b57cec5SDimitry Andric if (const CXXMethodDecl *MD = 49960b57cec5SDimitry Andric dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 49970b57cec5SDimitry Andric return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 49980b57cec5SDimitry Andric 49990b57cec5SDimitry Andric CGCallee callee = EmitCallee(E->getCallee()); 50000b57cec5SDimitry Andric 50010b57cec5SDimitry Andric if (callee.isBuiltin()) { 50020b57cec5SDimitry Andric return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 50030b57cec5SDimitry Andric E, ReturnValue); 50040b57cec5SDimitry Andric } 50050b57cec5SDimitry Andric 50060b57cec5SDimitry Andric if (callee.isPseudoDestructor()) { 50070b57cec5SDimitry Andric return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 50080b57cec5SDimitry Andric } 50090b57cec5SDimitry Andric 50100b57cec5SDimitry Andric return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 50110b57cec5SDimitry Andric } 50120b57cec5SDimitry Andric 50130b57cec5SDimitry Andric /// Emit a CallExpr without considering whether it might be a subclass. 50140b57cec5SDimitry Andric RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 50150b57cec5SDimitry Andric ReturnValueSlot ReturnValue) { 50160b57cec5SDimitry Andric CGCallee Callee = EmitCallee(E->getCallee()); 50170b57cec5SDimitry Andric return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 50180b57cec5SDimitry Andric } 50190b57cec5SDimitry Andric 50203a9a9c0cSDimitry Andric // Detect the unusual situation where an inline version is shadowed by a 50213a9a9c0cSDimitry Andric // non-inline version. In that case we should pick the external one 50223a9a9c0cSDimitry Andric // everywhere. That's GCC behavior too. 50233a9a9c0cSDimitry Andric static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl *FD) { 50243a9a9c0cSDimitry Andric for (const FunctionDecl *PD = FD; PD; PD = PD->getPreviousDecl()) 50253a9a9c0cSDimitry Andric if (!PD->isInlineBuiltinDeclaration()) 50263a9a9c0cSDimitry Andric return false; 50273a9a9c0cSDimitry Andric return true; 50283a9a9c0cSDimitry Andric } 50293a9a9c0cSDimitry Andric 50305ffd83dbSDimitry Andric static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) { 50315ffd83dbSDimitry Andric const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 5032480093f4SDimitry Andric 50330b57cec5SDimitry Andric if (auto builtinID = FD->getBuiltinID()) { 503481ad6265SDimitry Andric std::string NoBuiltinFD = ("no-builtin-" + FD->getName()).str(); 503581ad6265SDimitry Andric std::string NoBuiltins = "no-builtins"; 5036bdd1243dSDimitry Andric 5037bdd1243dSDimitry Andric StringRef Ident = CGF.CGM.getMangledName(GD); 5038bdd1243dSDimitry Andric std::string FDInlineName = (Ident + ".inline").str(); 503981ad6265SDimitry Andric 504081ad6265SDimitry Andric bool IsPredefinedLibFunction = 504181ad6265SDimitry Andric CGF.getContext().BuiltinInfo.isPredefinedLibFunction(builtinID); 504281ad6265SDimitry Andric bool HasAttributeNoBuiltin = 504381ad6265SDimitry Andric CGF.CurFn->getAttributes().hasFnAttr(NoBuiltinFD) || 504481ad6265SDimitry Andric CGF.CurFn->getAttributes().hasFnAttr(NoBuiltins); 504581ad6265SDimitry Andric 5046349cc55cSDimitry Andric // When directing calling an inline builtin, call it through it's mangled 5047349cc55cSDimitry Andric // name to make it clear it's not the actual builtin. 50483a9a9c0cSDimitry Andric if (CGF.CurFn->getName() != FDInlineName && 50493a9a9c0cSDimitry Andric OnlyHasInlineBuiltinDeclaration(FD)) { 5050349cc55cSDimitry Andric llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 5051349cc55cSDimitry Andric llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr); 5052349cc55cSDimitry Andric llvm::Module *M = Fn->getParent(); 5053349cc55cSDimitry Andric llvm::Function *Clone = M->getFunction(FDInlineName); 5054349cc55cSDimitry Andric if (!Clone) { 5055349cc55cSDimitry Andric Clone = llvm::Function::Create(Fn->getFunctionType(), 5056349cc55cSDimitry Andric llvm::GlobalValue::InternalLinkage, 5057349cc55cSDimitry Andric Fn->getAddressSpace(), FDInlineName, M); 5058349cc55cSDimitry Andric Clone->addFnAttr(llvm::Attribute::AlwaysInline); 5059349cc55cSDimitry Andric } 5060349cc55cSDimitry Andric return CGCallee::forDirect(Clone, GD); 5061349cc55cSDimitry Andric } 5062349cc55cSDimitry Andric 5063349cc55cSDimitry Andric // Replaceable builtins provide their own implementation of a builtin. If we 5064349cc55cSDimitry Andric // are in an inline builtin implementation, avoid trivial infinite 506581ad6265SDimitry Andric // recursion. Honor __attribute__((no_builtin("foo"))) or 506681ad6265SDimitry Andric // __attribute__((no_builtin)) on the current function unless foo is 506781ad6265SDimitry Andric // not a predefined library function which means we must generate the 506881ad6265SDimitry Andric // builtin no matter what. 506981ad6265SDimitry Andric else if (!IsPredefinedLibFunction || !HasAttributeNoBuiltin) 50700b57cec5SDimitry Andric return CGCallee::forBuiltin(builtinID, FD); 50710b57cec5SDimitry Andric } 50720b57cec5SDimitry Andric 5073fe6060f1SDimitry Andric llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 5074fe6060f1SDimitry Andric if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice && 5075fe6060f1SDimitry Andric FD->hasAttr<CUDAGlobalAttr>()) 5076fe6060f1SDimitry Andric CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub( 5077fe6060f1SDimitry Andric cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts())); 5078349cc55cSDimitry Andric 5079fe6060f1SDimitry Andric return CGCallee::forDirect(CalleePtr, GD); 50800b57cec5SDimitry Andric } 50810b57cec5SDimitry Andric 50820b57cec5SDimitry Andric CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 50830b57cec5SDimitry Andric E = E->IgnoreParens(); 50840b57cec5SDimitry Andric 50850b57cec5SDimitry Andric // Look through function-to-pointer decay. 50860b57cec5SDimitry Andric if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 50870b57cec5SDimitry Andric if (ICE->getCastKind() == CK_FunctionToPointerDecay || 50880b57cec5SDimitry Andric ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 50890b57cec5SDimitry Andric return EmitCallee(ICE->getSubExpr()); 50900b57cec5SDimitry Andric } 50910b57cec5SDimitry Andric 50920b57cec5SDimitry Andric // Resolve direct calls. 50930b57cec5SDimitry Andric } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 50940b57cec5SDimitry Andric if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 50950b57cec5SDimitry Andric return EmitDirectCallee(*this, FD); 50960b57cec5SDimitry Andric } 50970b57cec5SDimitry Andric } else if (auto ME = dyn_cast<MemberExpr>(E)) { 50980b57cec5SDimitry Andric if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 50990b57cec5SDimitry Andric EmitIgnoredExpr(ME->getBase()); 51000b57cec5SDimitry Andric return EmitDirectCallee(*this, FD); 51010b57cec5SDimitry Andric } 51020b57cec5SDimitry Andric 51030b57cec5SDimitry Andric // Look through template substitutions. 51040b57cec5SDimitry Andric } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 51050b57cec5SDimitry Andric return EmitCallee(NTTP->getReplacement()); 51060b57cec5SDimitry Andric 51070b57cec5SDimitry Andric // Treat pseudo-destructor calls differently. 51080b57cec5SDimitry Andric } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 51090b57cec5SDimitry Andric return CGCallee::forPseudoDestructor(PDE); 51100b57cec5SDimitry Andric } 51110b57cec5SDimitry Andric 51120b57cec5SDimitry Andric // Otherwise, we have an indirect reference. 51130b57cec5SDimitry Andric llvm::Value *calleePtr; 51140b57cec5SDimitry Andric QualType functionType; 51150b57cec5SDimitry Andric if (auto ptrType = E->getType()->getAs<PointerType>()) { 51160b57cec5SDimitry Andric calleePtr = EmitScalarExpr(E); 51170b57cec5SDimitry Andric functionType = ptrType->getPointeeType(); 51180b57cec5SDimitry Andric } else { 51190b57cec5SDimitry Andric functionType = E->getType(); 5120*fe013be4SDimitry Andric calleePtr = EmitLValue(E, KnownNonNull).getPointer(*this); 51210b57cec5SDimitry Andric } 51220b57cec5SDimitry Andric assert(functionType->isFunctionType()); 51230b57cec5SDimitry Andric 51240b57cec5SDimitry Andric GlobalDecl GD; 51250b57cec5SDimitry Andric if (const auto *VD = 51260b57cec5SDimitry Andric dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 51270b57cec5SDimitry Andric GD = GlobalDecl(VD); 51280b57cec5SDimitry Andric 51290b57cec5SDimitry Andric CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 51300b57cec5SDimitry Andric CGCallee callee(calleeInfo, calleePtr); 51310b57cec5SDimitry Andric return callee; 51320b57cec5SDimitry Andric } 51330b57cec5SDimitry Andric 51340b57cec5SDimitry Andric LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 51350b57cec5SDimitry Andric // Comma expressions just emit their LHS then their RHS as an l-value. 51360b57cec5SDimitry Andric if (E->getOpcode() == BO_Comma) { 51370b57cec5SDimitry Andric EmitIgnoredExpr(E->getLHS()); 51380b57cec5SDimitry Andric EnsureInsertPoint(); 51390b57cec5SDimitry Andric return EmitLValue(E->getRHS()); 51400b57cec5SDimitry Andric } 51410b57cec5SDimitry Andric 51420b57cec5SDimitry Andric if (E->getOpcode() == BO_PtrMemD || 51430b57cec5SDimitry Andric E->getOpcode() == BO_PtrMemI) 51440b57cec5SDimitry Andric return EmitPointerToDataMemberBinaryExpr(E); 51450b57cec5SDimitry Andric 51460b57cec5SDimitry Andric assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 51470b57cec5SDimitry Andric 51480b57cec5SDimitry Andric // Note that in all of these cases, __block variables need the RHS 51490b57cec5SDimitry Andric // evaluated first just in case the variable gets moved by the RHS. 51500b57cec5SDimitry Andric 51510b57cec5SDimitry Andric switch (getEvaluationKind(E->getType())) { 51520b57cec5SDimitry Andric case TEK_Scalar: { 51530b57cec5SDimitry Andric switch (E->getLHS()->getType().getObjCLifetime()) { 51540b57cec5SDimitry Andric case Qualifiers::OCL_Strong: 51550b57cec5SDimitry Andric return EmitARCStoreStrong(E, /*ignored*/ false).first; 51560b57cec5SDimitry Andric 51570b57cec5SDimitry Andric case Qualifiers::OCL_Autoreleasing: 51580b57cec5SDimitry Andric return EmitARCStoreAutoreleasing(E).first; 51590b57cec5SDimitry Andric 51600b57cec5SDimitry Andric // No reason to do any of these differently. 51610b57cec5SDimitry Andric case Qualifiers::OCL_None: 51620b57cec5SDimitry Andric case Qualifiers::OCL_ExplicitNone: 51630b57cec5SDimitry Andric case Qualifiers::OCL_Weak: 51640b57cec5SDimitry Andric break; 51650b57cec5SDimitry Andric } 51660b57cec5SDimitry Andric 51670b57cec5SDimitry Andric RValue RV = EmitAnyExpr(E->getRHS()); 51680b57cec5SDimitry Andric LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 51690b57cec5SDimitry Andric if (RV.isScalar()) 51700b57cec5SDimitry Andric EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 51710b57cec5SDimitry Andric EmitStoreThroughLValue(RV, LV); 5172480093f4SDimitry Andric if (getLangOpts().OpenMP) 5173480093f4SDimitry Andric CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 5174480093f4SDimitry Andric E->getLHS()); 51750b57cec5SDimitry Andric return LV; 51760b57cec5SDimitry Andric } 51770b57cec5SDimitry Andric 51780b57cec5SDimitry Andric case TEK_Complex: 51790b57cec5SDimitry Andric return EmitComplexAssignmentLValue(E); 51800b57cec5SDimitry Andric 51810b57cec5SDimitry Andric case TEK_Aggregate: 51820b57cec5SDimitry Andric return EmitAggExprToLValue(E); 51830b57cec5SDimitry Andric } 51840b57cec5SDimitry Andric llvm_unreachable("bad evaluation kind"); 51850b57cec5SDimitry Andric } 51860b57cec5SDimitry Andric 51870b57cec5SDimitry Andric LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 51880b57cec5SDimitry Andric RValue RV = EmitCallExpr(E); 51890b57cec5SDimitry Andric 51900b57cec5SDimitry Andric if (!RV.isScalar()) 51910b57cec5SDimitry Andric return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 51920b57cec5SDimitry Andric AlignmentSource::Decl); 51930b57cec5SDimitry Andric 51940b57cec5SDimitry Andric assert(E->getCallReturnType(getContext())->isReferenceType() && 51950b57cec5SDimitry Andric "Can't have a scalar return unless the return type is a " 51960b57cec5SDimitry Andric "reference type!"); 51970b57cec5SDimitry Andric 51980b57cec5SDimitry Andric return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 51990b57cec5SDimitry Andric } 52000b57cec5SDimitry Andric 52010b57cec5SDimitry Andric LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 52020b57cec5SDimitry Andric // FIXME: This shouldn't require another copy. 52030b57cec5SDimitry Andric return EmitAggExprToLValue(E); 52040b57cec5SDimitry Andric } 52050b57cec5SDimitry Andric 52060b57cec5SDimitry Andric LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 52070b57cec5SDimitry Andric assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 52080b57cec5SDimitry Andric && "binding l-value to type which needs a temporary"); 52090b57cec5SDimitry Andric AggValueSlot Slot = CreateAggTemp(E->getType()); 52100b57cec5SDimitry Andric EmitCXXConstructExpr(E, Slot); 52110b57cec5SDimitry Andric return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 52120b57cec5SDimitry Andric } 52130b57cec5SDimitry Andric 52140b57cec5SDimitry Andric LValue 52150b57cec5SDimitry Andric CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 52160b57cec5SDimitry Andric return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 52170b57cec5SDimitry Andric } 52180b57cec5SDimitry Andric 52190b57cec5SDimitry Andric Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 5220*fe013be4SDimitry Andric return CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()) 5221*fe013be4SDimitry Andric .withElementType(ConvertType(E->getType())); 52220b57cec5SDimitry Andric } 52230b57cec5SDimitry Andric 52240b57cec5SDimitry Andric LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 52250b57cec5SDimitry Andric return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 52260b57cec5SDimitry Andric AlignmentSource::Decl); 52270b57cec5SDimitry Andric } 52280b57cec5SDimitry Andric 52290b57cec5SDimitry Andric LValue 52300b57cec5SDimitry Andric CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 52310b57cec5SDimitry Andric AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 52320b57cec5SDimitry Andric Slot.setExternallyDestructed(); 52330b57cec5SDimitry Andric EmitAggExpr(E->getSubExpr(), Slot); 52340b57cec5SDimitry Andric EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 52350b57cec5SDimitry Andric return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 52360b57cec5SDimitry Andric } 52370b57cec5SDimitry Andric 52380b57cec5SDimitry Andric LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 52390b57cec5SDimitry Andric RValue RV = EmitObjCMessageExpr(E); 52400b57cec5SDimitry Andric 52410b57cec5SDimitry Andric if (!RV.isScalar()) 52420b57cec5SDimitry Andric return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 52430b57cec5SDimitry Andric AlignmentSource::Decl); 52440b57cec5SDimitry Andric 52450b57cec5SDimitry Andric assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 52460b57cec5SDimitry Andric "Can't have a scalar return unless the return type is a " 52470b57cec5SDimitry Andric "reference type!"); 52480b57cec5SDimitry Andric 52490b57cec5SDimitry Andric return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 52500b57cec5SDimitry Andric } 52510b57cec5SDimitry Andric 52520b57cec5SDimitry Andric LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 52530b57cec5SDimitry Andric Address V = 52540b57cec5SDimitry Andric CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 52550b57cec5SDimitry Andric return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 52560b57cec5SDimitry Andric } 52570b57cec5SDimitry Andric 52580b57cec5SDimitry Andric llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 52590b57cec5SDimitry Andric const ObjCIvarDecl *Ivar) { 52600b57cec5SDimitry Andric return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 52610b57cec5SDimitry Andric } 52620b57cec5SDimitry Andric 5263bdd1243dSDimitry Andric llvm::Value * 5264bdd1243dSDimitry Andric CodeGenFunction::EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface, 5265bdd1243dSDimitry Andric const ObjCIvarDecl *Ivar) { 5266bdd1243dSDimitry Andric llvm::Value *OffsetValue = EmitIvarOffset(Interface, Ivar); 5267bdd1243dSDimitry Andric QualType PointerDiffType = getContext().getPointerDiffType(); 5268bdd1243dSDimitry Andric return Builder.CreateZExtOrTrunc(OffsetValue, 5269bdd1243dSDimitry Andric getTypes().ConvertType(PointerDiffType)); 5270bdd1243dSDimitry Andric } 5271bdd1243dSDimitry Andric 52720b57cec5SDimitry Andric LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 52730b57cec5SDimitry Andric llvm::Value *BaseValue, 52740b57cec5SDimitry Andric const ObjCIvarDecl *Ivar, 52750b57cec5SDimitry Andric unsigned CVRQualifiers) { 52760b57cec5SDimitry Andric return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 52770b57cec5SDimitry Andric Ivar, CVRQualifiers); 52780b57cec5SDimitry Andric } 52790b57cec5SDimitry Andric 52800b57cec5SDimitry Andric LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 52810b57cec5SDimitry Andric // FIXME: A lot of the code below could be shared with EmitMemberExpr. 52820b57cec5SDimitry Andric llvm::Value *BaseValue = nullptr; 52830b57cec5SDimitry Andric const Expr *BaseExpr = E->getBase(); 52840b57cec5SDimitry Andric Qualifiers BaseQuals; 52850b57cec5SDimitry Andric QualType ObjectTy; 52860b57cec5SDimitry Andric if (E->isArrow()) { 52870b57cec5SDimitry Andric BaseValue = EmitScalarExpr(BaseExpr); 52880b57cec5SDimitry Andric ObjectTy = BaseExpr->getType()->getPointeeType(); 52890b57cec5SDimitry Andric BaseQuals = ObjectTy.getQualifiers(); 52900b57cec5SDimitry Andric } else { 52910b57cec5SDimitry Andric LValue BaseLV = EmitLValue(BaseExpr); 5292480093f4SDimitry Andric BaseValue = BaseLV.getPointer(*this); 52930b57cec5SDimitry Andric ObjectTy = BaseExpr->getType(); 52940b57cec5SDimitry Andric BaseQuals = ObjectTy.getQualifiers(); 52950b57cec5SDimitry Andric } 52960b57cec5SDimitry Andric 52970b57cec5SDimitry Andric LValue LV = 52980b57cec5SDimitry Andric EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 52990b57cec5SDimitry Andric BaseQuals.getCVRQualifiers()); 53000b57cec5SDimitry Andric setObjCGCLValueClass(getContext(), E, LV); 53010b57cec5SDimitry Andric return LV; 53020b57cec5SDimitry Andric } 53030b57cec5SDimitry Andric 53040b57cec5SDimitry Andric LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 53050b57cec5SDimitry Andric // Can only get l-value for message expression returning aggregate type 53060b57cec5SDimitry Andric RValue RV = EmitAnyExprToTemp(E); 53070b57cec5SDimitry Andric return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 53080b57cec5SDimitry Andric AlignmentSource::Decl); 53090b57cec5SDimitry Andric } 53100b57cec5SDimitry Andric 53110b57cec5SDimitry Andric RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 53120b57cec5SDimitry Andric const CallExpr *E, ReturnValueSlot ReturnValue, 53130b57cec5SDimitry Andric llvm::Value *Chain) { 53140b57cec5SDimitry Andric // Get the actual function type. The callee type will always be a pointer to 53150b57cec5SDimitry Andric // function type or a block pointer type. 53160b57cec5SDimitry Andric assert(CalleeType->isFunctionPointerType() && 53170b57cec5SDimitry Andric "Call must have function pointer type!"); 53180b57cec5SDimitry Andric 53190b57cec5SDimitry Andric const Decl *TargetDecl = 53200b57cec5SDimitry Andric OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 53210b57cec5SDimitry Andric 5322*fe013be4SDimitry Andric assert((!isa_and_present<FunctionDecl>(TargetDecl) || 5323*fe013be4SDimitry Andric !cast<FunctionDecl>(TargetDecl)->isImmediateFunction()) && 5324*fe013be4SDimitry Andric "trying to emit a call to an immediate function"); 5325*fe013be4SDimitry Andric 53260b57cec5SDimitry Andric CalleeType = getContext().getCanonicalType(CalleeType); 53270b57cec5SDimitry Andric 53280b57cec5SDimitry Andric auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 53290b57cec5SDimitry Andric 53300b57cec5SDimitry Andric CGCallee Callee = OrigCallee; 53310b57cec5SDimitry Andric 5332*fe013be4SDimitry Andric if (SanOpts.has(SanitizerKind::Function) && 5333*fe013be4SDimitry Andric (!TargetDecl || !isa<FunctionDecl>(TargetDecl)) && 5334*fe013be4SDimitry Andric !isa<FunctionNoProtoType>(PointeeType)) { 53350b57cec5SDimitry Andric if (llvm::Constant *PrefixSig = 53360b57cec5SDimitry Andric CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 53370b57cec5SDimitry Andric SanitizerScope SanScope(this); 5338*fe013be4SDimitry Andric auto *TypeHash = getUBSanFunctionTypeHash(PointeeType); 5339*fe013be4SDimitry Andric 5340fe6060f1SDimitry Andric llvm::Type *PrefixSigType = PrefixSig->getType(); 53410b57cec5SDimitry Andric llvm::StructType *PrefixStructTy = llvm::StructType::get( 5342fe6060f1SDimitry Andric CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true); 53430b57cec5SDimitry Andric 53440b57cec5SDimitry Andric llvm::Value *CalleePtr = Callee.getFunctionPointer(); 53450b57cec5SDimitry Andric 5346*fe013be4SDimitry Andric // On 32-bit Arm, the low bit of a function pointer indicates whether 5347*fe013be4SDimitry Andric // it's using the Arm or Thumb instruction set. The actual first 5348*fe013be4SDimitry Andric // instruction lives at the same address either way, so we must clear 5349*fe013be4SDimitry Andric // that low bit before using the function address to find the prefix 5350*fe013be4SDimitry Andric // structure. 5351*fe013be4SDimitry Andric // 5352*fe013be4SDimitry Andric // This applies to both Arm and Thumb target triples, because 5353*fe013be4SDimitry Andric // either one could be used in an interworking context where it 5354*fe013be4SDimitry Andric // might be passed function pointers of both types. 5355*fe013be4SDimitry Andric llvm::Value *AlignedCalleePtr; 5356*fe013be4SDimitry Andric if (CGM.getTriple().isARM() || CGM.getTriple().isThumb()) { 5357*fe013be4SDimitry Andric llvm::Value *CalleeAddress = 5358*fe013be4SDimitry Andric Builder.CreatePtrToInt(CalleePtr, IntPtrTy); 5359*fe013be4SDimitry Andric llvm::Value *Mask = llvm::ConstantInt::get(IntPtrTy, ~1); 5360*fe013be4SDimitry Andric llvm::Value *AlignedCalleeAddress = 5361*fe013be4SDimitry Andric Builder.CreateAnd(CalleeAddress, Mask); 5362*fe013be4SDimitry Andric AlignedCalleePtr = 5363*fe013be4SDimitry Andric Builder.CreateIntToPtr(AlignedCalleeAddress, CalleePtr->getType()); 5364*fe013be4SDimitry Andric } else { 5365*fe013be4SDimitry Andric AlignedCalleePtr = CalleePtr; 5366*fe013be4SDimitry Andric } 5367*fe013be4SDimitry Andric 53680b57cec5SDimitry Andric llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 5369*fe013be4SDimitry Andric AlignedCalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 53700b57cec5SDimitry Andric llvm::Value *CalleeSigPtr = 5371*fe013be4SDimitry Andric Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, -1, 0); 53720b57cec5SDimitry Andric llvm::Value *CalleeSig = 5373fe6060f1SDimitry Andric Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign()); 53740b57cec5SDimitry Andric llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 53750b57cec5SDimitry Andric 53760b57cec5SDimitry Andric llvm::BasicBlock *Cont = createBasicBlock("cont"); 53770b57cec5SDimitry Andric llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 53780b57cec5SDimitry Andric Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 53790b57cec5SDimitry Andric 53800b57cec5SDimitry Andric EmitBlock(TypeCheck); 5381*fe013be4SDimitry Andric llvm::Value *CalleeTypeHash = Builder.CreateAlignedLoad( 5382*fe013be4SDimitry Andric Int32Ty, 5383*fe013be4SDimitry Andric Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, -1, 1), 5384*fe013be4SDimitry Andric getPointerAlign()); 5385*fe013be4SDimitry Andric llvm::Value *CalleeTypeHashMatch = 5386*fe013be4SDimitry Andric Builder.CreateICmpEQ(CalleeTypeHash, TypeHash); 53870b57cec5SDimitry Andric llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 53880b57cec5SDimitry Andric EmitCheckTypeDescriptor(CalleeType)}; 5389*fe013be4SDimitry Andric EmitCheck(std::make_pair(CalleeTypeHashMatch, SanitizerKind::Function), 53900b57cec5SDimitry Andric SanitizerHandler::FunctionTypeMismatch, StaticData, 5391*fe013be4SDimitry Andric {CalleePtr}); 53920b57cec5SDimitry Andric 53930b57cec5SDimitry Andric Builder.CreateBr(Cont); 53940b57cec5SDimitry Andric EmitBlock(Cont); 53950b57cec5SDimitry Andric } 53960b57cec5SDimitry Andric } 53970b57cec5SDimitry Andric 53980b57cec5SDimitry Andric const auto *FnType = cast<FunctionType>(PointeeType); 53990b57cec5SDimitry Andric 54000b57cec5SDimitry Andric // If we are checking indirect calls and this call is indirect, check that the 54010b57cec5SDimitry Andric // function pointer is a member of the bit set for the function type. 54020b57cec5SDimitry Andric if (SanOpts.has(SanitizerKind::CFIICall) && 54030b57cec5SDimitry Andric (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 54040b57cec5SDimitry Andric SanitizerScope SanScope(this); 54050b57cec5SDimitry Andric EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 54060b57cec5SDimitry Andric 54070b57cec5SDimitry Andric llvm::Metadata *MD; 54080b57cec5SDimitry Andric if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 54090b57cec5SDimitry Andric MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 54100b57cec5SDimitry Andric else 54110b57cec5SDimitry Andric MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 54120b57cec5SDimitry Andric 54130b57cec5SDimitry Andric llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 54140b57cec5SDimitry Andric 54150b57cec5SDimitry Andric llvm::Value *CalleePtr = Callee.getFunctionPointer(); 54160b57cec5SDimitry Andric llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 54170b57cec5SDimitry Andric llvm::Value *TypeTest = Builder.CreateCall( 54180b57cec5SDimitry Andric CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 54190b57cec5SDimitry Andric 54200b57cec5SDimitry Andric auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 54210b57cec5SDimitry Andric llvm::Constant *StaticData[] = { 54220b57cec5SDimitry Andric llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 54230b57cec5SDimitry Andric EmitCheckSourceLocation(E->getBeginLoc()), 54240b57cec5SDimitry Andric EmitCheckTypeDescriptor(QualType(FnType, 0)), 54250b57cec5SDimitry Andric }; 54260b57cec5SDimitry Andric if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 54270b57cec5SDimitry Andric EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 54280b57cec5SDimitry Andric CastedCallee, StaticData); 54290b57cec5SDimitry Andric } else { 54300b57cec5SDimitry Andric EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 54310b57cec5SDimitry Andric SanitizerHandler::CFICheckFail, StaticData, 54320b57cec5SDimitry Andric {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 54330b57cec5SDimitry Andric } 54340b57cec5SDimitry Andric } 54350b57cec5SDimitry Andric 54360b57cec5SDimitry Andric CallArgList Args; 54370b57cec5SDimitry Andric if (Chain) 54380b57cec5SDimitry Andric Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 54390b57cec5SDimitry Andric CGM.getContext().VoidPtrTy); 54400b57cec5SDimitry Andric 54410b57cec5SDimitry Andric // C++17 requires that we evaluate arguments to a call using assignment syntax 54420b57cec5SDimitry Andric // right-to-left, and that we evaluate arguments to certain other operators 54430b57cec5SDimitry Andric // left-to-right. Note that we allow this to override the order dictated by 54440b57cec5SDimitry Andric // the calling convention on the MS ABI, which means that parameter 54450b57cec5SDimitry Andric // destruction order is not necessarily reverse construction order. 54460b57cec5SDimitry Andric // FIXME: Revisit this based on C++ committee response to unimplementability. 54470b57cec5SDimitry Andric EvaluationOrder Order = EvaluationOrder::Default; 54480b57cec5SDimitry Andric if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 54490b57cec5SDimitry Andric if (OCE->isAssignmentOp()) 54500b57cec5SDimitry Andric Order = EvaluationOrder::ForceRightToLeft; 54510b57cec5SDimitry Andric else { 54520b57cec5SDimitry Andric switch (OCE->getOperator()) { 54530b57cec5SDimitry Andric case OO_LessLess: 54540b57cec5SDimitry Andric case OO_GreaterGreater: 54550b57cec5SDimitry Andric case OO_AmpAmp: 54560b57cec5SDimitry Andric case OO_PipePipe: 54570b57cec5SDimitry Andric case OO_Comma: 54580b57cec5SDimitry Andric case OO_ArrowStar: 54590b57cec5SDimitry Andric Order = EvaluationOrder::ForceLeftToRight; 54600b57cec5SDimitry Andric break; 54610b57cec5SDimitry Andric default: 54620b57cec5SDimitry Andric break; 54630b57cec5SDimitry Andric } 54640b57cec5SDimitry Andric } 54650b57cec5SDimitry Andric } 54660b57cec5SDimitry Andric 54670b57cec5SDimitry Andric EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 54680b57cec5SDimitry Andric E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 54690b57cec5SDimitry Andric 54700b57cec5SDimitry Andric const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 54710b57cec5SDimitry Andric Args, FnType, /*ChainCall=*/Chain); 54720b57cec5SDimitry Andric 54730b57cec5SDimitry Andric // C99 6.5.2.2p6: 54740b57cec5SDimitry Andric // If the expression that denotes the called function has a type 54750b57cec5SDimitry Andric // that does not include a prototype, [the default argument 54760b57cec5SDimitry Andric // promotions are performed]. If the number of arguments does not 54770b57cec5SDimitry Andric // equal the number of parameters, the behavior is undefined. If 54780b57cec5SDimitry Andric // the function is defined with a type that includes a prototype, 54790b57cec5SDimitry Andric // and either the prototype ends with an ellipsis (, ...) or the 54800b57cec5SDimitry Andric // types of the arguments after promotion are not compatible with 54810b57cec5SDimitry Andric // the types of the parameters, the behavior is undefined. If the 54820b57cec5SDimitry Andric // function is defined with a type that does not include a 54830b57cec5SDimitry Andric // prototype, and the types of the arguments after promotion are 54840b57cec5SDimitry Andric // not compatible with those of the parameters after promotion, 54850b57cec5SDimitry Andric // the behavior is undefined [except in some trivial cases]. 54860b57cec5SDimitry Andric // That is, in the general case, we should assume that a call 54870b57cec5SDimitry Andric // through an unprototyped function type works like a *non-variadic* 54880b57cec5SDimitry Andric // call. The way we make this work is to cast to the exact type 54890b57cec5SDimitry Andric // of the promoted arguments. 54900b57cec5SDimitry Andric // 54910b57cec5SDimitry Andric // Chain calls use this same code path to add the invisible chain parameter 54920b57cec5SDimitry Andric // to the function type. 54930b57cec5SDimitry Andric if (isa<FunctionNoProtoType>(FnType) || Chain) { 54940b57cec5SDimitry Andric llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 54955ffd83dbSDimitry Andric int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace(); 54965ffd83dbSDimitry Andric CalleeTy = CalleeTy->getPointerTo(AS); 54970b57cec5SDimitry Andric 54980b57cec5SDimitry Andric llvm::Value *CalleePtr = Callee.getFunctionPointer(); 54990b57cec5SDimitry Andric CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 55000b57cec5SDimitry Andric Callee.setFunctionPointer(CalleePtr); 55010b57cec5SDimitry Andric } 55020b57cec5SDimitry Andric 5503fe6060f1SDimitry Andric // HIP function pointer contains kernel handle when it is used in triple 5504fe6060f1SDimitry Andric // chevron. The kernel stub needs to be loaded from kernel handle and used 5505fe6060f1SDimitry Andric // as callee. 5506fe6060f1SDimitry Andric if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice && 5507fe6060f1SDimitry Andric isa<CUDAKernelCallExpr>(E) && 5508fe6060f1SDimitry Andric (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5509fe6060f1SDimitry Andric llvm::Value *Handle = Callee.getFunctionPointer(); 5510fe6060f1SDimitry Andric auto *Cast = 5511fe6060f1SDimitry Andric Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo()); 551281ad6265SDimitry Andric auto *Stub = Builder.CreateLoad( 551381ad6265SDimitry Andric Address(Cast, Handle->getType(), CGM.getPointerAlign())); 5514fe6060f1SDimitry Andric Callee.setFunctionPointer(Stub); 5515fe6060f1SDimitry Andric } 55160b57cec5SDimitry Andric llvm::CallBase *CallOrInvoke = nullptr; 55170b57cec5SDimitry Andric RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5518fe6060f1SDimitry Andric E == MustTailCall, E->getExprLoc()); 55190b57cec5SDimitry Andric 55200b57cec5SDimitry Andric // Generate function declaration DISuprogram in order to be used 55210b57cec5SDimitry Andric // in debug info about call sites. 55220b57cec5SDimitry Andric if (CGDebugInfo *DI = getDebugInfo()) { 5523349cc55cSDimitry Andric if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 5524349cc55cSDimitry Andric FunctionArgList Args; 5525349cc55cSDimitry Andric QualType ResTy = BuildFunctionArgList(CalleeDecl, Args); 5526349cc55cSDimitry Andric DI->EmitFuncDeclForCallSite(CallOrInvoke, 5527349cc55cSDimitry Andric DI->getFunctionType(CalleeDecl, ResTy, Args), 55280b57cec5SDimitry Andric CalleeDecl); 55290b57cec5SDimitry Andric } 5530349cc55cSDimitry Andric } 55310b57cec5SDimitry Andric 55320b57cec5SDimitry Andric return Call; 55330b57cec5SDimitry Andric } 55340b57cec5SDimitry Andric 55350b57cec5SDimitry Andric LValue CodeGenFunction:: 55360b57cec5SDimitry Andric EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 55370b57cec5SDimitry Andric Address BaseAddr = Address::invalid(); 55380b57cec5SDimitry Andric if (E->getOpcode() == BO_PtrMemI) { 55390b57cec5SDimitry Andric BaseAddr = EmitPointerWithAlignment(E->getLHS()); 55400b57cec5SDimitry Andric } else { 5541480093f4SDimitry Andric BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 55420b57cec5SDimitry Andric } 55430b57cec5SDimitry Andric 55440b57cec5SDimitry Andric llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5545480093f4SDimitry Andric const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 55460b57cec5SDimitry Andric 55470b57cec5SDimitry Andric LValueBaseInfo BaseInfo; 55480b57cec5SDimitry Andric TBAAAccessInfo TBAAInfo; 55490b57cec5SDimitry Andric Address MemberAddr = 55500b57cec5SDimitry Andric EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 55510b57cec5SDimitry Andric &TBAAInfo); 55520b57cec5SDimitry Andric 55530b57cec5SDimitry Andric return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 55540b57cec5SDimitry Andric } 55550b57cec5SDimitry Andric 55560b57cec5SDimitry Andric /// Given the address of a temporary variable, produce an r-value of 55570b57cec5SDimitry Andric /// its type. 55580b57cec5SDimitry Andric RValue CodeGenFunction::convertTempToRValue(Address addr, 55590b57cec5SDimitry Andric QualType type, 55600b57cec5SDimitry Andric SourceLocation loc) { 55610b57cec5SDimitry Andric LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 55620b57cec5SDimitry Andric switch (getEvaluationKind(type)) { 55630b57cec5SDimitry Andric case TEK_Complex: 55640b57cec5SDimitry Andric return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 55650b57cec5SDimitry Andric case TEK_Aggregate: 5566480093f4SDimitry Andric return lvalue.asAggregateRValue(*this); 55670b57cec5SDimitry Andric case TEK_Scalar: 55680b57cec5SDimitry Andric return RValue::get(EmitLoadOfScalar(lvalue, loc)); 55690b57cec5SDimitry Andric } 55700b57cec5SDimitry Andric llvm_unreachable("bad evaluation kind"); 55710b57cec5SDimitry Andric } 55720b57cec5SDimitry Andric 55730b57cec5SDimitry Andric void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 55740b57cec5SDimitry Andric assert(Val->getType()->isFPOrFPVectorTy()); 55750b57cec5SDimitry Andric if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 55760b57cec5SDimitry Andric return; 55770b57cec5SDimitry Andric 55780b57cec5SDimitry Andric llvm::MDBuilder MDHelper(getLLVMContext()); 55790b57cec5SDimitry Andric llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 55800b57cec5SDimitry Andric 55810b57cec5SDimitry Andric cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 55820b57cec5SDimitry Andric } 55830b57cec5SDimitry Andric 5584*fe013be4SDimitry Andric void CodeGenFunction::SetSqrtFPAccuracy(llvm::Value *Val) { 5585*fe013be4SDimitry Andric llvm::Type *EltTy = Val->getType()->getScalarType(); 5586*fe013be4SDimitry Andric if (!EltTy->isFloatTy()) 5587*fe013be4SDimitry Andric return; 5588*fe013be4SDimitry Andric 5589*fe013be4SDimitry Andric if ((getLangOpts().OpenCL && 5590*fe013be4SDimitry Andric !CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) || 5591*fe013be4SDimitry Andric (getLangOpts().HIP && getLangOpts().CUDAIsDevice && 5592*fe013be4SDimitry Andric !CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) { 5593*fe013be4SDimitry Andric // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 3ulp 5594*fe013be4SDimitry Andric // 5595*fe013be4SDimitry Andric // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 5596*fe013be4SDimitry Andric // build option allows an application to specify that single precision 5597*fe013be4SDimitry Andric // floating-point divide (x/y and 1/x) and sqrt used in the program 5598*fe013be4SDimitry Andric // source are correctly rounded. 5599*fe013be4SDimitry Andric // 5600*fe013be4SDimitry Andric // TODO: CUDA has a prec-sqrt flag 5601*fe013be4SDimitry Andric SetFPAccuracy(Val, 3.0f); 5602*fe013be4SDimitry Andric } 5603*fe013be4SDimitry Andric } 5604*fe013be4SDimitry Andric 5605*fe013be4SDimitry Andric void CodeGenFunction::SetDivFPAccuracy(llvm::Value *Val) { 5606*fe013be4SDimitry Andric llvm::Type *EltTy = Val->getType()->getScalarType(); 5607*fe013be4SDimitry Andric if (!EltTy->isFloatTy()) 5608*fe013be4SDimitry Andric return; 5609*fe013be4SDimitry Andric 5610*fe013be4SDimitry Andric if ((getLangOpts().OpenCL && 5611*fe013be4SDimitry Andric !CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) || 5612*fe013be4SDimitry Andric (getLangOpts().HIP && getLangOpts().CUDAIsDevice && 5613*fe013be4SDimitry Andric !CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) { 5614*fe013be4SDimitry Andric // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 5615*fe013be4SDimitry Andric // 5616*fe013be4SDimitry Andric // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 5617*fe013be4SDimitry Andric // build option allows an application to specify that single precision 5618*fe013be4SDimitry Andric // floating-point divide (x/y and 1/x) and sqrt used in the program 5619*fe013be4SDimitry Andric // source are correctly rounded. 5620*fe013be4SDimitry Andric // 5621*fe013be4SDimitry Andric // TODO: CUDA has a prec-div flag 5622*fe013be4SDimitry Andric SetFPAccuracy(Val, 2.5f); 5623*fe013be4SDimitry Andric } 5624*fe013be4SDimitry Andric } 5625*fe013be4SDimitry Andric 56260b57cec5SDimitry Andric namespace { 56270b57cec5SDimitry Andric struct LValueOrRValue { 56280b57cec5SDimitry Andric LValue LV; 56290b57cec5SDimitry Andric RValue RV; 56300b57cec5SDimitry Andric }; 56310b57cec5SDimitry Andric } 56320b57cec5SDimitry Andric 56330b57cec5SDimitry Andric static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 56340b57cec5SDimitry Andric const PseudoObjectExpr *E, 56350b57cec5SDimitry Andric bool forLValue, 56360b57cec5SDimitry Andric AggValueSlot slot) { 56370b57cec5SDimitry Andric SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 56380b57cec5SDimitry Andric 56390b57cec5SDimitry Andric // Find the result expression, if any. 56400b57cec5SDimitry Andric const Expr *resultExpr = E->getResultExpr(); 56410b57cec5SDimitry Andric LValueOrRValue result; 56420b57cec5SDimitry Andric 56430b57cec5SDimitry Andric for (PseudoObjectExpr::const_semantics_iterator 56440b57cec5SDimitry Andric i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 56450b57cec5SDimitry Andric const Expr *semantic = *i; 56460b57cec5SDimitry Andric 56470b57cec5SDimitry Andric // If this semantic expression is an opaque value, bind it 56480b57cec5SDimitry Andric // to the result of its source expression. 56490b57cec5SDimitry Andric if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 56500b57cec5SDimitry Andric // Skip unique OVEs. 56510b57cec5SDimitry Andric if (ov->isUnique()) { 56520b57cec5SDimitry Andric assert(ov != resultExpr && 56530b57cec5SDimitry Andric "A unique OVE cannot be used as the result expression"); 56540b57cec5SDimitry Andric continue; 56550b57cec5SDimitry Andric } 56560b57cec5SDimitry Andric 56570b57cec5SDimitry Andric // If this is the result expression, we may need to evaluate 56580b57cec5SDimitry Andric // directly into the slot. 56590b57cec5SDimitry Andric typedef CodeGenFunction::OpaqueValueMappingData OVMA; 56600b57cec5SDimitry Andric OVMA opaqueData; 5661fe6060f1SDimitry Andric if (ov == resultExpr && ov->isPRValue() && !forLValue && 56620b57cec5SDimitry Andric CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 56630b57cec5SDimitry Andric CGF.EmitAggExpr(ov->getSourceExpr(), slot); 56640b57cec5SDimitry Andric LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 56650b57cec5SDimitry Andric AlignmentSource::Decl); 56660b57cec5SDimitry Andric opaqueData = OVMA::bind(CGF, ov, LV); 56670b57cec5SDimitry Andric result.RV = slot.asRValue(); 56680b57cec5SDimitry Andric 56690b57cec5SDimitry Andric // Otherwise, emit as normal. 56700b57cec5SDimitry Andric } else { 56710b57cec5SDimitry Andric opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 56720b57cec5SDimitry Andric 56730b57cec5SDimitry Andric // If this is the result, also evaluate the result now. 56740b57cec5SDimitry Andric if (ov == resultExpr) { 56750b57cec5SDimitry Andric if (forLValue) 56760b57cec5SDimitry Andric result.LV = CGF.EmitLValue(ov); 56770b57cec5SDimitry Andric else 56780b57cec5SDimitry Andric result.RV = CGF.EmitAnyExpr(ov, slot); 56790b57cec5SDimitry Andric } 56800b57cec5SDimitry Andric } 56810b57cec5SDimitry Andric 56820b57cec5SDimitry Andric opaques.push_back(opaqueData); 56830b57cec5SDimitry Andric 56840b57cec5SDimitry Andric // Otherwise, if the expression is the result, evaluate it 56850b57cec5SDimitry Andric // and remember the result. 56860b57cec5SDimitry Andric } else if (semantic == resultExpr) { 56870b57cec5SDimitry Andric if (forLValue) 56880b57cec5SDimitry Andric result.LV = CGF.EmitLValue(semantic); 56890b57cec5SDimitry Andric else 56900b57cec5SDimitry Andric result.RV = CGF.EmitAnyExpr(semantic, slot); 56910b57cec5SDimitry Andric 56920b57cec5SDimitry Andric // Otherwise, evaluate the expression in an ignored context. 56930b57cec5SDimitry Andric } else { 56940b57cec5SDimitry Andric CGF.EmitIgnoredExpr(semantic); 56950b57cec5SDimitry Andric } 56960b57cec5SDimitry Andric } 56970b57cec5SDimitry Andric 56980b57cec5SDimitry Andric // Unbind all the opaques now. 56990b57cec5SDimitry Andric for (unsigned i = 0, e = opaques.size(); i != e; ++i) 57000b57cec5SDimitry Andric opaques[i].unbind(CGF); 57010b57cec5SDimitry Andric 57020b57cec5SDimitry Andric return result; 57030b57cec5SDimitry Andric } 57040b57cec5SDimitry Andric 57050b57cec5SDimitry Andric RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 57060b57cec5SDimitry Andric AggValueSlot slot) { 57070b57cec5SDimitry Andric return emitPseudoObjectExpr(*this, E, false, slot).RV; 57080b57cec5SDimitry Andric } 57090b57cec5SDimitry Andric 57100b57cec5SDimitry Andric LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 57110b57cec5SDimitry Andric return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 57120b57cec5SDimitry Andric } 5713