1 /** 2 * Copyright (c) 2009 Adrian Chadd 3 * Copyright (c) 2012 Spectra Logic Corporation 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 */ 28 29 /** 30 * \file dev/xen/timer/timer.c 31 * \brief A timer driver for the Xen hypervisor's PV clock. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/bus.h> 40 #include <sys/kernel.h> 41 #include <sys/module.h> 42 #include <sys/time.h> 43 #include <sys/timetc.h> 44 #include <sys/timeet.h> 45 #include <sys/smp.h> 46 #include <sys/limits.h> 47 #include <sys/clock.h> 48 49 #include <xen/xen-os.h> 50 #include <xen/features.h> 51 #include <xen/xen_intr.h> 52 #include <xen/hypervisor.h> 53 #include <xen/interface/io/xenbus.h> 54 #include <xen/interface/vcpu.h> 55 56 #include <machine/cpu.h> 57 #include <machine/cpufunc.h> 58 #include <machine/clock.h> 59 #include <machine/_inttypes.h> 60 61 #include "clock_if.h" 62 63 static devclass_t xentimer_devclass; 64 65 #define NSEC_IN_SEC 1000000000ULL 66 #define NSEC_IN_USEC 1000ULL 67 /* 18446744073 = int(2^64 / NSEC_IN_SC) = 1 ns in 64-bit fractions */ 68 #define FRAC_IN_NSEC 18446744073LL 69 70 /* Xen timers may fire up to 100us off */ 71 #define XENTIMER_MIN_PERIOD_IN_NSEC 100*NSEC_IN_USEC 72 #define XENCLOCK_RESOLUTION 10000000 73 74 #define ETIME 62 /* Xen "bad time" error */ 75 76 #define XENTIMER_QUALITY 950 77 78 struct xentimer_pcpu_data { 79 uint64_t timer; 80 uint64_t last_processed; 81 void *irq_handle; 82 }; 83 84 DPCPU_DEFINE(struct xentimer_pcpu_data, xentimer_pcpu); 85 86 DPCPU_DECLARE(struct vcpu_info *, vcpu_info); 87 88 struct xentimer_softc { 89 device_t dev; 90 struct timecounter tc; 91 struct eventtimer et; 92 }; 93 94 /* Last time; this guarantees a monotonically increasing clock. */ 95 volatile uint64_t xen_timer_last_time = 0; 96 97 static void 98 xentimer_identify(driver_t *driver, device_t parent) 99 { 100 if (!xen_domain()) 101 return; 102 103 /* Handle all Xen PV timers in one device instance. */ 104 if (devclass_get_device(xentimer_devclass, 0)) 105 return; 106 107 BUS_ADD_CHILD(parent, 0, "xen_et", 0); 108 } 109 110 static int 111 xentimer_probe(device_t dev) 112 { 113 KASSERT((xen_domain()), ("Trying to use Xen timer on bare metal")); 114 /* 115 * In order to attach, this driver requires the following: 116 * - Vector callback support by the hypervisor, in order to deliver 117 * timer interrupts to the correct CPU for CPUs other than 0. 118 * - Access to the hypervisor shared info page, in order to look up 119 * each VCPU's timer information and the Xen wallclock time. 120 * - The hypervisor must say its PV clock is "safe" to use. 121 * - The hypervisor must support VCPUOP hypercalls. 122 * - The maximum number of CPUs supported by FreeBSD must not exceed 123 * the number of VCPUs supported by the hypervisor. 124 */ 125 #define XTREQUIRES(condition, reason...) \ 126 if (!(condition)) { \ 127 device_printf(dev, ## reason); \ 128 device_detach(dev); \ 129 return (ENXIO); \ 130 } 131 132 if (xen_hvm_domain()) { 133 XTREQUIRES(xen_vector_callback_enabled, 134 "vector callbacks unavailable\n"); 135 XTREQUIRES(xen_feature(XENFEAT_hvm_safe_pvclock), 136 "HVM safe pvclock unavailable\n"); 137 } 138 XTREQUIRES(HYPERVISOR_shared_info != NULL, 139 "shared info page unavailable\n"); 140 XTREQUIRES(HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, 0, NULL) == 0, 141 "VCPUOPs interface unavailable\n"); 142 #undef XTREQUIRES 143 device_set_desc(dev, "Xen PV Clock"); 144 return (0); 145 } 146 147 /* 148 * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction, 149 * yielding a 64-bit result. 150 */ 151 static inline uint64_t 152 scale_delta(uint64_t delta, uint32_t mul_frac, int shift) 153 { 154 uint64_t product; 155 156 if (shift < 0) 157 delta >>= -shift; 158 else 159 delta <<= shift; 160 161 #if defined(__i386__) 162 { 163 uint32_t tmp1, tmp2; 164 165 /** 166 * For i386, the formula looks like: 167 * 168 * lower = (mul_frac * (delta & UINT_MAX)) >> 32 169 * upper = mul_frac * (delta >> 32) 170 * product = lower + upper 171 */ 172 __asm__ ( 173 "mul %5 ; " 174 "mov %4,%%eax ; " 175 "mov %%edx,%4 ; " 176 "mul %5 ; " 177 "xor %5,%5 ; " 178 "add %4,%%eax ; " 179 "adc %5,%%edx ; " 180 : "=A" (product), "=r" (tmp1), "=r" (tmp2) 181 : "a" ((uint32_t)delta), "1" ((uint32_t)(delta >> 32)), 182 "2" (mul_frac) ); 183 } 184 #elif defined(__amd64__) 185 { 186 unsigned long tmp; 187 188 __asm__ ( 189 "mulq %[mul_frac] ; shrd $32, %[hi], %[lo]" 190 : [lo]"=a" (product), [hi]"=d" (tmp) 191 : "0" (delta), [mul_frac]"rm"((uint64_t)mul_frac)); 192 } 193 #else 194 #error "xentimer: unsupported architecture" 195 #endif 196 197 return (product); 198 } 199 200 static uint64_t 201 get_nsec_offset(struct vcpu_time_info *tinfo) 202 { 203 204 return (scale_delta(rdtsc() - tinfo->tsc_timestamp, 205 tinfo->tsc_to_system_mul, tinfo->tsc_shift)); 206 } 207 208 /* 209 * Read the current hypervisor system uptime value from Xen. 210 * See <xen/interface/xen.h> for a description of how this works. 211 */ 212 static uint32_t 213 xen_fetch_vcpu_tinfo(struct vcpu_time_info *dst, struct vcpu_time_info *src) 214 { 215 216 do { 217 dst->version = src->version; 218 rmb(); 219 dst->tsc_timestamp = src->tsc_timestamp; 220 dst->system_time = src->system_time; 221 dst->tsc_to_system_mul = src->tsc_to_system_mul; 222 dst->tsc_shift = src->tsc_shift; 223 rmb(); 224 } while ((src->version & 1) | (dst->version ^ src->version)); 225 226 return (dst->version); 227 } 228 229 /** 230 * \brief Get the current time, in nanoseconds, since the hypervisor booted. 231 * 232 * \note This function returns the current CPU's idea of this value, unless 233 * it happens to be less than another CPU's previously determined value. 234 */ 235 static uint64_t 236 xen_fetch_vcpu_time(void) 237 { 238 struct vcpu_time_info dst; 239 struct vcpu_time_info *src; 240 uint32_t pre_version; 241 uint64_t now; 242 volatile uint64_t last; 243 struct vcpu_info *vcpu = DPCPU_GET(vcpu_info); 244 245 src = &vcpu->time; 246 247 critical_enter(); 248 do { 249 pre_version = xen_fetch_vcpu_tinfo(&dst, src); 250 barrier(); 251 now = dst.system_time + get_nsec_offset(&dst); 252 barrier(); 253 } while (pre_version != src->version); 254 255 /* 256 * Enforce a monotonically increasing clock time across all 257 * VCPUs. If our time is too old, use the last time and return. 258 * Otherwise, try to update the last time. 259 */ 260 do { 261 last = xen_timer_last_time; 262 if (last > now) { 263 now = last; 264 break; 265 } 266 } while (!atomic_cmpset_64(&xen_timer_last_time, last, now)); 267 268 critical_exit(); 269 270 return (now); 271 } 272 273 static uint32_t 274 xentimer_get_timecount(struct timecounter *tc) 275 { 276 277 return ((uint32_t)xen_fetch_vcpu_time() & UINT_MAX); 278 } 279 280 /** 281 * \brief Fetch the hypervisor boot time, known as the "Xen wallclock". 282 * 283 * \param ts Timespec to store the current stable value. 284 * \param version Pointer to store the corresponding wallclock version. 285 * 286 * \note This value is updated when Domain-0 shifts its clock to follow 287 * clock drift, e.g. as detected by NTP. 288 */ 289 static void 290 xen_fetch_wallclock(struct timespec *ts) 291 { 292 shared_info_t *src = HYPERVISOR_shared_info; 293 uint32_t version = 0; 294 295 do { 296 version = src->wc_version; 297 rmb(); 298 ts->tv_sec = src->wc_sec; 299 ts->tv_nsec = src->wc_nsec; 300 rmb(); 301 } while ((src->wc_version & 1) | (version ^ src->wc_version)); 302 } 303 304 static void 305 xen_fetch_uptime(struct timespec *ts) 306 { 307 uint64_t uptime = xen_fetch_vcpu_time(); 308 ts->tv_sec = uptime / NSEC_IN_SEC; 309 ts->tv_nsec = uptime % NSEC_IN_SEC; 310 } 311 312 static int 313 xentimer_settime(device_t dev __unused, struct timespec *ts) 314 { 315 /* 316 * Don't return EINVAL here; just silently fail if the domain isn't 317 * privileged enough to set the TOD. 318 */ 319 return(0); 320 } 321 322 /** 323 * \brief Return current time according to the Xen Hypervisor wallclock. 324 * 325 * \param dev Xentimer device. 326 * \param ts Pointer to store the wallclock time. 327 * 328 * \note The Xen time structures document the hypervisor start time and the 329 * uptime-since-hypervisor-start (in nsec.) They need to be combined 330 * in order to calculate a TOD clock. 331 */ 332 static int 333 xentimer_gettime(device_t dev, struct timespec *ts) 334 { 335 struct timespec u_ts; 336 337 timespecclear(ts); 338 xen_fetch_wallclock(ts); 339 xen_fetch_uptime(&u_ts); 340 timespecadd(ts, &u_ts); 341 342 return(0); 343 } 344 345 /** 346 * \brief Handle a timer interrupt for the Xen PV timer driver. 347 * 348 * \param arg Xen timer driver softc that is expecting the interrupt. 349 */ 350 static int 351 xentimer_intr(void *arg) 352 { 353 struct xentimer_softc *sc = (struct xentimer_softc *)arg; 354 struct xentimer_pcpu_data *pcpu = DPCPU_PTR(xentimer_pcpu); 355 356 pcpu->last_processed = xen_fetch_vcpu_time(); 357 if (pcpu->timer != 0 && sc->et.et_active) 358 sc->et.et_event_cb(&sc->et, sc->et.et_arg); 359 360 return (FILTER_HANDLED); 361 } 362 363 static int 364 xentimer_vcpu_start_timer(int vcpu, uint64_t next_time) 365 { 366 struct vcpu_set_singleshot_timer single; 367 368 single.timeout_abs_ns = next_time; 369 single.flags = VCPU_SSHOTTMR_future; 370 return (HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, vcpu, &single)); 371 } 372 373 static int 374 xentimer_vcpu_stop_timer(int vcpu) 375 { 376 377 return (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, vcpu, NULL)); 378 } 379 380 /** 381 * \brief Set the next oneshot time for the current CPU. 382 * 383 * \param et Xen timer driver event timer to schedule on. 384 * \param first Delta to the next time to schedule the interrupt for. 385 * \param period Not used. 386 * 387 * \note See eventtimers(9) for more information. 388 * \note 389 * 390 * \returns 0 391 */ 392 static int 393 xentimer_et_start(struct eventtimer *et, 394 sbintime_t first, sbintime_t period) 395 { 396 int error = 0, i = 0; 397 struct xentimer_softc *sc = et->et_priv; 398 int cpu = PCPU_GET(acpi_id); 399 struct xentimer_pcpu_data *pcpu = DPCPU_PTR(xentimer_pcpu); 400 uint64_t first_in_ns, next_time; 401 402 /* See sbttots() for this formula. */ 403 first_in_ns = (((first >> 32) * NSEC_IN_SEC) + 404 (((uint64_t)NSEC_IN_SEC * (uint32_t)first) >> 32)); 405 406 /* 407 * Retry any timer scheduling failures, where the hypervisor 408 * returns -ETIME. Sometimes even a 100us timer period isn't large 409 * enough, but larger period instances are relatively uncommon. 410 * 411 * XXX Remove the panics once et_start() and its consumers are 412 * equipped to deal with start failures. 413 */ 414 do { 415 if (++i == 60) 416 panic("can't schedule timer"); 417 next_time = xen_fetch_vcpu_time() + first_in_ns; 418 error = xentimer_vcpu_start_timer(cpu, next_time); 419 } while (error == -ETIME); 420 421 if (error) 422 panic("%s: Error %d setting singleshot timer to %"PRIu64"\n", 423 device_get_nameunit(sc->dev), error, next_time); 424 425 pcpu->timer = next_time; 426 return (error); 427 } 428 429 /** 430 * \brief Cancel the event timer's currently running timer, if any. 431 */ 432 static int 433 xentimer_et_stop(struct eventtimer *et) 434 { 435 int cpu = PCPU_GET(acpi_id); 436 struct xentimer_pcpu_data *pcpu = DPCPU_PTR(xentimer_pcpu); 437 438 pcpu->timer = 0; 439 return (xentimer_vcpu_stop_timer(cpu)); 440 } 441 442 /** 443 * \brief Attach a Xen PV timer driver instance. 444 * 445 * \param dev Bus device object to attach. 446 * 447 * \note 448 * \returns EINVAL 449 */ 450 static int 451 xentimer_attach(device_t dev) 452 { 453 struct xentimer_softc *sc = device_get_softc(dev); 454 int error, i; 455 456 sc->dev = dev; 457 458 /* Bind an event channel to a VIRQ on each VCPU. */ 459 CPU_FOREACH(i) { 460 struct xentimer_pcpu_data *pcpu = DPCPU_ID_PTR(i, xentimer_pcpu); 461 462 error = HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, i, NULL); 463 if (error) { 464 device_printf(dev, "Error disabling Xen periodic timer " 465 "on CPU %d\n", i); 466 return (error); 467 } 468 469 error = xen_intr_bind_virq(dev, VIRQ_TIMER, i, xentimer_intr, 470 NULL, sc, INTR_TYPE_CLK, &pcpu->irq_handle); 471 if (error) { 472 device_printf(dev, "Error %d binding VIRQ_TIMER " 473 "to VCPU %d\n", error, i); 474 return (error); 475 } 476 xen_intr_describe(pcpu->irq_handle, "c%d", i); 477 } 478 479 /* Register the event timer. */ 480 sc->et.et_name = "XENTIMER"; 481 sc->et.et_quality = XENTIMER_QUALITY; 482 sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU; 483 sc->et.et_frequency = NSEC_IN_SEC; 484 /* See tstosbt() for this formula */ 485 sc->et.et_min_period = (XENTIMER_MIN_PERIOD_IN_NSEC * 486 (((uint64_t)1 << 63) / 500000000) >> 32); 487 sc->et.et_max_period = ((sbintime_t)4 << 32); 488 sc->et.et_start = xentimer_et_start; 489 sc->et.et_stop = xentimer_et_stop; 490 sc->et.et_priv = sc; 491 et_register(&sc->et); 492 493 /* Register the timecounter. */ 494 sc->tc.tc_name = "XENTIMER"; 495 sc->tc.tc_quality = XENTIMER_QUALITY; 496 /* 497 * The underlying resolution is in nanoseconds, since the timer info 498 * scales TSC frequencies using a fraction that represents time in 499 * terms of nanoseconds. 500 */ 501 sc->tc.tc_frequency = NSEC_IN_SEC; 502 sc->tc.tc_counter_mask = ~0u; 503 sc->tc.tc_get_timecount = xentimer_get_timecount; 504 sc->tc.tc_priv = sc; 505 tc_init(&sc->tc); 506 507 /* Register the Hypervisor wall clock */ 508 clock_register(dev, XENCLOCK_RESOLUTION); 509 510 return (0); 511 } 512 513 static int 514 xentimer_detach(device_t dev) 515 { 516 517 /* Implement Xen PV clock teardown - XXX see hpet_detach ? */ 518 /* If possible: 519 * 1. need to deregister timecounter 520 * 2. need to deregister event timer 521 * 3. need to deregister virtual IRQ event channels 522 */ 523 return (EBUSY); 524 } 525 526 /** 527 * The following device methods are disabled because they wouldn't work 528 * properly. 529 */ 530 #ifdef NOTYET 531 static int 532 xentimer_resume(device_t dev) 533 { 534 struct xentimer_softc *sc = device_get_softc(dev); 535 int error = 0; 536 int i; 537 538 device_printf(sc->dev, "%s", __func__); 539 CPU_FOREACH(i) { 540 struct xentimer_pcpu_data *pcpu = DPCPU_ID_PTR(i, xentimer_pcpu); 541 542 /* Skip inactive timers. */ 543 if (pcpu->timer == 0) 544 continue; 545 546 /* 547 * XXX This won't actually work, because Xen requires that 548 * singleshot timers be set while running on the given CPU. 549 */ 550 error = xentimer_vcpu_start_timer(i, pcpu->timer); 551 if (error == -ETIME) { 552 /* Event time has already passed; process. */ 553 xentimer_intr(sc); 554 } else if (error != 0) { 555 panic("%s: error %d restarting vcpu %d\n", 556 __func__, error, i); 557 } 558 } 559 560 return (error); 561 } 562 563 static int 564 xentimer_suspend(device_t dev) 565 { 566 struct xentimer_softc *sc = device_get_softc(dev); 567 int error = 0; 568 int i; 569 570 device_printf(sc->dev, "%s", __func__); 571 CPU_FOREACH(i) { 572 struct xentimer_pcpu_data *pcpu = DPCPU_ID_PTR(i, xentimer_pcpu); 573 574 /* Skip inactive timers. */ 575 if (pcpu->timer == 0) 576 continue; 577 error = xentimer_vcpu_stop_timer(i); 578 if (error) 579 panic("Error %d stopping VCPU %d timer\n", error, i); 580 } 581 582 return (error); 583 } 584 #endif 585 586 static device_method_t xentimer_methods[] = { 587 DEVMETHOD(device_identify, xentimer_identify), 588 DEVMETHOD(device_probe, xentimer_probe), 589 DEVMETHOD(device_attach, xentimer_attach), 590 DEVMETHOD(device_detach, xentimer_detach), 591 #ifdef NOTYET 592 DEVMETHOD(device_suspend, xentimer_suspend), 593 DEVMETHOD(device_resume, xentimer_resume), 594 #endif 595 /* clock interface */ 596 DEVMETHOD(clock_gettime, xentimer_gettime), 597 DEVMETHOD(clock_settime, xentimer_settime), 598 DEVMETHOD_END 599 }; 600 601 static driver_t xentimer_driver = { 602 "xen_et", 603 xentimer_methods, 604 sizeof(struct xentimer_softc), 605 }; 606 607 DRIVER_MODULE(xentimer, nexus, xentimer_driver, xentimer_devclass, 0, 0); 608 MODULE_DEPEND(xentimer, nexus, 1, 1, 1); 609