1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo 5 * Copyright (C) 2013-2016 Universita` di Pisa 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * $FreeBSD$ 32 * 33 * The header contains the definitions of constants and function 34 * prototypes used only in kernelspace. 35 */ 36 37 #ifndef _NET_NETMAP_KERN_H_ 38 #define _NET_NETMAP_KERN_H_ 39 40 #if defined(linux) 41 42 #if defined(CONFIG_NETMAP_EXTMEM) 43 #define WITH_EXTMEM 44 #endif 45 #if defined(CONFIG_NETMAP_VALE) 46 #define WITH_VALE 47 #endif 48 #if defined(CONFIG_NETMAP_PIPE) 49 #define WITH_PIPES 50 #endif 51 #if defined(CONFIG_NETMAP_MONITOR) 52 #define WITH_MONITOR 53 #endif 54 #if defined(CONFIG_NETMAP_GENERIC) 55 #define WITH_GENERIC 56 #endif 57 #if defined(CONFIG_NETMAP_PTNETMAP) 58 #define WITH_PTNETMAP 59 #endif 60 #if defined(CONFIG_NETMAP_SINK) 61 #define WITH_SINK 62 #endif 63 #if defined(CONFIG_NETMAP_NULL) 64 #define WITH_NMNULL 65 #endif 66 67 #elif defined (_WIN32) 68 #define WITH_VALE // comment out to disable VALE support 69 #define WITH_PIPES 70 #define WITH_MONITOR 71 #define WITH_GENERIC 72 #define WITH_NMNULL 73 74 #else /* neither linux nor windows */ 75 #define WITH_VALE // comment out to disable VALE support 76 #define WITH_PIPES 77 #define WITH_MONITOR 78 #define WITH_GENERIC 79 #define WITH_PTNETMAP /* ptnetmap guest support */ 80 #define WITH_EXTMEM 81 #define WITH_NMNULL 82 #endif 83 84 #if defined(__FreeBSD__) 85 #include <sys/selinfo.h> 86 87 #define likely(x) __builtin_expect((long)!!(x), 1L) 88 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 89 #define __user 90 91 #define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */ 92 93 #define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */ 94 #define NM_MTX_INIT(m) sx_init(&(m), #m) 95 #define NM_MTX_DESTROY(m) sx_destroy(&(m)) 96 #define NM_MTX_LOCK(m) sx_xlock(&(m)) 97 #define NM_MTX_SPINLOCK(m) while (!sx_try_xlock(&(m))) ; 98 #define NM_MTX_UNLOCK(m) sx_xunlock(&(m)) 99 #define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED) 100 101 #define NM_SELINFO_T struct nm_selinfo 102 #define NM_SELRECORD_T struct thread 103 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 104 #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid) 105 #define MBUF_TRANSMIT(na, ifp, m) ((na)->if_transmit(ifp, m)) 106 #define GEN_TX_MBUF_IFP(m) ((m)->m_pkthdr.rcvif) 107 108 #define NM_ATOMIC_T volatile int /* required by atomic/bitops.h */ 109 /* atomic operations */ 110 #include <machine/atomic.h> 111 #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) 112 #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) 113 114 #if __FreeBSD_version >= 1100030 115 #define WNA(_ifp) (_ifp)->if_netmap 116 #else /* older FreeBSD */ 117 #define WNA(_ifp) (_ifp)->if_pspare[0] 118 #endif /* older FreeBSD */ 119 120 #if __FreeBSD_version >= 1100005 121 struct netmap_adapter *netmap_getna(if_t ifp); 122 #endif 123 124 #if __FreeBSD_version >= 1100027 125 #define MBUF_REFCNT(m) ((m)->m_ext.ext_count) 126 #define SET_MBUF_REFCNT(m, x) (m)->m_ext.ext_count = x 127 #else 128 #define MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1) 129 #define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ref_cnt) = x 130 #endif 131 132 #define MBUF_QUEUED(m) 1 133 134 struct nm_selinfo { 135 struct selinfo si; 136 struct taskqueue *ntfytq; 137 struct task ntfytask; 138 struct mtx m; 139 char mtxname[32]; 140 }; 141 142 143 struct hrtimer { 144 /* Not used in FreeBSD. */ 145 }; 146 147 #define NM_BNS_GET(b) 148 #define NM_BNS_PUT(b) 149 150 #elif defined (linux) 151 152 #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h 153 #define NM_SELINFO_T wait_queue_head_t 154 #define MBUF_LEN(m) ((m)->len) 155 #define MBUF_TRANSMIT(na, ifp, m) \ 156 ({ \ 157 /* Avoid infinite recursion with generic. */ \ 158 m->priority = NM_MAGIC_PRIORITY_TX; \ 159 (((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \ 160 0; \ 161 }) 162 163 /* See explanation in nm_os_generic_xmit_frame. */ 164 #define GEN_TX_MBUF_IFP(m) ((struct ifnet *)skb_shinfo(m)->destructor_arg) 165 166 #define NM_ATOMIC_T volatile long unsigned int 167 168 #define NM_MTX_T struct mutex /* OS-specific sleepable lock */ 169 #define NM_MTX_INIT(m) mutex_init(&(m)) 170 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 171 #define NM_MTX_LOCK(m) mutex_lock(&(m)) 172 #define NM_MTX_UNLOCK(m) mutex_unlock(&(m)) 173 #define NM_MTX_ASSERT(m) mutex_is_locked(&(m)) 174 175 #ifndef DEV_NETMAP 176 #define DEV_NETMAP 177 #endif /* DEV_NETMAP */ 178 179 #elif defined (__APPLE__) 180 181 #warning apple support is incomplete. 182 #define likely(x) __builtin_expect(!!(x), 1) 183 #define unlikely(x) __builtin_expect(!!(x), 0) 184 #define NM_LOCK_T IOLock * 185 #define NM_SELINFO_T struct selinfo 186 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 187 188 #elif defined (_WIN32) 189 #include "../../../WINDOWS/win_glue.h" 190 191 #define NM_SELRECORD_T IO_STACK_LOCATION 192 #define NM_SELINFO_T win_SELINFO // see win_glue.h 193 #define NM_LOCK_T win_spinlock_t // see win_glue.h 194 #define NM_MTX_T KGUARDED_MUTEX /* OS-specific mutex (sleepable) */ 195 196 #define NM_MTX_INIT(m) KeInitializeGuardedMutex(&m); 197 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 198 #define NM_MTX_LOCK(m) KeAcquireGuardedMutex(&(m)) 199 #define NM_MTX_UNLOCK(m) KeReleaseGuardedMutex(&(m)) 200 #define NM_MTX_ASSERT(m) assert(&m.Count>0) 201 202 //These linknames are for the NDIS driver 203 #define NETMAP_NDIS_LINKNAME_STRING L"\\DosDevices\\NMAPNDIS" 204 #define NETMAP_NDIS_NTDEVICE_STRING L"\\Device\\NMAPNDIS" 205 206 //Definition of internal driver-to-driver ioctl codes 207 #define NETMAP_KERNEL_XCHANGE_POINTERS _IO('i', 180) 208 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL _IO_direct('i', 195) 209 210 typedef struct hrtimer{ 211 KTIMER timer; 212 BOOLEAN active; 213 KDPC deferred_proc; 214 }; 215 216 /* MSVC does not have likely/unlikely support */ 217 #ifdef _MSC_VER 218 #define likely(x) (x) 219 #define unlikely(x) (x) 220 #else 221 #define likely(x) __builtin_expect((long)!!(x), 1L) 222 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 223 #endif //_MSC_VER 224 225 #else 226 227 #error unsupported platform 228 229 #endif /* end - platform-specific code */ 230 231 #ifndef _WIN32 /* support for emulated sysctl */ 232 #define SYSBEGIN(x) 233 #define SYSEND 234 #endif /* _WIN32 */ 235 236 #define NM_ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x)) 237 238 #define NMG_LOCK_T NM_MTX_T 239 #define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock) 240 #define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock) 241 #define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock) 242 #define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock) 243 #define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock) 244 245 #if defined(__FreeBSD__) 246 #define nm_prerr_int printf 247 #define nm_prinf_int printf 248 #elif defined (_WIN32) 249 #define nm_prerr_int DbgPrint 250 #define nm_prinf_int DbgPrint 251 #elif defined(linux) 252 #define nm_prerr_int(fmt, arg...) printk(KERN_ERR fmt, ##arg) 253 #define nm_prinf_int(fmt, arg...) printk(KERN_INFO fmt, ##arg) 254 #endif 255 256 #define nm_prinf(format, ...) \ 257 do { \ 258 struct timeval __xxts; \ 259 microtime(&__xxts); \ 260 nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\ 261 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 262 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 263 } while (0) 264 265 #define nm_prerr(format, ...) \ 266 do { \ 267 struct timeval __xxts; \ 268 microtime(&__xxts); \ 269 nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\ 270 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 271 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 272 } while (0) 273 274 /* Disabled printf (used to be ND). */ 275 #define nm_prdis(format, ...) 276 277 /* Rate limited, lps indicates how many per second. */ 278 #define nm_prlim(lps, format, ...) \ 279 do { \ 280 static int t0, __cnt; \ 281 if (t0 != time_second) { \ 282 t0 = time_second; \ 283 __cnt = 0; \ 284 } \ 285 if (__cnt++ < lps) \ 286 nm_prinf(format, ##__VA_ARGS__); \ 287 } while (0) 288 289 /* Old macros. */ 290 #define ND nm_prdis 291 #define D nm_prerr 292 #define RD nm_prlim 293 294 struct netmap_adapter; 295 struct nm_bdg_fwd; 296 struct nm_bridge; 297 struct netmap_priv_d; 298 struct nm_bdg_args; 299 300 /* os-specific NM_SELINFO_T initialzation/destruction functions */ 301 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name); 302 void nm_os_selinfo_uninit(NM_SELINFO_T *); 303 304 const char *nm_dump_buf(char *p, int len, int lim, char *dst); 305 306 void nm_os_selwakeup(NM_SELINFO_T *si); 307 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si); 308 309 int nm_os_ifnet_init(void); 310 void nm_os_ifnet_fini(void); 311 void nm_os_ifnet_lock(void); 312 void nm_os_ifnet_unlock(void); 313 314 unsigned nm_os_ifnet_mtu(struct ifnet *ifp); 315 316 void nm_os_get_module(void); 317 void nm_os_put_module(void); 318 319 void netmap_make_zombie(struct ifnet *); 320 void netmap_undo_zombie(struct ifnet *); 321 322 /* os independent alloc/realloc/free */ 323 void *nm_os_malloc(size_t); 324 void *nm_os_vmalloc(size_t); 325 void *nm_os_realloc(void *, size_t new_size, size_t old_size); 326 void nm_os_free(void *); 327 void nm_os_vfree(void *); 328 329 /* os specific attach/detach enter/exit-netmap-mode routines */ 330 void nm_os_onattach(struct ifnet *); 331 void nm_os_ondetach(struct ifnet *); 332 void nm_os_onenter(struct ifnet *); 333 void nm_os_onexit(struct ifnet *); 334 335 /* passes a packet up to the host stack. 336 * If the packet is sent (or dropped) immediately it returns NULL, 337 * otherwise it links the packet to prev and returns m. 338 * In this case, a final call with m=NULL and prev != NULL will send up 339 * the entire chain to the host stack. 340 */ 341 void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev); 342 343 int nm_os_mbuf_has_seg_offld(struct mbuf *m); 344 int nm_os_mbuf_has_csum_offld(struct mbuf *m); 345 346 #include "netmap_mbq.h" 347 348 extern NMG_LOCK_T netmap_global_lock; 349 350 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX }; 351 352 static __inline const char* 353 nm_txrx2str(enum txrx t) 354 { 355 return (t== NR_RX ? "RX" : "TX"); 356 } 357 358 static __inline enum txrx 359 nm_txrx_swap(enum txrx t) 360 { 361 return (t== NR_RX ? NR_TX : NR_RX); 362 } 363 364 #define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++) 365 366 #ifdef WITH_MONITOR 367 struct netmap_zmon_list { 368 struct netmap_kring *next; 369 struct netmap_kring *prev; 370 }; 371 #endif /* WITH_MONITOR */ 372 373 /* 374 * private, kernel view of a ring. Keeps track of the status of 375 * a ring across system calls. 376 * 377 * nr_hwcur index of the next buffer to refill. 378 * It corresponds to ring->head 379 * at the time the system call returns. 380 * 381 * nr_hwtail index of the first buffer owned by the kernel. 382 * On RX, hwcur->hwtail are receive buffers 383 * not yet released. hwcur is advanced following 384 * ring->head, hwtail is advanced on incoming packets, 385 * and a wakeup is generated when hwtail passes ring->cur 386 * On TX, hwcur->rcur have been filled by the sender 387 * but not sent yet to the NIC; rcur->hwtail are available 388 * for new transmissions, and hwtail->hwcur-1 are pending 389 * transmissions not yet acknowledged. 390 * 391 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. 392 * This is so that, on a reset, buffers owned by userspace are not 393 * modified by the kernel. In particular: 394 * RX rings: the next empty buffer (hwtail + hwofs) coincides with 395 * the next empty buffer as known by the hardware (next_to_check or so). 396 * TX rings: hwcur + hwofs coincides with next_to_send 397 * 398 * The following fields are used to implement lock-free copy of packets 399 * from input to output ports in VALE switch: 400 * nkr_hwlease buffer after the last one being copied. 401 * A writer in nm_bdg_flush reserves N buffers 402 * from nr_hwlease, advances it, then does the 403 * copy outside the lock. 404 * In RX rings (used for VALE ports), 405 * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1 406 * In TX rings (used for NIC or host stack ports) 407 * nkr_hwcur <= nkr_hwlease < nkr_hwtail 408 * nkr_leases array of nkr_num_slots where writers can report 409 * completion of their block. NR_NOSLOT (~0) indicates 410 * that the writer has not finished yet 411 * nkr_lease_idx index of next free slot in nr_leases, to be assigned 412 * 413 * The kring is manipulated by txsync/rxsync and generic netmap function. 414 * 415 * Concurrent rxsync or txsync on the same ring are prevented through 416 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need 417 * for NIC rings, and for TX rings attached to the host stack. 418 * 419 * RX rings attached to the host stack use an mbq (rx_queue) on both 420 * rxsync_from_host() and netmap_transmit(). The mbq is protected 421 * by its internal lock. 422 * 423 * RX rings attached to the VALE switch are accessed by both senders 424 * and receiver. They are protected through the q_lock on the RX ring. 425 */ 426 struct netmap_kring { 427 struct netmap_ring *ring; 428 429 uint32_t nr_hwcur; /* should be nr_hwhead */ 430 uint32_t nr_hwtail; 431 432 /* 433 * Copies of values in user rings, so we do not need to look 434 * at the ring (which could be modified). These are set in the 435 * *sync_prologue()/finalize() routines. 436 */ 437 uint32_t rhead; 438 uint32_t rcur; 439 uint32_t rtail; 440 441 uint32_t nr_kflags; /* private driver flags */ 442 #define NKR_PENDINTR 0x1 // Pending interrupt. 443 #define NKR_EXCLUSIVE 0x2 /* exclusive binding */ 444 #define NKR_FORWARD 0x4 /* (host ring only) there are 445 packets to forward 446 */ 447 #define NKR_NEEDRING 0x8 /* ring needed even if users==0 448 * (used internally by pipes and 449 * by ptnetmap host ports) 450 */ 451 #define NKR_NOINTR 0x10 /* don't use interrupts on this ring */ 452 #define NKR_FAKERING 0x20 /* don't allocate/free buffers */ 453 454 uint32_t nr_mode; 455 uint32_t nr_pending_mode; 456 #define NKR_NETMAP_OFF 0x0 457 #define NKR_NETMAP_ON 0x1 458 459 uint32_t nkr_num_slots; 460 461 /* 462 * On a NIC reset, the NIC ring indexes may be reset but the 463 * indexes in the netmap rings remain the same. nkr_hwofs 464 * keeps track of the offset between the two. 465 */ 466 int32_t nkr_hwofs; 467 468 /* last_reclaim is opaque marker to help reduce the frequency 469 * of operations such as reclaiming tx buffers. A possible use 470 * is set it to ticks and do the reclaim only once per tick. 471 */ 472 uint64_t last_reclaim; 473 474 475 NM_SELINFO_T si; /* poll/select wait queue */ 476 NM_LOCK_T q_lock; /* protects kring and ring. */ 477 NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ 478 479 /* the adapter the owns this kring */ 480 struct netmap_adapter *na; 481 482 /* the adapter that wants to be notified when this kring has 483 * new slots avaialable. This is usually the same as the above, 484 * but wrappers may let it point to themselves 485 */ 486 struct netmap_adapter *notify_na; 487 488 /* The following fields are for VALE switch support */ 489 struct nm_bdg_fwd *nkr_ft; 490 uint32_t *nkr_leases; 491 #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */ 492 uint32_t nkr_hwlease; 493 uint32_t nkr_lease_idx; 494 495 /* while nkr_stopped is set, no new [tr]xsync operations can 496 * be started on this kring. 497 * This is used by netmap_disable_all_rings() 498 * to find a synchronization point where critical data 499 * structures pointed to by the kring can be added or removed 500 */ 501 volatile int nkr_stopped; 502 503 /* Support for adapters without native netmap support. 504 * On tx rings we preallocate an array of tx buffers 505 * (same size as the netmap ring), on rx rings we 506 * store incoming mbufs in a queue that is drained by 507 * a rxsync. 508 */ 509 struct mbuf **tx_pool; 510 struct mbuf *tx_event; /* TX event used as a notification */ 511 NM_LOCK_T tx_event_lock; /* protects the tx_event mbuf */ 512 struct mbq rx_queue; /* intercepted rx mbufs. */ 513 514 uint32_t users; /* existing bindings for this ring */ 515 516 uint32_t ring_id; /* kring identifier */ 517 enum txrx tx; /* kind of ring (tx or rx) */ 518 char name[64]; /* diagnostic */ 519 520 /* [tx]sync callback for this kring. 521 * The default nm_kring_create callback (netmap_krings_create) 522 * sets the nm_sync callback of each hardware tx(rx) kring to 523 * the corresponding nm_txsync(nm_rxsync) taken from the 524 * netmap_adapter; moreover, it sets the sync callback 525 * of the host tx(rx) ring to netmap_txsync_to_host 526 * (netmap_rxsync_from_host). 527 * 528 * Overrides: the above configuration is not changed by 529 * any of the nm_krings_create callbacks. 530 */ 531 int (*nm_sync)(struct netmap_kring *kring, int flags); 532 int (*nm_notify)(struct netmap_kring *kring, int flags); 533 534 #ifdef WITH_PIPES 535 struct netmap_kring *pipe; /* if this is a pipe ring, 536 * pointer to the other end 537 */ 538 uint32_t pipe_tail; /* hwtail updated by the other end */ 539 #endif /* WITH_PIPES */ 540 541 int (*save_notify)(struct netmap_kring *kring, int flags); 542 543 #ifdef WITH_MONITOR 544 /* array of krings that are monitoring this kring */ 545 struct netmap_kring **monitors; 546 uint32_t max_monitors; /* current size of the monitors array */ 547 uint32_t n_monitors; /* next unused entry in the monitor array */ 548 uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */ 549 uint32_t mon_tail; /* last seen slot on rx */ 550 551 /* circular list of zero-copy monitors */ 552 struct netmap_zmon_list zmon_list[NR_TXRX]; 553 554 /* 555 * Monitors work by intercepting the sync and notify callbacks of the 556 * monitored krings. This is implemented by replacing the pointers 557 * above and saving the previous ones in mon_* pointers below 558 */ 559 int (*mon_sync)(struct netmap_kring *kring, int flags); 560 int (*mon_notify)(struct netmap_kring *kring, int flags); 561 562 #endif 563 } 564 #ifdef _WIN32 565 __declspec(align(64)); 566 #else 567 __attribute__((__aligned__(64))); 568 #endif 569 570 /* return 1 iff the kring needs to be turned on */ 571 static inline int 572 nm_kring_pending_on(struct netmap_kring *kring) 573 { 574 return kring->nr_pending_mode == NKR_NETMAP_ON && 575 kring->nr_mode == NKR_NETMAP_OFF; 576 } 577 578 /* return 1 iff the kring needs to be turned off */ 579 static inline int 580 nm_kring_pending_off(struct netmap_kring *kring) 581 { 582 return kring->nr_pending_mode == NKR_NETMAP_OFF && 583 kring->nr_mode == NKR_NETMAP_ON; 584 } 585 586 /* return the next index, with wraparound */ 587 static inline uint32_t 588 nm_next(uint32_t i, uint32_t lim) 589 { 590 return unlikely (i == lim) ? 0 : i + 1; 591 } 592 593 594 /* return the previous index, with wraparound */ 595 static inline uint32_t 596 nm_prev(uint32_t i, uint32_t lim) 597 { 598 return unlikely (i == 0) ? lim : i - 1; 599 } 600 601 602 /* 603 * 604 * Here is the layout for the Rx and Tx rings. 605 606 RxRING TxRING 607 608 +-----------------+ +-----------------+ 609 | | | | 610 | free | | free | 611 +-----------------+ +-----------------+ 612 head->| owned by user |<-hwcur | not sent to nic |<-hwcur 613 | | | yet | 614 +-----------------+ | | 615 cur->| available to | | | 616 | user, not read | +-----------------+ 617 | yet | cur->| (being | 618 | | | prepared) | 619 | | | | 620 +-----------------+ + ------ + 621 tail->| |<-hwtail | |<-hwlease 622 | (being | ... | | ... 623 | prepared) | ... | | ... 624 +-----------------+ ... | | ... 625 | |<-hwlease +-----------------+ 626 | | tail->| |<-hwtail 627 | | | | 628 | | | | 629 | | | | 630 +-----------------+ +-----------------+ 631 632 * The cur/tail (user view) and hwcur/hwtail (kernel view) 633 * are used in the normal operation of the card. 634 * 635 * When a ring is the output of a switch port (Rx ring for 636 * a VALE port, Tx ring for the host stack or NIC), slots 637 * are reserved in blocks through 'hwlease' which points 638 * to the next unused slot. 639 * On an Rx ring, hwlease is always after hwtail, 640 * and completions cause hwtail to advance. 641 * On a Tx ring, hwlease is always between cur and hwtail, 642 * and completions cause cur to advance. 643 * 644 * nm_kr_space() returns the maximum number of slots that 645 * can be assigned. 646 * nm_kr_lease() reserves the required number of buffers, 647 * advances nkr_hwlease and also returns an entry in 648 * a circular array where completions should be reported. 649 */ 650 651 struct lut_entry; 652 #ifdef __FreeBSD__ 653 #define plut_entry lut_entry 654 #endif 655 656 struct netmap_lut { 657 struct lut_entry *lut; 658 struct plut_entry *plut; 659 uint32_t objtotal; /* max buffer index */ 660 uint32_t objsize; /* buffer size */ 661 }; 662 663 struct netmap_vp_adapter; // forward 664 struct nm_bridge; 665 666 /* Struct to be filled by nm_config callbacks. */ 667 struct nm_config_info { 668 unsigned num_tx_rings; 669 unsigned num_rx_rings; 670 unsigned num_tx_descs; 671 unsigned num_rx_descs; 672 unsigned rx_buf_maxsize; 673 }; 674 675 /* 676 * default type for the magic field. 677 * May be overriden in glue code. 678 */ 679 #ifndef NM_OS_MAGIC 680 #define NM_OS_MAGIC uint32_t 681 #endif /* !NM_OS_MAGIC */ 682 683 /* 684 * The "struct netmap_adapter" extends the "struct adapter" 685 * (or equivalent) device descriptor. 686 * It contains all base fields needed to support netmap operation. 687 * There are in fact different types of netmap adapters 688 * (native, generic, VALE switch...) so a netmap_adapter is 689 * just the first field in the derived type. 690 */ 691 struct netmap_adapter { 692 /* 693 * On linux we do not have a good way to tell if an interface 694 * is netmap-capable. So we always use the following trick: 695 * NA(ifp) points here, and the first entry (which hopefully 696 * always exists and is at least 32 bits) contains a magic 697 * value which we can use to detect that the interface is good. 698 */ 699 NM_OS_MAGIC magic; 700 uint32_t na_flags; /* enabled, and other flags */ 701 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. 702 * useful during initialization 703 */ 704 #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ 705 #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when 706 * forwarding packets coming from this 707 * interface 708 */ 709 #define NAF_MEM_OWNER 8 /* the adapter uses its own memory area 710 * that cannot be changed 711 */ 712 #define NAF_NATIVE 16 /* the adapter is native. 713 * Virtual ports (non persistent vale ports, 714 * pipes, monitors...) should never use 715 * this flag. 716 */ 717 #define NAF_NETMAP_ON 32 /* netmap is active (either native or 718 * emulated). Where possible (e.g. FreeBSD) 719 * IFCAP_NETMAP also mirrors this flag. 720 */ 721 #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */ 722 #define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */ 723 /* free */ 724 #define NAF_MOREFRAG 512 /* the adapter supports NS_MOREFRAG */ 725 #define NAF_ZOMBIE (1U<<30) /* the nic driver has been unloaded */ 726 #define NAF_BUSY (1U<<31) /* the adapter is used internally and 727 * cannot be registered from userspace 728 */ 729 int active_fds; /* number of user-space descriptors using this 730 interface, which is equal to the number of 731 struct netmap_if objs in the mapped region. */ 732 733 u_int num_rx_rings; /* number of adapter receive rings */ 734 u_int num_tx_rings; /* number of adapter transmit rings */ 735 u_int num_host_rx_rings; /* number of host receive rings */ 736 u_int num_host_tx_rings; /* number of host transmit rings */ 737 738 u_int num_tx_desc; /* number of descriptor in each queue */ 739 u_int num_rx_desc; 740 741 /* tx_rings and rx_rings are private but allocated as a 742 * contiguous chunk of memory. Each array has N+K entries, 743 * N for the hardware rings and K for the host rings. 744 */ 745 struct netmap_kring **tx_rings; /* array of TX rings. */ 746 struct netmap_kring **rx_rings; /* array of RX rings. */ 747 748 void *tailroom; /* space below the rings array */ 749 /* (used for leases) */ 750 751 752 NM_SELINFO_T si[NR_TXRX]; /* global wait queues */ 753 754 /* count users of the global wait queues */ 755 int si_users[NR_TXRX]; 756 757 void *pdev; /* used to store pci device */ 758 759 /* copy of if_qflush and if_transmit pointers, to intercept 760 * packets from the network stack when netmap is active. 761 */ 762 int (*if_transmit)(struct ifnet *, struct mbuf *); 763 764 /* copy of if_input for netmap_send_up() */ 765 void (*if_input)(struct ifnet *, struct mbuf *); 766 767 /* Back reference to the parent ifnet struct. Used for 768 * hardware ports (emulated netmap included). */ 769 struct ifnet *ifp; /* adapter is ifp->if_softc */ 770 771 /*---- callbacks for this netmap adapter -----*/ 772 /* 773 * nm_dtor() is the cleanup routine called when destroying 774 * the adapter. 775 * Called with NMG_LOCK held. 776 * 777 * nm_register() is called on NIOCREGIF and close() to enter 778 * or exit netmap mode on the NIC 779 * Called with NNG_LOCK held. 780 * 781 * nm_txsync() pushes packets to the underlying hw/switch 782 * 783 * nm_rxsync() collects packets from the underlying hw/switch 784 * 785 * nm_config() returns configuration information from the OS 786 * Called with NMG_LOCK held. 787 * 788 * nm_krings_create() create and init the tx_rings and 789 * rx_rings arrays of kring structures. In particular, 790 * set the nm_sync callbacks for each ring. 791 * There is no need to also allocate the corresponding 792 * netmap_rings, since netmap_mem_rings_create() will always 793 * be called to provide the missing ones. 794 * Called with NNG_LOCK held. 795 * 796 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings 797 * arrays 798 * Called with NMG_LOCK held. 799 * 800 * nm_notify() is used to act after data have become available 801 * (or the stopped state of the ring has changed) 802 * For hw devices this is typically a selwakeup(), 803 * but for NIC/host ports attached to a switch (or vice-versa) 804 * we also need to invoke the 'txsync' code downstream. 805 * This callback pointer is actually used only to initialize 806 * kring->nm_notify. 807 * Return values are the same as for netmap_rx_irq(). 808 */ 809 void (*nm_dtor)(struct netmap_adapter *); 810 811 int (*nm_register)(struct netmap_adapter *, int onoff); 812 void (*nm_intr)(struct netmap_adapter *, int onoff); 813 814 int (*nm_txsync)(struct netmap_kring *kring, int flags); 815 int (*nm_rxsync)(struct netmap_kring *kring, int flags); 816 int (*nm_notify)(struct netmap_kring *kring, int flags); 817 #define NAF_FORCE_READ 1 818 #define NAF_FORCE_RECLAIM 2 819 #define NAF_CAN_FORWARD_DOWN 4 820 /* return configuration information */ 821 int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info); 822 int (*nm_krings_create)(struct netmap_adapter *); 823 void (*nm_krings_delete)(struct netmap_adapter *); 824 /* 825 * nm_bdg_attach() initializes the na_vp field to point 826 * to an adapter that can be attached to a VALE switch. If the 827 * current adapter is already a VALE port, na_vp is simply a cast; 828 * otherwise, na_vp points to a netmap_bwrap_adapter. 829 * If applicable, this callback also initializes na_hostvp, 830 * that can be used to connect the adapter host rings to the 831 * switch. 832 * Called with NMG_LOCK held. 833 * 834 * nm_bdg_ctl() is called on the actual attach/detach to/from 835 * to/from the switch, to perform adapter-specific 836 * initializations 837 * Called with NMG_LOCK held. 838 */ 839 int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *, 840 struct nm_bridge *); 841 int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *); 842 843 /* adapter used to attach this adapter to a VALE switch (if any) */ 844 struct netmap_vp_adapter *na_vp; 845 /* adapter used to attach the host rings of this adapter 846 * to a VALE switch (if any) */ 847 struct netmap_vp_adapter *na_hostvp; 848 849 /* standard refcount to control the lifetime of the adapter 850 * (it should be equal to the lifetime of the corresponding ifp) 851 */ 852 int na_refcount; 853 854 /* memory allocator (opaque) 855 * We also cache a pointer to the lut_entry for translating 856 * buffer addresses, the total number of buffers and the buffer size. 857 */ 858 struct netmap_mem_d *nm_mem; 859 struct netmap_mem_d *nm_mem_prev; 860 struct netmap_lut na_lut; 861 862 /* additional information attached to this adapter 863 * by other netmap subsystems. Currently used by 864 * bwrap, LINUX/v1000 and ptnetmap 865 */ 866 void *na_private; 867 868 /* array of pipes that have this adapter as a parent */ 869 struct netmap_pipe_adapter **na_pipes; 870 int na_next_pipe; /* next free slot in the array */ 871 int na_max_pipes; /* size of the array */ 872 873 /* Offset of ethernet header for each packet. */ 874 u_int virt_hdr_len; 875 876 /* Max number of bytes that the NIC can store in the buffer 877 * referenced by each RX descriptor. This translates to the maximum 878 * bytes that a single netmap slot can reference. Larger packets 879 * require NS_MOREFRAG support. */ 880 unsigned rx_buf_maxsize; 881 882 char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */ 883 884 #ifdef WITH_MONITOR 885 unsigned long monitor_id; /* debugging */ 886 #endif 887 }; 888 889 static __inline u_int 890 nma_get_ndesc(struct netmap_adapter *na, enum txrx t) 891 { 892 return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc); 893 } 894 895 static __inline void 896 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v) 897 { 898 if (t == NR_TX) 899 na->num_tx_desc = v; 900 else 901 na->num_rx_desc = v; 902 } 903 904 static __inline u_int 905 nma_get_nrings(struct netmap_adapter *na, enum txrx t) 906 { 907 return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings); 908 } 909 910 static __inline u_int 911 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t) 912 { 913 return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings); 914 } 915 916 static __inline void 917 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 918 { 919 if (t == NR_TX) 920 na->num_tx_rings = v; 921 else 922 na->num_rx_rings = v; 923 } 924 925 static __inline void 926 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 927 { 928 if (t == NR_TX) 929 na->num_host_tx_rings = v; 930 else 931 na->num_host_rx_rings = v; 932 } 933 934 static __inline struct netmap_kring** 935 NMR(struct netmap_adapter *na, enum txrx t) 936 { 937 return (t == NR_TX ? na->tx_rings : na->rx_rings); 938 } 939 940 int nma_intr_enable(struct netmap_adapter *na, int onoff); 941 942 /* 943 * If the NIC is owned by the kernel 944 * (i.e., bridge), neither another bridge nor user can use it; 945 * if the NIC is owned by a user, only users can share it. 946 * Evaluation must be done under NMG_LOCK(). 947 */ 948 #define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY) 949 #define NETMAP_OWNED_BY_ANY(na) \ 950 (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0)) 951 952 /* 953 * derived netmap adapters for various types of ports 954 */ 955 struct netmap_vp_adapter { /* VALE software port */ 956 struct netmap_adapter up; 957 958 /* 959 * Bridge support: 960 * 961 * bdg_port is the port number used in the bridge; 962 * na_bdg points to the bridge this NA is attached to. 963 */ 964 int bdg_port; 965 struct nm_bridge *na_bdg; 966 int retry; 967 int autodelete; /* remove the ifp on last reference */ 968 969 /* Maximum Frame Size, used in bdg_mismatch_datapath() */ 970 u_int mfs; 971 /* Last source MAC on this port */ 972 uint64_t last_smac; 973 }; 974 975 976 struct netmap_hw_adapter { /* physical device */ 977 struct netmap_adapter up; 978 979 #ifdef linux 980 struct net_device_ops nm_ndo; 981 struct ethtool_ops nm_eto; 982 #endif 983 const struct ethtool_ops* save_ethtool; 984 985 int (*nm_hw_register)(struct netmap_adapter *, int onoff); 986 }; 987 988 #ifdef WITH_GENERIC 989 /* Mitigation support. */ 990 struct nm_generic_mit { 991 struct hrtimer mit_timer; 992 int mit_pending; 993 int mit_ring_idx; /* index of the ring being mitigated */ 994 struct netmap_adapter *mit_na; /* backpointer */ 995 }; 996 997 struct netmap_generic_adapter { /* emulated device */ 998 struct netmap_hw_adapter up; 999 1000 /* Pointer to a previously used netmap adapter. */ 1001 struct netmap_adapter *prev; 1002 1003 /* Emulated netmap adapters support: 1004 * - save_if_input saves the if_input hook (FreeBSD); 1005 * - mit implements rx interrupt mitigation; 1006 */ 1007 void (*save_if_input)(struct ifnet *, struct mbuf *); 1008 1009 struct nm_generic_mit *mit; 1010 #ifdef linux 1011 netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *); 1012 #endif 1013 /* Is the adapter able to use multiple RX slots to scatter 1014 * each packet pushed up by the driver? */ 1015 int rxsg; 1016 1017 /* Is the transmission path controlled by a netmap-aware 1018 * device queue (i.e. qdisc on linux)? */ 1019 int txqdisc; 1020 }; 1021 #endif /* WITH_GENERIC */ 1022 1023 static __inline u_int 1024 netmap_real_rings(struct netmap_adapter *na, enum txrx t) 1025 { 1026 return nma_get_nrings(na, t) + 1027 !!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t); 1028 } 1029 1030 /* account for fake rings */ 1031 static __inline u_int 1032 netmap_all_rings(struct netmap_adapter *na, enum txrx t) 1033 { 1034 return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t)); 1035 } 1036 1037 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na, 1038 struct nm_bridge *); 1039 struct nm_bdg_polling_state; 1040 /* 1041 * Bridge wrapper for non VALE ports attached to a VALE switch. 1042 * 1043 * The real device must already have its own netmap adapter (hwna). 1044 * The bridge wrapper and the hwna adapter share the same set of 1045 * netmap rings and buffers, but they have two separate sets of 1046 * krings descriptors, with tx/rx meanings swapped: 1047 * 1048 * netmap 1049 * bwrap krings rings krings hwna 1050 * +------+ +------+ +-----+ +------+ +------+ 1051 * |tx_rings->| |\ /| |----| |<-tx_rings| 1052 * | | +------+ \ / +-----+ +------+ | | 1053 * | | X | | 1054 * | | / \ | | 1055 * | | +------+/ \+-----+ +------+ | | 1056 * |rx_rings->| | | |----| |<-rx_rings| 1057 * | | +------+ +-----+ +------+ | | 1058 * +------+ +------+ 1059 * 1060 * - packets coming from the bridge go to the brwap rx rings, 1061 * which are also the hwna tx rings. The bwrap notify callback 1062 * will then complete the hwna tx (see netmap_bwrap_notify). 1063 * 1064 * - packets coming from the outside go to the hwna rx rings, 1065 * which are also the bwrap tx rings. The (overwritten) hwna 1066 * notify method will then complete the bridge tx 1067 * (see netmap_bwrap_intr_notify). 1068 * 1069 * The bridge wrapper may optionally connect the hwna 'host' rings 1070 * to the bridge. This is done by using a second port in the 1071 * bridge and connecting it to the 'host' netmap_vp_adapter 1072 * contained in the netmap_bwrap_adapter. The brwap host adapter 1073 * cross-links the hwna host rings in the same way as shown above. 1074 * 1075 * - packets coming from the bridge and directed to the host stack 1076 * are handled by the bwrap host notify callback 1077 * (see netmap_bwrap_host_notify) 1078 * 1079 * - packets coming from the host stack are still handled by the 1080 * overwritten hwna notify callback (netmap_bwrap_intr_notify), 1081 * but are diverted to the host adapter depending on the ring number. 1082 * 1083 */ 1084 struct netmap_bwrap_adapter { 1085 struct netmap_vp_adapter up; 1086 struct netmap_vp_adapter host; /* for host rings */ 1087 struct netmap_adapter *hwna; /* the underlying device */ 1088 1089 /* 1090 * When we attach a physical interface to the bridge, we 1091 * allow the controlling process to terminate, so we need 1092 * a place to store the n_detmap_priv_d data structure. 1093 * This is only done when physical interfaces 1094 * are attached to a bridge. 1095 */ 1096 struct netmap_priv_d *na_kpriv; 1097 struct nm_bdg_polling_state *na_polling_state; 1098 /* we overwrite the hwna->na_vp pointer, so we save 1099 * here its original value, to be restored at detach 1100 */ 1101 struct netmap_vp_adapter *saved_na_vp; 1102 }; 1103 int nm_bdg_polling(struct nmreq_header *hdr); 1104 1105 #ifdef WITH_VALE 1106 int netmap_vale_attach(struct nmreq_header *hdr, void *auth_token); 1107 int netmap_vale_detach(struct nmreq_header *hdr, void *auth_token); 1108 int netmap_vale_list(struct nmreq_header *hdr); 1109 int netmap_vi_create(struct nmreq_header *hdr, int); 1110 int nm_vi_create(struct nmreq_header *); 1111 int nm_vi_destroy(const char *name); 1112 #else /* !WITH_VALE */ 1113 #define netmap_vi_create(hdr, a) (EOPNOTSUPP) 1114 #endif /* WITH_VALE */ 1115 1116 #ifdef WITH_PIPES 1117 1118 #define NM_MAXPIPES 64 /* max number of pipes per adapter */ 1119 1120 struct netmap_pipe_adapter { 1121 /* pipe identifier is up.name */ 1122 struct netmap_adapter up; 1123 1124 #define NM_PIPE_ROLE_MASTER 0x1 1125 #define NM_PIPE_ROLE_SLAVE 0x2 1126 int role; /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */ 1127 1128 struct netmap_adapter *parent; /* adapter that owns the memory */ 1129 struct netmap_pipe_adapter *peer; /* the other end of the pipe */ 1130 int peer_ref; /* 1 iff we are holding a ref to the peer */ 1131 struct ifnet *parent_ifp; /* maybe null */ 1132 1133 u_int parent_slot; /* index in the parent pipe array */ 1134 }; 1135 1136 #endif /* WITH_PIPES */ 1137 1138 #ifdef WITH_NMNULL 1139 struct netmap_null_adapter { 1140 struct netmap_adapter up; 1141 }; 1142 #endif /* WITH_NMNULL */ 1143 1144 1145 /* return slots reserved to rx clients; used in drivers */ 1146 static inline uint32_t 1147 nm_kr_rxspace(struct netmap_kring *k) 1148 { 1149 int space = k->nr_hwtail - k->nr_hwcur; 1150 if (space < 0) 1151 space += k->nkr_num_slots; 1152 ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail); 1153 1154 return space; 1155 } 1156 1157 /* return slots reserved to tx clients */ 1158 #define nm_kr_txspace(_k) nm_kr_rxspace(_k) 1159 1160 1161 /* True if no space in the tx ring, only valid after txsync_prologue */ 1162 static inline int 1163 nm_kr_txempty(struct netmap_kring *kring) 1164 { 1165 return kring->rhead == kring->nr_hwtail; 1166 } 1167 1168 /* True if no more completed slots in the rx ring, only valid after 1169 * rxsync_prologue */ 1170 #define nm_kr_rxempty(_k) nm_kr_txempty(_k) 1171 1172 /* 1173 * protect against multiple threads using the same ring. 1174 * also check that the ring has not been stopped or locked 1175 */ 1176 #define NM_KR_BUSY 1 /* some other thread is syncing the ring */ 1177 #define NM_KR_STOPPED 2 /* unbounded stop (ifconfig down or driver unload) */ 1178 #define NM_KR_LOCKED 3 /* bounded, brief stop for mutual exclusion */ 1179 1180 1181 /* release the previously acquired right to use the *sync() methods of the ring */ 1182 static __inline void nm_kr_put(struct netmap_kring *kr) 1183 { 1184 NM_ATOMIC_CLEAR(&kr->nr_busy); 1185 } 1186 1187 1188 /* true if the ifp that backed the adapter has disappeared (e.g., the 1189 * driver has been unloaded) 1190 */ 1191 static inline int nm_iszombie(struct netmap_adapter *na); 1192 1193 /* try to obtain exclusive right to issue the *sync() operations on the ring. 1194 * The right is obtained and must be later relinquished via nm_kr_put() if and 1195 * only if nm_kr_tryget() returns 0. 1196 * If can_sleep is 1 there are only two other possible outcomes: 1197 * - the function returns NM_KR_BUSY 1198 * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr 1199 * (if non-null) 1200 * In both cases the caller will typically skip the ring, possibly collecting 1201 * errors along the way. 1202 * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep. 1203 * In the latter case, the function may also return NM_KR_LOCKED and leave *perr 1204 * untouched: ideally, the caller should try again at a later time. 1205 */ 1206 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr) 1207 { 1208 int busy = 1, stopped; 1209 /* check a first time without taking the lock 1210 * to avoid starvation for nm_kr_get() 1211 */ 1212 retry: 1213 stopped = kr->nkr_stopped; 1214 if (unlikely(stopped)) { 1215 goto stop; 1216 } 1217 busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy); 1218 /* we should not return NM_KR_BUSY if the ring was 1219 * actually stopped, so check another time after 1220 * the barrier provided by the atomic operation 1221 */ 1222 stopped = kr->nkr_stopped; 1223 if (unlikely(stopped)) { 1224 goto stop; 1225 } 1226 1227 if (unlikely(nm_iszombie(kr->na))) { 1228 stopped = NM_KR_STOPPED; 1229 goto stop; 1230 } 1231 1232 return unlikely(busy) ? NM_KR_BUSY : 0; 1233 1234 stop: 1235 if (!busy) 1236 nm_kr_put(kr); 1237 if (stopped == NM_KR_STOPPED) { 1238 /* if POLLERR is defined we want to use it to simplify netmap_poll(). 1239 * Otherwise, any non-zero value will do. 1240 */ 1241 #ifdef POLLERR 1242 #define NM_POLLERR POLLERR 1243 #else 1244 #define NM_POLLERR 1 1245 #endif /* POLLERR */ 1246 if (perr) 1247 *perr |= NM_POLLERR; 1248 #undef NM_POLLERR 1249 } else if (can_sleep) { 1250 tsleep(kr, 0, "NM_KR_TRYGET", 4); 1251 goto retry; 1252 } 1253 return stopped; 1254 } 1255 1256 /* put the ring in the 'stopped' state and wait for the current user (if any) to 1257 * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED 1258 */ 1259 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped) 1260 { 1261 kr->nkr_stopped = stopped; 1262 while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)) 1263 tsleep(kr, 0, "NM_KR_GET", 4); 1264 } 1265 1266 /* restart a ring after a stop */ 1267 static __inline void nm_kr_start(struct netmap_kring *kr) 1268 { 1269 kr->nkr_stopped = 0; 1270 nm_kr_put(kr); 1271 } 1272 1273 1274 /* 1275 * The following functions are used by individual drivers to 1276 * support netmap operation. 1277 * 1278 * netmap_attach() initializes a struct netmap_adapter, allocating the 1279 * struct netmap_ring's and the struct selinfo. 1280 * 1281 * netmap_detach() frees the memory allocated by netmap_attach(). 1282 * 1283 * netmap_transmit() replaces the if_transmit routine of the interface, 1284 * and is used to intercept packets coming from the stack. 1285 * 1286 * netmap_load_map/netmap_reload_map are helper routines to set/reset 1287 * the dmamap for a packet buffer 1288 * 1289 * netmap_reset() is a helper routine to be called in the hw driver 1290 * when reinitializing a ring. It should not be called by 1291 * virtual ports (vale, pipes, monitor) 1292 */ 1293 int netmap_attach(struct netmap_adapter *); 1294 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg); 1295 void netmap_detach(struct ifnet *); 1296 int netmap_transmit(struct ifnet *, struct mbuf *); 1297 struct netmap_slot *netmap_reset(struct netmap_adapter *na, 1298 enum txrx tx, u_int n, u_int new_cur); 1299 int netmap_ring_reinit(struct netmap_kring *); 1300 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *); 1301 1302 /* Return codes for netmap_*x_irq. */ 1303 enum { 1304 /* Driver should do normal interrupt processing, e.g. because 1305 * the interface is not in netmap mode. */ 1306 NM_IRQ_PASS = 0, 1307 /* Port is in netmap mode, and the interrupt work has been 1308 * completed. The driver does not have to notify netmap 1309 * again before the next interrupt. */ 1310 NM_IRQ_COMPLETED = -1, 1311 /* Port is in netmap mode, but the interrupt work has not been 1312 * completed. The driver has to make sure netmap will be 1313 * notified again soon, even if no more interrupts come (e.g. 1314 * on Linux the driver should not call napi_complete()). */ 1315 NM_IRQ_RESCHED = -2, 1316 }; 1317 1318 /* default functions to handle rx/tx interrupts */ 1319 int netmap_rx_irq(struct ifnet *, u_int, u_int *); 1320 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) 1321 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done); 1322 1323 1324 #ifdef WITH_VALE 1325 /* functions used by external modules to interface with VALE */ 1326 #define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp) 1327 #define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp) 1328 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp) 1329 #define netmap_bdg_idx(_vp) ((_vp)->bdg_port) 1330 const char *netmap_bdg_name(struct netmap_vp_adapter *); 1331 #else /* !WITH_VALE */ 1332 #define netmap_vp_to_ifp(_vp) NULL 1333 #define netmap_ifp_to_vp(_ifp) NULL 1334 #define netmap_ifp_to_host_vp(_ifp) NULL 1335 #define netmap_bdg_idx(_vp) -1 1336 #endif /* WITH_VALE */ 1337 1338 static inline int 1339 nm_netmap_on(struct netmap_adapter *na) 1340 { 1341 return na && na->na_flags & NAF_NETMAP_ON; 1342 } 1343 1344 static inline int 1345 nm_native_on(struct netmap_adapter *na) 1346 { 1347 return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE); 1348 } 1349 1350 static inline int 1351 nm_iszombie(struct netmap_adapter *na) 1352 { 1353 return na == NULL || (na->na_flags & NAF_ZOMBIE); 1354 } 1355 1356 static inline void 1357 nm_update_hostrings_mode(struct netmap_adapter *na) 1358 { 1359 /* Process nr_mode and nr_pending_mode for host rings. */ 1360 na->tx_rings[na->num_tx_rings]->nr_mode = 1361 na->tx_rings[na->num_tx_rings]->nr_pending_mode; 1362 na->rx_rings[na->num_rx_rings]->nr_mode = 1363 na->rx_rings[na->num_rx_rings]->nr_pending_mode; 1364 } 1365 1366 void nm_set_native_flags(struct netmap_adapter *); 1367 void nm_clear_native_flags(struct netmap_adapter *); 1368 1369 /* 1370 * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap 1371 * kthreads. 1372 * We need netmap_ring* parameter, because in ptnetmap it is decoupled 1373 * from host kring. 1374 * The user-space ring pointers (head/cur/tail) are shared through 1375 * CSB between host and guest. 1376 */ 1377 1378 /* 1379 * validates parameters in the ring/kring, returns a value for head 1380 * If any error, returns ring_size to force a reinit. 1381 */ 1382 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *); 1383 1384 1385 /* 1386 * validates parameters in the ring/kring, returns a value for head 1387 * If any error, returns ring_size lim to force a reinit. 1388 */ 1389 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *); 1390 1391 1392 /* check/fix address and len in tx rings */ 1393 #if 1 /* debug version */ 1394 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1395 if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \ 1396 RD(5, "bad addr/len ring %d slot %d idx %d len %d", \ 1397 kring->ring_id, nm_i, slot->buf_idx, len); \ 1398 if (_l > NETMAP_BUF_SIZE(_na)) \ 1399 _l = NETMAP_BUF_SIZE(_na); \ 1400 } } while (0) 1401 #else /* no debug version */ 1402 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1403 if (_l > NETMAP_BUF_SIZE(_na)) \ 1404 _l = NETMAP_BUF_SIZE(_na); \ 1405 } while (0) 1406 #endif 1407 1408 1409 /*---------------------------------------------------------------*/ 1410 /* 1411 * Support routines used by netmap subsystems 1412 * (native drivers, VALE, generic, pipes, monitors, ...) 1413 */ 1414 1415 1416 /* common routine for all functions that create a netmap adapter. It performs 1417 * two main tasks: 1418 * - if the na points to an ifp, mark the ifp as netmap capable 1419 * using na as its native adapter; 1420 * - provide defaults for the setup callbacks and the memory allocator 1421 */ 1422 int netmap_attach_common(struct netmap_adapter *); 1423 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information 1424 * coming from a struct nmreq_register 1425 */ 1426 int netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode, 1427 uint16_t nr_ringid, uint64_t nr_flags); 1428 /* update the ring parameters (number and size of tx and rx rings). 1429 * It calls the nm_config callback, if available. 1430 */ 1431 int netmap_update_config(struct netmap_adapter *na); 1432 /* create and initialize the common fields of the krings array. 1433 * using the information that must be already available in the na. 1434 * tailroom can be used to request the allocation of additional 1435 * tailroom bytes after the krings array. This is used by 1436 * netmap_vp_adapter's (i.e., VALE ports) to make room for 1437 * leasing-related data structures 1438 */ 1439 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom); 1440 /* deletes the kring array of the adapter. The array must have 1441 * been created using netmap_krings_create 1442 */ 1443 void netmap_krings_delete(struct netmap_adapter *na); 1444 1445 int netmap_hw_krings_create(struct netmap_adapter *na); 1446 void netmap_hw_krings_delete(struct netmap_adapter *na); 1447 1448 /* set the stopped/enabled status of ring 1449 * When stopping, they also wait for all current activity on the ring to 1450 * terminate. The status change is then notified using the na nm_notify 1451 * callback. 1452 */ 1453 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped); 1454 /* set the stopped/enabled status of all rings of the adapter. */ 1455 void netmap_set_all_rings(struct netmap_adapter *, int stopped); 1456 /* convenience wrappers for netmap_set_all_rings */ 1457 void netmap_disable_all_rings(struct ifnet *); 1458 void netmap_enable_all_rings(struct ifnet *); 1459 1460 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu); 1461 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 1462 uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags); 1463 void netmap_do_unregif(struct netmap_priv_d *priv); 1464 1465 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); 1466 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1467 struct ifnet **ifp, struct netmap_mem_d *nmd, int create); 1468 void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp); 1469 int netmap_get_hw_na(struct ifnet *ifp, 1470 struct netmap_mem_d *nmd, struct netmap_adapter **na); 1471 1472 #ifdef WITH_VALE 1473 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring, 1474 struct netmap_vp_adapter *, void *private_data); 1475 1476 /* these are redefined in case of no VALE support */ 1477 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1478 struct netmap_mem_d *nmd, int create); 1479 void *netmap_vale_create(const char *bdg_name, int *return_status); 1480 int netmap_vale_destroy(const char *bdg_name, void *auth_token); 1481 1482 #else /* !WITH_VALE */ 1483 #define netmap_bdg_learning(_1, _2, _3, _4) 0 1484 #define netmap_get_vale_na(_1, _2, _3, _4) 0 1485 #define netmap_bdg_create(_1, _2) NULL 1486 #define netmap_bdg_destroy(_1, _2) 0 1487 #endif /* !WITH_VALE */ 1488 1489 #ifdef WITH_PIPES 1490 /* max number of pipes per device */ 1491 #define NM_MAXPIPES 64 /* XXX this should probably be a sysctl */ 1492 void netmap_pipe_dealloc(struct netmap_adapter *); 1493 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1494 struct netmap_mem_d *nmd, int create); 1495 #else /* !WITH_PIPES */ 1496 #define NM_MAXPIPES 0 1497 #define netmap_pipe_alloc(_1, _2) 0 1498 #define netmap_pipe_dealloc(_1) 1499 #define netmap_get_pipe_na(hdr, _2, _3, _4) \ 1500 ((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0) 1501 #endif 1502 1503 #ifdef WITH_MONITOR 1504 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1505 struct netmap_mem_d *nmd, int create); 1506 void netmap_monitor_stop(struct netmap_adapter *na); 1507 #else 1508 #define netmap_get_monitor_na(hdr, _2, _3, _4) \ 1509 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1510 #endif 1511 1512 #ifdef WITH_NMNULL 1513 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na, 1514 struct netmap_mem_d *nmd, int create); 1515 #else /* !WITH_NMNULL */ 1516 #define netmap_get_null_na(hdr, _2, _3, _4) \ 1517 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1518 #endif /* WITH_NMNULL */ 1519 1520 #ifdef CONFIG_NET_NS 1521 struct net *netmap_bns_get(void); 1522 void netmap_bns_put(struct net *); 1523 void netmap_bns_getbridges(struct nm_bridge **, u_int *); 1524 #else 1525 extern struct nm_bridge *nm_bridges; 1526 #define netmap_bns_get() 1527 #define netmap_bns_put(_1) 1528 #define netmap_bns_getbridges(b, n) \ 1529 do { *b = nm_bridges; *n = NM_BRIDGES; } while (0) 1530 #endif 1531 1532 /* Various prototypes */ 1533 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td); 1534 int netmap_init(void); 1535 void netmap_fini(void); 1536 int netmap_get_memory(struct netmap_priv_d* p); 1537 void netmap_dtor(void *data); 1538 1539 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1540 struct thread *, int nr_body_is_user); 1541 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 1542 struct thread *td); 1543 size_t nmreq_size_by_type(uint16_t nr_reqtype); 1544 1545 /* netmap_adapter creation/destruction */ 1546 1547 // #define NM_DEBUG_PUTGET 1 1548 1549 #ifdef NM_DEBUG_PUTGET 1550 1551 #define NM_DBG(f) __##f 1552 1553 void __netmap_adapter_get(struct netmap_adapter *na); 1554 1555 #define netmap_adapter_get(na) \ 1556 do { \ 1557 struct netmap_adapter *__na = na; \ 1558 D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ 1559 __netmap_adapter_get(__na); \ 1560 } while (0) 1561 1562 int __netmap_adapter_put(struct netmap_adapter *na); 1563 1564 #define netmap_adapter_put(na) \ 1565 ({ \ 1566 struct netmap_adapter *__na = na; \ 1567 D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ 1568 __netmap_adapter_put(__na); \ 1569 }) 1570 1571 #else /* !NM_DEBUG_PUTGET */ 1572 1573 #define NM_DBG(f) f 1574 void netmap_adapter_get(struct netmap_adapter *na); 1575 int netmap_adapter_put(struct netmap_adapter *na); 1576 1577 #endif /* !NM_DEBUG_PUTGET */ 1578 1579 1580 /* 1581 * module variables 1582 */ 1583 #define NETMAP_BUF_BASE(_na) ((_na)->na_lut.lut[0].vaddr) 1584 #define NETMAP_BUF_SIZE(_na) ((_na)->na_lut.objsize) 1585 extern int netmap_no_pendintr; 1586 extern int netmap_mitigate; 1587 extern int netmap_verbose; 1588 #ifdef CONFIG_NETMAP_DEBUG 1589 extern int netmap_debug; /* for debugging */ 1590 #else /* !CONFIG_NETMAP_DEBUG */ 1591 #define netmap_debug (0) 1592 #endif /* !CONFIG_NETMAP_DEBUG */ 1593 enum { /* debug flags */ 1594 NM_DEBUG_ON = 1, /* generic debug messsages */ 1595 NM_DEBUG_HOST = 0x2, /* debug host stack */ 1596 NM_DEBUG_RXSYNC = 0x10, /* debug on rxsync/txsync */ 1597 NM_DEBUG_TXSYNC = 0x20, 1598 NM_DEBUG_RXINTR = 0x100, /* debug on rx/tx intr (driver) */ 1599 NM_DEBUG_TXINTR = 0x200, 1600 NM_DEBUG_NIC_RXSYNC = 0x1000, /* debug on rx/tx intr (driver) */ 1601 NM_DEBUG_NIC_TXSYNC = 0x2000, 1602 NM_DEBUG_MEM = 0x4000, /* verbose memory allocations/deallocations */ 1603 NM_DEBUG_VALE = 0x8000, /* debug messages from memory allocators */ 1604 NM_DEBUG_BDG = NM_DEBUG_VALE, 1605 }; 1606 1607 extern int netmap_txsync_retry; 1608 extern int netmap_flags; 1609 extern int netmap_generic_hwcsum; 1610 extern int netmap_generic_mit; 1611 extern int netmap_generic_ringsize; 1612 extern int netmap_generic_rings; 1613 #ifdef linux 1614 extern int netmap_generic_txqdisc; 1615 #endif 1616 1617 /* 1618 * NA returns a pointer to the struct netmap adapter from the ifp. 1619 * WNA is os-specific and must be defined in glue code. 1620 */ 1621 #define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp)) 1622 1623 /* 1624 * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA 1625 * based on the WNA field. 1626 * Glue code may override this by defining its own NM_ATTACH_NA 1627 */ 1628 #ifndef NM_ATTACH_NA 1629 /* 1630 * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we 1631 * overload another pointer in the netdev. 1632 * 1633 * We check if NA(ifp) is set and its first element has a related 1634 * magic value. The capenable is within the struct netmap_adapter. 1635 */ 1636 #define NETMAP_MAGIC 0x52697a7a 1637 1638 #define NM_NA_VALID(ifp) (NA(ifp) && \ 1639 ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) 1640 1641 #define NM_ATTACH_NA(ifp, na) do { \ 1642 WNA(ifp) = na; \ 1643 if (NA(ifp)) \ 1644 NA(ifp)->magic = \ 1645 ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC; \ 1646 } while(0) 1647 #define NM_RESTORE_NA(ifp, na) WNA(ifp) = na; 1648 1649 #define NM_DETACH_NA(ifp) do { WNA(ifp) = NULL; } while (0) 1650 #define NM_NA_CLASH(ifp) (NA(ifp) && !NM_NA_VALID(ifp)) 1651 #endif /* !NM_ATTACH_NA */ 1652 1653 1654 #define NM_IS_NATIVE(ifp) (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor) 1655 1656 #if defined(__FreeBSD__) 1657 1658 /* Assigns the device IOMMU domain to an allocator. 1659 * Returns -ENOMEM in case the domain is different */ 1660 #define nm_iommu_group_id(dev) (0) 1661 1662 /* Callback invoked by the dma machinery after a successful dmamap_load */ 1663 static void netmap_dmamap_cb(__unused void *arg, 1664 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) 1665 { 1666 } 1667 1668 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. 1669 * XXX can we do it without a callback ? 1670 */ 1671 static inline int 1672 netmap_load_map(struct netmap_adapter *na, 1673 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1674 { 1675 if (map) 1676 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1677 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1678 return 0; 1679 } 1680 1681 static inline void 1682 netmap_unload_map(struct netmap_adapter *na, 1683 bus_dma_tag_t tag, bus_dmamap_t map) 1684 { 1685 if (map) 1686 bus_dmamap_unload(tag, map); 1687 } 1688 1689 #define netmap_sync_map(na, tag, map, sz, t) 1690 1691 /* update the map when a buffer changes. */ 1692 static inline void 1693 netmap_reload_map(struct netmap_adapter *na, 1694 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1695 { 1696 if (map) { 1697 bus_dmamap_unload(tag, map); 1698 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1699 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1700 } 1701 } 1702 1703 #elif defined(_WIN32) 1704 1705 #else /* linux */ 1706 1707 int nm_iommu_group_id(bus_dma_tag_t dev); 1708 #include <linux/dma-mapping.h> 1709 1710 /* 1711 * on linux we need 1712 * dma_map_single(&pdev->dev, virt_addr, len, direction) 1713 * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction) 1714 */ 1715 #if 0 1716 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; 1717 /* set time_stamp *before* dma to help avoid a possible race */ 1718 buffer_info->time_stamp = jiffies; 1719 buffer_info->mapped_as_page = false; 1720 buffer_info->length = len; 1721 //buffer_info->next_to_watch = l; 1722 /* reload dma map */ 1723 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1724 NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1725 buffer_info->dma = dma_map_single(&adapter->pdev->dev, 1726 addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1727 1728 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1729 D("dma mapping error"); 1730 /* goto dma_error; See e1000_put_txbuf() */ 1731 /* XXX reset */ 1732 } 1733 tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX 1734 1735 #endif 1736 1737 static inline int 1738 netmap_load_map(struct netmap_adapter *na, 1739 bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size) 1740 { 1741 if (map) { 1742 *map = dma_map_single(na->pdev, buf, size, 1743 DMA_BIDIRECTIONAL); 1744 if (dma_mapping_error(na->pdev, *map)) { 1745 *map = 0; 1746 return ENOMEM; 1747 } 1748 } 1749 return 0; 1750 } 1751 1752 static inline void 1753 netmap_unload_map(struct netmap_adapter *na, 1754 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz) 1755 { 1756 if (*map) { 1757 dma_unmap_single(na->pdev, *map, sz, 1758 DMA_BIDIRECTIONAL); 1759 } 1760 } 1761 1762 #ifdef NETMAP_LINUX_HAVE_DMASYNC 1763 static inline void 1764 netmap_sync_map_cpu(struct netmap_adapter *na, 1765 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1766 { 1767 if (*map) { 1768 dma_sync_single_for_cpu(na->pdev, *map, sz, 1769 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1770 } 1771 } 1772 1773 static inline void 1774 netmap_sync_map_dev(struct netmap_adapter *na, 1775 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) 1776 { 1777 if (*map) { 1778 dma_sync_single_for_device(na->pdev, *map, sz, 1779 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); 1780 } 1781 } 1782 1783 static inline void 1784 netmap_reload_map(struct netmap_adapter *na, 1785 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1786 { 1787 u_int sz = NETMAP_BUF_SIZE(na); 1788 1789 if (*map) { 1790 dma_unmap_single(na->pdev, *map, sz, 1791 DMA_BIDIRECTIONAL); 1792 } 1793 1794 *map = dma_map_single(na->pdev, buf, sz, 1795 DMA_BIDIRECTIONAL); 1796 } 1797 #else /* !NETMAP_LINUX_HAVE_DMASYNC */ 1798 #define netmap_sync_map_cpu(na, tag, map, sz, t) 1799 #define netmap_sync_map_dev(na, tag, map, sz, t) 1800 #endif /* NETMAP_LINUX_HAVE_DMASYNC */ 1801 1802 #endif /* linux */ 1803 1804 1805 /* 1806 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) 1807 */ 1808 static inline int 1809 netmap_idx_n2k(struct netmap_kring *kr, int idx) 1810 { 1811 int n = kr->nkr_num_slots; 1812 1813 if (likely(kr->nkr_hwofs == 0)) { 1814 return idx; 1815 } 1816 1817 idx += kr->nkr_hwofs; 1818 if (idx < 0) 1819 return idx + n; 1820 else if (idx < n) 1821 return idx; 1822 else 1823 return idx - n; 1824 } 1825 1826 1827 static inline int 1828 netmap_idx_k2n(struct netmap_kring *kr, int idx) 1829 { 1830 int n = kr->nkr_num_slots; 1831 1832 if (likely(kr->nkr_hwofs == 0)) { 1833 return idx; 1834 } 1835 1836 idx -= kr->nkr_hwofs; 1837 if (idx < 0) 1838 return idx + n; 1839 else if (idx < n) 1840 return idx; 1841 else 1842 return idx - n; 1843 } 1844 1845 1846 /* Entries of the look-up table. */ 1847 #ifdef __FreeBSD__ 1848 struct lut_entry { 1849 void *vaddr; /* virtual address. */ 1850 vm_paddr_t paddr; /* physical address. */ 1851 }; 1852 #else /* linux & _WIN32 */ 1853 /* dma-mapping in linux can assign a buffer a different address 1854 * depending on the device, so we need to have a separate 1855 * physical-address look-up table for each na. 1856 * We can still share the vaddrs, though, therefore we split 1857 * the lut_entry structure. 1858 */ 1859 struct lut_entry { 1860 void *vaddr; /* virtual address. */ 1861 }; 1862 1863 struct plut_entry { 1864 vm_paddr_t paddr; /* physical address. */ 1865 }; 1866 #endif /* linux & _WIN32 */ 1867 1868 struct netmap_obj_pool; 1869 1870 /* 1871 * NMB return the virtual address of a buffer (buffer 0 on bad index) 1872 * PNMB also fills the physical address 1873 */ 1874 static inline void * 1875 NMB(struct netmap_adapter *na, struct netmap_slot *slot) 1876 { 1877 struct lut_entry *lut = na->na_lut.lut; 1878 uint32_t i = slot->buf_idx; 1879 return (unlikely(i >= na->na_lut.objtotal)) ? 1880 lut[0].vaddr : lut[i].vaddr; 1881 } 1882 1883 static inline void * 1884 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp) 1885 { 1886 uint32_t i = slot->buf_idx; 1887 struct lut_entry *lut = na->na_lut.lut; 1888 struct plut_entry *plut = na->na_lut.plut; 1889 void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr; 1890 1891 #ifdef _WIN32 1892 *pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart; 1893 #else 1894 *pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr; 1895 #endif 1896 return ret; 1897 } 1898 1899 1900 /* 1901 * Structure associated to each netmap file descriptor. 1902 * It is created on open and left unbound (np_nifp == NULL). 1903 * A successful NIOCREGIF will set np_nifp and the first few fields; 1904 * this is protected by a global lock (NMG_LOCK) due to low contention. 1905 * 1906 * np_refs counts the number of references to the structure: one for the fd, 1907 * plus (on FreeBSD) one for each active mmap which we track ourselves 1908 * (linux automatically tracks them, but FreeBSD does not). 1909 * np_refs is protected by NMG_LOCK. 1910 * 1911 * Read access to the structure is lock free, because ni_nifp once set 1912 * can only go to 0 when nobody is using the entry anymore. Readers 1913 * must check that np_nifp != NULL before using the other fields. 1914 */ 1915 struct netmap_priv_d { 1916 struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ 1917 1918 struct netmap_adapter *np_na; 1919 struct ifnet *np_ifp; 1920 uint32_t np_flags; /* from the ioctl */ 1921 u_int np_qfirst[NR_TXRX], 1922 np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */ 1923 uint16_t np_txpoll; 1924 uint16_t np_kloop_state; /* use with NMG_LOCK held */ 1925 #define NM_SYNC_KLOOP_RUNNING (1 << 0) 1926 #define NM_SYNC_KLOOP_STOPPING (1 << 1) 1927 int np_sync_flags; /* to be passed to nm_sync */ 1928 1929 int np_refs; /* use with NMG_LOCK held */ 1930 1931 /* pointers to the selinfo to be used for selrecord. 1932 * Either the local or the global one depending on the 1933 * number of rings. 1934 */ 1935 NM_SELINFO_T *np_si[NR_TXRX]; 1936 1937 /* In the optional CSB mode, the user must specify the start address 1938 * of two arrays of Communication Status Block (CSB) entries, for the 1939 * two directions (kernel read application write, and kernel write 1940 * application read). 1941 * The number of entries must agree with the number of rings bound to 1942 * the netmap file descriptor. The entries corresponding to the TX 1943 * rings are laid out before the ones corresponding to the RX rings. 1944 * 1945 * Array of CSB entries for application --> kernel communication 1946 * (N entries). */ 1947 struct nm_csb_atok *np_csb_atok_base; 1948 /* Array of CSB entries for kernel --> application communication 1949 * (N entries). */ 1950 struct nm_csb_ktoa *np_csb_ktoa_base; 1951 1952 #ifdef linux 1953 struct file *np_filp; /* used by sync kloop */ 1954 #endif /* linux */ 1955 }; 1956 1957 struct netmap_priv_d *netmap_priv_new(void); 1958 void netmap_priv_delete(struct netmap_priv_d *); 1959 1960 static inline int nm_kring_pending(struct netmap_priv_d *np) 1961 { 1962 struct netmap_adapter *na = np->np_na; 1963 enum txrx t; 1964 int i; 1965 1966 for_rx_tx(t) { 1967 for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) { 1968 struct netmap_kring *kring = NMR(na, t)[i]; 1969 if (kring->nr_mode != kring->nr_pending_mode) { 1970 return 1; 1971 } 1972 } 1973 } 1974 return 0; 1975 } 1976 1977 /* call with NMG_LOCK held */ 1978 static __inline int 1979 nm_si_user(struct netmap_priv_d *priv, enum txrx t) 1980 { 1981 return (priv->np_na != NULL && 1982 (priv->np_qlast[t] - priv->np_qfirst[t] > 1)); 1983 } 1984 1985 #ifdef WITH_PIPES 1986 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags); 1987 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags); 1988 #endif /* WITH_PIPES */ 1989 1990 #ifdef WITH_MONITOR 1991 1992 struct netmap_monitor_adapter { 1993 struct netmap_adapter up; 1994 1995 struct netmap_priv_d priv; 1996 uint32_t flags; 1997 }; 1998 1999 #endif /* WITH_MONITOR */ 2000 2001 2002 #ifdef WITH_GENERIC 2003 /* 2004 * generic netmap emulation for devices that do not have 2005 * native netmap support. 2006 */ 2007 int generic_netmap_attach(struct ifnet *ifp); 2008 int generic_rx_handler(struct ifnet *ifp, struct mbuf *m);; 2009 2010 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept); 2011 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept); 2012 2013 int na_is_generic(struct netmap_adapter *na); 2014 2015 /* 2016 * the generic transmit routine is passed a structure to optionally 2017 * build a queue of descriptors, in an OS-specific way. 2018 * The payload is at addr, if non-null, and the routine should send or queue 2019 * the packet, returning 0 if successful, 1 on failure. 2020 * 2021 * At the end, if head is non-null, there will be an additional call 2022 * to the function with addr = NULL; this should tell the OS-specific 2023 * routine to send the queue and free any resources. Failure is ignored. 2024 */ 2025 struct nm_os_gen_arg { 2026 struct ifnet *ifp; 2027 void *m; /* os-specific mbuf-like object */ 2028 void *head, *tail; /* tailq, if the OS-specific routine needs to build one */ 2029 void *addr; /* payload of current packet */ 2030 u_int len; /* packet length */ 2031 u_int ring_nr; /* packet length */ 2032 u_int qevent; /* in txqdisc mode, place an event on this mbuf */ 2033 }; 2034 2035 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *); 2036 int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx); 2037 void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq); 2038 void nm_os_generic_set_features(struct netmap_generic_adapter *gna); 2039 2040 static inline struct ifnet* 2041 netmap_generic_getifp(struct netmap_generic_adapter *gna) 2042 { 2043 if (gna->prev) 2044 return gna->prev->ifp; 2045 2046 return gna->up.up.ifp; 2047 } 2048 2049 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done); 2050 2051 //#define RATE_GENERIC /* Enables communication statistics for generic. */ 2052 #ifdef RATE_GENERIC 2053 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi); 2054 #else 2055 #define generic_rate(txp, txs, txi, rxp, rxs, rxi) 2056 #endif 2057 2058 /* 2059 * netmap_mitigation API. This is used by the generic adapter 2060 * to reduce the number of interrupt requests/selwakeup 2061 * to clients on incoming packets. 2062 */ 2063 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, 2064 struct netmap_adapter *na); 2065 void nm_os_mitigation_start(struct nm_generic_mit *mit); 2066 void nm_os_mitigation_restart(struct nm_generic_mit *mit); 2067 int nm_os_mitigation_active(struct nm_generic_mit *mit); 2068 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit); 2069 #else /* !WITH_GENERIC */ 2070 #define generic_netmap_attach(ifp) (EOPNOTSUPP) 2071 #define na_is_generic(na) (0) 2072 #endif /* WITH_GENERIC */ 2073 2074 /* Shared declarations for the VALE switch. */ 2075 2076 /* 2077 * Each transmit queue accumulates a batch of packets into 2078 * a structure before forwarding. Packets to the same 2079 * destination are put in a list using ft_next as a link field. 2080 * ft_frags and ft_next are valid only on the first fragment. 2081 */ 2082 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 2083 void *ft_buf; /* netmap or indirect buffer */ 2084 uint8_t ft_frags; /* how many fragments (only on 1st frag) */ 2085 uint16_t ft_offset; /* dst port (unused) */ 2086 uint16_t ft_flags; /* flags, e.g. indirect */ 2087 uint16_t ft_len; /* src fragment len */ 2088 uint16_t ft_next; /* next packet to same destination */ 2089 }; 2090 2091 /* struct 'virtio_net_hdr' from linux. */ 2092 struct nm_vnet_hdr { 2093 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */ 2094 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */ 2095 uint8_t flags; 2096 #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */ 2097 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */ 2098 #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */ 2099 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */ 2100 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */ 2101 uint8_t gso_type; 2102 uint16_t hdr_len; 2103 uint16_t gso_size; 2104 uint16_t csum_start; 2105 uint16_t csum_offset; 2106 }; 2107 2108 #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */ 2109 2110 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */ 2111 2112 struct nm_iphdr { 2113 uint8_t version_ihl; 2114 uint8_t tos; 2115 uint16_t tot_len; 2116 uint16_t id; 2117 uint16_t frag_off; 2118 uint8_t ttl; 2119 uint8_t protocol; 2120 uint16_t check; 2121 uint32_t saddr; 2122 uint32_t daddr; 2123 /*The options start here. */ 2124 }; 2125 2126 struct nm_tcphdr { 2127 uint16_t source; 2128 uint16_t dest; 2129 uint32_t seq; 2130 uint32_t ack_seq; 2131 uint8_t doff; /* Data offset + Reserved */ 2132 uint8_t flags; 2133 uint16_t window; 2134 uint16_t check; 2135 uint16_t urg_ptr; 2136 }; 2137 2138 struct nm_udphdr { 2139 uint16_t source; 2140 uint16_t dest; 2141 uint16_t len; 2142 uint16_t check; 2143 }; 2144 2145 struct nm_ipv6hdr { 2146 uint8_t priority_version; 2147 uint8_t flow_lbl[3]; 2148 2149 uint16_t payload_len; 2150 uint8_t nexthdr; 2151 uint8_t hop_limit; 2152 2153 uint8_t saddr[16]; 2154 uint8_t daddr[16]; 2155 }; 2156 2157 /* Type used to store a checksum (in host byte order) that hasn't been 2158 * folded yet. 2159 */ 2160 #define rawsum_t uint32_t 2161 2162 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum); 2163 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph); 2164 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 2165 size_t datalen, uint16_t *check); 2166 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 2167 size_t datalen, uint16_t *check); 2168 uint16_t nm_os_csum_fold(rawsum_t cur_sum); 2169 2170 void bdg_mismatch_datapath(struct netmap_vp_adapter *na, 2171 struct netmap_vp_adapter *dst_na, 2172 const struct nm_bdg_fwd *ft_p, 2173 struct netmap_ring *dst_ring, 2174 u_int *j, u_int lim, u_int *howmany); 2175 2176 /* persistent virtual port routines */ 2177 int nm_os_vi_persist(const char *, struct ifnet **); 2178 void nm_os_vi_detach(struct ifnet *); 2179 void nm_os_vi_init_index(void); 2180 2181 /* 2182 * kernel thread routines 2183 */ 2184 struct nm_kctx; /* OS-specific kernel context - opaque */ 2185 typedef void (*nm_kctx_worker_fn_t)(void *data); 2186 2187 /* kthread configuration */ 2188 struct nm_kctx_cfg { 2189 long type; /* kthread type/identifier */ 2190 nm_kctx_worker_fn_t worker_fn; /* worker function */ 2191 void *worker_private;/* worker parameter */ 2192 int attach_user; /* attach kthread to user process */ 2193 }; 2194 /* kthread configuration */ 2195 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg, 2196 void *opaque); 2197 int nm_os_kctx_worker_start(struct nm_kctx *); 2198 void nm_os_kctx_worker_stop(struct nm_kctx *); 2199 void nm_os_kctx_destroy(struct nm_kctx *); 2200 void nm_os_kctx_worker_setaff(struct nm_kctx *, int); 2201 u_int nm_os_ncpus(void); 2202 2203 int netmap_sync_kloop(struct netmap_priv_d *priv, 2204 struct nmreq_header *hdr); 2205 int netmap_sync_kloop_stop(struct netmap_priv_d *priv); 2206 2207 #ifdef WITH_PTNETMAP 2208 /* ptnetmap guest routines */ 2209 2210 /* 2211 * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver 2212 */ 2213 struct ptnetmap_memdev; 2214 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **, 2215 uint64_t *); 2216 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *); 2217 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int); 2218 2219 /* 2220 * netmap adapter for guest ptnetmap ports 2221 */ 2222 struct netmap_pt_guest_adapter { 2223 /* The netmap adapter to be used by netmap applications. 2224 * This field must be the first, to allow upcast. */ 2225 struct netmap_hw_adapter hwup; 2226 2227 /* The netmap adapter to be used by the driver. */ 2228 struct netmap_hw_adapter dr; 2229 2230 /* Reference counter to track users of backend netmap port: the 2231 * network stack and netmap clients. 2232 * Used to decide when we need (de)allocate krings/rings and 2233 * start (stop) ptnetmap kthreads. */ 2234 int backend_users; 2235 2236 }; 2237 2238 int netmap_pt_guest_attach(struct netmap_adapter *na, 2239 unsigned int nifp_offset, 2240 unsigned int memid); 2241 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok, 2242 struct nm_csb_ktoa *ktoa, 2243 struct netmap_kring *kring, int flags); 2244 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok, 2245 struct nm_csb_ktoa *ktoa, 2246 struct netmap_kring *kring, int flags); 2247 int ptnet_nm_krings_create(struct netmap_adapter *na); 2248 void ptnet_nm_krings_delete(struct netmap_adapter *na); 2249 void ptnet_nm_dtor(struct netmap_adapter *na); 2250 2251 /* Helper function wrapping nm_sync_kloop_appl_read(). */ 2252 static inline void 2253 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring) 2254 { 2255 struct netmap_ring *ring = kring->ring; 2256 2257 /* Update hwcur and hwtail as known by the host. */ 2258 nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur); 2259 2260 /* nm_sync_finalize */ 2261 ring->tail = kring->rtail = kring->nr_hwtail; 2262 } 2263 #endif /* WITH_PTNETMAP */ 2264 2265 #ifdef __FreeBSD__ 2266 /* 2267 * FreeBSD mbuf allocator/deallocator in emulation mode: 2268 */ 2269 #if __FreeBSD_version < 1100000 2270 2271 /* 2272 * For older versions of FreeBSD: 2273 * 2274 * We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE 2275 * so that the destructor, if invoked, will not free the packet. 2276 * In principle we should set the destructor only on demand, 2277 * but since there might be a race we better do it on allocation. 2278 * As a consequence, we also need to set the destructor or we 2279 * would leak buffers. 2280 */ 2281 2282 /* mbuf destructor, also need to change the type to EXT_EXTREF, 2283 * add an M_NOFREE flag, and then clear the flag and 2284 * chain into uma_zfree(zone_pack, mf) 2285 * (or reinstall the buffer ?) 2286 */ 2287 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 2288 (m)->m_ext.ext_free = (void *)fn; \ 2289 (m)->m_ext.ext_type = EXT_EXTREF; \ 2290 } while (0) 2291 2292 static int 2293 void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) 2294 { 2295 /* restore original mbuf */ 2296 m->m_ext.ext_buf = m->m_data = m->m_ext.ext_arg1; 2297 m->m_ext.ext_arg1 = NULL; 2298 m->m_ext.ext_type = EXT_PACKET; 2299 m->m_ext.ext_free = NULL; 2300 if (MBUF_REFCNT(m) == 0) 2301 SET_MBUF_REFCNT(m, 1); 2302 uma_zfree(zone_pack, m); 2303 2304 return 0; 2305 } 2306 2307 static inline struct mbuf * 2308 nm_os_get_mbuf(struct ifnet *ifp, int len) 2309 { 2310 struct mbuf *m; 2311 2312 (void)ifp; 2313 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2314 if (m) { 2315 /* m_getcl() (mb_ctor_mbuf) has an assert that checks that 2316 * M_NOFREE flag is not specified as third argument, 2317 * so we have to set M_NOFREE after m_getcl(). */ 2318 m->m_flags |= M_NOFREE; 2319 m->m_ext.ext_arg1 = m->m_ext.ext_buf; // XXX save 2320 m->m_ext.ext_free = (void *)void_mbuf_dtor; 2321 m->m_ext.ext_type = EXT_EXTREF; 2322 ND(5, "create m %p refcnt %d", m, MBUF_REFCNT(m)); 2323 } 2324 return m; 2325 } 2326 2327 #else /* __FreeBSD_version >= 1100000 */ 2328 2329 /* 2330 * Newer versions of FreeBSD, using a straightforward scheme. 2331 * 2332 * We allocate mbufs with m_gethdr(), since the mbuf header is needed 2333 * by the driver. We also attach a customly-provided external storage, 2334 * which in this case is a netmap buffer. When calling m_extadd(), however 2335 * we pass a NULL address, since the real address (and length) will be 2336 * filled in by nm_os_generic_xmit_frame() right before calling 2337 * if_transmit(). 2338 * 2339 * The dtor function does nothing, however we need it since mb_free_ext() 2340 * has a KASSERT(), checking that the mbuf dtor function is not NULL. 2341 */ 2342 2343 #if __FreeBSD_version <= 1200050 2344 static void void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) { } 2345 #else /* __FreeBSD_version >= 1200051 */ 2346 /* The arg1 and arg2 pointers argument were removed by r324446, which 2347 * in included since version 1200051. */ 2348 static void void_mbuf_dtor(struct mbuf *m) { } 2349 #endif /* __FreeBSD_version >= 1200051 */ 2350 2351 #define SET_MBUF_DESTRUCTOR(m, fn) do { \ 2352 (m)->m_ext.ext_free = (fn != NULL) ? \ 2353 (void *)fn : (void *)void_mbuf_dtor; \ 2354 } while (0) 2355 2356 static inline struct mbuf * 2357 nm_os_get_mbuf(struct ifnet *ifp, int len) 2358 { 2359 struct mbuf *m; 2360 2361 (void)ifp; 2362 (void)len; 2363 2364 m = m_gethdr(M_NOWAIT, MT_DATA); 2365 if (m == NULL) { 2366 return m; 2367 } 2368 2369 m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor, 2370 NULL, NULL, 0, EXT_NET_DRV); 2371 2372 return m; 2373 } 2374 2375 #endif /* __FreeBSD_version >= 1100000 */ 2376 #endif /* __FreeBSD__ */ 2377 2378 struct nmreq_option * nmreq_findoption(struct nmreq_option *, uint16_t); 2379 int nmreq_checkduplicate(struct nmreq_option *); 2380 2381 int netmap_init_bridges(void); 2382 void netmap_uninit_bridges(void); 2383 2384 /* Functions to read and write CSB fields from the kernel. */ 2385 #if defined (linux) 2386 #define CSB_READ(csb, field, r) (get_user(r, &csb->field)) 2387 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field)) 2388 #else /* ! linux */ 2389 #define CSB_READ(csb, field, r) (r = fuword32(&csb->field)) 2390 #define CSB_WRITE(csb, field, v) (suword32(&csb->field, v)) 2391 #endif /* ! linux */ 2392 2393 #endif /* _NET_NETMAP_KERN_H_ */ 2394