xref: /freebsd-13.1/sys/dev/netmap/netmap_kern.h (revision 5faab778)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo
5  * Copyright (C) 2013-2016 Universita` di Pisa
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *   1. Redistributions of source code must retain the above copyright
12  *      notice, this list of conditions and the following disclaimer.
13  *   2. Redistributions in binary form must reproduce the above copyright
14  *      notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * $FreeBSD$
32  *
33  * The header contains the definitions of constants and function
34  * prototypes used only in kernelspace.
35  */
36 
37 #ifndef _NET_NETMAP_KERN_H_
38 #define _NET_NETMAP_KERN_H_
39 
40 #if defined(linux)
41 
42 #if defined(CONFIG_NETMAP_EXTMEM)
43 #define WITH_EXTMEM
44 #endif
45 #if  defined(CONFIG_NETMAP_VALE)
46 #define WITH_VALE
47 #endif
48 #if defined(CONFIG_NETMAP_PIPE)
49 #define WITH_PIPES
50 #endif
51 #if defined(CONFIG_NETMAP_MONITOR)
52 #define WITH_MONITOR
53 #endif
54 #if defined(CONFIG_NETMAP_GENERIC)
55 #define WITH_GENERIC
56 #endif
57 #if defined(CONFIG_NETMAP_PTNETMAP)
58 #define WITH_PTNETMAP
59 #endif
60 #if defined(CONFIG_NETMAP_SINK)
61 #define WITH_SINK
62 #endif
63 #if defined(CONFIG_NETMAP_NULL)
64 #define WITH_NMNULL
65 #endif
66 
67 #elif defined (_WIN32)
68 #define WITH_VALE	// comment out to disable VALE support
69 #define WITH_PIPES
70 #define WITH_MONITOR
71 #define WITH_GENERIC
72 #define WITH_NMNULL
73 
74 #else	/* neither linux nor windows */
75 #define WITH_VALE	// comment out to disable VALE support
76 #define WITH_PIPES
77 #define WITH_MONITOR
78 #define WITH_GENERIC
79 #define WITH_PTNETMAP	/* ptnetmap guest support */
80 #define WITH_EXTMEM
81 #define WITH_NMNULL
82 #endif
83 
84 #if defined(__FreeBSD__)
85 #include <sys/selinfo.h>
86 
87 #define likely(x)	__builtin_expect((long)!!(x), 1L)
88 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
89 #define __user
90 
91 #define	NM_LOCK_T	struct mtx	/* low level spinlock, used to protect queues */
92 
93 #define NM_MTX_T	struct sx	/* OS-specific mutex (sleepable) */
94 #define NM_MTX_INIT(m)		sx_init(&(m), #m)
95 #define NM_MTX_DESTROY(m)	sx_destroy(&(m))
96 #define NM_MTX_LOCK(m)		sx_xlock(&(m))
97 #define NM_MTX_SPINLOCK(m)	while (!sx_try_xlock(&(m))) ;
98 #define NM_MTX_UNLOCK(m)	sx_xunlock(&(m))
99 #define NM_MTX_ASSERT(m)	sx_assert(&(m), SA_XLOCKED)
100 
101 #define	NM_SELINFO_T	struct nm_selinfo
102 #define NM_SELRECORD_T	struct thread
103 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
104 #define MBUF_TXQ(m)	((m)->m_pkthdr.flowid)
105 #define MBUF_TRANSMIT(na, ifp, m)	((na)->if_transmit(ifp, m))
106 #define	GEN_TX_MBUF_IFP(m)	((m)->m_pkthdr.rcvif)
107 
108 #define NM_ATOMIC_T	volatile int /* required by atomic/bitops.h */
109 /* atomic operations */
110 #include <machine/atomic.h>
111 #define NM_ATOMIC_TEST_AND_SET(p)       (!atomic_cmpset_acq_int((p), 0, 1))
112 #define NM_ATOMIC_CLEAR(p)              atomic_store_rel_int((p), 0)
113 
114 #if __FreeBSD_version >= 1100030
115 #define	WNA(_ifp)	(_ifp)->if_netmap
116 #else /* older FreeBSD */
117 #define	WNA(_ifp)	(_ifp)->if_pspare[0]
118 #endif /* older FreeBSD */
119 
120 #if __FreeBSD_version >= 1100005
121 struct netmap_adapter *netmap_getna(if_t ifp);
122 #endif
123 
124 #if __FreeBSD_version >= 1100027
125 #define MBUF_REFCNT(m)		((m)->m_ext.ext_count)
126 #define SET_MBUF_REFCNT(m, x)   (m)->m_ext.ext_count = x
127 #else
128 #define MBUF_REFCNT(m)		((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1)
129 #define SET_MBUF_REFCNT(m, x)   *((m)->m_ext.ref_cnt) = x
130 #endif
131 
132 #define MBUF_QUEUED(m)		1
133 
134 struct nm_selinfo {
135 	struct selinfo si;
136 	struct taskqueue *ntfytq;
137 	struct task ntfytask;
138 	struct mtx m;
139 	char mtxname[32];
140 };
141 
142 
143 struct hrtimer {
144     /* Not used in FreeBSD. */
145 };
146 
147 #define NM_BNS_GET(b)
148 #define NM_BNS_PUT(b)
149 
150 #elif defined (linux)
151 
152 #define	NM_LOCK_T	safe_spinlock_t	// see bsd_glue.h
153 #define	NM_SELINFO_T	wait_queue_head_t
154 #define	MBUF_LEN(m)	((m)->len)
155 #define MBUF_TRANSMIT(na, ifp, m)							\
156 	({										\
157 		/* Avoid infinite recursion with generic. */				\
158 		m->priority = NM_MAGIC_PRIORITY_TX;					\
159 		(((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp));	\
160 		0;									\
161 	})
162 
163 /* See explanation in nm_os_generic_xmit_frame. */
164 #define	GEN_TX_MBUF_IFP(m)	((struct ifnet *)skb_shinfo(m)->destructor_arg)
165 
166 #define NM_ATOMIC_T	volatile long unsigned int
167 
168 #define NM_MTX_T	struct mutex	/* OS-specific sleepable lock */
169 #define NM_MTX_INIT(m)	mutex_init(&(m))
170 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
171 #define NM_MTX_LOCK(m)		mutex_lock(&(m))
172 #define NM_MTX_UNLOCK(m)	mutex_unlock(&(m))
173 #define NM_MTX_ASSERT(m)	mutex_is_locked(&(m))
174 
175 #ifndef DEV_NETMAP
176 #define DEV_NETMAP
177 #endif /* DEV_NETMAP */
178 
179 #elif defined (__APPLE__)
180 
181 #warning apple support is incomplete.
182 #define likely(x)	__builtin_expect(!!(x), 1)
183 #define unlikely(x)	__builtin_expect(!!(x), 0)
184 #define	NM_LOCK_T	IOLock *
185 #define	NM_SELINFO_T	struct selinfo
186 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
187 
188 #elif defined (_WIN32)
189 #include "../../../WINDOWS/win_glue.h"
190 
191 #define NM_SELRECORD_T		IO_STACK_LOCATION
192 #define NM_SELINFO_T		win_SELINFO		// see win_glue.h
193 #define NM_LOCK_T		win_spinlock_t	// see win_glue.h
194 #define NM_MTX_T		KGUARDED_MUTEX	/* OS-specific mutex (sleepable) */
195 
196 #define NM_MTX_INIT(m)		KeInitializeGuardedMutex(&m);
197 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
198 #define NM_MTX_LOCK(m)		KeAcquireGuardedMutex(&(m))
199 #define NM_MTX_UNLOCK(m)	KeReleaseGuardedMutex(&(m))
200 #define NM_MTX_ASSERT(m)	assert(&m.Count>0)
201 
202 //These linknames are for the NDIS driver
203 #define NETMAP_NDIS_LINKNAME_STRING             L"\\DosDevices\\NMAPNDIS"
204 #define NETMAP_NDIS_NTDEVICE_STRING             L"\\Device\\NMAPNDIS"
205 
206 //Definition of internal driver-to-driver ioctl codes
207 #define NETMAP_KERNEL_XCHANGE_POINTERS		_IO('i', 180)
208 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL	_IO_direct('i', 195)
209 
210 typedef struct hrtimer{
211 	KTIMER timer;
212 	BOOLEAN active;
213 	KDPC deferred_proc;
214 };
215 
216 /* MSVC does not have likely/unlikely support */
217 #ifdef _MSC_VER
218 #define likely(x)	(x)
219 #define unlikely(x)	(x)
220 #else
221 #define likely(x)	__builtin_expect((long)!!(x), 1L)
222 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
223 #endif //_MSC_VER
224 
225 #else
226 
227 #error unsupported platform
228 
229 #endif /* end - platform-specific code */
230 
231 #ifndef _WIN32 /* support for emulated sysctl */
232 #define SYSBEGIN(x)
233 #define SYSEND
234 #endif /* _WIN32 */
235 
236 #define NM_ACCESS_ONCE(x)	(*(volatile __typeof__(x) *)&(x))
237 
238 #define	NMG_LOCK_T		NM_MTX_T
239 #define	NMG_LOCK_INIT()		NM_MTX_INIT(netmap_global_lock)
240 #define	NMG_LOCK_DESTROY()	NM_MTX_DESTROY(netmap_global_lock)
241 #define	NMG_LOCK()		NM_MTX_LOCK(netmap_global_lock)
242 #define	NMG_UNLOCK()		NM_MTX_UNLOCK(netmap_global_lock)
243 #define	NMG_LOCK_ASSERT()	NM_MTX_ASSERT(netmap_global_lock)
244 
245 #if defined(__FreeBSD__)
246 #define nm_prerr_int	printf
247 #define nm_prinf_int	printf
248 #elif defined (_WIN32)
249 #define nm_prerr_int	DbgPrint
250 #define nm_prinf_int	DbgPrint
251 #elif defined(linux)
252 #define nm_prerr_int(fmt, arg...)    printk(KERN_ERR fmt, ##arg)
253 #define nm_prinf_int(fmt, arg...)    printk(KERN_INFO fmt, ##arg)
254 #endif
255 
256 #define nm_prinf(format, ...)					\
257 	do {							\
258 		struct timeval __xxts;				\
259 		microtime(&__xxts);				\
260 		nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\
261 		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
262 		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
263 	} while (0)
264 
265 #define nm_prerr(format, ...)					\
266 	do {							\
267 		struct timeval __xxts;				\
268 		microtime(&__xxts);				\
269 		nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\
270 		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
271 		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
272 	} while (0)
273 
274 /* Disabled printf (used to be ND). */
275 #define nm_prdis(format, ...)
276 
277 /* Rate limited, lps indicates how many per second. */
278 #define nm_prlim(lps, format, ...)				\
279 	do {							\
280 		static int t0, __cnt;				\
281 		if (t0 != time_second) {			\
282 			t0 = time_second;			\
283 			__cnt = 0;				\
284 		}						\
285 		if (__cnt++ < lps)				\
286 			nm_prinf(format, ##__VA_ARGS__);	\
287 	} while (0)
288 
289 /* Old macros. */
290 #define ND	nm_prdis
291 #define D	nm_prerr
292 #define RD	nm_prlim
293 
294 struct netmap_adapter;
295 struct nm_bdg_fwd;
296 struct nm_bridge;
297 struct netmap_priv_d;
298 struct nm_bdg_args;
299 
300 /* os-specific NM_SELINFO_T initialzation/destruction functions */
301 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name);
302 void nm_os_selinfo_uninit(NM_SELINFO_T *);
303 
304 const char *nm_dump_buf(char *p, int len, int lim, char *dst);
305 
306 void nm_os_selwakeup(NM_SELINFO_T *si);
307 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si);
308 
309 int nm_os_ifnet_init(void);
310 void nm_os_ifnet_fini(void);
311 void nm_os_ifnet_lock(void);
312 void nm_os_ifnet_unlock(void);
313 
314 unsigned nm_os_ifnet_mtu(struct ifnet *ifp);
315 
316 void nm_os_get_module(void);
317 void nm_os_put_module(void);
318 
319 void netmap_make_zombie(struct ifnet *);
320 void netmap_undo_zombie(struct ifnet *);
321 
322 /* os independent alloc/realloc/free */
323 void *nm_os_malloc(size_t);
324 void *nm_os_vmalloc(size_t);
325 void *nm_os_realloc(void *, size_t new_size, size_t old_size);
326 void nm_os_free(void *);
327 void nm_os_vfree(void *);
328 
329 /* os specific attach/detach enter/exit-netmap-mode routines */
330 void nm_os_onattach(struct ifnet *);
331 void nm_os_ondetach(struct ifnet *);
332 void nm_os_onenter(struct ifnet *);
333 void nm_os_onexit(struct ifnet *);
334 
335 /* passes a packet up to the host stack.
336  * If the packet is sent (or dropped) immediately it returns NULL,
337  * otherwise it links the packet to prev and returns m.
338  * In this case, a final call with m=NULL and prev != NULL will send up
339  * the entire chain to the host stack.
340  */
341 void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev);
342 
343 int nm_os_mbuf_has_seg_offld(struct mbuf *m);
344 int nm_os_mbuf_has_csum_offld(struct mbuf *m);
345 
346 #include "netmap_mbq.h"
347 
348 extern NMG_LOCK_T	netmap_global_lock;
349 
350 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
351 
352 static __inline const char*
353 nm_txrx2str(enum txrx t)
354 {
355 	return (t== NR_RX ? "RX" : "TX");
356 }
357 
358 static __inline enum txrx
359 nm_txrx_swap(enum txrx t)
360 {
361 	return (t== NR_RX ? NR_TX : NR_RX);
362 }
363 
364 #define for_rx_tx(t)	for ((t) = 0; (t) < NR_TXRX; (t)++)
365 
366 #ifdef WITH_MONITOR
367 struct netmap_zmon_list {
368 	struct netmap_kring *next;
369 	struct netmap_kring *prev;
370 };
371 #endif /* WITH_MONITOR */
372 
373 /*
374  * private, kernel view of a ring. Keeps track of the status of
375  * a ring across system calls.
376  *
377  *	nr_hwcur	index of the next buffer to refill.
378  *			It corresponds to ring->head
379  *			at the time the system call returns.
380  *
381  *	nr_hwtail	index of the first buffer owned by the kernel.
382  *			On RX, hwcur->hwtail are receive buffers
383  *			not yet released. hwcur is advanced following
384  *			ring->head, hwtail is advanced on incoming packets,
385  *			and a wakeup is generated when hwtail passes ring->cur
386  *			    On TX, hwcur->rcur have been filled by the sender
387  *			but not sent yet to the NIC; rcur->hwtail are available
388  *			for new transmissions, and hwtail->hwcur-1 are pending
389  *			transmissions not yet acknowledged.
390  *
391  * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
392  * This is so that, on a reset, buffers owned by userspace are not
393  * modified by the kernel. In particular:
394  * RX rings: the next empty buffer (hwtail + hwofs) coincides with
395  * 	the next empty buffer as known by the hardware (next_to_check or so).
396  * TX rings: hwcur + hwofs coincides with next_to_send
397  *
398  * The following fields are used to implement lock-free copy of packets
399  * from input to output ports in VALE switch:
400  *	nkr_hwlease	buffer after the last one being copied.
401  *			A writer in nm_bdg_flush reserves N buffers
402  *			from nr_hwlease, advances it, then does the
403  *			copy outside the lock.
404  *			In RX rings (used for VALE ports),
405  *			nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
406  *			In TX rings (used for NIC or host stack ports)
407  *			nkr_hwcur <= nkr_hwlease < nkr_hwtail
408  *	nkr_leases	array of nkr_num_slots where writers can report
409  *			completion of their block. NR_NOSLOT (~0) indicates
410  *			that the writer has not finished yet
411  *	nkr_lease_idx	index of next free slot in nr_leases, to be assigned
412  *
413  * The kring is manipulated by txsync/rxsync and generic netmap function.
414  *
415  * Concurrent rxsync or txsync on the same ring are prevented through
416  * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
417  * for NIC rings, and for TX rings attached to the host stack.
418  *
419  * RX rings attached to the host stack use an mbq (rx_queue) on both
420  * rxsync_from_host() and netmap_transmit(). The mbq is protected
421  * by its internal lock.
422  *
423  * RX rings attached to the VALE switch are accessed by both senders
424  * and receiver. They are protected through the q_lock on the RX ring.
425  */
426 struct netmap_kring {
427 	struct netmap_ring	*ring;
428 
429 	uint32_t	nr_hwcur;  /* should be nr_hwhead */
430 	uint32_t	nr_hwtail;
431 
432 	/*
433 	 * Copies of values in user rings, so we do not need to look
434 	 * at the ring (which could be modified). These are set in the
435 	 * *sync_prologue()/finalize() routines.
436 	 */
437 	uint32_t	rhead;
438 	uint32_t	rcur;
439 	uint32_t	rtail;
440 
441 	uint32_t	nr_kflags;	/* private driver flags */
442 #define NKR_PENDINTR	0x1		// Pending interrupt.
443 #define NKR_EXCLUSIVE	0x2		/* exclusive binding */
444 #define NKR_FORWARD	0x4		/* (host ring only) there are
445 					   packets to forward
446 					 */
447 #define NKR_NEEDRING	0x8		/* ring needed even if users==0
448 					 * (used internally by pipes and
449 					 *  by ptnetmap host ports)
450 					 */
451 #define NKR_NOINTR      0x10            /* don't use interrupts on this ring */
452 #define NKR_FAKERING	0x20		/* don't allocate/free buffers */
453 
454 	uint32_t	nr_mode;
455 	uint32_t	nr_pending_mode;
456 #define NKR_NETMAP_OFF	0x0
457 #define NKR_NETMAP_ON	0x1
458 
459 	uint32_t	nkr_num_slots;
460 
461 	/*
462 	 * On a NIC reset, the NIC ring indexes may be reset but the
463 	 * indexes in the netmap rings remain the same. nkr_hwofs
464 	 * keeps track of the offset between the two.
465 	 */
466 	int32_t		nkr_hwofs;
467 
468 	/* last_reclaim is opaque marker to help reduce the frequency
469 	 * of operations such as reclaiming tx buffers. A possible use
470 	 * is set it to ticks and do the reclaim only once per tick.
471 	 */
472 	uint64_t	last_reclaim;
473 
474 
475 	NM_SELINFO_T	si;		/* poll/select wait queue */
476 	NM_LOCK_T	q_lock;		/* protects kring and ring. */
477 	NM_ATOMIC_T	nr_busy;	/* prevent concurrent syscalls */
478 
479 	/* the adapter the owns this kring */
480 	struct netmap_adapter *na;
481 
482 	/* the adapter that wants to be notified when this kring has
483 	 * new slots avaialable. This is usually the same as the above,
484 	 * but wrappers may let it point to themselves
485 	 */
486 	struct netmap_adapter *notify_na;
487 
488 	/* The following fields are for VALE switch support */
489 	struct nm_bdg_fwd *nkr_ft;
490 	uint32_t	*nkr_leases;
491 #define NR_NOSLOT	((uint32_t)~0)	/* used in nkr_*lease* */
492 	uint32_t	nkr_hwlease;
493 	uint32_t	nkr_lease_idx;
494 
495 	/* while nkr_stopped is set, no new [tr]xsync operations can
496 	 * be started on this kring.
497 	 * This is used by netmap_disable_all_rings()
498 	 * to find a synchronization point where critical data
499 	 * structures pointed to by the kring can be added or removed
500 	 */
501 	volatile int nkr_stopped;
502 
503 	/* Support for adapters without native netmap support.
504 	 * On tx rings we preallocate an array of tx buffers
505 	 * (same size as the netmap ring), on rx rings we
506 	 * store incoming mbufs in a queue that is drained by
507 	 * a rxsync.
508 	 */
509 	struct mbuf	**tx_pool;
510 	struct mbuf	*tx_event;	/* TX event used as a notification */
511 	NM_LOCK_T	tx_event_lock;	/* protects the tx_event mbuf */
512 	struct mbq	rx_queue;       /* intercepted rx mbufs. */
513 
514 	uint32_t	users;		/* existing bindings for this ring */
515 
516 	uint32_t	ring_id;	/* kring identifier */
517 	enum txrx	tx;		/* kind of ring (tx or rx) */
518 	char name[64];			/* diagnostic */
519 
520 	/* [tx]sync callback for this kring.
521 	 * The default nm_kring_create callback (netmap_krings_create)
522 	 * sets the nm_sync callback of each hardware tx(rx) kring to
523 	 * the corresponding nm_txsync(nm_rxsync) taken from the
524 	 * netmap_adapter; moreover, it sets the sync callback
525 	 * of the host tx(rx) ring to netmap_txsync_to_host
526 	 * (netmap_rxsync_from_host).
527 	 *
528 	 * Overrides: the above configuration is not changed by
529 	 * any of the nm_krings_create callbacks.
530 	 */
531 	int (*nm_sync)(struct netmap_kring *kring, int flags);
532 	int (*nm_notify)(struct netmap_kring *kring, int flags);
533 
534 #ifdef WITH_PIPES
535 	struct netmap_kring *pipe;	/* if this is a pipe ring,
536 					 * pointer to the other end
537 					 */
538 	uint32_t pipe_tail;		/* hwtail updated by the other end */
539 #endif /* WITH_PIPES */
540 
541 	int (*save_notify)(struct netmap_kring *kring, int flags);
542 
543 #ifdef WITH_MONITOR
544 	/* array of krings that are monitoring this kring */
545 	struct netmap_kring **monitors;
546 	uint32_t max_monitors; /* current size of the monitors array */
547 	uint32_t n_monitors;	/* next unused entry in the monitor array */
548 	uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */
549 	uint32_t mon_tail;  /* last seen slot on rx */
550 
551 	/* circular list of zero-copy monitors */
552 	struct netmap_zmon_list zmon_list[NR_TXRX];
553 
554 	/*
555 	 * Monitors work by intercepting the sync and notify callbacks of the
556 	 * monitored krings. This is implemented by replacing the pointers
557 	 * above and saving the previous ones in mon_* pointers below
558 	 */
559 	int (*mon_sync)(struct netmap_kring *kring, int flags);
560 	int (*mon_notify)(struct netmap_kring *kring, int flags);
561 
562 #endif
563 }
564 #ifdef _WIN32
565 __declspec(align(64));
566 #else
567 __attribute__((__aligned__(64)));
568 #endif
569 
570 /* return 1 iff the kring needs to be turned on */
571 static inline int
572 nm_kring_pending_on(struct netmap_kring *kring)
573 {
574 	return kring->nr_pending_mode == NKR_NETMAP_ON &&
575 	       kring->nr_mode == NKR_NETMAP_OFF;
576 }
577 
578 /* return 1 iff the kring needs to be turned off */
579 static inline int
580 nm_kring_pending_off(struct netmap_kring *kring)
581 {
582 	return kring->nr_pending_mode == NKR_NETMAP_OFF &&
583 	       kring->nr_mode == NKR_NETMAP_ON;
584 }
585 
586 /* return the next index, with wraparound */
587 static inline uint32_t
588 nm_next(uint32_t i, uint32_t lim)
589 {
590 	return unlikely (i == lim) ? 0 : i + 1;
591 }
592 
593 
594 /* return the previous index, with wraparound */
595 static inline uint32_t
596 nm_prev(uint32_t i, uint32_t lim)
597 {
598 	return unlikely (i == 0) ? lim : i - 1;
599 }
600 
601 
602 /*
603  *
604  * Here is the layout for the Rx and Tx rings.
605 
606        RxRING                            TxRING
607 
608       +-----------------+            +-----------------+
609       |                 |            |                 |
610       |      free       |            |      free       |
611       +-----------------+            +-----------------+
612 head->| owned by user   |<-hwcur     | not sent to nic |<-hwcur
613       |                 |            | yet             |
614       +-----------------+            |                 |
615  cur->| available to    |            |                 |
616       | user, not read  |            +-----------------+
617       | yet             |       cur->| (being          |
618       |                 |            |  prepared)      |
619       |                 |            |                 |
620       +-----------------+            +     ------      +
621 tail->|                 |<-hwtail    |                 |<-hwlease
622       | (being          | ...        |                 | ...
623       |  prepared)      | ...        |                 | ...
624       +-----------------+ ...        |                 | ...
625       |                 |<-hwlease   +-----------------+
626       |                 |      tail->|                 |<-hwtail
627       |                 |            |                 |
628       |                 |            |                 |
629       |                 |            |                 |
630       +-----------------+            +-----------------+
631 
632  * The cur/tail (user view) and hwcur/hwtail (kernel view)
633  * are used in the normal operation of the card.
634  *
635  * When a ring is the output of a switch port (Rx ring for
636  * a VALE port, Tx ring for the host stack or NIC), slots
637  * are reserved in blocks through 'hwlease' which points
638  * to the next unused slot.
639  * On an Rx ring, hwlease is always after hwtail,
640  * and completions cause hwtail to advance.
641  * On a Tx ring, hwlease is always between cur and hwtail,
642  * and completions cause cur to advance.
643  *
644  * nm_kr_space() returns the maximum number of slots that
645  * can be assigned.
646  * nm_kr_lease() reserves the required number of buffers,
647  *    advances nkr_hwlease and also returns an entry in
648  *    a circular array where completions should be reported.
649  */
650 
651 struct lut_entry;
652 #ifdef __FreeBSD__
653 #define plut_entry lut_entry
654 #endif
655 
656 struct netmap_lut {
657 	struct lut_entry *lut;
658 	struct plut_entry *plut;
659 	uint32_t objtotal;	/* max buffer index */
660 	uint32_t objsize;	/* buffer size */
661 };
662 
663 struct netmap_vp_adapter; // forward
664 struct nm_bridge;
665 
666 /* Struct to be filled by nm_config callbacks. */
667 struct nm_config_info {
668 	unsigned num_tx_rings;
669 	unsigned num_rx_rings;
670 	unsigned num_tx_descs;
671 	unsigned num_rx_descs;
672 	unsigned rx_buf_maxsize;
673 };
674 
675 /*
676  * default type for the magic field.
677  * May be overriden in glue code.
678  */
679 #ifndef NM_OS_MAGIC
680 #define NM_OS_MAGIC uint32_t
681 #endif /* !NM_OS_MAGIC */
682 
683 /*
684  * The "struct netmap_adapter" extends the "struct adapter"
685  * (or equivalent) device descriptor.
686  * It contains all base fields needed to support netmap operation.
687  * There are in fact different types of netmap adapters
688  * (native, generic, VALE switch...) so a netmap_adapter is
689  * just the first field in the derived type.
690  */
691 struct netmap_adapter {
692 	/*
693 	 * On linux we do not have a good way to tell if an interface
694 	 * is netmap-capable. So we always use the following trick:
695 	 * NA(ifp) points here, and the first entry (which hopefully
696 	 * always exists and is at least 32 bits) contains a magic
697 	 * value which we can use to detect that the interface is good.
698 	 */
699 	NM_OS_MAGIC magic;
700 	uint32_t na_flags;	/* enabled, and other flags */
701 #define NAF_SKIP_INTR	1	/* use the regular interrupt handler.
702 				 * useful during initialization
703 				 */
704 #define NAF_SW_ONLY	2	/* forward packets only to sw adapter */
705 #define NAF_BDG_MAYSLEEP 4	/* the bridge is allowed to sleep when
706 				 * forwarding packets coming from this
707 				 * interface
708 				 */
709 #define NAF_MEM_OWNER	8	/* the adapter uses its own memory area
710 				 * that cannot be changed
711 				 */
712 #define NAF_NATIVE      16      /* the adapter is native.
713 				 * Virtual ports (non persistent vale ports,
714 				 * pipes, monitors...) should never use
715 				 * this flag.
716 				 */
717 #define	NAF_NETMAP_ON	32	/* netmap is active (either native or
718 				 * emulated). Where possible (e.g. FreeBSD)
719 				 * IFCAP_NETMAP also mirrors this flag.
720 				 */
721 #define NAF_HOST_RINGS  64	/* the adapter supports the host rings */
722 #define NAF_FORCE_NATIVE 128	/* the adapter is always NATIVE */
723 /* free */
724 #define NAF_MOREFRAG	512	/* the adapter supports NS_MOREFRAG */
725 #define NAF_ZOMBIE	(1U<<30) /* the nic driver has been unloaded */
726 #define	NAF_BUSY	(1U<<31) /* the adapter is used internally and
727 				  * cannot be registered from userspace
728 				  */
729 	int active_fds; /* number of user-space descriptors using this
730 			 interface, which is equal to the number of
731 			 struct netmap_if objs in the mapped region. */
732 
733 	u_int num_rx_rings; /* number of adapter receive rings */
734 	u_int num_tx_rings; /* number of adapter transmit rings */
735 	u_int num_host_rx_rings; /* number of host receive rings */
736 	u_int num_host_tx_rings; /* number of host transmit rings */
737 
738 	u_int num_tx_desc;  /* number of descriptor in each queue */
739 	u_int num_rx_desc;
740 
741 	/* tx_rings and rx_rings are private but allocated as a
742 	 * contiguous chunk of memory. Each array has N+K entries,
743 	 * N for the hardware rings and K for the host rings.
744 	 */
745 	struct netmap_kring **tx_rings; /* array of TX rings. */
746 	struct netmap_kring **rx_rings; /* array of RX rings. */
747 
748 	void *tailroom;		       /* space below the rings array */
749 				       /* (used for leases) */
750 
751 
752 	NM_SELINFO_T si[NR_TXRX];	/* global wait queues */
753 
754 	/* count users of the global wait queues */
755 	int si_users[NR_TXRX];
756 
757 	void *pdev; /* used to store pci device */
758 
759 	/* copy of if_qflush and if_transmit pointers, to intercept
760 	 * packets from the network stack when netmap is active.
761 	 */
762 	int     (*if_transmit)(struct ifnet *, struct mbuf *);
763 
764 	/* copy of if_input for netmap_send_up() */
765 	void     (*if_input)(struct ifnet *, struct mbuf *);
766 
767 	/* Back reference to the parent ifnet struct. Used for
768 	 * hardware ports (emulated netmap included). */
769 	struct ifnet *ifp; /* adapter is ifp->if_softc */
770 
771 	/*---- callbacks for this netmap adapter -----*/
772 	/*
773 	 * nm_dtor() is the cleanup routine called when destroying
774 	 *	the adapter.
775 	 *	Called with NMG_LOCK held.
776 	 *
777 	 * nm_register() is called on NIOCREGIF and close() to enter
778 	 *	or exit netmap mode on the NIC
779 	 *	Called with NNG_LOCK held.
780 	 *
781 	 * nm_txsync() pushes packets to the underlying hw/switch
782 	 *
783 	 * nm_rxsync() collects packets from the underlying hw/switch
784 	 *
785 	 * nm_config() returns configuration information from the OS
786 	 *	Called with NMG_LOCK held.
787 	 *
788 	 * nm_krings_create() create and init the tx_rings and
789 	 * 	rx_rings arrays of kring structures. In particular,
790 	 * 	set the nm_sync callbacks for each ring.
791 	 * 	There is no need to also allocate the corresponding
792 	 * 	netmap_rings, since netmap_mem_rings_create() will always
793 	 * 	be called to provide the missing ones.
794 	 *	Called with NNG_LOCK held.
795 	 *
796 	 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
797 	 * 	arrays
798 	 *	Called with NMG_LOCK held.
799 	 *
800 	 * nm_notify() is used to act after data have become available
801 	 * 	(or the stopped state of the ring has changed)
802 	 *	For hw devices this is typically a selwakeup(),
803 	 *	but for NIC/host ports attached to a switch (or vice-versa)
804 	 *	we also need to invoke the 'txsync' code downstream.
805 	 *      This callback pointer is actually used only to initialize
806 	 *      kring->nm_notify.
807 	 *      Return values are the same as for netmap_rx_irq().
808 	 */
809 	void (*nm_dtor)(struct netmap_adapter *);
810 
811 	int (*nm_register)(struct netmap_adapter *, int onoff);
812 	void (*nm_intr)(struct netmap_adapter *, int onoff);
813 
814 	int (*nm_txsync)(struct netmap_kring *kring, int flags);
815 	int (*nm_rxsync)(struct netmap_kring *kring, int flags);
816 	int (*nm_notify)(struct netmap_kring *kring, int flags);
817 #define NAF_FORCE_READ      1
818 #define NAF_FORCE_RECLAIM   2
819 #define NAF_CAN_FORWARD_DOWN 4
820 	/* return configuration information */
821 	int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info);
822 	int (*nm_krings_create)(struct netmap_adapter *);
823 	void (*nm_krings_delete)(struct netmap_adapter *);
824 	/*
825 	 * nm_bdg_attach() initializes the na_vp field to point
826 	 *      to an adapter that can be attached to a VALE switch. If the
827 	 *      current adapter is already a VALE port, na_vp is simply a cast;
828 	 *      otherwise, na_vp points to a netmap_bwrap_adapter.
829 	 *      If applicable, this callback also initializes na_hostvp,
830 	 *      that can be used to connect the adapter host rings to the
831 	 *      switch.
832 	 *      Called with NMG_LOCK held.
833 	 *
834 	 * nm_bdg_ctl() is called on the actual attach/detach to/from
835 	 *      to/from the switch, to perform adapter-specific
836 	 *      initializations
837 	 *      Called with NMG_LOCK held.
838 	 */
839 	int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *,
840 			struct nm_bridge *);
841 	int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *);
842 
843 	/* adapter used to attach this adapter to a VALE switch (if any) */
844 	struct netmap_vp_adapter *na_vp;
845 	/* adapter used to attach the host rings of this adapter
846 	 * to a VALE switch (if any) */
847 	struct netmap_vp_adapter *na_hostvp;
848 
849 	/* standard refcount to control the lifetime of the adapter
850 	 * (it should be equal to the lifetime of the corresponding ifp)
851 	 */
852 	int na_refcount;
853 
854 	/* memory allocator (opaque)
855 	 * We also cache a pointer to the lut_entry for translating
856 	 * buffer addresses, the total number of buffers and the buffer size.
857 	 */
858  	struct netmap_mem_d *nm_mem;
859 	struct netmap_mem_d *nm_mem_prev;
860 	struct netmap_lut na_lut;
861 
862 	/* additional information attached to this adapter
863 	 * by other netmap subsystems. Currently used by
864 	 * bwrap, LINUX/v1000 and ptnetmap
865 	 */
866 	void *na_private;
867 
868 	/* array of pipes that have this adapter as a parent */
869 	struct netmap_pipe_adapter **na_pipes;
870 	int na_next_pipe;	/* next free slot in the array */
871 	int na_max_pipes;	/* size of the array */
872 
873 	/* Offset of ethernet header for each packet. */
874 	u_int virt_hdr_len;
875 
876 	/* Max number of bytes that the NIC can store in the buffer
877 	 * referenced by each RX descriptor. This translates to the maximum
878 	 * bytes that a single netmap slot can reference. Larger packets
879 	 * require NS_MOREFRAG support. */
880 	unsigned rx_buf_maxsize;
881 
882 	char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */
883 
884 #ifdef WITH_MONITOR
885 	unsigned long	monitor_id;	/* debugging */
886 #endif
887 };
888 
889 static __inline u_int
890 nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
891 {
892 	return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
893 }
894 
895 static __inline void
896 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
897 {
898 	if (t == NR_TX)
899 		na->num_tx_desc = v;
900 	else
901 		na->num_rx_desc = v;
902 }
903 
904 static __inline u_int
905 nma_get_nrings(struct netmap_adapter *na, enum txrx t)
906 {
907 	return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
908 }
909 
910 static __inline u_int
911 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t)
912 {
913 	return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings);
914 }
915 
916 static __inline void
917 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
918 {
919 	if (t == NR_TX)
920 		na->num_tx_rings = v;
921 	else
922 		na->num_rx_rings = v;
923 }
924 
925 static __inline void
926 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
927 {
928 	if (t == NR_TX)
929 		na->num_host_tx_rings = v;
930 	else
931 		na->num_host_rx_rings = v;
932 }
933 
934 static __inline struct netmap_kring**
935 NMR(struct netmap_adapter *na, enum txrx t)
936 {
937 	return (t == NR_TX ? na->tx_rings : na->rx_rings);
938 }
939 
940 int nma_intr_enable(struct netmap_adapter *na, int onoff);
941 
942 /*
943  * If the NIC is owned by the kernel
944  * (i.e., bridge), neither another bridge nor user can use it;
945  * if the NIC is owned by a user, only users can share it.
946  * Evaluation must be done under NMG_LOCK().
947  */
948 #define NETMAP_OWNED_BY_KERN(na)	((na)->na_flags & NAF_BUSY)
949 #define NETMAP_OWNED_BY_ANY(na) \
950 	(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
951 
952 /*
953  * derived netmap adapters for various types of ports
954  */
955 struct netmap_vp_adapter {	/* VALE software port */
956 	struct netmap_adapter up;
957 
958 	/*
959 	 * Bridge support:
960 	 *
961 	 * bdg_port is the port number used in the bridge;
962 	 * na_bdg points to the bridge this NA is attached to.
963 	 */
964 	int bdg_port;
965 	struct nm_bridge *na_bdg;
966 	int retry;
967 	int autodelete; /* remove the ifp on last reference */
968 
969 	/* Maximum Frame Size, used in bdg_mismatch_datapath() */
970 	u_int mfs;
971 	/* Last source MAC on this port */
972 	uint64_t last_smac;
973 };
974 
975 
976 struct netmap_hw_adapter {	/* physical device */
977 	struct netmap_adapter up;
978 
979 #ifdef linux
980 	struct net_device_ops nm_ndo;
981 	struct ethtool_ops    nm_eto;
982 #endif
983 	const struct ethtool_ops*   save_ethtool;
984 
985 	int (*nm_hw_register)(struct netmap_adapter *, int onoff);
986 };
987 
988 #ifdef WITH_GENERIC
989 /* Mitigation support. */
990 struct nm_generic_mit {
991 	struct hrtimer mit_timer;
992 	int mit_pending;
993 	int mit_ring_idx;  /* index of the ring being mitigated */
994 	struct netmap_adapter *mit_na;  /* backpointer */
995 };
996 
997 struct netmap_generic_adapter {	/* emulated device */
998 	struct netmap_hw_adapter up;
999 
1000 	/* Pointer to a previously used netmap adapter. */
1001 	struct netmap_adapter *prev;
1002 
1003 	/* Emulated netmap adapters support:
1004 	 *  - save_if_input saves the if_input hook (FreeBSD);
1005 	 *  - mit implements rx interrupt mitigation;
1006 	 */
1007 	void (*save_if_input)(struct ifnet *, struct mbuf *);
1008 
1009 	struct nm_generic_mit *mit;
1010 #ifdef linux
1011         netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
1012 #endif
1013 	/* Is the adapter able to use multiple RX slots to scatter
1014 	 * each packet pushed up by the driver? */
1015 	int rxsg;
1016 
1017 	/* Is the transmission path controlled by a netmap-aware
1018 	 * device queue (i.e. qdisc on linux)? */
1019 	int txqdisc;
1020 };
1021 #endif  /* WITH_GENERIC */
1022 
1023 static __inline u_int
1024 netmap_real_rings(struct netmap_adapter *na, enum txrx t)
1025 {
1026 	return nma_get_nrings(na, t) +
1027 		!!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t);
1028 }
1029 
1030 /* account for fake rings */
1031 static __inline u_int
1032 netmap_all_rings(struct netmap_adapter *na, enum txrx t)
1033 {
1034 	return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t));
1035 }
1036 
1037 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na,
1038 		struct nm_bridge *);
1039 struct nm_bdg_polling_state;
1040 /*
1041  * Bridge wrapper for non VALE ports attached to a VALE switch.
1042  *
1043  * The real device must already have its own netmap adapter (hwna).
1044  * The bridge wrapper and the hwna adapter share the same set of
1045  * netmap rings and buffers, but they have two separate sets of
1046  * krings descriptors, with tx/rx meanings swapped:
1047  *
1048  *                                  netmap
1049  *           bwrap     krings       rings      krings      hwna
1050  *         +------+   +------+     +-----+    +------+   +------+
1051  *         |tx_rings->|      |\   /|     |----|      |<-tx_rings|
1052  *         |      |   +------+ \ / +-----+    +------+   |      |
1053  *         |      |             X                        |      |
1054  *         |      |            / \                       |      |
1055  *         |      |   +------+/   \+-----+    +------+   |      |
1056  *         |rx_rings->|      |     |     |----|      |<-rx_rings|
1057  *         |      |   +------+     +-----+    +------+   |      |
1058  *         +------+                                      +------+
1059  *
1060  * - packets coming from the bridge go to the brwap rx rings,
1061  *   which are also the hwna tx rings.  The bwrap notify callback
1062  *   will then complete the hwna tx (see netmap_bwrap_notify).
1063  *
1064  * - packets coming from the outside go to the hwna rx rings,
1065  *   which are also the bwrap tx rings.  The (overwritten) hwna
1066  *   notify method will then complete the bridge tx
1067  *   (see netmap_bwrap_intr_notify).
1068  *
1069  *   The bridge wrapper may optionally connect the hwna 'host' rings
1070  *   to the bridge. This is done by using a second port in the
1071  *   bridge and connecting it to the 'host' netmap_vp_adapter
1072  *   contained in the netmap_bwrap_adapter. The brwap host adapter
1073  *   cross-links the hwna host rings in the same way as shown above.
1074  *
1075  * - packets coming from the bridge and directed to the host stack
1076  *   are handled by the bwrap host notify callback
1077  *   (see netmap_bwrap_host_notify)
1078  *
1079  * - packets coming from the host stack are still handled by the
1080  *   overwritten hwna notify callback (netmap_bwrap_intr_notify),
1081  *   but are diverted to the host adapter depending on the ring number.
1082  *
1083  */
1084 struct netmap_bwrap_adapter {
1085 	struct netmap_vp_adapter up;
1086 	struct netmap_vp_adapter host;  /* for host rings */
1087 	struct netmap_adapter *hwna;	/* the underlying device */
1088 
1089 	/*
1090 	 * When we attach a physical interface to the bridge, we
1091 	 * allow the controlling process to terminate, so we need
1092 	 * a place to store the n_detmap_priv_d data structure.
1093 	 * This is only done when physical interfaces
1094 	 * are attached to a bridge.
1095 	 */
1096 	struct netmap_priv_d *na_kpriv;
1097 	struct nm_bdg_polling_state *na_polling_state;
1098 	/* we overwrite the hwna->na_vp pointer, so we save
1099 	 * here its original value, to be restored at detach
1100 	 */
1101 	struct netmap_vp_adapter *saved_na_vp;
1102 };
1103 int nm_bdg_polling(struct nmreq_header *hdr);
1104 
1105 #ifdef WITH_VALE
1106 int netmap_vale_attach(struct nmreq_header *hdr, void *auth_token);
1107 int netmap_vale_detach(struct nmreq_header *hdr, void *auth_token);
1108 int netmap_vale_list(struct nmreq_header *hdr);
1109 int netmap_vi_create(struct nmreq_header *hdr, int);
1110 int nm_vi_create(struct nmreq_header *);
1111 int nm_vi_destroy(const char *name);
1112 #else /* !WITH_VALE */
1113 #define netmap_vi_create(hdr, a) (EOPNOTSUPP)
1114 #endif /* WITH_VALE */
1115 
1116 #ifdef WITH_PIPES
1117 
1118 #define NM_MAXPIPES 	64	/* max number of pipes per adapter */
1119 
1120 struct netmap_pipe_adapter {
1121 	/* pipe identifier is up.name */
1122 	struct netmap_adapter up;
1123 
1124 #define NM_PIPE_ROLE_MASTER	0x1
1125 #define NM_PIPE_ROLE_SLAVE	0x2
1126 	int role;	/* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */
1127 
1128 	struct netmap_adapter *parent; /* adapter that owns the memory */
1129 	struct netmap_pipe_adapter *peer; /* the other end of the pipe */
1130 	int peer_ref;		/* 1 iff we are holding a ref to the peer */
1131 	struct ifnet *parent_ifp;	/* maybe null */
1132 
1133 	u_int parent_slot; /* index in the parent pipe array */
1134 };
1135 
1136 #endif /* WITH_PIPES */
1137 
1138 #ifdef WITH_NMNULL
1139 struct netmap_null_adapter {
1140 	struct netmap_adapter up;
1141 };
1142 #endif /* WITH_NMNULL */
1143 
1144 
1145 /* return slots reserved to rx clients; used in drivers */
1146 static inline uint32_t
1147 nm_kr_rxspace(struct netmap_kring *k)
1148 {
1149 	int space = k->nr_hwtail - k->nr_hwcur;
1150 	if (space < 0)
1151 		space += k->nkr_num_slots;
1152 	ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
1153 
1154 	return space;
1155 }
1156 
1157 /* return slots reserved to tx clients */
1158 #define nm_kr_txspace(_k) nm_kr_rxspace(_k)
1159 
1160 
1161 /* True if no space in the tx ring, only valid after txsync_prologue */
1162 static inline int
1163 nm_kr_txempty(struct netmap_kring *kring)
1164 {
1165 	return kring->rhead == kring->nr_hwtail;
1166 }
1167 
1168 /* True if no more completed slots in the rx ring, only valid after
1169  * rxsync_prologue */
1170 #define nm_kr_rxempty(_k)	nm_kr_txempty(_k)
1171 
1172 /* True if the application needs to wait for more space on the ring
1173  * (more received packets or more free tx slots).
1174  * Only valid after *xsync_prologue. */
1175 static inline int
1176 nm_kr_wouldblock(struct netmap_kring *kring)
1177 {
1178 	return kring->rcur == kring->nr_hwtail;
1179 }
1180 
1181 /*
1182  * protect against multiple threads using the same ring.
1183  * also check that the ring has not been stopped or locked
1184  */
1185 #define NM_KR_BUSY	1	/* some other thread is syncing the ring */
1186 #define NM_KR_STOPPED	2	/* unbounded stop (ifconfig down or driver unload) */
1187 #define NM_KR_LOCKED	3	/* bounded, brief stop for mutual exclusion */
1188 
1189 
1190 /* release the previously acquired right to use the *sync() methods of the ring */
1191 static __inline void nm_kr_put(struct netmap_kring *kr)
1192 {
1193 	NM_ATOMIC_CLEAR(&kr->nr_busy);
1194 }
1195 
1196 
1197 /* true if the ifp that backed the adapter has disappeared (e.g., the
1198  * driver has been unloaded)
1199  */
1200 static inline int nm_iszombie(struct netmap_adapter *na);
1201 
1202 /* try to obtain exclusive right to issue the *sync() operations on the ring.
1203  * The right is obtained and must be later relinquished via nm_kr_put() if and
1204  * only if nm_kr_tryget() returns 0.
1205  * If can_sleep is 1 there are only two other possible outcomes:
1206  * - the function returns NM_KR_BUSY
1207  * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr
1208  *   (if non-null)
1209  * In both cases the caller will typically skip the ring, possibly collecting
1210  * errors along the way.
1211  * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep.
1212  * In the latter case, the function may also return NM_KR_LOCKED and leave *perr
1213  * untouched: ideally, the caller should try again at a later time.
1214  */
1215 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr)
1216 {
1217 	int busy = 1, stopped;
1218 	/* check a first time without taking the lock
1219 	 * to avoid starvation for nm_kr_get()
1220 	 */
1221 retry:
1222 	stopped = kr->nkr_stopped;
1223 	if (unlikely(stopped)) {
1224 		goto stop;
1225 	}
1226 	busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy);
1227 	/* we should not return NM_KR_BUSY if the ring was
1228 	 * actually stopped, so check another time after
1229 	 * the barrier provided by the atomic operation
1230 	 */
1231 	stopped = kr->nkr_stopped;
1232 	if (unlikely(stopped)) {
1233 		goto stop;
1234 	}
1235 
1236 	if (unlikely(nm_iszombie(kr->na))) {
1237 		stopped = NM_KR_STOPPED;
1238 		goto stop;
1239 	}
1240 
1241 	return unlikely(busy) ? NM_KR_BUSY : 0;
1242 
1243 stop:
1244 	if (!busy)
1245 		nm_kr_put(kr);
1246 	if (stopped == NM_KR_STOPPED) {
1247 /* if POLLERR is defined we want to use it to simplify netmap_poll().
1248  * Otherwise, any non-zero value will do.
1249  */
1250 #ifdef POLLERR
1251 #define NM_POLLERR POLLERR
1252 #else
1253 #define NM_POLLERR 1
1254 #endif /* POLLERR */
1255 		if (perr)
1256 			*perr |= NM_POLLERR;
1257 #undef NM_POLLERR
1258 	} else if (can_sleep) {
1259 		tsleep(kr, 0, "NM_KR_TRYGET", 4);
1260 		goto retry;
1261 	}
1262 	return stopped;
1263 }
1264 
1265 /* put the ring in the 'stopped' state and wait for the current user (if any) to
1266  * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED
1267  */
1268 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped)
1269 {
1270 	kr->nkr_stopped = stopped;
1271 	while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
1272 		tsleep(kr, 0, "NM_KR_GET", 4);
1273 }
1274 
1275 /* restart a ring after a stop */
1276 static __inline void nm_kr_start(struct netmap_kring *kr)
1277 {
1278 	kr->nkr_stopped = 0;
1279 	nm_kr_put(kr);
1280 }
1281 
1282 
1283 /*
1284  * The following functions are used by individual drivers to
1285  * support netmap operation.
1286  *
1287  * netmap_attach() initializes a struct netmap_adapter, allocating the
1288  * 	struct netmap_ring's and the struct selinfo.
1289  *
1290  * netmap_detach() frees the memory allocated by netmap_attach().
1291  *
1292  * netmap_transmit() replaces the if_transmit routine of the interface,
1293  *	and is used to intercept packets coming from the stack.
1294  *
1295  * netmap_load_map/netmap_reload_map are helper routines to set/reset
1296  *	the dmamap for a packet buffer
1297  *
1298  * netmap_reset() is a helper routine to be called in the hw driver
1299  *	when reinitializing a ring. It should not be called by
1300  *	virtual ports (vale, pipes, monitor)
1301  */
1302 int netmap_attach(struct netmap_adapter *);
1303 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg);
1304 void netmap_detach(struct ifnet *);
1305 int netmap_transmit(struct ifnet *, struct mbuf *);
1306 struct netmap_slot *netmap_reset(struct netmap_adapter *na,
1307 	enum txrx tx, u_int n, u_int new_cur);
1308 int netmap_ring_reinit(struct netmap_kring *);
1309 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *);
1310 
1311 /* Return codes for netmap_*x_irq. */
1312 enum {
1313 	/* Driver should do normal interrupt processing, e.g. because
1314 	 * the interface is not in netmap mode. */
1315 	NM_IRQ_PASS = 0,
1316 	/* Port is in netmap mode, and the interrupt work has been
1317 	 * completed. The driver does not have to notify netmap
1318 	 * again before the next interrupt. */
1319 	NM_IRQ_COMPLETED = -1,
1320 	/* Port is in netmap mode, but the interrupt work has not been
1321 	 * completed. The driver has to make sure netmap will be
1322 	 * notified again soon, even if no more interrupts come (e.g.
1323 	 * on Linux the driver should not call napi_complete()). */
1324 	NM_IRQ_RESCHED = -2,
1325 };
1326 
1327 /* default functions to handle rx/tx interrupts */
1328 int netmap_rx_irq(struct ifnet *, u_int, u_int *);
1329 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
1330 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done);
1331 
1332 
1333 #ifdef WITH_VALE
1334 /* functions used by external modules to interface with VALE */
1335 #define netmap_vp_to_ifp(_vp)	((_vp)->up.ifp)
1336 #define netmap_ifp_to_vp(_ifp)	(NA(_ifp)->na_vp)
1337 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
1338 #define netmap_bdg_idx(_vp)	((_vp)->bdg_port)
1339 const char *netmap_bdg_name(struct netmap_vp_adapter *);
1340 #else /* !WITH_VALE */
1341 #define netmap_vp_to_ifp(_vp)	NULL
1342 #define netmap_ifp_to_vp(_ifp)	NULL
1343 #define netmap_ifp_to_host_vp(_ifp) NULL
1344 #define netmap_bdg_idx(_vp)	-1
1345 #endif /* WITH_VALE */
1346 
1347 static inline int
1348 nm_netmap_on(struct netmap_adapter *na)
1349 {
1350 	return na && na->na_flags & NAF_NETMAP_ON;
1351 }
1352 
1353 static inline int
1354 nm_native_on(struct netmap_adapter *na)
1355 {
1356 	return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
1357 }
1358 
1359 static inline int
1360 nm_iszombie(struct netmap_adapter *na)
1361 {
1362 	return na == NULL || (na->na_flags & NAF_ZOMBIE);
1363 }
1364 
1365 static inline void
1366 nm_update_hostrings_mode(struct netmap_adapter *na)
1367 {
1368 	/* Process nr_mode and nr_pending_mode for host rings. */
1369 	na->tx_rings[na->num_tx_rings]->nr_mode =
1370 		na->tx_rings[na->num_tx_rings]->nr_pending_mode;
1371 	na->rx_rings[na->num_rx_rings]->nr_mode =
1372 		na->rx_rings[na->num_rx_rings]->nr_pending_mode;
1373 }
1374 
1375 void nm_set_native_flags(struct netmap_adapter *);
1376 void nm_clear_native_flags(struct netmap_adapter *);
1377 
1378 /*
1379  * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap
1380  * kthreads.
1381  * We need netmap_ring* parameter, because in ptnetmap it is decoupled
1382  * from host kring.
1383  * The user-space ring pointers (head/cur/tail) are shared through
1384  * CSB between host and guest.
1385  */
1386 
1387 /*
1388  * validates parameters in the ring/kring, returns a value for head
1389  * If any error, returns ring_size to force a reinit.
1390  */
1391 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *);
1392 
1393 
1394 /*
1395  * validates parameters in the ring/kring, returns a value for head
1396  * If any error, returns ring_size lim to force a reinit.
1397  */
1398 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *);
1399 
1400 
1401 /* check/fix address and len in tx rings */
1402 #if 1 /* debug version */
1403 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1404 	if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) {	\
1405 		RD(5, "bad addr/len ring %d slot %d idx %d len %d",	\
1406 			kring->ring_id, nm_i, slot->buf_idx, len);	\
1407 		if (_l > NETMAP_BUF_SIZE(_na))				\
1408 			_l = NETMAP_BUF_SIZE(_na);			\
1409 	} } while (0)
1410 #else /* no debug version */
1411 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1412 		if (_l > NETMAP_BUF_SIZE(_na))				\
1413 			_l = NETMAP_BUF_SIZE(_na);			\
1414 	} while (0)
1415 #endif
1416 
1417 
1418 /*---------------------------------------------------------------*/
1419 /*
1420  * Support routines used by netmap subsystems
1421  * (native drivers, VALE, generic, pipes, monitors, ...)
1422  */
1423 
1424 
1425 /* common routine for all functions that create a netmap adapter. It performs
1426  * two main tasks:
1427  * - if the na points to an ifp, mark the ifp as netmap capable
1428  *   using na as its native adapter;
1429  * - provide defaults for the setup callbacks and the memory allocator
1430  */
1431 int netmap_attach_common(struct netmap_adapter *);
1432 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1433  * coming from a struct nmreq_register
1434  */
1435 int netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1436 			uint16_t nr_ringid, uint64_t nr_flags);
1437 /* update the ring parameters (number and size of tx and rx rings).
1438  * It calls the nm_config callback, if available.
1439  */
1440 int netmap_update_config(struct netmap_adapter *na);
1441 /* create and initialize the common fields of the krings array.
1442  * using the information that must be already available in the na.
1443  * tailroom can be used to request the allocation of additional
1444  * tailroom bytes after the krings array. This is used by
1445  * netmap_vp_adapter's (i.e., VALE ports) to make room for
1446  * leasing-related data structures
1447  */
1448 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1449 /* deletes the kring array of the adapter. The array must have
1450  * been created using netmap_krings_create
1451  */
1452 void netmap_krings_delete(struct netmap_adapter *na);
1453 
1454 int netmap_hw_krings_create(struct netmap_adapter *na);
1455 void netmap_hw_krings_delete(struct netmap_adapter *na);
1456 
1457 /* set the stopped/enabled status of ring
1458  * When stopping, they also wait for all current activity on the ring to
1459  * terminate. The status change is then notified using the na nm_notify
1460  * callback.
1461  */
1462 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
1463 /* set the stopped/enabled status of all rings of the adapter. */
1464 void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1465 /* convenience wrappers for netmap_set_all_rings */
1466 void netmap_disable_all_rings(struct ifnet *);
1467 void netmap_enable_all_rings(struct ifnet *);
1468 
1469 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu);
1470 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1471 		uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags);
1472 void netmap_do_unregif(struct netmap_priv_d *priv);
1473 
1474 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1475 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1476 		struct ifnet **ifp, struct netmap_mem_d *nmd, int create);
1477 void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp);
1478 int netmap_get_hw_na(struct ifnet *ifp,
1479 		struct netmap_mem_d *nmd, struct netmap_adapter **na);
1480 
1481 #ifdef WITH_VALE
1482 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1483 		struct netmap_vp_adapter *, void *private_data);
1484 
1485 /* these are redefined in case of no VALE support */
1486 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1487 		struct netmap_mem_d *nmd, int create);
1488 void *netmap_vale_create(const char *bdg_name, int *return_status);
1489 int netmap_vale_destroy(const char *bdg_name, void *auth_token);
1490 
1491 #else /* !WITH_VALE */
1492 #define netmap_bdg_learning(_1, _2, _3, _4)	0
1493 #define	netmap_get_vale_na(_1, _2, _3, _4)	0
1494 #define netmap_bdg_create(_1, _2)	NULL
1495 #define netmap_bdg_destroy(_1, _2)	0
1496 #endif /* !WITH_VALE */
1497 
1498 #ifdef WITH_PIPES
1499 /* max number of pipes per device */
1500 #define NM_MAXPIPES	64	/* XXX this should probably be a sysctl */
1501 void netmap_pipe_dealloc(struct netmap_adapter *);
1502 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1503 			struct netmap_mem_d *nmd, int create);
1504 #else /* !WITH_PIPES */
1505 #define NM_MAXPIPES	0
1506 #define netmap_pipe_alloc(_1, _2) 	0
1507 #define netmap_pipe_dealloc(_1)
1508 #define netmap_get_pipe_na(hdr, _2, _3, _4)	\
1509 	((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0)
1510 #endif
1511 
1512 #ifdef WITH_MONITOR
1513 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1514 		struct netmap_mem_d *nmd, int create);
1515 void netmap_monitor_stop(struct netmap_adapter *na);
1516 #else
1517 #define netmap_get_monitor_na(hdr, _2, _3, _4) \
1518 	(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1519 #endif
1520 
1521 #ifdef WITH_NMNULL
1522 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1523 		struct netmap_mem_d *nmd, int create);
1524 #else /* !WITH_NMNULL */
1525 #define netmap_get_null_na(hdr, _2, _3, _4) \
1526 	(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1527 #endif /* WITH_NMNULL */
1528 
1529 #ifdef CONFIG_NET_NS
1530 struct net *netmap_bns_get(void);
1531 void netmap_bns_put(struct net *);
1532 void netmap_bns_getbridges(struct nm_bridge **, u_int *);
1533 #else
1534 extern struct nm_bridge *nm_bridges;
1535 #define netmap_bns_get()
1536 #define netmap_bns_put(_1)
1537 #define netmap_bns_getbridges(b, n) \
1538 	do { *b = nm_bridges; *n = NM_BRIDGES; } while (0)
1539 #endif
1540 
1541 /* Various prototypes */
1542 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td);
1543 int netmap_init(void);
1544 void netmap_fini(void);
1545 int netmap_get_memory(struct netmap_priv_d* p);
1546 void netmap_dtor(void *data);
1547 
1548 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1549 		struct thread *, int nr_body_is_user);
1550 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1551 			struct thread *td);
1552 size_t nmreq_size_by_type(uint16_t nr_reqtype);
1553 
1554 /* netmap_adapter creation/destruction */
1555 
1556 // #define NM_DEBUG_PUTGET 1
1557 
1558 #ifdef NM_DEBUG_PUTGET
1559 
1560 #define NM_DBG(f) __##f
1561 
1562 void __netmap_adapter_get(struct netmap_adapter *na);
1563 
1564 #define netmap_adapter_get(na) 				\
1565 	do {						\
1566 		struct netmap_adapter *__na = na;	\
1567 		D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1568 		__netmap_adapter_get(__na);		\
1569 	} while (0)
1570 
1571 int __netmap_adapter_put(struct netmap_adapter *na);
1572 
1573 #define netmap_adapter_put(na)				\
1574 	({						\
1575 		struct netmap_adapter *__na = na;	\
1576 		D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1577 		__netmap_adapter_put(__na);		\
1578 	})
1579 
1580 #else /* !NM_DEBUG_PUTGET */
1581 
1582 #define NM_DBG(f) f
1583 void netmap_adapter_get(struct netmap_adapter *na);
1584 int netmap_adapter_put(struct netmap_adapter *na);
1585 
1586 #endif /* !NM_DEBUG_PUTGET */
1587 
1588 
1589 /*
1590  * module variables
1591  */
1592 #define NETMAP_BUF_BASE(_na)	((_na)->na_lut.lut[0].vaddr)
1593 #define NETMAP_BUF_SIZE(_na)	((_na)->na_lut.objsize)
1594 extern int netmap_no_pendintr;
1595 extern int netmap_mitigate;
1596 extern int netmap_verbose;
1597 #ifdef CONFIG_NETMAP_DEBUG
1598 extern int netmap_debug;		/* for debugging */
1599 #else /* !CONFIG_NETMAP_DEBUG */
1600 #define netmap_debug (0)
1601 #endif /* !CONFIG_NETMAP_DEBUG */
1602 enum {                                  /* debug flags */
1603 	NM_DEBUG_ON = 1,		/* generic debug messsages */
1604 	NM_DEBUG_HOST = 0x2,            /* debug host stack */
1605 	NM_DEBUG_RXSYNC = 0x10,         /* debug on rxsync/txsync */
1606 	NM_DEBUG_TXSYNC = 0x20,
1607 	NM_DEBUG_RXINTR = 0x100,        /* debug on rx/tx intr (driver) */
1608 	NM_DEBUG_TXINTR = 0x200,
1609 	NM_DEBUG_NIC_RXSYNC = 0x1000,   /* debug on rx/tx intr (driver) */
1610 	NM_DEBUG_NIC_TXSYNC = 0x2000,
1611 	NM_DEBUG_MEM = 0x4000,		/* verbose memory allocations/deallocations */
1612 	NM_DEBUG_VALE = 0x8000,		/* debug messages from memory allocators */
1613 	NM_DEBUG_BDG = NM_DEBUG_VALE,
1614 };
1615 
1616 extern int netmap_txsync_retry;
1617 extern int netmap_flags;
1618 extern int netmap_generic_hwcsum;
1619 extern int netmap_generic_mit;
1620 extern int netmap_generic_ringsize;
1621 extern int netmap_generic_rings;
1622 #ifdef linux
1623 extern int netmap_generic_txqdisc;
1624 #endif
1625 
1626 /*
1627  * NA returns a pointer to the struct netmap adapter from the ifp.
1628  * WNA is os-specific and must be defined in glue code.
1629  */
1630 #define	NA(_ifp)	((struct netmap_adapter *)WNA(_ifp))
1631 
1632 /*
1633  * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA
1634  * based on the WNA field.
1635  * Glue code may override this by defining its own NM_ATTACH_NA
1636  */
1637 #ifndef NM_ATTACH_NA
1638 /*
1639  * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we
1640  * overload another pointer in the netdev.
1641  *
1642  * We check if NA(ifp) is set and its first element has a related
1643  * magic value. The capenable is within the struct netmap_adapter.
1644  */
1645 #define	NETMAP_MAGIC	0x52697a7a
1646 
1647 #define NM_NA_VALID(ifp)	(NA(ifp) &&		\
1648 	((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1649 
1650 #define	NM_ATTACH_NA(ifp, na) do {					\
1651 	WNA(ifp) = na;							\
1652 	if (NA(ifp))							\
1653 		NA(ifp)->magic = 					\
1654 			((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC;	\
1655 } while(0)
1656 #define NM_RESTORE_NA(ifp, na) 	WNA(ifp) = na;
1657 
1658 #define NM_DETACH_NA(ifp)	do { WNA(ifp) = NULL; } while (0)
1659 #define NM_NA_CLASH(ifp)	(NA(ifp) && !NM_NA_VALID(ifp))
1660 #endif /* !NM_ATTACH_NA */
1661 
1662 
1663 #define NM_IS_NATIVE(ifp)	(NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor)
1664 
1665 #if defined(__FreeBSD__)
1666 
1667 /* Assigns the device IOMMU domain to an allocator.
1668  * Returns -ENOMEM in case the domain is different */
1669 #define nm_iommu_group_id(dev) (0)
1670 
1671 /* Callback invoked by the dma machinery after a successful dmamap_load */
1672 static void netmap_dmamap_cb(__unused void *arg,
1673     __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1674 {
1675 }
1676 
1677 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1678  * XXX can we do it without a callback ?
1679  */
1680 static inline int
1681 netmap_load_map(struct netmap_adapter *na,
1682 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1683 {
1684 	if (map)
1685 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1686 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1687 	return 0;
1688 }
1689 
1690 static inline void
1691 netmap_unload_map(struct netmap_adapter *na,
1692         bus_dma_tag_t tag, bus_dmamap_t map)
1693 {
1694 	if (map)
1695 		bus_dmamap_unload(tag, map);
1696 }
1697 
1698 #define netmap_sync_map(na, tag, map, sz, t)
1699 
1700 /* update the map when a buffer changes. */
1701 static inline void
1702 netmap_reload_map(struct netmap_adapter *na,
1703 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1704 {
1705 	if (map) {
1706 		bus_dmamap_unload(tag, map);
1707 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1708 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1709 	}
1710 }
1711 
1712 #elif defined(_WIN32)
1713 
1714 #else /* linux */
1715 
1716 int nm_iommu_group_id(bus_dma_tag_t dev);
1717 #include <linux/dma-mapping.h>
1718 
1719 /*
1720  * on linux we need
1721  *	dma_map_single(&pdev->dev, virt_addr, len, direction)
1722  *	dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction)
1723  */
1724 #if 0
1725 	struct e1000_buffer *buffer_info =  &tx_ring->buffer_info[l];
1726 	/* set time_stamp *before* dma to help avoid a possible race */
1727 	buffer_info->time_stamp = jiffies;
1728 	buffer_info->mapped_as_page = false;
1729 	buffer_info->length = len;
1730 	//buffer_info->next_to_watch = l;
1731 	/* reload dma map */
1732 	dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1733 			NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1734 	buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1735 			addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1736 
1737 	if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1738 		D("dma mapping error");
1739 		/* goto dma_error; See e1000_put_txbuf() */
1740 		/* XXX reset */
1741 	}
1742 	tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1743 
1744 #endif
1745 
1746 static inline int
1747 netmap_load_map(struct netmap_adapter *na,
1748 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size)
1749 {
1750 	if (map) {
1751 		*map = dma_map_single(na->pdev, buf, size,
1752 				      DMA_BIDIRECTIONAL);
1753 		if (dma_mapping_error(na->pdev, *map)) {
1754 			*map = 0;
1755 			return ENOMEM;
1756 		}
1757 	}
1758 	return 0;
1759 }
1760 
1761 static inline void
1762 netmap_unload_map(struct netmap_adapter *na,
1763 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz)
1764 {
1765 	if (*map) {
1766 		dma_unmap_single(na->pdev, *map, sz,
1767 				 DMA_BIDIRECTIONAL);
1768 	}
1769 }
1770 
1771 #ifdef NETMAP_LINUX_HAVE_DMASYNC
1772 static inline void
1773 netmap_sync_map_cpu(struct netmap_adapter *na,
1774 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1775 {
1776 	if (*map) {
1777 		dma_sync_single_for_cpu(na->pdev, *map, sz,
1778 			(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1779 	}
1780 }
1781 
1782 static inline void
1783 netmap_sync_map_dev(struct netmap_adapter *na,
1784 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1785 {
1786 	if (*map) {
1787 		dma_sync_single_for_device(na->pdev, *map, sz,
1788 			(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1789 	}
1790 }
1791 
1792 static inline void
1793 netmap_reload_map(struct netmap_adapter *na,
1794 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1795 {
1796 	u_int sz = NETMAP_BUF_SIZE(na);
1797 
1798 	if (*map) {
1799 		dma_unmap_single(na->pdev, *map, sz,
1800 				DMA_BIDIRECTIONAL);
1801 	}
1802 
1803 	*map = dma_map_single(na->pdev, buf, sz,
1804 				DMA_BIDIRECTIONAL);
1805 }
1806 #else /* !NETMAP_LINUX_HAVE_DMASYNC */
1807 #define netmap_sync_map_cpu(na, tag, map, sz, t)
1808 #define netmap_sync_map_dev(na, tag, map, sz, t)
1809 #endif /* NETMAP_LINUX_HAVE_DMASYNC */
1810 
1811 #endif /* linux */
1812 
1813 
1814 /*
1815  * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1816  */
1817 static inline int
1818 netmap_idx_n2k(struct netmap_kring *kr, int idx)
1819 {
1820 	int n = kr->nkr_num_slots;
1821 
1822 	if (likely(kr->nkr_hwofs == 0)) {
1823 		return idx;
1824 	}
1825 
1826 	idx += kr->nkr_hwofs;
1827 	if (idx < 0)
1828 		return idx + n;
1829 	else if (idx < n)
1830 		return idx;
1831 	else
1832 		return idx - n;
1833 }
1834 
1835 
1836 static inline int
1837 netmap_idx_k2n(struct netmap_kring *kr, int idx)
1838 {
1839 	int n = kr->nkr_num_slots;
1840 
1841 	if (likely(kr->nkr_hwofs == 0)) {
1842 		return idx;
1843 	}
1844 
1845 	idx -= kr->nkr_hwofs;
1846 	if (idx < 0)
1847 		return idx + n;
1848 	else if (idx < n)
1849 		return idx;
1850 	else
1851 		return idx - n;
1852 }
1853 
1854 
1855 /* Entries of the look-up table. */
1856 #ifdef __FreeBSD__
1857 struct lut_entry {
1858 	void *vaddr;		/* virtual address. */
1859 	vm_paddr_t paddr;	/* physical address. */
1860 };
1861 #else /* linux & _WIN32 */
1862 /* dma-mapping in linux can assign a buffer a different address
1863  * depending on the device, so we need to have a separate
1864  * physical-address look-up table for each na.
1865  * We can still share the vaddrs, though, therefore we split
1866  * the lut_entry structure.
1867  */
1868 struct lut_entry {
1869 	void *vaddr;		/* virtual address. */
1870 };
1871 
1872 struct plut_entry {
1873 	vm_paddr_t paddr;	/* physical address. */
1874 };
1875 #endif /* linux & _WIN32 */
1876 
1877 struct netmap_obj_pool;
1878 
1879 /*
1880  * NMB return the virtual address of a buffer (buffer 0 on bad index)
1881  * PNMB also fills the physical address
1882  */
1883 static inline void *
1884 NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1885 {
1886 	struct lut_entry *lut = na->na_lut.lut;
1887 	uint32_t i = slot->buf_idx;
1888 	return (unlikely(i >= na->na_lut.objtotal)) ?
1889 		lut[0].vaddr : lut[i].vaddr;
1890 }
1891 
1892 static inline void *
1893 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1894 {
1895 	uint32_t i = slot->buf_idx;
1896 	struct lut_entry *lut = na->na_lut.lut;
1897 	struct plut_entry *plut = na->na_lut.plut;
1898 	void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
1899 
1900 #ifdef _WIN32
1901 	*pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart;
1902 #else
1903 	*pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr;
1904 #endif
1905 	return ret;
1906 }
1907 
1908 
1909 /*
1910  * Structure associated to each netmap file descriptor.
1911  * It is created on open and left unbound (np_nifp == NULL).
1912  * A successful NIOCREGIF will set np_nifp and the first few fields;
1913  * this is protected by a global lock (NMG_LOCK) due to low contention.
1914  *
1915  * np_refs counts the number of references to the structure: one for the fd,
1916  * plus (on FreeBSD) one for each active mmap which we track ourselves
1917  * (linux automatically tracks them, but FreeBSD does not).
1918  * np_refs is protected by NMG_LOCK.
1919  *
1920  * Read access to the structure is lock free, because ni_nifp once set
1921  * can only go to 0 when nobody is using the entry anymore. Readers
1922  * must check that np_nifp != NULL before using the other fields.
1923  */
1924 struct netmap_priv_d {
1925 	struct netmap_if * volatile np_nifp;	/* netmap if descriptor. */
1926 
1927 	struct netmap_adapter	*np_na;
1928 	struct ifnet	*np_ifp;
1929 	uint32_t	np_flags;	/* from the ioctl */
1930 	u_int		np_qfirst[NR_TXRX],
1931 			np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
1932 	uint16_t	np_txpoll;
1933 	uint16_t        np_kloop_state;	/* use with NMG_LOCK held */
1934 #define NM_SYNC_KLOOP_RUNNING	(1 << 0)
1935 #define NM_SYNC_KLOOP_STOPPING	(1 << 1)
1936 	int             np_sync_flags; /* to be passed to nm_sync */
1937 
1938 	int		np_refs;	/* use with NMG_LOCK held */
1939 
1940 	/* pointers to the selinfo to be used for selrecord.
1941 	 * Either the local or the global one depending on the
1942 	 * number of rings.
1943 	 */
1944 	NM_SELINFO_T *np_si[NR_TXRX];
1945 
1946 	/* In the optional CSB mode, the user must specify the start address
1947 	 * of two arrays of Communication Status Block (CSB) entries, for the
1948 	 * two directions (kernel read application write, and kernel write
1949 	 * application read).
1950 	 * The number of entries must agree with the number of rings bound to
1951 	 * the netmap file descriptor. The entries corresponding to the TX
1952 	 * rings are laid out before the ones corresponding to the RX rings.
1953 	 *
1954 	 * Array of CSB entries for application --> kernel communication
1955 	 * (N entries). */
1956 	struct nm_csb_atok	*np_csb_atok_base;
1957 	/* Array of CSB entries for kernel --> application communication
1958 	 * (N entries). */
1959 	struct nm_csb_ktoa	*np_csb_ktoa_base;
1960 
1961 #ifdef linux
1962 	struct file	*np_filp;  /* used by sync kloop */
1963 #endif /* linux */
1964 };
1965 
1966 struct netmap_priv_d *netmap_priv_new(void);
1967 void netmap_priv_delete(struct netmap_priv_d *);
1968 
1969 static inline int nm_kring_pending(struct netmap_priv_d *np)
1970 {
1971 	struct netmap_adapter *na = np->np_na;
1972 	enum txrx t;
1973 	int i;
1974 
1975 	for_rx_tx(t) {
1976 		for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) {
1977 			struct netmap_kring *kring = NMR(na, t)[i];
1978 			if (kring->nr_mode != kring->nr_pending_mode) {
1979 				return 1;
1980 			}
1981 		}
1982 	}
1983 	return 0;
1984 }
1985 
1986 /* call with NMG_LOCK held */
1987 static __inline int
1988 nm_si_user(struct netmap_priv_d *priv, enum txrx t)
1989 {
1990 	return (priv->np_na != NULL &&
1991 		(priv->np_qlast[t] - priv->np_qfirst[t] > 1));
1992 }
1993 
1994 #ifdef WITH_PIPES
1995 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags);
1996 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags);
1997 #endif /* WITH_PIPES */
1998 
1999 #ifdef WITH_MONITOR
2000 
2001 struct netmap_monitor_adapter {
2002 	struct netmap_adapter up;
2003 
2004 	struct netmap_priv_d priv;
2005 	uint32_t flags;
2006 };
2007 
2008 #endif /* WITH_MONITOR */
2009 
2010 
2011 #ifdef WITH_GENERIC
2012 /*
2013  * generic netmap emulation for devices that do not have
2014  * native netmap support.
2015  */
2016 int generic_netmap_attach(struct ifnet *ifp);
2017 int generic_rx_handler(struct ifnet *ifp, struct mbuf *m);;
2018 
2019 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept);
2020 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept);
2021 
2022 int na_is_generic(struct netmap_adapter *na);
2023 
2024 /*
2025  * the generic transmit routine is passed a structure to optionally
2026  * build a queue of descriptors, in an OS-specific way.
2027  * The payload is at addr, if non-null, and the routine should send or queue
2028  * the packet, returning 0 if successful, 1 on failure.
2029  *
2030  * At the end, if head is non-null, there will be an additional call
2031  * to the function with addr = NULL; this should tell the OS-specific
2032  * routine to send the queue and free any resources. Failure is ignored.
2033  */
2034 struct nm_os_gen_arg {
2035 	struct ifnet *ifp;
2036 	void *m;	/* os-specific mbuf-like object */
2037 	void *head, *tail; /* tailq, if the OS-specific routine needs to build one */
2038 	void *addr;	/* payload of current packet */
2039 	u_int len;	/* packet length */
2040 	u_int ring_nr;	/* packet length */
2041 	u_int qevent;   /* in txqdisc mode, place an event on this mbuf */
2042 };
2043 
2044 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *);
2045 int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
2046 void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
2047 void nm_os_generic_set_features(struct netmap_generic_adapter *gna);
2048 
2049 static inline struct ifnet*
2050 netmap_generic_getifp(struct netmap_generic_adapter *gna)
2051 {
2052         if (gna->prev)
2053             return gna->prev->ifp;
2054 
2055         return gna->up.up.ifp;
2056 }
2057 
2058 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done);
2059 
2060 //#define RATE_GENERIC  /* Enables communication statistics for generic. */
2061 #ifdef RATE_GENERIC
2062 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
2063 #else
2064 #define generic_rate(txp, txs, txi, rxp, rxs, rxi)
2065 #endif
2066 
2067 /*
2068  * netmap_mitigation API. This is used by the generic adapter
2069  * to reduce the number of interrupt requests/selwakeup
2070  * to clients on incoming packets.
2071  */
2072 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx,
2073                                 struct netmap_adapter *na);
2074 void nm_os_mitigation_start(struct nm_generic_mit *mit);
2075 void nm_os_mitigation_restart(struct nm_generic_mit *mit);
2076 int nm_os_mitigation_active(struct nm_generic_mit *mit);
2077 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit);
2078 #else /* !WITH_GENERIC */
2079 #define generic_netmap_attach(ifp)	(EOPNOTSUPP)
2080 #define na_is_generic(na)		(0)
2081 #endif /* WITH_GENERIC */
2082 
2083 /* Shared declarations for the VALE switch. */
2084 
2085 /*
2086  * Each transmit queue accumulates a batch of packets into
2087  * a structure before forwarding. Packets to the same
2088  * destination are put in a list using ft_next as a link field.
2089  * ft_frags and ft_next are valid only on the first fragment.
2090  */
2091 struct nm_bdg_fwd {	/* forwarding entry for a bridge */
2092 	void *ft_buf;		/* netmap or indirect buffer */
2093 	uint8_t ft_frags;	/* how many fragments (only on 1st frag) */
2094 	uint16_t ft_offset;	/* dst port (unused) */
2095 	uint16_t ft_flags;	/* flags, e.g. indirect */
2096 	uint16_t ft_len;	/* src fragment len */
2097 	uint16_t ft_next;	/* next packet to same destination */
2098 };
2099 
2100 /* struct 'virtio_net_hdr' from linux. */
2101 struct nm_vnet_hdr {
2102 #define VIRTIO_NET_HDR_F_NEEDS_CSUM     1	/* Use csum_start, csum_offset */
2103 #define VIRTIO_NET_HDR_F_DATA_VALID    2	/* Csum is valid */
2104     uint8_t flags;
2105 #define VIRTIO_NET_HDR_GSO_NONE         0       /* Not a GSO frame */
2106 #define VIRTIO_NET_HDR_GSO_TCPV4        1       /* GSO frame, IPv4 TCP (TSO) */
2107 #define VIRTIO_NET_HDR_GSO_UDP          3       /* GSO frame, IPv4 UDP (UFO) */
2108 #define VIRTIO_NET_HDR_GSO_TCPV6        4       /* GSO frame, IPv6 TCP */
2109 #define VIRTIO_NET_HDR_GSO_ECN          0x80    /* TCP has ECN set */
2110     uint8_t gso_type;
2111     uint16_t hdr_len;
2112     uint16_t gso_size;
2113     uint16_t csum_start;
2114     uint16_t csum_offset;
2115 };
2116 
2117 #define WORST_CASE_GSO_HEADER	(14+40+60)  /* IPv6 + TCP */
2118 
2119 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */
2120 
2121 struct nm_iphdr {
2122 	uint8_t		version_ihl;
2123 	uint8_t		tos;
2124 	uint16_t	tot_len;
2125 	uint16_t	id;
2126 	uint16_t	frag_off;
2127 	uint8_t		ttl;
2128 	uint8_t		protocol;
2129 	uint16_t	check;
2130 	uint32_t	saddr;
2131 	uint32_t	daddr;
2132 	/*The options start here. */
2133 };
2134 
2135 struct nm_tcphdr {
2136 	uint16_t	source;
2137 	uint16_t	dest;
2138 	uint32_t	seq;
2139 	uint32_t	ack_seq;
2140 	uint8_t		doff;  /* Data offset + Reserved */
2141 	uint8_t		flags;
2142 	uint16_t	window;
2143 	uint16_t	check;
2144 	uint16_t	urg_ptr;
2145 };
2146 
2147 struct nm_udphdr {
2148 	uint16_t	source;
2149 	uint16_t	dest;
2150 	uint16_t	len;
2151 	uint16_t	check;
2152 };
2153 
2154 struct nm_ipv6hdr {
2155 	uint8_t		priority_version;
2156 	uint8_t		flow_lbl[3];
2157 
2158 	uint16_t	payload_len;
2159 	uint8_t		nexthdr;
2160 	uint8_t		hop_limit;
2161 
2162 	uint8_t		saddr[16];
2163 	uint8_t		daddr[16];
2164 };
2165 
2166 /* Type used to store a checksum (in host byte order) that hasn't been
2167  * folded yet.
2168  */
2169 #define rawsum_t uint32_t
2170 
2171 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
2172 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph);
2173 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
2174 		      size_t datalen, uint16_t *check);
2175 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
2176 		      size_t datalen, uint16_t *check);
2177 uint16_t nm_os_csum_fold(rawsum_t cur_sum);
2178 
2179 void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
2180 			   struct netmap_vp_adapter *dst_na,
2181 			   const struct nm_bdg_fwd *ft_p,
2182 			   struct netmap_ring *dst_ring,
2183 			   u_int *j, u_int lim, u_int *howmany);
2184 
2185 /* persistent virtual port routines */
2186 int nm_os_vi_persist(const char *, struct ifnet **);
2187 void nm_os_vi_detach(struct ifnet *);
2188 void nm_os_vi_init_index(void);
2189 
2190 /*
2191  * kernel thread routines
2192  */
2193 struct nm_kctx; /* OS-specific kernel context - opaque */
2194 typedef void (*nm_kctx_worker_fn_t)(void *data);
2195 
2196 /* kthread configuration */
2197 struct nm_kctx_cfg {
2198 	long			type;		/* kthread type/identifier */
2199 	nm_kctx_worker_fn_t	worker_fn;	/* worker function */
2200 	void			*worker_private;/* worker parameter */
2201 	int			attach_user;	/* attach kthread to user process */
2202 };
2203 /* kthread configuration */
2204 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg,
2205 					void *opaque);
2206 int nm_os_kctx_worker_start(struct nm_kctx *);
2207 void nm_os_kctx_worker_stop(struct nm_kctx *);
2208 void nm_os_kctx_destroy(struct nm_kctx *);
2209 void nm_os_kctx_worker_setaff(struct nm_kctx *, int);
2210 u_int nm_os_ncpus(void);
2211 
2212 int netmap_sync_kloop(struct netmap_priv_d *priv,
2213 		      struct nmreq_header *hdr);
2214 int netmap_sync_kloop_stop(struct netmap_priv_d *priv);
2215 
2216 #ifdef WITH_PTNETMAP
2217 /* ptnetmap guest routines */
2218 
2219 /*
2220  * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver
2221  */
2222 struct ptnetmap_memdev;
2223 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **,
2224                           uint64_t *);
2225 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *);
2226 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int);
2227 
2228 /*
2229  * netmap adapter for guest ptnetmap ports
2230  */
2231 struct netmap_pt_guest_adapter {
2232         /* The netmap adapter to be used by netmap applications.
2233 	 * This field must be the first, to allow upcast. */
2234 	struct netmap_hw_adapter hwup;
2235 
2236         /* The netmap adapter to be used by the driver. */
2237         struct netmap_hw_adapter dr;
2238 
2239 	/* Reference counter to track users of backend netmap port: the
2240 	 * network stack and netmap clients.
2241 	 * Used to decide when we need (de)allocate krings/rings and
2242 	 * start (stop) ptnetmap kthreads. */
2243 	int backend_users;
2244 
2245 };
2246 
2247 int netmap_pt_guest_attach(struct netmap_adapter *na,
2248 			unsigned int nifp_offset,
2249 			unsigned int memid);
2250 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok,
2251 			struct nm_csb_ktoa *ktoa,
2252 			struct netmap_kring *kring, int flags);
2253 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok,
2254 			struct nm_csb_ktoa *ktoa,
2255 			struct netmap_kring *kring, int flags);
2256 int ptnet_nm_krings_create(struct netmap_adapter *na);
2257 void ptnet_nm_krings_delete(struct netmap_adapter *na);
2258 void ptnet_nm_dtor(struct netmap_adapter *na);
2259 
2260 /* Helper function wrapping nm_sync_kloop_appl_read(). */
2261 static inline void
2262 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring)
2263 {
2264 	struct netmap_ring *ring = kring->ring;
2265 
2266 	/* Update hwcur and hwtail as known by the host. */
2267         nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur);
2268 
2269 	/* nm_sync_finalize */
2270 	ring->tail = kring->rtail = kring->nr_hwtail;
2271 }
2272 #endif /* WITH_PTNETMAP */
2273 
2274 #ifdef __FreeBSD__
2275 /*
2276  * FreeBSD mbuf allocator/deallocator in emulation mode:
2277  */
2278 #if __FreeBSD_version < 1100000
2279 
2280 /*
2281  * For older versions of FreeBSD:
2282  *
2283  * We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE
2284  * so that the destructor, if invoked, will not free the packet.
2285  * In principle we should set the destructor only on demand,
2286  * but since there might be a race we better do it on allocation.
2287  * As a consequence, we also need to set the destructor or we
2288  * would leak buffers.
2289  */
2290 
2291 /* mbuf destructor, also need to change the type to EXT_EXTREF,
2292  * add an M_NOFREE flag, and then clear the flag and
2293  * chain into uma_zfree(zone_pack, mf)
2294  * (or reinstall the buffer ?)
2295  */
2296 #define SET_MBUF_DESTRUCTOR(m, fn)	do {		\
2297 	(m)->m_ext.ext_free = (void *)fn;	\
2298 	(m)->m_ext.ext_type = EXT_EXTREF;	\
2299 } while (0)
2300 
2301 static int
2302 void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2)
2303 {
2304 	/* restore original mbuf */
2305 	m->m_ext.ext_buf = m->m_data = m->m_ext.ext_arg1;
2306 	m->m_ext.ext_arg1 = NULL;
2307 	m->m_ext.ext_type = EXT_PACKET;
2308 	m->m_ext.ext_free = NULL;
2309 	if (MBUF_REFCNT(m) == 0)
2310 		SET_MBUF_REFCNT(m, 1);
2311 	uma_zfree(zone_pack, m);
2312 
2313 	return 0;
2314 }
2315 
2316 static inline struct mbuf *
2317 nm_os_get_mbuf(struct ifnet *ifp, int len)
2318 {
2319 	struct mbuf *m;
2320 
2321 	(void)ifp;
2322 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2323 	if (m) {
2324 		/* m_getcl() (mb_ctor_mbuf) has an assert that checks that
2325 		 * M_NOFREE flag is not specified as third argument,
2326 		 * so we have to set M_NOFREE after m_getcl(). */
2327 		m->m_flags |= M_NOFREE;
2328 		m->m_ext.ext_arg1 = m->m_ext.ext_buf; // XXX save
2329 		m->m_ext.ext_free = (void *)void_mbuf_dtor;
2330 		m->m_ext.ext_type = EXT_EXTREF;
2331 		ND(5, "create m %p refcnt %d", m, MBUF_REFCNT(m));
2332 	}
2333 	return m;
2334 }
2335 
2336 #else /* __FreeBSD_version >= 1100000 */
2337 
2338 /*
2339  * Newer versions of FreeBSD, using a straightforward scheme.
2340  *
2341  * We allocate mbufs with m_gethdr(), since the mbuf header is needed
2342  * by the driver. We also attach a customly-provided external storage,
2343  * which in this case is a netmap buffer. When calling m_extadd(), however
2344  * we pass a NULL address, since the real address (and length) will be
2345  * filled in by nm_os_generic_xmit_frame() right before calling
2346  * if_transmit().
2347  *
2348  * The dtor function does nothing, however we need it since mb_free_ext()
2349  * has a KASSERT(), checking that the mbuf dtor function is not NULL.
2350  */
2351 
2352 #if __FreeBSD_version <= 1200050
2353 static void void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) { }
2354 #else  /* __FreeBSD_version >= 1200051 */
2355 /* The arg1 and arg2 pointers argument were removed by r324446, which
2356  * in included since version 1200051. */
2357 static void void_mbuf_dtor(struct mbuf *m) { }
2358 #endif /* __FreeBSD_version >= 1200051 */
2359 
2360 #define SET_MBUF_DESTRUCTOR(m, fn)	do {		\
2361 	(m)->m_ext.ext_free = (fn != NULL) ?		\
2362 	    (void *)fn : (void *)void_mbuf_dtor;	\
2363 } while (0)
2364 
2365 static inline struct mbuf *
2366 nm_os_get_mbuf(struct ifnet *ifp, int len)
2367 {
2368 	struct mbuf *m;
2369 
2370 	(void)ifp;
2371 	(void)len;
2372 
2373 	m = m_gethdr(M_NOWAIT, MT_DATA);
2374 	if (m == NULL) {
2375 		return m;
2376 	}
2377 
2378 	m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor,
2379 		 NULL, NULL, 0, EXT_NET_DRV);
2380 
2381 	return m;
2382 }
2383 
2384 #endif /* __FreeBSD_version >= 1100000 */
2385 #endif /* __FreeBSD__ */
2386 
2387 struct nmreq_option * nmreq_findoption(struct nmreq_option *, uint16_t);
2388 int nmreq_checkduplicate(struct nmreq_option *);
2389 
2390 int netmap_init_bridges(void);
2391 void netmap_uninit_bridges(void);
2392 
2393 /* Functions to read and write CSB fields from the kernel. */
2394 #if defined (linux)
2395 #define CSB_READ(csb, field, r) (get_user(r, &csb->field))
2396 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field))
2397 #else  /* ! linux */
2398 #define CSB_READ(csb, field, r) (r = fuword32(&csb->field))
2399 #define CSB_WRITE(csb, field, v) (suword32(&csb->field, v))
2400 #endif /* ! linux */
2401 
2402 #endif /* _NET_NETMAP_KERN_H_ */
2403