1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo 5 * Copyright (C) 2013-2016 Universita` di Pisa 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * $FreeBSD$ 32 * 33 * The header contains the definitions of constants and function 34 * prototypes used only in kernelspace. 35 */ 36 37 #ifndef _NET_NETMAP_KERN_H_ 38 #define _NET_NETMAP_KERN_H_ 39 40 #if defined(linux) 41 42 #if defined(CONFIG_NETMAP_EXTMEM) 43 #define WITH_EXTMEM 44 #endif 45 #if defined(CONFIG_NETMAP_VALE) 46 #define WITH_VALE 47 #endif 48 #if defined(CONFIG_NETMAP_PIPE) 49 #define WITH_PIPES 50 #endif 51 #if defined(CONFIG_NETMAP_MONITOR) 52 #define WITH_MONITOR 53 #endif 54 #if defined(CONFIG_NETMAP_GENERIC) 55 #define WITH_GENERIC 56 #endif 57 #if defined(CONFIG_NETMAP_PTNETMAP) 58 #define WITH_PTNETMAP 59 #endif 60 #if defined(CONFIG_NETMAP_SINK) 61 #define WITH_SINK 62 #endif 63 #if defined(CONFIG_NETMAP_NULL) 64 #define WITH_NMNULL 65 #endif 66 67 #elif defined (_WIN32) 68 #define WITH_VALE // comment out to disable VALE support 69 #define WITH_PIPES 70 #define WITH_MONITOR 71 #define WITH_GENERIC 72 #define WITH_NMNULL 73 74 #else /* neither linux nor windows */ 75 #define WITH_VALE // comment out to disable VALE support 76 #define WITH_PIPES 77 #define WITH_MONITOR 78 #define WITH_GENERIC 79 #define WITH_PTNETMAP /* ptnetmap guest support */ 80 #define WITH_EXTMEM 81 #define WITH_NMNULL 82 #endif 83 84 #if defined(__FreeBSD__) 85 #include <sys/selinfo.h> 86 87 #define likely(x) __builtin_expect((long)!!(x), 1L) 88 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 89 #define __user 90 91 #define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */ 92 93 #define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */ 94 #define NM_MTX_INIT(m) sx_init(&(m), #m) 95 #define NM_MTX_DESTROY(m) sx_destroy(&(m)) 96 #define NM_MTX_LOCK(m) sx_xlock(&(m)) 97 #define NM_MTX_SPINLOCK(m) while (!sx_try_xlock(&(m))) ; 98 #define NM_MTX_UNLOCK(m) sx_xunlock(&(m)) 99 #define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED) 100 101 #define NM_SELINFO_T struct nm_selinfo 102 #define NM_SELRECORD_T struct thread 103 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 104 #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid) 105 #define MBUF_TRANSMIT(na, ifp, m) ((na)->if_transmit(ifp, m)) 106 #define GEN_TX_MBUF_IFP(m) ((m)->m_pkthdr.rcvif) 107 108 #define NM_ATOMIC_T volatile int /* required by atomic/bitops.h */ 109 /* atomic operations */ 110 #include <machine/atomic.h> 111 #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) 112 #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) 113 114 #if __FreeBSD_version >= 1100030 115 #define WNA(_ifp) (_ifp)->if_netmap 116 #else /* older FreeBSD */ 117 #define WNA(_ifp) (_ifp)->if_pspare[0] 118 #endif /* older FreeBSD */ 119 120 #if __FreeBSD_version >= 1100005 121 struct netmap_adapter *netmap_getna(if_t ifp); 122 #endif 123 124 #if __FreeBSD_version >= 1100027 125 #define MBUF_REFCNT(m) ((m)->m_ext.ext_count) 126 #define SET_MBUF_REFCNT(m, x) (m)->m_ext.ext_count = x 127 #else 128 #define MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1) 129 #define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ref_cnt) = x 130 #endif 131 132 #define MBUF_QUEUED(m) 1 133 134 struct nm_selinfo { 135 struct selinfo si; 136 struct taskqueue *ntfytq; 137 struct task ntfytask; 138 struct mtx m; 139 char mtxname[32]; 140 }; 141 142 143 struct hrtimer { 144 /* Not used in FreeBSD. */ 145 }; 146 147 #define NM_BNS_GET(b) 148 #define NM_BNS_PUT(b) 149 150 #elif defined (linux) 151 152 #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h 153 #define NM_SELINFO_T wait_queue_head_t 154 #define MBUF_LEN(m) ((m)->len) 155 #define MBUF_TRANSMIT(na, ifp, m) \ 156 ({ \ 157 /* Avoid infinite recursion with generic. */ \ 158 m->priority = NM_MAGIC_PRIORITY_TX; \ 159 (((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \ 160 0; \ 161 }) 162 163 /* See explanation in nm_os_generic_xmit_frame. */ 164 #define GEN_TX_MBUF_IFP(m) ((struct ifnet *)skb_shinfo(m)->destructor_arg) 165 166 #define NM_ATOMIC_T volatile long unsigned int 167 168 #define NM_MTX_T struct mutex /* OS-specific sleepable lock */ 169 #define NM_MTX_INIT(m) mutex_init(&(m)) 170 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 171 #define NM_MTX_LOCK(m) mutex_lock(&(m)) 172 #define NM_MTX_UNLOCK(m) mutex_unlock(&(m)) 173 #define NM_MTX_ASSERT(m) mutex_is_locked(&(m)) 174 175 #ifndef DEV_NETMAP 176 #define DEV_NETMAP 177 #endif /* DEV_NETMAP */ 178 179 #elif defined (__APPLE__) 180 181 #warning apple support is incomplete. 182 #define likely(x) __builtin_expect(!!(x), 1) 183 #define unlikely(x) __builtin_expect(!!(x), 0) 184 #define NM_LOCK_T IOLock * 185 #define NM_SELINFO_T struct selinfo 186 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 187 188 #elif defined (_WIN32) 189 #include "../../../WINDOWS/win_glue.h" 190 191 #define NM_SELRECORD_T IO_STACK_LOCATION 192 #define NM_SELINFO_T win_SELINFO // see win_glue.h 193 #define NM_LOCK_T win_spinlock_t // see win_glue.h 194 #define NM_MTX_T KGUARDED_MUTEX /* OS-specific mutex (sleepable) */ 195 196 #define NM_MTX_INIT(m) KeInitializeGuardedMutex(&m); 197 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 198 #define NM_MTX_LOCK(m) KeAcquireGuardedMutex(&(m)) 199 #define NM_MTX_UNLOCK(m) KeReleaseGuardedMutex(&(m)) 200 #define NM_MTX_ASSERT(m) assert(&m.Count>0) 201 202 //These linknames are for the NDIS driver 203 #define NETMAP_NDIS_LINKNAME_STRING L"\\DosDevices\\NMAPNDIS" 204 #define NETMAP_NDIS_NTDEVICE_STRING L"\\Device\\NMAPNDIS" 205 206 //Definition of internal driver-to-driver ioctl codes 207 #define NETMAP_KERNEL_XCHANGE_POINTERS _IO('i', 180) 208 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL _IO_direct('i', 195) 209 210 typedef struct hrtimer{ 211 KTIMER timer; 212 BOOLEAN active; 213 KDPC deferred_proc; 214 }; 215 216 /* MSVC does not have likely/unlikely support */ 217 #ifdef _MSC_VER 218 #define likely(x) (x) 219 #define unlikely(x) (x) 220 #else 221 #define likely(x) __builtin_expect((long)!!(x), 1L) 222 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 223 #endif //_MSC_VER 224 225 #else 226 227 #error unsupported platform 228 229 #endif /* end - platform-specific code */ 230 231 #ifndef _WIN32 /* support for emulated sysctl */ 232 #define SYSBEGIN(x) 233 #define SYSEND 234 #endif /* _WIN32 */ 235 236 #define NM_ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x)) 237 238 #define NMG_LOCK_T NM_MTX_T 239 #define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock) 240 #define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock) 241 #define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock) 242 #define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock) 243 #define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock) 244 245 #if defined(__FreeBSD__) 246 #define nm_prerr_int printf 247 #define nm_prinf_int printf 248 #elif defined (_WIN32) 249 #define nm_prerr_int DbgPrint 250 #define nm_prinf_int DbgPrint 251 #elif defined(linux) 252 #define nm_prerr_int(fmt, arg...) printk(KERN_ERR fmt, ##arg) 253 #define nm_prinf_int(fmt, arg...) printk(KERN_INFO fmt, ##arg) 254 #endif 255 256 #define nm_prinf(format, ...) \ 257 do { \ 258 struct timeval __xxts; \ 259 microtime(&__xxts); \ 260 nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\ 261 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 262 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 263 } while (0) 264 265 #define nm_prerr(format, ...) \ 266 do { \ 267 struct timeval __xxts; \ 268 microtime(&__xxts); \ 269 nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\ 270 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 271 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 272 } while (0) 273 274 /* Disabled printf (used to be ND). */ 275 #define nm_prdis(format, ...) 276 277 /* Rate limited, lps indicates how many per second. */ 278 #define nm_prlim(lps, format, ...) \ 279 do { \ 280 static int t0, __cnt; \ 281 if (t0 != time_second) { \ 282 t0 = time_second; \ 283 __cnt = 0; \ 284 } \ 285 if (__cnt++ < lps) \ 286 nm_prinf(format, ##__VA_ARGS__); \ 287 } while (0) 288 289 /* Old macros. */ 290 #define ND nm_prdis 291 #define D nm_prerr 292 #define RD nm_prlim 293 294 struct netmap_adapter; 295 struct nm_bdg_fwd; 296 struct nm_bridge; 297 struct netmap_priv_d; 298 struct nm_bdg_args; 299 300 /* os-specific NM_SELINFO_T initialzation/destruction functions */ 301 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name); 302 void nm_os_selinfo_uninit(NM_SELINFO_T *); 303 304 const char *nm_dump_buf(char *p, int len, int lim, char *dst); 305 306 void nm_os_selwakeup(NM_SELINFO_T *si); 307 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si); 308 309 int nm_os_ifnet_init(void); 310 void nm_os_ifnet_fini(void); 311 void nm_os_ifnet_lock(void); 312 void nm_os_ifnet_unlock(void); 313 314 unsigned nm_os_ifnet_mtu(struct ifnet *ifp); 315 316 void nm_os_get_module(void); 317 void nm_os_put_module(void); 318 319 void netmap_make_zombie(struct ifnet *); 320 void netmap_undo_zombie(struct ifnet *); 321 322 /* os independent alloc/realloc/free */ 323 void *nm_os_malloc(size_t); 324 void *nm_os_vmalloc(size_t); 325 void *nm_os_realloc(void *, size_t new_size, size_t old_size); 326 void nm_os_free(void *); 327 void nm_os_vfree(void *); 328 329 /* os specific attach/detach enter/exit-netmap-mode routines */ 330 void nm_os_onattach(struct ifnet *); 331 void nm_os_ondetach(struct ifnet *); 332 void nm_os_onenter(struct ifnet *); 333 void nm_os_onexit(struct ifnet *); 334 335 /* passes a packet up to the host stack. 336 * If the packet is sent (or dropped) immediately it returns NULL, 337 * otherwise it links the packet to prev and returns m. 338 * In this case, a final call with m=NULL and prev != NULL will send up 339 * the entire chain to the host stack. 340 */ 341 void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev); 342 343 int nm_os_mbuf_has_seg_offld(struct mbuf *m); 344 int nm_os_mbuf_has_csum_offld(struct mbuf *m); 345 346 #include "netmap_mbq.h" 347 348 extern NMG_LOCK_T netmap_global_lock; 349 350 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX }; 351 352 static __inline const char* 353 nm_txrx2str(enum txrx t) 354 { 355 return (t== NR_RX ? "RX" : "TX"); 356 } 357 358 static __inline enum txrx 359 nm_txrx_swap(enum txrx t) 360 { 361 return (t== NR_RX ? NR_TX : NR_RX); 362 } 363 364 #define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++) 365 366 #ifdef WITH_MONITOR 367 struct netmap_zmon_list { 368 struct netmap_kring *next; 369 struct netmap_kring *prev; 370 }; 371 #endif /* WITH_MONITOR */ 372 373 /* 374 * private, kernel view of a ring. Keeps track of the status of 375 * a ring across system calls. 376 * 377 * nr_hwcur index of the next buffer to refill. 378 * It corresponds to ring->head 379 * at the time the system call returns. 380 * 381 * nr_hwtail index of the first buffer owned by the kernel. 382 * On RX, hwcur->hwtail are receive buffers 383 * not yet released. hwcur is advanced following 384 * ring->head, hwtail is advanced on incoming packets, 385 * and a wakeup is generated when hwtail passes ring->cur 386 * On TX, hwcur->rcur have been filled by the sender 387 * but not sent yet to the NIC; rcur->hwtail are available 388 * for new transmissions, and hwtail->hwcur-1 are pending 389 * transmissions not yet acknowledged. 390 * 391 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. 392 * This is so that, on a reset, buffers owned by userspace are not 393 * modified by the kernel. In particular: 394 * RX rings: the next empty buffer (hwtail + hwofs) coincides with 395 * the next empty buffer as known by the hardware (next_to_check or so). 396 * TX rings: hwcur + hwofs coincides with next_to_send 397 * 398 * The following fields are used to implement lock-free copy of packets 399 * from input to output ports in VALE switch: 400 * nkr_hwlease buffer after the last one being copied. 401 * A writer in nm_bdg_flush reserves N buffers 402 * from nr_hwlease, advances it, then does the 403 * copy outside the lock. 404 * In RX rings (used for VALE ports), 405 * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1 406 * In TX rings (used for NIC or host stack ports) 407 * nkr_hwcur <= nkr_hwlease < nkr_hwtail 408 * nkr_leases array of nkr_num_slots where writers can report 409 * completion of their block. NR_NOSLOT (~0) indicates 410 * that the writer has not finished yet 411 * nkr_lease_idx index of next free slot in nr_leases, to be assigned 412 * 413 * The kring is manipulated by txsync/rxsync and generic netmap function. 414 * 415 * Concurrent rxsync or txsync on the same ring are prevented through 416 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need 417 * for NIC rings, and for TX rings attached to the host stack. 418 * 419 * RX rings attached to the host stack use an mbq (rx_queue) on both 420 * rxsync_from_host() and netmap_transmit(). The mbq is protected 421 * by its internal lock. 422 * 423 * RX rings attached to the VALE switch are accessed by both senders 424 * and receiver. They are protected through the q_lock on the RX ring. 425 */ 426 struct netmap_kring { 427 struct netmap_ring *ring; 428 429 uint32_t nr_hwcur; /* should be nr_hwhead */ 430 uint32_t nr_hwtail; 431 432 /* 433 * Copies of values in user rings, so we do not need to look 434 * at the ring (which could be modified). These are set in the 435 * *sync_prologue()/finalize() routines. 436 */ 437 uint32_t rhead; 438 uint32_t rcur; 439 uint32_t rtail; 440 441 uint32_t nr_kflags; /* private driver flags */ 442 #define NKR_PENDINTR 0x1 // Pending interrupt. 443 #define NKR_EXCLUSIVE 0x2 /* exclusive binding */ 444 #define NKR_FORWARD 0x4 /* (host ring only) there are 445 packets to forward 446 */ 447 #define NKR_NEEDRING 0x8 /* ring needed even if users==0 448 * (used internally by pipes and 449 * by ptnetmap host ports) 450 */ 451 #define NKR_NOINTR 0x10 /* don't use interrupts on this ring */ 452 #define NKR_FAKERING 0x20 /* don't allocate/free buffers */ 453 454 uint32_t nr_mode; 455 uint32_t nr_pending_mode; 456 #define NKR_NETMAP_OFF 0x0 457 #define NKR_NETMAP_ON 0x1 458 459 uint32_t nkr_num_slots; 460 461 /* 462 * On a NIC reset, the NIC ring indexes may be reset but the 463 * indexes in the netmap rings remain the same. nkr_hwofs 464 * keeps track of the offset between the two. 465 */ 466 int32_t nkr_hwofs; 467 468 /* last_reclaim is opaque marker to help reduce the frequency 469 * of operations such as reclaiming tx buffers. A possible use 470 * is set it to ticks and do the reclaim only once per tick. 471 */ 472 uint64_t last_reclaim; 473 474 475 NM_SELINFO_T si; /* poll/select wait queue */ 476 NM_LOCK_T q_lock; /* protects kring and ring. */ 477 NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ 478 479 /* the adapter the owns this kring */ 480 struct netmap_adapter *na; 481 482 /* the adapter that wants to be notified when this kring has 483 * new slots avaialable. This is usually the same as the above, 484 * but wrappers may let it point to themselves 485 */ 486 struct netmap_adapter *notify_na; 487 488 /* The following fields are for VALE switch support */ 489 struct nm_bdg_fwd *nkr_ft; 490 uint32_t *nkr_leases; 491 #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */ 492 uint32_t nkr_hwlease; 493 uint32_t nkr_lease_idx; 494 495 /* while nkr_stopped is set, no new [tr]xsync operations can 496 * be started on this kring. 497 * This is used by netmap_disable_all_rings() 498 * to find a synchronization point where critical data 499 * structures pointed to by the kring can be added or removed 500 */ 501 volatile int nkr_stopped; 502 503 /* Support for adapters without native netmap support. 504 * On tx rings we preallocate an array of tx buffers 505 * (same size as the netmap ring), on rx rings we 506 * store incoming mbufs in a queue that is drained by 507 * a rxsync. 508 */ 509 struct mbuf **tx_pool; 510 struct mbuf *tx_event; /* TX event used as a notification */ 511 NM_LOCK_T tx_event_lock; /* protects the tx_event mbuf */ 512 struct mbq rx_queue; /* intercepted rx mbufs. */ 513 514 uint32_t users; /* existing bindings for this ring */ 515 516 uint32_t ring_id; /* kring identifier */ 517 enum txrx tx; /* kind of ring (tx or rx) */ 518 char name[64]; /* diagnostic */ 519 520 /* [tx]sync callback for this kring. 521 * The default nm_kring_create callback (netmap_krings_create) 522 * sets the nm_sync callback of each hardware tx(rx) kring to 523 * the corresponding nm_txsync(nm_rxsync) taken from the 524 * netmap_adapter; moreover, it sets the sync callback 525 * of the host tx(rx) ring to netmap_txsync_to_host 526 * (netmap_rxsync_from_host). 527 * 528 * Overrides: the above configuration is not changed by 529 * any of the nm_krings_create callbacks. 530 */ 531 int (*nm_sync)(struct netmap_kring *kring, int flags); 532 int (*nm_notify)(struct netmap_kring *kring, int flags); 533 534 #ifdef WITH_PIPES 535 struct netmap_kring *pipe; /* if this is a pipe ring, 536 * pointer to the other end 537 */ 538 uint32_t pipe_tail; /* hwtail updated by the other end */ 539 #endif /* WITH_PIPES */ 540 541 int (*save_notify)(struct netmap_kring *kring, int flags); 542 543 #ifdef WITH_MONITOR 544 /* array of krings that are monitoring this kring */ 545 struct netmap_kring **monitors; 546 uint32_t max_monitors; /* current size of the monitors array */ 547 uint32_t n_monitors; /* next unused entry in the monitor array */ 548 uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */ 549 uint32_t mon_tail; /* last seen slot on rx */ 550 551 /* circular list of zero-copy monitors */ 552 struct netmap_zmon_list zmon_list[NR_TXRX]; 553 554 /* 555 * Monitors work by intercepting the sync and notify callbacks of the 556 * monitored krings. This is implemented by replacing the pointers 557 * above and saving the previous ones in mon_* pointers below 558 */ 559 int (*mon_sync)(struct netmap_kring *kring, int flags); 560 int (*mon_notify)(struct netmap_kring *kring, int flags); 561 562 #endif 563 } 564 #ifdef _WIN32 565 __declspec(align(64)); 566 #else 567 __attribute__((__aligned__(64))); 568 #endif 569 570 /* return 1 iff the kring needs to be turned on */ 571 static inline int 572 nm_kring_pending_on(struct netmap_kring *kring) 573 { 574 return kring->nr_pending_mode == NKR_NETMAP_ON && 575 kring->nr_mode == NKR_NETMAP_OFF; 576 } 577 578 /* return 1 iff the kring needs to be turned off */ 579 static inline int 580 nm_kring_pending_off(struct netmap_kring *kring) 581 { 582 return kring->nr_pending_mode == NKR_NETMAP_OFF && 583 kring->nr_mode == NKR_NETMAP_ON; 584 } 585 586 /* return the next index, with wraparound */ 587 static inline uint32_t 588 nm_next(uint32_t i, uint32_t lim) 589 { 590 return unlikely (i == lim) ? 0 : i + 1; 591 } 592 593 594 /* return the previous index, with wraparound */ 595 static inline uint32_t 596 nm_prev(uint32_t i, uint32_t lim) 597 { 598 return unlikely (i == 0) ? lim : i - 1; 599 } 600 601 602 /* 603 * 604 * Here is the layout for the Rx and Tx rings. 605 606 RxRING TxRING 607 608 +-----------------+ +-----------------+ 609 | | | | 610 | free | | free | 611 +-----------------+ +-----------------+ 612 head->| owned by user |<-hwcur | not sent to nic |<-hwcur 613 | | | yet | 614 +-----------------+ | | 615 cur->| available to | | | 616 | user, not read | +-----------------+ 617 | yet | cur->| (being | 618 | | | prepared) | 619 | | | | 620 +-----------------+ + ------ + 621 tail->| |<-hwtail | |<-hwlease 622 | (being | ... | | ... 623 | prepared) | ... | | ... 624 +-----------------+ ... | | ... 625 | |<-hwlease +-----------------+ 626 | | tail->| |<-hwtail 627 | | | | 628 | | | | 629 | | | | 630 +-----------------+ +-----------------+ 631 632 * The cur/tail (user view) and hwcur/hwtail (kernel view) 633 * are used in the normal operation of the card. 634 * 635 * When a ring is the output of a switch port (Rx ring for 636 * a VALE port, Tx ring for the host stack or NIC), slots 637 * are reserved in blocks through 'hwlease' which points 638 * to the next unused slot. 639 * On an Rx ring, hwlease is always after hwtail, 640 * and completions cause hwtail to advance. 641 * On a Tx ring, hwlease is always between cur and hwtail, 642 * and completions cause cur to advance. 643 * 644 * nm_kr_space() returns the maximum number of slots that 645 * can be assigned. 646 * nm_kr_lease() reserves the required number of buffers, 647 * advances nkr_hwlease and also returns an entry in 648 * a circular array where completions should be reported. 649 */ 650 651 struct lut_entry; 652 #ifdef __FreeBSD__ 653 #define plut_entry lut_entry 654 #endif 655 656 struct netmap_lut { 657 struct lut_entry *lut; 658 struct plut_entry *plut; 659 uint32_t objtotal; /* max buffer index */ 660 uint32_t objsize; /* buffer size */ 661 }; 662 663 struct netmap_vp_adapter; // forward 664 struct nm_bridge; 665 666 /* Struct to be filled by nm_config callbacks. */ 667 struct nm_config_info { 668 unsigned num_tx_rings; 669 unsigned num_rx_rings; 670 unsigned num_tx_descs; 671 unsigned num_rx_descs; 672 unsigned rx_buf_maxsize; 673 }; 674 675 /* 676 * default type for the magic field. 677 * May be overriden in glue code. 678 */ 679 #ifndef NM_OS_MAGIC 680 #define NM_OS_MAGIC uint32_t 681 #endif /* !NM_OS_MAGIC */ 682 683 /* 684 * The "struct netmap_adapter" extends the "struct adapter" 685 * (or equivalent) device descriptor. 686 * It contains all base fields needed to support netmap operation. 687 * There are in fact different types of netmap adapters 688 * (native, generic, VALE switch...) so a netmap_adapter is 689 * just the first field in the derived type. 690 */ 691 struct netmap_adapter { 692 /* 693 * On linux we do not have a good way to tell if an interface 694 * is netmap-capable. So we always use the following trick: 695 * NA(ifp) points here, and the first entry (which hopefully 696 * always exists and is at least 32 bits) contains a magic 697 * value which we can use to detect that the interface is good. 698 */ 699 NM_OS_MAGIC magic; 700 uint32_t na_flags; /* enabled, and other flags */ 701 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. 702 * useful during initialization 703 */ 704 #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ 705 #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when 706 * forwarding packets coming from this 707 * interface 708 */ 709 #define NAF_MEM_OWNER 8 /* the adapter uses its own memory area 710 * that cannot be changed 711 */ 712 #define NAF_NATIVE 16 /* the adapter is native. 713 * Virtual ports (non persistent vale ports, 714 * pipes, monitors...) should never use 715 * this flag. 716 */ 717 #define NAF_NETMAP_ON 32 /* netmap is active (either native or 718 * emulated). Where possible (e.g. FreeBSD) 719 * IFCAP_NETMAP also mirrors this flag. 720 */ 721 #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */ 722 #define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */ 723 /* free */ 724 #define NAF_MOREFRAG 512 /* the adapter supports NS_MOREFRAG */ 725 #define NAF_ZOMBIE (1U<<30) /* the nic driver has been unloaded */ 726 #define NAF_BUSY (1U<<31) /* the adapter is used internally and 727 * cannot be registered from userspace 728 */ 729 int active_fds; /* number of user-space descriptors using this 730 interface, which is equal to the number of 731 struct netmap_if objs in the mapped region. */ 732 733 u_int num_rx_rings; /* number of adapter receive rings */ 734 u_int num_tx_rings; /* number of adapter transmit rings */ 735 u_int num_host_rx_rings; /* number of host receive rings */ 736 u_int num_host_tx_rings; /* number of host transmit rings */ 737 738 u_int num_tx_desc; /* number of descriptor in each queue */ 739 u_int num_rx_desc; 740 741 /* tx_rings and rx_rings are private but allocated as a 742 * contiguous chunk of memory. Each array has N+K entries, 743 * N for the hardware rings and K for the host rings. 744 */ 745 struct netmap_kring **tx_rings; /* array of TX rings. */ 746 struct netmap_kring **rx_rings; /* array of RX rings. */ 747 748 void *tailroom; /* space below the rings array */ 749 /* (used for leases) */ 750 751 752 NM_SELINFO_T si[NR_TXRX]; /* global wait queues */ 753 754 /* count users of the global wait queues */ 755 int si_users[NR_TXRX]; 756 757 void *pdev; /* used to store pci device */ 758 759 /* copy of if_qflush and if_transmit pointers, to intercept 760 * packets from the network stack when netmap is active. 761 */ 762 int (*if_transmit)(struct ifnet *, struct mbuf *); 763 764 /* copy of if_input for netmap_send_up() */ 765 void (*if_input)(struct ifnet *, struct mbuf *); 766 767 /* Back reference to the parent ifnet struct. Used for 768 * hardware ports (emulated netmap included). */ 769 struct ifnet *ifp; /* adapter is ifp->if_softc */ 770 771 /*---- callbacks for this netmap adapter -----*/ 772 /* 773 * nm_dtor() is the cleanup routine called when destroying 774 * the adapter. 775 * Called with NMG_LOCK held. 776 * 777 * nm_register() is called on NIOCREGIF and close() to enter 778 * or exit netmap mode on the NIC 779 * Called with NNG_LOCK held. 780 * 781 * nm_txsync() pushes packets to the underlying hw/switch 782 * 783 * nm_rxsync() collects packets from the underlying hw/switch 784 * 785 * nm_config() returns configuration information from the OS 786 * Called with NMG_LOCK held. 787 * 788 * nm_krings_create() create and init the tx_rings and 789 * rx_rings arrays of kring structures. In particular, 790 * set the nm_sync callbacks for each ring. 791 * There is no need to also allocate the corresponding 792 * netmap_rings, since netmap_mem_rings_create() will always 793 * be called to provide the missing ones. 794 * Called with NNG_LOCK held. 795 * 796 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings 797 * arrays 798 * Called with NMG_LOCK held. 799 * 800 * nm_notify() is used to act after data have become available 801 * (or the stopped state of the ring has changed) 802 * For hw devices this is typically a selwakeup(), 803 * but for NIC/host ports attached to a switch (or vice-versa) 804 * we also need to invoke the 'txsync' code downstream. 805 * This callback pointer is actually used only to initialize 806 * kring->nm_notify. 807 * Return values are the same as for netmap_rx_irq(). 808 */ 809 void (*nm_dtor)(struct netmap_adapter *); 810 811 int (*nm_register)(struct netmap_adapter *, int onoff); 812 void (*nm_intr)(struct netmap_adapter *, int onoff); 813 814 int (*nm_txsync)(struct netmap_kring *kring, int flags); 815 int (*nm_rxsync)(struct netmap_kring *kring, int flags); 816 int (*nm_notify)(struct netmap_kring *kring, int flags); 817 #define NAF_FORCE_READ 1 818 #define NAF_FORCE_RECLAIM 2 819 #define NAF_CAN_FORWARD_DOWN 4 820 /* return configuration information */ 821 int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info); 822 int (*nm_krings_create)(struct netmap_adapter *); 823 void (*nm_krings_delete)(struct netmap_adapter *); 824 /* 825 * nm_bdg_attach() initializes the na_vp field to point 826 * to an adapter that can be attached to a VALE switch. If the 827 * current adapter is already a VALE port, na_vp is simply a cast; 828 * otherwise, na_vp points to a netmap_bwrap_adapter. 829 * If applicable, this callback also initializes na_hostvp, 830 * that can be used to connect the adapter host rings to the 831 * switch. 832 * Called with NMG_LOCK held. 833 * 834 * nm_bdg_ctl() is called on the actual attach/detach to/from 835 * to/from the switch, to perform adapter-specific 836 * initializations 837 * Called with NMG_LOCK held. 838 */ 839 int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *, 840 struct nm_bridge *); 841 int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *); 842 843 /* adapter used to attach this adapter to a VALE switch (if any) */ 844 struct netmap_vp_adapter *na_vp; 845 /* adapter used to attach the host rings of this adapter 846 * to a VALE switch (if any) */ 847 struct netmap_vp_adapter *na_hostvp; 848 849 /* standard refcount to control the lifetime of the adapter 850 * (it should be equal to the lifetime of the corresponding ifp) 851 */ 852 int na_refcount; 853 854 /* memory allocator (opaque) 855 * We also cache a pointer to the lut_entry for translating 856 * buffer addresses, the total number of buffers and the buffer size. 857 */ 858 struct netmap_mem_d *nm_mem; 859 struct netmap_mem_d *nm_mem_prev; 860 struct netmap_lut na_lut; 861 862 /* additional information attached to this adapter 863 * by other netmap subsystems. Currently used by 864 * bwrap, LINUX/v1000 and ptnetmap 865 */ 866 void *na_private; 867 868 /* array of pipes that have this adapter as a parent */ 869 struct netmap_pipe_adapter **na_pipes; 870 int na_next_pipe; /* next free slot in the array */ 871 int na_max_pipes; /* size of the array */ 872 873 /* Offset of ethernet header for each packet. */ 874 u_int virt_hdr_len; 875 876 /* Max number of bytes that the NIC can store in the buffer 877 * referenced by each RX descriptor. This translates to the maximum 878 * bytes that a single netmap slot can reference. Larger packets 879 * require NS_MOREFRAG support. */ 880 unsigned rx_buf_maxsize; 881 882 char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */ 883 884 #ifdef WITH_MONITOR 885 unsigned long monitor_id; /* debugging */ 886 #endif 887 }; 888 889 static __inline u_int 890 nma_get_ndesc(struct netmap_adapter *na, enum txrx t) 891 { 892 return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc); 893 } 894 895 static __inline void 896 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v) 897 { 898 if (t == NR_TX) 899 na->num_tx_desc = v; 900 else 901 na->num_rx_desc = v; 902 } 903 904 static __inline u_int 905 nma_get_nrings(struct netmap_adapter *na, enum txrx t) 906 { 907 return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings); 908 } 909 910 static __inline u_int 911 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t) 912 { 913 return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings); 914 } 915 916 static __inline void 917 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 918 { 919 if (t == NR_TX) 920 na->num_tx_rings = v; 921 else 922 na->num_rx_rings = v; 923 } 924 925 static __inline void 926 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 927 { 928 if (t == NR_TX) 929 na->num_host_tx_rings = v; 930 else 931 na->num_host_rx_rings = v; 932 } 933 934 static __inline struct netmap_kring** 935 NMR(struct netmap_adapter *na, enum txrx t) 936 { 937 return (t == NR_TX ? na->tx_rings : na->rx_rings); 938 } 939 940 int nma_intr_enable(struct netmap_adapter *na, int onoff); 941 942 /* 943 * If the NIC is owned by the kernel 944 * (i.e., bridge), neither another bridge nor user can use it; 945 * if the NIC is owned by a user, only users can share it. 946 * Evaluation must be done under NMG_LOCK(). 947 */ 948 #define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY) 949 #define NETMAP_OWNED_BY_ANY(na) \ 950 (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0)) 951 952 /* 953 * derived netmap adapters for various types of ports 954 */ 955 struct netmap_vp_adapter { /* VALE software port */ 956 struct netmap_adapter up; 957 958 /* 959 * Bridge support: 960 * 961 * bdg_port is the port number used in the bridge; 962 * na_bdg points to the bridge this NA is attached to. 963 */ 964 int bdg_port; 965 struct nm_bridge *na_bdg; 966 int retry; 967 int autodelete; /* remove the ifp on last reference */ 968 969 /* Maximum Frame Size, used in bdg_mismatch_datapath() */ 970 u_int mfs; 971 /* Last source MAC on this port */ 972 uint64_t last_smac; 973 }; 974 975 976 struct netmap_hw_adapter { /* physical device */ 977 struct netmap_adapter up; 978 979 #ifdef linux 980 struct net_device_ops nm_ndo; 981 struct ethtool_ops nm_eto; 982 #endif 983 const struct ethtool_ops* save_ethtool; 984 985 int (*nm_hw_register)(struct netmap_adapter *, int onoff); 986 }; 987 988 #ifdef WITH_GENERIC 989 /* Mitigation support. */ 990 struct nm_generic_mit { 991 struct hrtimer mit_timer; 992 int mit_pending; 993 int mit_ring_idx; /* index of the ring being mitigated */ 994 struct netmap_adapter *mit_na; /* backpointer */ 995 }; 996 997 struct netmap_generic_adapter { /* emulated device */ 998 struct netmap_hw_adapter up; 999 1000 /* Pointer to a previously used netmap adapter. */ 1001 struct netmap_adapter *prev; 1002 1003 /* Emulated netmap adapters support: 1004 * - save_if_input saves the if_input hook (FreeBSD); 1005 * - mit implements rx interrupt mitigation; 1006 */ 1007 void (*save_if_input)(struct ifnet *, struct mbuf *); 1008 1009 struct nm_generic_mit *mit; 1010 #ifdef linux 1011 netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *); 1012 #endif 1013 /* Is the adapter able to use multiple RX slots to scatter 1014 * each packet pushed up by the driver? */ 1015 int rxsg; 1016 1017 /* Is the transmission path controlled by a netmap-aware 1018 * device queue (i.e. qdisc on linux)? */ 1019 int txqdisc; 1020 }; 1021 #endif /* WITH_GENERIC */ 1022 1023 static __inline u_int 1024 netmap_real_rings(struct netmap_adapter *na, enum txrx t) 1025 { 1026 return nma_get_nrings(na, t) + 1027 !!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t); 1028 } 1029 1030 /* account for fake rings */ 1031 static __inline u_int 1032 netmap_all_rings(struct netmap_adapter *na, enum txrx t) 1033 { 1034 return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t)); 1035 } 1036 1037 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na, 1038 struct nm_bridge *); 1039 struct nm_bdg_polling_state; 1040 /* 1041 * Bridge wrapper for non VALE ports attached to a VALE switch. 1042 * 1043 * The real device must already have its own netmap adapter (hwna). 1044 * The bridge wrapper and the hwna adapter share the same set of 1045 * netmap rings and buffers, but they have two separate sets of 1046 * krings descriptors, with tx/rx meanings swapped: 1047 * 1048 * netmap 1049 * bwrap krings rings krings hwna 1050 * +------+ +------+ +-----+ +------+ +------+ 1051 * |tx_rings->| |\ /| |----| |<-tx_rings| 1052 * | | +------+ \ / +-----+ +------+ | | 1053 * | | X | | 1054 * | | / \ | | 1055 * | | +------+/ \+-----+ +------+ | | 1056 * |rx_rings->| | | |----| |<-rx_rings| 1057 * | | +------+ +-----+ +------+ | | 1058 * +------+ +------+ 1059 * 1060 * - packets coming from the bridge go to the brwap rx rings, 1061 * which are also the hwna tx rings. The bwrap notify callback 1062 * will then complete the hwna tx (see netmap_bwrap_notify). 1063 * 1064 * - packets coming from the outside go to the hwna rx rings, 1065 * which are also the bwrap tx rings. The (overwritten) hwna 1066 * notify method will then complete the bridge tx 1067 * (see netmap_bwrap_intr_notify). 1068 * 1069 * The bridge wrapper may optionally connect the hwna 'host' rings 1070 * to the bridge. This is done by using a second port in the 1071 * bridge and connecting it to the 'host' netmap_vp_adapter 1072 * contained in the netmap_bwrap_adapter. The brwap host adapter 1073 * cross-links the hwna host rings in the same way as shown above. 1074 * 1075 * - packets coming from the bridge and directed to the host stack 1076 * are handled by the bwrap host notify callback 1077 * (see netmap_bwrap_host_notify) 1078 * 1079 * - packets coming from the host stack are still handled by the 1080 * overwritten hwna notify callback (netmap_bwrap_intr_notify), 1081 * but are diverted to the host adapter depending on the ring number. 1082 * 1083 */ 1084 struct netmap_bwrap_adapter { 1085 struct netmap_vp_adapter up; 1086 struct netmap_vp_adapter host; /* for host rings */ 1087 struct netmap_adapter *hwna; /* the underlying device */ 1088 1089 /* 1090 * When we attach a physical interface to the bridge, we 1091 * allow the controlling process to terminate, so we need 1092 * a place to store the n_detmap_priv_d data structure. 1093 * This is only done when physical interfaces 1094 * are attached to a bridge. 1095 */ 1096 struct netmap_priv_d *na_kpriv; 1097 struct nm_bdg_polling_state *na_polling_state; 1098 /* we overwrite the hwna->na_vp pointer, so we save 1099 * here its original value, to be restored at detach 1100 */ 1101 struct netmap_vp_adapter *saved_na_vp; 1102 }; 1103 int nm_bdg_polling(struct nmreq_header *hdr); 1104 1105 #ifdef WITH_VALE 1106 int netmap_vale_attach(struct nmreq_header *hdr, void *auth_token); 1107 int netmap_vale_detach(struct nmreq_header *hdr, void *auth_token); 1108 int netmap_vale_list(struct nmreq_header *hdr); 1109 int netmap_vi_create(struct nmreq_header *hdr, int); 1110 int nm_vi_create(struct nmreq_header *); 1111 int nm_vi_destroy(const char *name); 1112 #else /* !WITH_VALE */ 1113 #define netmap_vi_create(hdr, a) (EOPNOTSUPP) 1114 #endif /* WITH_VALE */ 1115 1116 #ifdef WITH_PIPES 1117 1118 #define NM_MAXPIPES 64 /* max number of pipes per adapter */ 1119 1120 struct netmap_pipe_adapter { 1121 /* pipe identifier is up.name */ 1122 struct netmap_adapter up; 1123 1124 #define NM_PIPE_ROLE_MASTER 0x1 1125 #define NM_PIPE_ROLE_SLAVE 0x2 1126 int role; /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */ 1127 1128 struct netmap_adapter *parent; /* adapter that owns the memory */ 1129 struct netmap_pipe_adapter *peer; /* the other end of the pipe */ 1130 int peer_ref; /* 1 iff we are holding a ref to the peer */ 1131 struct ifnet *parent_ifp; /* maybe null */ 1132 1133 u_int parent_slot; /* index in the parent pipe array */ 1134 }; 1135 1136 #endif /* WITH_PIPES */ 1137 1138 #ifdef WITH_NMNULL 1139 struct netmap_null_adapter { 1140 struct netmap_adapter up; 1141 }; 1142 #endif /* WITH_NMNULL */ 1143 1144 1145 /* return slots reserved to rx clients; used in drivers */ 1146 static inline uint32_t 1147 nm_kr_rxspace(struct netmap_kring *k) 1148 { 1149 int space = k->nr_hwtail - k->nr_hwcur; 1150 if (space < 0) 1151 space += k->nkr_num_slots; 1152 ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail); 1153 1154 return space; 1155 } 1156 1157 /* return slots reserved to tx clients */ 1158 #define nm_kr_txspace(_k) nm_kr_rxspace(_k) 1159 1160 1161 /* True if no space in the tx ring, only valid after txsync_prologue */ 1162 static inline int 1163 nm_kr_txempty(struct netmap_kring *kring) 1164 { 1165 return kring->rhead == kring->nr_hwtail; 1166 } 1167 1168 /* True if no more completed slots in the rx ring, only valid after 1169 * rxsync_prologue */ 1170 #define nm_kr_rxempty(_k) nm_kr_txempty(_k) 1171 1172 /* True if the application needs to wait for more space on the ring 1173 * (more received packets or more free tx slots). 1174 * Only valid after *xsync_prologue. */ 1175 static inline int 1176 nm_kr_wouldblock(struct netmap_kring *kring) 1177 { 1178 return kring->rcur == kring->nr_hwtail; 1179 } 1180 1181 /* 1182 * protect against multiple threads using the same ring. 1183 * also check that the ring has not been stopped or locked 1184 */ 1185 #define NM_KR_BUSY 1 /* some other thread is syncing the ring */ 1186 #define NM_KR_STOPPED 2 /* unbounded stop (ifconfig down or driver unload) */ 1187 #define NM_KR_LOCKED 3 /* bounded, brief stop for mutual exclusion */ 1188 1189 1190 /* release the previously acquired right to use the *sync() methods of the ring */ 1191 static __inline void nm_kr_put(struct netmap_kring *kr) 1192 { 1193 NM_ATOMIC_CLEAR(&kr->nr_busy); 1194 } 1195 1196 1197 /* true if the ifp that backed the adapter has disappeared (e.g., the 1198 * driver has been unloaded) 1199 */ 1200 static inline int nm_iszombie(struct netmap_adapter *na); 1201 1202 /* try to obtain exclusive right to issue the *sync() operations on the ring. 1203 * The right is obtained and must be later relinquished via nm_kr_put() if and 1204 * only if nm_kr_tryget() returns 0. 1205 * If can_sleep is 1 there are only two other possible outcomes: 1206 * - the function returns NM_KR_BUSY 1207 * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr 1208 * (if non-null) 1209 * In both cases the caller will typically skip the ring, possibly collecting 1210 * errors along the way. 1211 * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep. 1212 * In the latter case, the function may also return NM_KR_LOCKED and leave *perr 1213 * untouched: ideally, the caller should try again at a later time. 1214 */ 1215 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr) 1216 { 1217 int busy = 1, stopped; 1218 /* check a first time without taking the lock 1219 * to avoid starvation for nm_kr_get() 1220 */ 1221 retry: 1222 stopped = kr->nkr_stopped; 1223 if (unlikely(stopped)) { 1224 goto stop; 1225 } 1226 busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy); 1227 /* we should not return NM_KR_BUSY if the ring was 1228 * actually stopped, so check another time after 1229 * the barrier provided by the atomic operation 1230 */ 1231 stopped = kr->nkr_stopped; 1232 if (unlikely(stopped)) { 1233 goto stop; 1234 } 1235 1236 if (unlikely(nm_iszombie(kr->na))) { 1237 stopped = NM_KR_STOPPED; 1238 goto stop; 1239 } 1240 1241 return unlikely(busy) ? NM_KR_BUSY : 0; 1242 1243 stop: 1244 if (!busy) 1245 nm_kr_put(kr); 1246 if (stopped == NM_KR_STOPPED) { 1247 /* if POLLERR is defined we want to use it to simplify netmap_poll(). 1248 * Otherwise, any non-zero value will do. 1249 */ 1250 #ifdef POLLERR 1251 #define NM_POLLERR POLLERR 1252 #else 1253 #define NM_POLLERR 1 1254 #endif /* POLLERR */ 1255 if (perr) 1256 *perr |= NM_POLLERR; 1257 #undef NM_POLLERR 1258 } else if (can_sleep) { 1259 tsleep(kr, 0, "NM_KR_TRYGET", 4); 1260 goto retry; 1261 } 1262 return stopped; 1263 } 1264 1265 /* put the ring in the 'stopped' state and wait for the current user (if any) to 1266 * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED 1267 */ 1268 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped) 1269 { 1270 kr->nkr_stopped = stopped; 1271 while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)) 1272 tsleep(kr, 0, "NM_KR_GET", 4); 1273 } 1274 1275 /* restart a ring after a stop */ 1276 static __inline void nm_kr_start(struct netmap_kring *kr) 1277 { 1278 kr->nkr_stopped = 0; 1279 nm_kr_put(kr); 1280 } 1281 1282 1283 /* 1284 * The following functions are used by individual drivers to 1285 * support netmap operation. 1286 * 1287 * netmap_attach() initializes a struct netmap_adapter, allocating the 1288 * struct netmap_ring's and the struct selinfo. 1289 * 1290 * netmap_detach() frees the memory allocated by netmap_attach(). 1291 * 1292 * netmap_transmit() replaces the if_transmit routine of the interface, 1293 * and is used to intercept packets coming from the stack. 1294 * 1295 * netmap_load_map/netmap_reload_map are helper routines to set/reset 1296 * the dmamap for a packet buffer 1297 * 1298 * netmap_reset() is a helper routine to be called in the hw driver 1299 * when reinitializing a ring. It should not be called by 1300 * virtual ports (vale, pipes, monitor) 1301 */ 1302 int netmap_attach(struct netmap_adapter *); 1303 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg); 1304 void netmap_detach(struct ifnet *); 1305 int netmap_transmit(struct ifnet *, struct mbuf *); 1306 struct netmap_slot *netmap_reset(struct netmap_adapter *na, 1307 enum txrx tx, u_int n, u_int new_cur); 1308 int netmap_ring_reinit(struct netmap_kring *); 1309 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *); 1310 1311 /* Return codes for netmap_*x_irq. */ 1312 enum { 1313 /* Driver should do normal interrupt processing, e.g. because 1314 * the interface is not in netmap mode. */ 1315 NM_IRQ_PASS = 0, 1316 /* Port is in netmap mode, and the interrupt work has been 1317 * completed. The driver does not have to notify netmap 1318 * again before the next interrupt. */ 1319 NM_IRQ_COMPLETED = -1, 1320 /* Port is in netmap mode, but the interrupt work has not been 1321 * completed. The driver has to make sure netmap will be 1322 * notified again soon, even if no more interrupts come (e.g. 1323 * on Linux the driver should not call napi_complete()). */ 1324 NM_IRQ_RESCHED = -2, 1325 }; 1326 1327 /* default functions to handle rx/tx interrupts */ 1328 int netmap_rx_irq(struct ifnet *, u_int, u_int *); 1329 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) 1330 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done); 1331 1332 1333 #ifdef WITH_VALE 1334 /* functions used by external modules to interface with VALE */ 1335 #define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp) 1336 #define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp) 1337 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp) 1338 #define netmap_bdg_idx(_vp) ((_vp)->bdg_port) 1339 const char *netmap_bdg_name(struct netmap_vp_adapter *); 1340 #else /* !WITH_VALE */ 1341 #define netmap_vp_to_ifp(_vp) NULL 1342 #define netmap_ifp_to_vp(_ifp) NULL 1343 #define netmap_ifp_to_host_vp(_ifp) NULL 1344 #define netmap_bdg_idx(_vp) -1 1345 #endif /* WITH_VALE */ 1346 1347 static inline int 1348 nm_netmap_on(struct netmap_adapter *na) 1349 { 1350 return na && na->na_flags & NAF_NETMAP_ON; 1351 } 1352 1353 static inline int 1354 nm_native_on(struct netmap_adapter *na) 1355 { 1356 return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE); 1357 } 1358 1359 static inline int 1360 nm_iszombie(struct netmap_adapter *na) 1361 { 1362 return na == NULL || (na->na_flags & NAF_ZOMBIE); 1363 } 1364 1365 static inline void 1366 nm_update_hostrings_mode(struct netmap_adapter *na) 1367 { 1368 /* Process nr_mode and nr_pending_mode for host rings. */ 1369 na->tx_rings[na->num_tx_rings]->nr_mode = 1370 na->tx_rings[na->num_tx_rings]->nr_pending_mode; 1371 na->rx_rings[na->num_rx_rings]->nr_mode = 1372 na->rx_rings[na->num_rx_rings]->nr_pending_mode; 1373 } 1374 1375 void nm_set_native_flags(struct netmap_adapter *); 1376 void nm_clear_native_flags(struct netmap_adapter *); 1377 1378 /* 1379 * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap 1380 * kthreads. 1381 * We need netmap_ring* parameter, because in ptnetmap it is decoupled 1382 * from host kring. 1383 * The user-space ring pointers (head/cur/tail) are shared through 1384 * CSB between host and guest. 1385 */ 1386 1387 /* 1388 * validates parameters in the ring/kring, returns a value for head 1389 * If any error, returns ring_size to force a reinit. 1390 */ 1391 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *); 1392 1393 1394 /* 1395 * validates parameters in the ring/kring, returns a value for head 1396 * If any error, returns ring_size lim to force a reinit. 1397 */ 1398 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *); 1399 1400 1401 /* check/fix address and len in tx rings */ 1402 #if 1 /* debug version */ 1403 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1404 if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \ 1405 RD(5, "bad addr/len ring %d slot %d idx %d len %d", \ 1406 kring->ring_id, nm_i, slot->buf_idx, len); \ 1407 if (_l > NETMAP_BUF_SIZE(_na)) \ 1408 _l = NETMAP_BUF_SIZE(_na); \ 1409 } } while (0) 1410 #else /* no debug version */ 1411 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1412 if (_l > NETMAP_BUF_SIZE(_na)) \ 1413 _l = NETMAP_BUF_SIZE(_na); \ 1414 } while (0) 1415 #endif 1416 1417 1418 /*---------------------------------------------------------------*/ 1419 /* 1420 * Support routines used by netmap subsystems 1421 * (native drivers, VALE, generic, pipes, monitors, ...) 1422 */ 1423 1424 1425 /* common routine for all functions that create a netmap adapter. It performs 1426 * two main tasks: 1427 * - if the na points to an ifp, mark the ifp as netmap capable 1428 * using na as its native adapter; 1429 * - provide defaults for the setup callbacks and the memory allocator 1430 */ 1431 int netmap_attach_common(struct netmap_adapter *); 1432 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information 1433 * coming from a struct nmreq_register 1434 */ 1435 int netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode, 1436 uint16_t nr_ringid, uint64_t nr_flags); 1437 /* update the ring parameters (number and size of tx and rx rings). 1438 * It calls the nm_config callback, if available. 1439 */ 1440 int netmap_update_config(struct netmap_adapter *na); 1441 /* create and initialize the common fields of the krings array. 1442 * using the information that must be already available in the na. 1443 * tailroom can be used to request the allocation of additional 1444 * tailroom bytes after the krings array. This is used by 1445 * netmap_vp_adapter's (i.e., VALE ports) to make room for 1446 * leasing-related data structures 1447 */ 1448 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom); 1449 /* deletes the kring array of the adapter. The array must have 1450 * been created using netmap_krings_create 1451 */ 1452 void netmap_krings_delete(struct netmap_adapter *na); 1453 1454 int netmap_hw_krings_create(struct netmap_adapter *na); 1455 void netmap_hw_krings_delete(struct netmap_adapter *na); 1456 1457 /* set the stopped/enabled status of ring 1458 * When stopping, they also wait for all current activity on the ring to 1459 * terminate. The status change is then notified using the na nm_notify 1460 * callback. 1461 */ 1462 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped); 1463 /* set the stopped/enabled status of all rings of the adapter. */ 1464 void netmap_set_all_rings(struct netmap_adapter *, int stopped); 1465 /* convenience wrappers for netmap_set_all_rings */ 1466 void netmap_disable_all_rings(struct ifnet *); 1467 void netmap_enable_all_rings(struct ifnet *); 1468 1469 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu); 1470 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 1471 uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags); 1472 void netmap_do_unregif(struct netmap_priv_d *priv); 1473 1474 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); 1475 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1476 struct ifnet **ifp, struct netmap_mem_d *nmd, int create); 1477 void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp); 1478 int netmap_get_hw_na(struct ifnet *ifp, 1479 struct netmap_mem_d *nmd, struct netmap_adapter **na); 1480 1481 #ifdef WITH_VALE 1482 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring, 1483 struct netmap_vp_adapter *, void *private_data); 1484 1485 /* these are redefined in case of no VALE support */ 1486 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1487 struct netmap_mem_d *nmd, int create); 1488 void *netmap_vale_create(const char *bdg_name, int *return_status); 1489 int netmap_vale_destroy(const char *bdg_name, void *auth_token); 1490 1491 #else /* !WITH_VALE */ 1492 #define netmap_bdg_learning(_1, _2, _3, _4) 0 1493 #define netmap_get_vale_na(_1, _2, _3, _4) 0 1494 #define netmap_bdg_create(_1, _2) NULL 1495 #define netmap_bdg_destroy(_1, _2) 0 1496 #endif /* !WITH_VALE */ 1497 1498 #ifdef WITH_PIPES 1499 /* max number of pipes per device */ 1500 #define NM_MAXPIPES 64 /* XXX this should probably be a sysctl */ 1501 void netmap_pipe_dealloc(struct netmap_adapter *); 1502 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1503 struct netmap_mem_d *nmd, int create); 1504 #else /* !WITH_PIPES */ 1505 #define NM_MAXPIPES 0 1506 #define netmap_pipe_alloc(_1, _2) 0 1507 #define netmap_pipe_dealloc(_1) 1508 #define netmap_get_pipe_na(hdr, _2, _3, _4) \ 1509 ((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0) 1510 #endif 1511 1512 #ifdef WITH_MONITOR 1513 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1514 struct netmap_mem_d *nmd, int create); 1515 void netmap_monitor_stop(struct netmap_adapter *na); 1516 #else 1517 #define netmap_get_monitor_na(hdr, _2, _3, _4) \ 1518 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1519 #endif 1520 1521 #ifdef WITH_NMNULL 1522 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1523 struct netmap_mem_d *nmd, int create); 1524 #else /* !WITH_NMNULL */ 1525 #define netmap_get_null_na(hdr, _2, _3, _4) \ 1526 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1527 #endif /* WITH_NMNULL */ 1528 1529 #ifdef CONFIG_NET_NS 1530 struct net *netmap_bns_get(void); 1531 void netmap_bns_put(struct net *); 1532 void netmap_bns_getbridges(struct nm_bridge **, u_int *); 1533 #else 1534 extern struct nm_bridge *nm_bridges; 1535 #define netmap_bns_get() 1536 #define netmap_bns_put(_1) 1537 #define netmap_bns_getbridges(b, n) \ 1538 do { *b = nm_bridges; *n = NM_BRIDGES; } while (0) 1539 #endif 1540 1541 /* Various prototypes */ 1542 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td); 1543 int netmap_init(void); 1544 void netmap_fini(void); 1545 int netmap_get_memory(struct netmap_priv_d* p); 1546 void netmap_dtor(void *data); 1547 1548 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1549 struct thread *, int nr_body_is_user); 1550 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1551 struct thread *td); 1552 size_t nmreq_size_by_type(uint16_t nr_reqtype); 1553 1554 /* netmap_adapter creation/destruction */ 1555 1556 // #define NM_DEBUG_PUTGET 1 1557 1558 #ifdef NM_DEBUG_PUTGET 1559 1560 #define NM_DBG(f) __##f 1561 1562 void __netmap_adapter_get(struct netmap_adapter *na); 1563 1564 #define netmap_adapter_get(na) \ 1565 do { \ 1566 struct netmap_adapter *__na = na; \ 1567 D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ 1568 __netmap_adapter_get(__na); \ 1569 } while (0) 1570 1571 int __netmap_adapter_put(struct netmap_adapter *na); 1572 1573 #define netmap_adapter_put(na) \ 1574 ({ \ 1575 struct netmap_adapter *__na = na; \ 1576 D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ 1577 __netmap_adapter_put(__na); \ 1578 }) 1579 1580 #else /* !NM_DEBUG_PUTGET */ 1581 1582 #define NM_DBG(f) f 1583 void netmap_adapter_get(struct netmap_adapter *na); 1584 int netmap_adapter_put(struct netmap_adapter *na); 1585 1586 #endif /* !NM_DEBUG_PUTGET */ 1587 1588 1589 /* 1590 * module variables 1591 */ 1592 #define NETMAP_BUF_BASE(_na) ((_na)->na_lut.lut[0].vaddr) 1593 #define NETMAP_BUF_SIZE(_na) ((_na)->na_lut.objsize) 1594 extern int netmap_no_pendintr; 1595 extern int netmap_mitigate; 1596 extern int netmap_verbose; 1597 #ifdef CONFIG_NETMAP_DEBUG 1598 extern int netmap_debug; /* for debugging */ 1599 #else /* !CONFIG_NETMAP_DEBUG */ 1600 #define netmap_debug (0) 1601 #endif /* !CONFIG_NETMAP_DEBUG */ 1602 enum { /* debug flags */ 1603 NM_DEBUG_ON = 1, /* generic debug messsages */ 1604 NM_DEBUG_HOST = 0x2, /* debug host stack */ 1605 NM_DEBUG_RXSYNC = 0x10, /* debug on rxsync/txsync */ 1606 NM_DEBUG_TXSYNC = 0x20, 1607 NM_DEBUG_RXINTR = 0x100, /* debug on rx/tx intr (driver) */ 1608 NM_DEBUG_TXINTR = 0x200, 1609 NM_DEBUG_NIC_RXSYNC = 0x1000, /* debug on rx/tx intr (driver) */ 1610 NM_DEBUG_NIC_TXSYNC = 0x2000, 1611 NM_DEBUG_MEM = 0x4000, /* verbose memory allocations/deallocations */ 1612 NM_DEBUG_VALE = 0x8000, /* debug messages from memory allocators */ 1613 NM_DEBUG_BDG = NM_DEBUG_VALE, 1614 }; 1615 1616 extern int netmap_txsync_retry; 1617 extern int netmap_flags; 1618 extern int netmap_generic_hwcsum; 1619 extern int netmap_generic_mit; 1620 extern int netmap_generic_ringsize; 1621 extern int netmap_generic_rings; 1622 #ifdef linux 1623 extern int netmap_generic_txqdisc; 1624 #endif 1625 1626 /* 1627 * NA returns a pointer to the struct netmap adapter from the ifp. 1628 * WNA is os-specific and must be defined in glue code. 1629 */ 1630 #define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp)) 1631 1632 /* 1633 * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA 1634 * based on the WNA field. 1635 * Glue code may override this by defining its own NM_ATTACH_NA 1636 */ 1637 #ifndef NM_ATTACH_NA 1638 /* 1639 * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we 1640 * overload another pointer in the netdev. 1641 * 1642 * We check if NA(ifp) is set and its first element has a related 1643 * magic value. The capenable is within the struct netmap_adapter. 1644 */ 1645 #define NETMAP_MAGIC 0x52697a7a 1646 1647 #define NM_NA_VALID(ifp) (NA(ifp) && \ 1648 ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) 1649 1650 #define NM_ATTACH_NA(ifp, na) do { \ 1651 WNA(ifp) = na; \ 1652 if (NA(ifp)) \ 1653 NA(ifp)->magic = \ 1654 ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC; \ 1655 } while(0) 1656 #define NM_RESTORE_NA(ifp, na) WNA(ifp) = na; 1657 1658 #define NM_DETACH_NA(ifp) do { WNA(ifp) = NULL; } while (0) 1659 #define NM_NA_CLASH(ifp) (NA(ifp) && !NM_NA_VALID(ifp)) 1660 #endif /* !NM_ATTACH_NA */ 1661 1662 1663 #define NM_IS_NATIVE(ifp) (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor) 1664 1665 #if defined(__FreeBSD__) 1666 1667 /* Assigns the device IOMMU domain to an allocator. 1668 * Returns -ENOMEM in case the domain is different */ 1669 #define nm_iommu_group_id(dev) (0) 1670 1671 /* Callback invoked by the dma machinery after a successful dmamap_load */ 1672 static void netmap_dmamap_cb(__unused void *arg, 1673 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) 1674 { 1675 } 1676 1677 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. 1678 * XXX can we do it without a callback ? 1679 */ 1680 static inline int 1681 netmap_load_map(struct netmap_adapter *na, 1682 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1683 { 1684 if (map) 1685 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1686 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1687 return 0; 1688 } 1689 1690 static inline void 1691 netmap_unload_map(struct netmap_adapter *na, 1692 bus_dma_tag_t tag, bus_dmamap_t map) 1693 { 1694 if (map) 1695 bus_dmamap_unload(tag, map); 1696 } 1697 1698 #define netmap_sync_map(na, tag, map, sz, t) 1699 1700 /* update the map when a buffer changes. */ 1701 static inline void 1702 netmap_reload_map(struct netmap_adapter *na, 1703 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1704 { 1705 if (map) { 1706 bus_dmamap_unload(tag, map); 1707 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1708 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1709 } 1710 } 1711 1712 #elif defined(_WIN32) 1713 1714 #else /* linux */ 1715 1716 int nm_iommu_group_id(bus_dma_tag_t dev); 1717 #include <linux/dma-mapping.h> 1718 1719 /* 1720 * on linux we need 1721 * dma_map_single(&pdev->dev, virt_addr, len, direction) 1722 * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction) 1723 */ 1724 #if 0 1725 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; 1726 /* set time_stamp *before* dma to help avoid a possible race */ 1727 buffer_info->time_stamp = jiffies; 1728 buffer_info->mapped_as_page = false; 1729 buffer_info->length = len; 1730 //buffer_info->next_to_watch = l; 1731 /* reload dma map */ 1732 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1733 NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1734 buffer_info->dma = dma_map_single(&adapter->pdev->dev, 1735 addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1736 1737 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1738 D("dma mapping error"); 1739 /* goto dma_error; See e1000_put_txbuf() */ 1740 /* XXX reset */ 1741 } 1742 tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX 1743 1744 #endif 1745 1746 static inline int 1747 netmap_load_map(struct netmap_adapter *na, 1748 bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size) 1749 { 1750 if (map) { 1751 *map = dma_map_single(na->pdev, buf, size, 1752 DMA_BIDIRECTIONAL); 1753 if (dma_mapping_error(na->pdev, *map)) { 1754 *map = 0; 1755 return ENOMEM; 1756 } 1757 } 1758 return 0; 1759 } 1760 1761 static inline void 1762 netmap_unload_map(struct netmap_adapter *na, 1763 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz) 1764 { 1765 if (*map) { 1766 dma_unmap_single(na->pdev, *map, sz, 1767 DMA_BIDIRECTIONAL); 1768 } 1769 } 1770 1771 #ifdef NETMAP_LINUX_HAVE_DMASYNC 1772 static inline void 1773 netmap_sync_map_cpu(struct netmap_adapter *na, 1774 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1775 { 1776 if (*map) { 1777 dma_sync_single_for_cpu(na->pdev, *map, sz, 1778 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1779 } 1780 } 1781 1782 static inline void 1783 netmap_sync_map_dev(struct netmap_adapter *na, 1784 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1785 { 1786 if (*map) { 1787 dma_sync_single_for_device(na->pdev, *map, sz, 1788 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1789 } 1790 } 1791 1792 static inline void 1793 netmap_reload_map(struct netmap_adapter *na, 1794 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1795 { 1796 u_int sz = NETMAP_BUF_SIZE(na); 1797 1798 if (*map) { 1799 dma_unmap_single(na->pdev, *map, sz, 1800 DMA_BIDIRECTIONAL); 1801 } 1802 1803 *map = dma_map_single(na->pdev, buf, sz, 1804 DMA_BIDIRECTIONAL); 1805 } 1806 #else /* !NETMAP_LINUX_HAVE_DMASYNC */ 1807 #define netmap_sync_map_cpu(na, tag, map, sz, t) 1808 #define netmap_sync_map_dev(na, tag, map, sz, t) 1809 #endif /* NETMAP_LINUX_HAVE_DMASYNC */ 1810 1811 #endif /* linux */ 1812 1813 1814 /* 1815 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) 1816 */ 1817 static inline int 1818 netmap_idx_n2k(struct netmap_kring *kr, int idx) 1819 { 1820 int n = kr->nkr_num_slots; 1821 1822 if (likely(kr->nkr_hwofs == 0)) { 1823 return idx; 1824 } 1825 1826 idx += kr->nkr_hwofs; 1827 if (idx < 0) 1828 return idx + n; 1829 else if (idx < n) 1830 return idx; 1831 else 1832 return idx - n; 1833 } 1834 1835 1836 static inline int 1837 netmap_idx_k2n(struct netmap_kring *kr, int idx) 1838 { 1839 int n = kr->nkr_num_slots; 1840 1841 if (likely(kr->nkr_hwofs == 0)) { 1842 return idx; 1843 } 1844 1845 idx -= kr->nkr_hwofs; 1846 if (idx < 0) 1847 return idx + n; 1848 else if (idx < n) 1849 return idx; 1850 else 1851 return idx - n; 1852 } 1853 1854 1855 /* Entries of the look-up table. */ 1856 #ifdef __FreeBSD__ 1857 struct lut_entry { 1858 void *vaddr; /* virtual address. */ 1859 vm_paddr_t paddr; /* physical address. */ 1860 }; 1861 #else /* linux & _WIN32 */ 1862 /* dma-mapping in linux can assign a buffer a different address 1863 * depending on the device, so we need to have a separate 1864 * physical-address look-up table for each na. 1865 * We can still share the vaddrs, though, therefore we split 1866 * the lut_entry structure. 1867 */ 1868 struct lut_entry { 1869 void *vaddr; /* virtual address. */ 1870 }; 1871 1872 struct plut_entry { 1873 vm_paddr_t paddr; /* physical address. */ 1874 }; 1875 #endif /* linux & _WIN32 */ 1876 1877 struct netmap_obj_pool; 1878 1879 /* 1880 * NMB return the virtual address of a buffer (buffer 0 on bad index) 1881 * PNMB also fills the physical address 1882 */ 1883 static inline void * 1884 NMB(struct netmap_adapter *na, struct netmap_slot *slot) 1885 { 1886 struct lut_entry *lut = na->na_lut.lut; 1887 uint32_t i = slot->buf_idx; 1888 return (unlikely(i >= na->na_lut.objtotal)) ? 1889 lut[0].vaddr : lut[i].vaddr; 1890 } 1891 1892 static inline void * 1893 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp) 1894 { 1895 uint32_t i = slot->buf_idx; 1896 struct lut_entry *lut = na->na_lut.lut; 1897 struct plut_entry *plut = na->na_lut.plut; 1898 void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr; 1899 1900 #ifdef _WIN32 1901 *pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart; 1902 #else 1903 *pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr; 1904 #endif 1905 return ret; 1906 } 1907 1908 1909 /* 1910 * Structure associated to each netmap file descriptor. 1911 * It is created on open and left unbound (np_nifp == NULL). 1912 * A successful NIOCREGIF will set np_nifp and the first few fields; 1913 * this is protected by a global lock (NMG_LOCK) due to low contention. 1914 * 1915 * np_refs counts the number of references to the structure: one for the fd, 1916 * plus (on FreeBSD) one for each active mmap which we track ourselves 1917 * (linux automatically tracks them, but FreeBSD does not). 1918 * np_refs is protected by NMG_LOCK. 1919 * 1920 * Read access to the structure is lock free, because ni_nifp once set 1921 * can only go to 0 when nobody is using the entry anymore. Readers 1922 * must check that np_nifp != NULL before using the other fields. 1923 */ 1924 struct netmap_priv_d { 1925 struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ 1926 1927 struct netmap_adapter *np_na; 1928 struct ifnet *np_ifp; 1929 uint32_t np_flags; /* from the ioctl */ 1930 u_int np_qfirst[NR_TXRX], 1931 np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */ 1932 uint16_t np_txpoll; 1933 uint16_t np_kloop_state; /* use with NMG_LOCK held */ 1934 #define NM_SYNC_KLOOP_RUNNING (1 << 0) 1935 #define NM_SYNC_KLOOP_STOPPING (1 << 1) 1936 int np_sync_flags; /* to be passed to nm_sync */ 1937 1938 int np_refs; /* use with NMG_LOCK held */ 1939 1940 /* pointers to the selinfo to be used for selrecord. 1941 * Either the local or the global one depending on the 1942 * number of rings. 1943 */ 1944 NM_SELINFO_T *np_si[NR_TXRX]; 1945 1946 /* In the optional CSB mode, the user must specify the start address 1947 * of two arrays of Communication Status Block (CSB) entries, for the 1948 * two directions (kernel read application write, and kernel write 1949 * application read). 1950 * The number of entries must agree with the number of rings bound to 1951 * the netmap file descriptor. The entries corresponding to the TX 1952 * rings are laid out before the ones corresponding to the RX rings. 1953 * 1954 * Array of CSB entries for application --> kernel communication 1955 * (N entries). */ 1956 struct nm_csb_atok *np_csb_atok_base; 1957 /* Array of CSB entries for kernel --> application communication 1958 * (N entries). */ 1959 struct nm_csb_ktoa *np_csb_ktoa_base; 1960 1961 #ifdef linux 1962 struct file *np_filp; /* used by sync kloop */ 1963 #endif /* linux */ 1964 }; 1965 1966 struct netmap_priv_d *netmap_priv_new(void); 1967 void netmap_priv_delete(struct netmap_priv_d *); 1968 1969 static inline int nm_kring_pending(struct netmap_priv_d *np) 1970 { 1971 struct netmap_adapter *na = np->np_na; 1972 enum txrx t; 1973 int i; 1974 1975 for_rx_tx(t) { 1976 for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) { 1977 struct netmap_kring *kring = NMR(na, t)[i]; 1978 if (kring->nr_mode != kring->nr_pending_mode) { 1979 return 1; 1980 } 1981 } 1982 } 1983 return 0; 1984 } 1985 1986 /* call with NMG_LOCK held */ 1987 static __inline int 1988 nm_si_user(struct netmap_priv_d *priv, enum txrx t) 1989 { 1990 return (priv->np_na != NULL && 1991 (priv->np_qlast[t] - priv->np_qfirst[t] > 1)); 1992 } 1993 1994 #ifdef WITH_PIPES 1995 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags); 1996 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags); 1997 #endif /* WITH_PIPES */ 1998 1999 #ifdef WITH_MONITOR 2000 2001 struct netmap_monitor_adapter { 2002 struct netmap_adapter up; 2003 2004 struct netmap_priv_d priv; 2005 uint32_t flags; 2006 }; 2007 2008 #endif /* WITH_MONITOR */ 2009 2010 2011 #ifdef WITH_GENERIC 2012 /* 2013 * generic netmap emulation for devices that do not have 2014 * native netmap support. 2015 */ 2016 int generic_netmap_attach(struct ifnet *ifp); 2017 int generic_rx_handler(struct ifnet *ifp, struct mbuf *m);; 2018 2019 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept); 2020 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept); 2021 2022 int na_is_generic(struct netmap_adapter *na); 2023 2024 /* 2025 * the generic transmit routine is passed a structure to optionally 2026 * build a queue of descriptors, in an OS-specific way. 2027 * The payload is at addr, if non-null, and the routine should send or queue 2028 * the packet, returning 0 if successful, 1 on failure. 2029 * 2030 * At the end, if head is non-null, there will be an additional call 2031 * to the function with addr = NULL; this should tell the OS-specific 2032 * routine to send the queue and free any resources. Failure is ignored. 2033 */ 2034 struct nm_os_gen_arg { 2035 struct ifnet *ifp; 2036 void *m; /* os-specific mbuf-like object */ 2037 void *head, *tail; /* tailq, if the OS-specific routine needs to build one */ 2038 void *addr; /* payload of current packet */ 2039 u_int len; /* packet length */ 2040 u_int ring_nr; /* packet length */ 2041 u_int qevent; /* in txqdisc mode, place an event on this mbuf */ 2042 }; 2043 2044 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *); 2045 int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx); 2046 void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq); 2047 void nm_os_generic_set_features(struct netmap_generic_adapter *gna); 2048 2049 static inline struct ifnet* 2050 netmap_generic_getifp(struct netmap_generic_adapter *gna) 2051 { 2052 if (gna->prev) 2053 return gna->prev->ifp; 2054 2055 return gna->up.up.ifp; 2056 } 2057 2058 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done); 2059 2060 //#define RATE_GENERIC /* Enables communication statistics for generic. */ 2061 #ifdef RATE_GENERIC 2062 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi); 2063 #else 2064 #define generic_rate(txp, txs, txi, rxp, rxs, rxi) 2065 #endif 2066 2067 /* 2068 * netmap_mitigation API. This is used by the generic adapter 2069 * to reduce the number of interrupt requests/selwakeup 2070 * to clients on incoming packets. 2071 */ 2072 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, 2073 struct netmap_adapter *na); 2074 void nm_os_mitigation_start(struct nm_generic_mit *mit); 2075 void nm_os_mitigation_restart(struct nm_generic_mit *mit); 2076 int nm_os_mitigation_active(struct nm_generic_mit *mit); 2077 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit); 2078 #else /* !WITH_GENERIC */ 2079 #define generic_netmap_attach(ifp) (EOPNOTSUPP) 2080 #define na_is_generic(na) (0) 2081 #endif /* WITH_GENERIC */ 2082 2083 /* Shared declarations for the VALE switch. */ 2084 2085 /* 2086 * Each transmit queue accumulates a batch of packets into 2087 * a structure before forwarding. Packets to the same 2088 * destination are put in a list using ft_next as a link field. 2089 * ft_frags and ft_next are valid only on the first fragment. 2090 */ 2091 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 2092 void *ft_buf; /* netmap or indirect buffer */ 2093 uint8_t ft_frags; /* how many fragments (only on 1st frag) */ 2094 uint16_t ft_offset; /* dst port (unused) */ 2095 uint16_t ft_flags; /* flags, e.g. indirect */ 2096 uint16_t ft_len; /* src fragment len */ 2097 uint16_t ft_next; /* next packet to same destination */ 2098 }; 2099 2100 /* struct 'virtio_net_hdr' from linux. */ 2101 struct nm_vnet_hdr { 2102 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */ 2103 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */ 2104 uint8_t flags; 2105 #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */ 2106 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */ 2107 #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */ 2108 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */ 2109 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */ 2110 uint8_t gso_type; 2111 uint16_t hdr_len; 2112 uint16_t gso_size; 2113 uint16_t csum_start; 2114 uint16_t csum_offset; 2115 }; 2116 2117 #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */ 2118 2119 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */ 2120 2121 struct nm_iphdr { 2122 uint8_t version_ihl; 2123 uint8_t tos; 2124 uint16_t tot_len; 2125 uint16_t id; 2126 uint16_t frag_off; 2127 uint8_t ttl; 2128 uint8_t protocol; 2129 uint16_t check; 2130 uint32_t saddr; 2131 uint32_t daddr; 2132 /*The options start here. */ 2133 }; 2134 2135 struct nm_tcphdr { 2136 uint16_t source; 2137 uint16_t dest; 2138 uint32_t seq; 2139 uint32_t ack_seq; 2140 uint8_t doff; /* Data offset + Reserved */ 2141 uint8_t flags; 2142 uint16_t window; 2143 uint16_t check; 2144 uint16_t urg_ptr; 2145 }; 2146 2147 struct nm_udphdr { 2148 uint16_t source; 2149 uint16_t dest; 2150 uint16_t len; 2151 uint16_t check; 2152 }; 2153 2154 struct nm_ipv6hdr { 2155 uint8_t priority_version; 2156 uint8_t flow_lbl[3]; 2157 2158 uint16_t payload_len; 2159 uint8_t nexthdr; 2160 uint8_t hop_limit; 2161 2162 uint8_t saddr[16]; 2163 uint8_t daddr[16]; 2164 }; 2165 2166 /* Type used to store a checksum (in host byte order) that hasn't been 2167 * folded yet. 2168 */ 2169 #define rawsum_t uint32_t 2170 2171 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum); 2172 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph); 2173 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 2174 size_t datalen, uint16_t *check); 2175 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 2176 size_t datalen, uint16_t *check); 2177 uint16_t nm_os_csum_fold(rawsum_t cur_sum); 2178 2179 void bdg_mismatch_datapath(struct netmap_vp_adapter *na, 2180 struct netmap_vp_adapter *dst_na, 2181 const struct nm_bdg_fwd *ft_p, 2182 struct netmap_ring *dst_ring, 2183 u_int *j, u_int lim, u_int *howmany); 2184 2185 /* persistent virtual port routines */ 2186 int nm_os_vi_persist(const char *, struct ifnet **); 2187 void nm_os_vi_detach(struct ifnet *); 2188 void nm_os_vi_init_index(void); 2189 2190 /* 2191 * kernel thread routines 2192 */ 2193 struct nm_kctx; /* OS-specific kernel context - opaque */ 2194 typedef void (*nm_kctx_worker_fn_t)(void *data); 2195 2196 /* kthread configuration */ 2197 struct nm_kctx_cfg { 2198 long type; /* kthread type/identifier */ 2199 nm_kctx_worker_fn_t worker_fn; /* worker function */ 2200 void *worker_private;/* worker parameter */ 2201 int attach_user; /* attach kthread to user process */ 2202 }; 2203 /* kthread configuration */ 2204 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg, 2205 void *opaque); 2206 int nm_os_kctx_worker_start(struct nm_kctx *); 2207 void nm_os_kctx_worker_stop(struct nm_kctx *); 2208 void nm_os_kctx_destroy(struct nm_kctx *); 2209 void nm_os_kctx_worker_setaff(struct nm_kctx *, int); 2210 u_int nm_os_ncpus(void); 2211 2212 int netmap_sync_kloop(struct netmap_priv_d *priv, 2213 struct nmreq_header *hdr); 2214 int netmap_sync_kloop_stop(struct netmap_priv_d *priv); 2215 2216 #ifdef WITH_PTNETMAP 2217 /* ptnetmap guest routines */ 2218 2219 /* 2220 * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver 2221 */ 2222 struct ptnetmap_memdev; 2223 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **, 2224 uint64_t *); 2225 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *); 2226 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int); 2227 2228 /* 2229 * netmap adapter for guest ptnetmap ports 2230 */ 2231 struct netmap_pt_guest_adapter { 2232 /* The netmap adapter to be used by netmap applications. 2233 * This field must be the first, to allow upcast. */ 2234 struct netmap_hw_adapter hwup; 2235 2236 /* The netmap adapter to be used by the driver. */ 2237 struct netmap_hw_adapter dr; 2238 2239 /* Reference counter to track users of backend netmap port: the 2240 * network stack and netmap clients. 2241 * Used to decide when we need (de)allocate krings/rings and 2242 * start (stop) ptnetmap kthreads. */ 2243 int backend_users; 2244 2245 }; 2246 2247 int netmap_pt_guest_attach(struct netmap_adapter *na, 2248 unsigned int nifp_offset, 2249 unsigned int memid); 2250 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok, 2251 struct nm_csb_ktoa *ktoa, 2252 struct netmap_kring *kring, int flags); 2253 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok, 2254 struct nm_csb_ktoa *ktoa, 2255 struct netmap_kring *kring, int flags); 2256 int ptnet_nm_krings_create(struct netmap_adapter *na); 2257 void ptnet_nm_krings_delete(struct netmap_adapter *na); 2258 void ptnet_nm_dtor(struct netmap_adapter *na); 2259 2260 /* Helper function wrapping nm_sync_kloop_appl_read(). */ 2261 static inline void 2262 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring) 2263 { 2264 struct netmap_ring *ring = kring->ring; 2265 2266 /* Update hwcur and hwtail as known by the host. */ 2267 nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur); 2268 2269 /* nm_sync_finalize */ 2270 ring->tail = kring->rtail = kring->nr_hwtail; 2271 } 2272 #endif /* WITH_PTNETMAP */ 2273 2274 #ifdef __FreeBSD__ 2275 /* 2276 * FreeBSD mbuf allocator/deallocator in emulation mode: 2277 */ 2278 #if __FreeBSD_version < 1100000 2279 2280 /* 2281 * For older versions of FreeBSD: 2282 * 2283 * We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE 2284 * so that the destructor, if invoked, will not free the packet. 2285 * In principle we should set the destructor only on demand, 2286 * but since there might be a race we better do it on allocation. 2287 * As a consequence, we also need to set the destructor or we 2288 * would leak buffers. 2289 */ 2290 2291 /* mbuf destructor, also need to change the type to EXT_EXTREF, 2292 * add an M_NOFREE flag, and then clear the flag and 2293 * chain into uma_zfree(zone_pack, mf) 2294 * (or reinstall the buffer ?) 2295 */ 2296 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 2297 (m)->m_ext.ext_free = (void *)fn; \ 2298 (m)->m_ext.ext_type = EXT_EXTREF; \ 2299 } while (0) 2300 2301 static int 2302 void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) 2303 { 2304 /* restore original mbuf */ 2305 m->m_ext.ext_buf = m->m_data = m->m_ext.ext_arg1; 2306 m->m_ext.ext_arg1 = NULL; 2307 m->m_ext.ext_type = EXT_PACKET; 2308 m->m_ext.ext_free = NULL; 2309 if (MBUF_REFCNT(m) == 0) 2310 SET_MBUF_REFCNT(m, 1); 2311 uma_zfree(zone_pack, m); 2312 2313 return 0; 2314 } 2315 2316 static inline struct mbuf * 2317 nm_os_get_mbuf(struct ifnet *ifp, int len) 2318 { 2319 struct mbuf *m; 2320 2321 (void)ifp; 2322 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2323 if (m) { 2324 /* m_getcl() (mb_ctor_mbuf) has an assert that checks that 2325 * M_NOFREE flag is not specified as third argument, 2326 * so we have to set M_NOFREE after m_getcl(). */ 2327 m->m_flags |= M_NOFREE; 2328 m->m_ext.ext_arg1 = m->m_ext.ext_buf; // XXX save 2329 m->m_ext.ext_free = (void *)void_mbuf_dtor; 2330 m->m_ext.ext_type = EXT_EXTREF; 2331 ND(5, "create m %p refcnt %d", m, MBUF_REFCNT(m)); 2332 } 2333 return m; 2334 } 2335 2336 #else /* __FreeBSD_version >= 1100000 */ 2337 2338 /* 2339 * Newer versions of FreeBSD, using a straightforward scheme. 2340 * 2341 * We allocate mbufs with m_gethdr(), since the mbuf header is needed 2342 * by the driver. We also attach a customly-provided external storage, 2343 * which in this case is a netmap buffer. When calling m_extadd(), however 2344 * we pass a NULL address, since the real address (and length) will be 2345 * filled in by nm_os_generic_xmit_frame() right before calling 2346 * if_transmit(). 2347 * 2348 * The dtor function does nothing, however we need it since mb_free_ext() 2349 * has a KASSERT(), checking that the mbuf dtor function is not NULL. 2350 */ 2351 2352 #if __FreeBSD_version <= 1200050 2353 static void void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) { } 2354 #else /* __FreeBSD_version >= 1200051 */ 2355 /* The arg1 and arg2 pointers argument were removed by r324446, which 2356 * in included since version 1200051. */ 2357 static void void_mbuf_dtor(struct mbuf *m) { } 2358 #endif /* __FreeBSD_version >= 1200051 */ 2359 2360 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 2361 (m)->m_ext.ext_free = (fn != NULL) ? \ 2362 (void *)fn : (void *)void_mbuf_dtor; \ 2363 } while (0) 2364 2365 static inline struct mbuf * 2366 nm_os_get_mbuf(struct ifnet *ifp, int len) 2367 { 2368 struct mbuf *m; 2369 2370 (void)ifp; 2371 (void)len; 2372 2373 m = m_gethdr(M_NOWAIT, MT_DATA); 2374 if (m == NULL) { 2375 return m; 2376 } 2377 2378 m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor, 2379 NULL, NULL, 0, EXT_NET_DRV); 2380 2381 return m; 2382 } 2383 2384 #endif /* __FreeBSD_version >= 1100000 */ 2385 #endif /* __FreeBSD__ */ 2386 2387 struct nmreq_option * nmreq_findoption(struct nmreq_option *, uint16_t); 2388 int nmreq_checkduplicate(struct nmreq_option *); 2389 2390 int netmap_init_bridges(void); 2391 void netmap_uninit_bridges(void); 2392 2393 /* Functions to read and write CSB fields from the kernel. */ 2394 #if defined (linux) 2395 #define CSB_READ(csb, field, r) (get_user(r, &csb->field)) 2396 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field)) 2397 #else /* ! linux */ 2398 #define CSB_READ(csb, field, r) (r = fuword32(&csb->field)) 2399 #define CSB_WRITE(csb, field, v) (suword32(&csb->field, v)) 2400 #endif /* ! linux */ 2401 2402 #endif /* _NET_NETMAP_KERN_H_ */ 2403